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Abstract
The design of advanced driver assistance systems
always aims at enabling the driver to master to-
day’s traffic in a more safe and comfortable way.
For future assistance systems, the assisting system
must be aware of the current overall traffic situa-
tion. In order to judge the risks in a situation, the
assistance system must be able to predict the be-
havior of the traffic participants around. Taking
into account all possible future situations for the
next few seconds is a task which quickly produces a
complexity that can hardly be handled.

Taking the human driver as a role model for its
software-counterpart, we propose a new concept
which aims at modeling anticipation by taking the
motivations of drivers as a basis. Starting with a set
of motivations typical for highway traffic, for exam-
ple the navigation motivation of taking an exit or of
changing lanes to keep a constant speed, concrete
situation specific goals are derived. A planning
component generates the possible and fulfillable
plans for all vehicles in the scenario with respect to
the set of goals. Then, the observed actions of the
vehicles around are compared to these plans in
order to derive a plausibility for the underlying
intentions. Eventually, prediction is performed for
plausible behaviors of vehicles, which are always
based on a motivation that can be taken as an ex-
planation for it.

First results are shown in simulation for highway
exit scenarios. In the situations shown, a prediction
for an upcoming lane change of a vehicle can be
made just by the knowledge of pre-defined motiva-
tions and the observation of a sequence of actions.

1. Introduction

The challenging vision of our current research is to
develop a scene understanding methodology for
advanced assistance systems that can cope with
complex traffic scenarios. The aim is that next gen-
eration driver assistance systems should be able to
optimize their information, warning and control

strategy by considering driver preferences and the
overall traffic situation. As an example, early recog-
nition of an intervening vehicle would help to adapt
the control strategy of an ACC (Adaptive Cruise
Control) system early enough to avoid that the
safety distance is violated after the intervening vehi-
cle has ranged into the gap. Obviously, a strict con-
trol strategy that only considers the distance to the
front vehicle is not capable of handling such a situa-
tion appropriately. Therefore, it becomes more and
more important that assistant systems are provided
with a complete and consistent representation of the
overall situation.

An important aspect which emerges from the illus-
trations here is the importance of early recognition
of maneuvers of other vehicles. Hence, one impor-
tant area of research is plan recognition and predic-
tion that facilitates early recognition of dangerous
situations in future.

2. System overview

Real-world traffic scenarios are complex and it is
not possible to list descriptions of all scenarios oc-
curring in real world traffic. The approach intro-
duced here suggests that plan recognition is based
on dynamic planning, requiring only a set of abstract
motivations which are defined upfront by the de-
signer.

Motivation-based plan recognition and prediction
bases on the idea that driving behavior is strongly
affected by the motivations of the driver and that
these motivations can be – at least for highway traf-
fic – formulated with a few sentences. Therefore, we
assume that the drivers of all surrounding vehicles
have a set of motivations, which are representative
for their driving behavior. We further assume that
the driver sets situation dependent goals according
to the given motivations. After setting the goals, the
driver develops plans to achieve the situation de-
pendent goals and chooses the one with the highest
probability of success, the highest convenience, or
the minimum risk. The driver executes the plan,



monitors the progress of the situation continuously
and re-plans if the outcome becomes less attractive
than in the initial situation.

The approach of motivation-based behavior recog-
nition assigns each driver in the scene a pre-defined
set of possible and relevant motivations (relevant
for the assistance system). Given the motivations
and the current situation, the system assigns possi-
ble goals to each of the drivers and creates possible
plans according to the goals. The plan recognition
modules take these plans and assigns plausibility
hypotheses according to the current observations.

Plan recognition is one important aspect but early
discovery of conflicts in plans of two or more vehi-
cles that can lead to critical situations require also
reliable prediction of situations in the future. Pre-
diction as it is suggested here is performed in a pos-
sible world structure, where possible futures are
expanded within a tree and each node that repre-
sents a possible future is associated with a plausi-
bility. Figure 1 gives a general overview of the ap-
proach.
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Figure 1 Approach

The expanded possible worlds are the basis of the
situation analysis. Basically, situation analysis looks
for relevant situations in the future that may affect
the overall information, warning and control strat-
egy of the assistance function. In case of ACC,
situation analysis tries to discover situations where a
vehicle crosses the own lane and forces an adapta-
tion of the safety distance. In this work here we
suggest that relevant terms for the assistance func-
tions like road lanes or gaps are modeled as re-
sources and situation analysis is responsible to dis-
cover conflicting operations on these resources over
time and space.

The following sections will refine the illustrations
given here. We will show how our system maps
driving behavior into tangible terms to facilitate
early recognition of critical situations. As a simpli-
fication we focus only on highway scenarios be-
cause those are less complex than scenarios given in
city traffic.

2.1. Motivations and goals

Looking at the variety of actions that a vehicle can
perform in a dynamically evolving traffic situation,
it is very difficult to pre-define sequences or pat-
terns of actions. Considering a complex traffic
situation with many vehicles and taking all possible
actions into account to predict future traffic situa-
tions would lead to combinatory explosion and is
intractable, especially in real-time. Hence, instead of
modeling fixed plans for recognition, we suggest to
pre-define abstract motivations and to deduce goals
and plans dynamically for all relevant vehicles in
the scene. By considering only relevant and plausi-
ble (due to current observation) motivations predic-
tion of future situations becomes feasible.

To make the discussion about motivations and goals
more concrete we will introduce example motiva-
tions and goals especially for highway traffic. Given
an arbitrary highway-traffic situation, we can as-
sume a small set of abstract motivations for each
vehicle in the scene. Please note that the following
list shows only a sub-set of possible motivations that
were used for test purposes in our application. Cate-
gories are arbitrarily chosen and must be refined in
future work:

1. Timing motivation: Be at destination x at time y.
(This represents a timing requirement, from
which, if occasion arises, we can deduce a
higher trip velocity or an overtake intention.)

2. Personal motivation: Traffic law conform and
safe driving.

3. Personal motivation: Dislike driving behind
trucks.

4. Navigation motivation: Drive from A to B.

These motivation are dynamically mapped to goals.
The following list represents only a sub-set of goals
that can be deduced.

1. Drive at fast velocity. Overtake if necessary,
e.g. if a slow vehicle is in front.

2. Drive at slow velocity. Prefer right lanes.

3. Overtake trucks and avoid driving on right most
lane.

4. Find a safe path to exit lane or find a safe path
to the highway, etc..

Deducing situation-dependent goals from motiva-
tions is a major task. In the first implementation, we
classified situations in clusters and assigned abstract
formulated goals to the set of motivations according
to situation classes. Furthermore, we reduced the
amount of motivations to those that are relevant for



the application. For example, the four motivations
given above have been tested for an ACC system
and provided good coverage of intentions for a lane
change in highway situation. Nevertheless, goal
deduction remains a major area of research in order
to find more scalable and general solutions.

2.2. Plans

To start, we decided to implement planning as
situation space search [Russel, 1994]. We defined
discrete operators which reflect the possible actions
that a vehicle can perform in highway traffic. The
situation is described in an abstract language in
terms of vehicles, (time-)gaps, distances, velocities
etc. The following figure shows the process from
motivations to plans with the aid of an example.
The example shows an “EGO” car that represents a
vehicle equipped with our system. The “EGO” ve-
hicle creates possible goals and plans for vehicle
“A” . The sequences of actions in the possible plans
are represented with arrows to illustrate the discrete
nature of operations/actions within the plan.

A
B

C
DEGO

Goals

Drive fast. Overtake if necessary.
Drive slow. Prefer right lanes.
Overtake trucks and avoid right
most lane.
Find safe path to exit lane.

Motivations

Timing:      At time t at destination x
Personal:   Conform and safe

     Dislike driving behind
     trucks

Navigation:A to B

Figure 2 Motivations, goals and discrete plans

One of the motivations shown above would be to
take the exit. For this motivation the goal deduction
module derives a goal, according to the constraints
given by the situation (constraints are derived from
the environment data and the vehicle dynamics) :

GoalState: Exit Lane
Constraints: StartExit Pos1

EndExit Pos2
Velocity 15m/s

The planner uses a heuristic search to find a path
from start state to goal state. The intuitive approach
would be to define the value function ( )SH

&
 that

rewards states that are closer to goal state. There-
fore, a lane change to the right would preferred by
the planner as a first step. This is of course a simple
measure for plan quality and does not really reflect
natural driving behavior. Therefore, we propose a
more multi-dimensional measure, considering the
following criteria:

- Optimize time
- Minimize lane changes
- Minimize acceleration and deceleration
- Minimize risk
- Minimize distance to goal
- Maximize safe distances to other  vehicles

According to the assumed Motivations, one or more
(weighted) criteria is used as a heuristic. Besides we
define additional constraints like:

- Comply with vehicle dynamics
- Follow traffic rules

If the heuristic is defined appropriately the most
realistic plan is generated first. The planner stops to
generate possible plans after the last generated plan
is below a certain reward threshold. Firstly, this
restricts the amount of possible plans that is essen-
tial for efficiency purposes, and secondly it provides
a measure that helps to assign plausibilites to plans
in the plan recognition module (see section 2.3.2).

2.3. Behavior recognition

Actually, behavior recognition can be viewed as the
reverse process of motivation-based driving behav-
ior. Behavior recognition starts at the action level
and tries to match sequences of actions to previously
generated plans. The following paragraphs discuss
the main issues involved in behavior recognition:
action and plan recognition.

2.3.1. Action recognition

Action recognition is about tracking actions of vehi-
cles in the scene and providing this information to
the plan recognition components. An action within a
plan transforms the agent from one plan state to the
other. Although an action at the planning level is
defined as a discrete operation, tracking of actions is
preferably performed continuously to enable early
recognition of the action. In this work here we de-
fine six possible actions which reflect the processes
that a vehicle is able to perform. The first four ac-
tions are associated with the lateral and longitudinal
movement and the last two modeled actions reflect
that the observed vehicle neither performs a lateral
nor longitudinal action1.

As an aggravating fact observation of actions are
subject to uncertainty, and actions as modelled here,
are not disjoint, by the means that two actions can
occur in conjunction, observing a certain time rela-
tion. The time relations are modeled with the aid of
Allen’s temporal logic formalism [Allen 1984].

                                                
1 Remaining also includes following and controlling



Uncertainty is considered by using dynamic belief
networks (DBN) for action recognition.

A1A2

A3
A5

A4A6
A1: Accelerate
A2: Decelerate
A3: Remain Longitudinal
A4: Change Left
A5: Change Right
A6: Remain Lateral

Figure 3 Actions

2.3.2. Plan recognition

Plan recognition takes the abstract plan specifica-
tions as input and assigns plausibility hypotheses to
each possible plan of the observed vehicle. Plan
recognition requires a history of actions to make
hypotheses about the currently executed plan. Un-
fortunately, we re-plan at each cycle and discard
formerly created plans, wherefore there is no history
available. The consequence is that formerly as-
signed plausibility values are lost.

To overcome this problem we use two measures to
assign appropriate plausibilities to plans. For plans
that lead to the same goal, we assume that the plan
with the highest value given by the heuristic search
planner is the most plausible. Secondly, we map the
history of actions to a goal plausibility. This is done
by a general measure, which allows to compare
plans leading to different goals according to their a
priori plausibility. Hence, the whole history is
mapped to a single goal plausibility value. Since the
goals are more persistent than plans we achieve that
plausibility measures of tracked plans can be trans-
ferred to the next planning cycle. To close the loop
to motivation-based driving behavior, this scheme
can be extended to motivations. Given the restricted
observation horizon in a dynamic traffic situation it
is clear that reasoning about plans, goals and moti-
vations will not always be possible. We introduce
inter-vehicle communication in the next section that
is intended to assist the whole behavior recognition
process.

2.4. Integrating inter-vehicle communica-
tion for plan recognition purposes

CarTALK 2000 [Reichardt et. al. , 2001] is a new
EC funded project focussing on new driver assis-
tance systems which are based upon inter-vehicle
communication. The idea is that inter-vehicle com-
munication can be used to optimize current driver
assistance systems by exchanging information about
the current traffic situation. Inter-vehicle communi-

cation is intended to augment the on-board sensor
data and to facilitate new functionality such as haz-
ard warning or co-operative driving.

In the context of plan recognition, inter-vehicle
communication enables reliable transmission of
intentions before the actual plan is executed. For
example, a lane change intention or whole plans can
be transmitted to all concerned vehicles in the scene,
as an alternative to motivation-based plan recogni-
tion that is based on observation2. Alternatively, the
vehicles could exchange motivations, so that the
planning and plan recognition process can be fo-
cused and optimized.

Inter-vehicle communication assists the overall plan
recognition process. Moreover, both exchange of
maneuver intentions over inter-vehicle communica-
tion and the motivation based plan recognition that
relies on the observation of the actions of vehicles
can run in parallel to provide a degree of fault toler-
ance. It will be a very sophisticated and interesting
task to combine both approaches in future projects.

2.5. Possible worlds structure

The possible worlds3 represent possible future
situations given the plans of the vehicles. The
structure is a tree that allows symbolic computation
of future situations by combining possible actions of
the vehicles in the scene. Considering combinations
of all possible actions of all vehicles in the scene
would obviously lead to combinatory explosion
while creating possible worlds in future. Therefore,
the prediction is concentrated on the plausible
worlds given by the set of plausible plans.

We will illustrate the problem associated with com-
putational complexity with the aid of a simple ex-
ample. We first calculate all possible worlds given
our notion about actions and plans and then try to
reduce complexity with our approach. To simplify
the calculations, we neglect the fact that actions can
observe different time relations.

The computational complexity for calculating all
possible worlds looking T steps in the future by

                                                
2 Since we have driver in the loop, plan recognition must
still be performed for the own driver
3 In contrast to this notion here possible worlds are
mostly associated with semantics to reason about own
beliefs and beliefs of other agents and represent a popular
semantics for modal logic. In this context, a possible
world is an assignment of true or false to well-formed
formulas of a theory. An accessible possible world is a
world where all beliefs of ancestor worlds hold
[Cresswell, 1999], [Dean, 1995].



combining all possible actions of the agents is given
by:
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where α is the number of possible actions, τ is the
time step in the future and ν is the number of vehi-
cles in the scene. To predict possible situations for
only five agents five steps long would require
≈3x1019 possible worlds to be created. Contemplat-
ing that these worlds have to be created, stored and
analyzed, it becomes pretty clear that more efficient
ways have to be found.

Therefore, we defined the notion of plausible
worlds and assigned computational resources ac-
cording to the plausibility. The idea is to consider
only valid and plausible plans for prediction, and to
restrict the horizon of prediction according to the
given plan plausibilities.

To follow the path given by the combination of the
most plausible plans of all vehicles would only re-
quire that T situations are created (most plausible
path). If we were very sure about the plan plausibil-
ities, this would be sufficient. But plausibility
measures can not be assigned with full certainty.
Therefore we need to consider a set of plausible
futures.

In our approach, each possible world is assigned a
plausibility value, given by the plan plausibilities.
Assuming that motivations and also the plans of
each vehicle are independent, the plausibility of
each world can be calculated with:
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Formula 2

Where Pl(ϖτ) represents the plausibility of the cur-
rent world in the possible world structure and
Pl(ϖτ+1) represents the plausibility of the following
world. World ϖτ+1 results from the combination of
actions of the vehicles in ϖτ. This set of actions is
described by the transition function T(ϖτ, ϖτ+1).
Pl(aτ|ij|ϖτ) is the plausibility of an action which is
determined by the plan plausibilities in ϖτ. There-
fore, a path in the possible world structure gives a
possible future when each vehicle follows one
specified plan provided by the planner. Formula 2
facilitates to assign plausibility measures to a world

in the possible world structure derived from the plan
plausibilities given by the plan recognition modules.

Thus, it is only required to combine plans and not
actions, which helps to focus the prediction step.
Finally, we define a plausibility threshold δ to re-
strict the number of prediction steps dynamically.
Given this threshold we expand paths in the possible
world structure only if a possible world exceeds this
threshold. Figure 4 illustrates the possible worlds
structure where each node represents a world ϖτ
along with a plausibility value. The longest path
within the structure contains the worlds given by the
combination of the most plausible plans of each
vehicle.
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Figure 4 Possible worlds structure

Such a scheme to prediction enables dynamic as-
signment of computational resources. By setting a
high threshold the computing time for prediction is
restricted, with the result that prediction is per-
formed only for few time steps.

2.6. Situation analysis

Situation analysis is carried out in this possible
world structure. For ACC improvement we look for
situations in the possible worlds where a vehicles
crosses the lane of the vehicle equipped with our
system. That means we look for patterns in situa-
tions and the evolution of situations that have the
violation of the safety distance as consequence. The
resulting Time-To-Collision is taken as risk meas-
ure. The system reacts if a risk threshold is exceeded
within a very plausible world.

3. Integrating planning and plan recogni-
tion

Figure 5 shows the resulting software architecture.
Situations and Motivations are stored in a global
database. The whole world representation consist of
a history of situations, motivations, goals, plans and
the possible worlds. Objects that represent the situa-
tion are fed into the world representation from the
sensor and object fusion components. The results
(P-Worlds) serve as basis for situation analysis.
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Figure 5 Architecture overview

Figure 6 shows the data and control flow of the plan
recognition and prediction process. The process is
performed at each clock cycle. Each world is as-
signed a risk value in the possible worlds structure
which then serves a basis for the decision process of
the information, warning or control system.
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Figure 6 Data and control flow

4. Simulation results

Simulations have been carried out for various high-
way exit scenarios. The scenarios aimed at testing
the ACC assistance system functionality. The ACC
had been extended with behavior recognition and
prediction capabilities as introduced here and the
results were compared with the results of the ACC
system without these capabilities.

A

B

EGO

Plausibility

Take appropriate action:
brake to keep safety distance (enlarge gap)

PlausibilityMotivations

Timing: At time t at destination x
Personal: Conform and safe

Dislike driving behind trucks
Navigation:Take next exit 

Matchobservation
to plans

Figure 7 Simulated scenarios

In the first implementation, we tested the plan rec-
ognition and behaviour prediction capabilities,
without using a dynamic planner (subject of further
research). The aim was to validate the idea of be-
havior prediction by recognition and combination of
plans of different vehicles. We especially focused
on testing how this prediction capability enhances
the overall driver assistance functions.

For this initial system, the prediction capability en-
abled early adaptation of the control strategy and
improved the comfort properties of the system for a
set of exit scenarios.

The system was able to anticipate a lane changing
vehicle that crosses the own lane before the action
actually occurred. The next major research topic
will be the integration of a dynamic planning com-
ponent into the overall system to cope with the vari-
ety of real world scenarios.

5. Conclusion and outlook

Preventing accidents and improving driving comfort
are two major aims of driver assistance systems.
This requires to look beyond reactivity and control.
Next generation assistance systems should be able to
imitate higher level human skills as planning of
behavior or prediction of critical situations. The
approach introduced here captures higher level skills
associated with driving and puts them into tangible
terms like motivations, goals, plans or prediction.

As soon as we reason about complex human be-
havior the problem gets computationally intractable.
Especially, prediction and assessment of future
situations is critical in terms of computation time
and storage space. Therefore, it is essential to con-
centrate resources and to focus on plausible and
relevant information.

Although concepts for plan recognition and predic-
tion brought good results in simulation, we currently



seek for more general and scalable solutions. Cur-
rently, we develop a dynamic planner and investi-
gate how situations must be represented to allow
appropriate situation analysis. Besides, we investi-
gate situation pattern for appropriate goal deduction
to enable the flexible approach here. Hence, most of
areas introduced here are subject to further research
to investigate the overall feasibility of such an ap-
proach. In a second step we will investigate how
this approach can cope with limited sensor range
and unreliable sensor information.
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