

Toward Affective Dialogue Modeling using POMDP

Trung H. Bui Job Zwiers Mannes Poel Anton Nijholt University of Twente

Bremen, 19 June 2006 Workshop Emotion & Computing

Outline

- Motivation
- POMDP & dialogue management
- Affective dialogue modeling
- Example
- Conclusions and future work

Motivation

- Affective dialogue management (ADM) model is a dialogue management which is able to take into account some aspects of the emotional state and acts appropriately
- Scope of the ADM we are focusing on
 - human-computer interaction using multimodal input/output
 - acting appropriately given knowing the user's emotional state and the user action with uncertainty (not emotion recognition, dialogueact recognition)
- POMDP provides an elegant framework for this type of dialogue models

Partially Observable Markov Human Media Interaction **Decision Process**

<S, A,Z,T,O,R>

- Z = observation set R = reward model
- S = state set T = transition model
- A = action set O = observation model

Related notations

- b is the agent's belief state b
- π is the agent's policy to select the action
- Two main tasks
 - Computing the belief state
 - Finding the optimal policy

Example (Roy et al. 2000)

Example: S = {s₁,s₂}, A={a₁,a₂}, Z={z₁,z₂,z₃} P(s₁) $p(s_1)$ $b_{t+1}(s_1)$ given $a_t = a_1, s_{t+1} = s_1, o_{t+1} = z_1$

Finding the optimal policy

 V^π(b) = expected total discounted future reward starting from b for a policy π

$$V^{\pi}(b) = \max_{a \in A} \left[R(b,a) + \gamma \sum_{b' \in B} T(b,a,b') V^{\pi}(b') \right]$$

 $\boldsymbol{\gamma}$ is the discount factor

The optimal policy:

 $\pi^* = \arg \max_{\pi} E[V^{\pi}(b)]$

POMDP Dialogue management

Works	Slots, states, actions, obs.	Algorithm, strategy	Reward model			
Nursing home robot (Roy et al. 2000)	4,13,20,16	Augmented MDP	Each action labeled as Correct(+100), OK(-1) or Wrong(-100)			
Tours guide (Zhang et al. 2001)	30,40,18,25	QMDP,FIB,Grid- based appro.	positive reward when the answer matches user's request negative reward if mismatch occurs			
Robot interface domain (Pineau & Thrun 2001)	3,10,15,16	Incremental Prunning	Computation time in seconds			
Travel booking (Williams & Young 2005)	booking 2,36,5,5 Perseus ns & 2005)		 -1 if ask slot not stated, -3 if confirm slot not stated -2 if ask slot stated, -1 if confirm slot stated -3 if ask slot confirmed, -2 if confirm slot confirmed +50 if dialogue goal ends successfully, -50 otherwise 			

Proposed POMDP Affective dialogue model

- Using a two time-slice Dynamic Bayesian network of factored POMDP
- State set and observation set are composed of 6 features
 - State set: user's goal (G_u), user's emotional state (E_u), user's action (A_u), & user's dialogue state (D_u)
 - Observation set: observed user's action (OA_u) & observed user's emotional state (OE_u)

Transition model & observation model

- No data available \rightarrow Use parameters
 - p_{gc} & p_{ec} are the probability the user's goal & emotion change
 - p_e is the probability of the user's action error being induced by emotion
 - p_{oa} & p_{oe} are the probabilities of the observed action & observed emotional state errors
- Partial or full data available → construct and adjust the model from the collected data

Model specification

- State space (including an absorbing end state)
 - $G_u = \{a, b, c\}$
 - $E_u = \{stress, no-stress\}$
 - $A_u = \{a, b, c, yes, no\}$
 - D_u = {1=location-specified, 2=location-not-specified}
- System action
 - A = {ask, confirm-a, confirm-b, confirm-c, rd*-a, rd-b,rd-c, fail}
- Observation
 - OE_u = {stress, nostress}
 - $OA_u = \{a, b, c, yes, no\}$
- Reward
 - Confirms before the location is specified \rightarrow reward = -2
 - Fail action \rightarrow reward = -5
 - rd-x with $gu = x \rightarrow 10$ otherwise -10
 - The reward for any action taken in end state is 0
 - The reward for other action is -1

Possible dialogue strategies

Some of them are useful. Which ones are optimal?

Optimal policy (Using Standard PBVI Algorithm 27.83s)

• Test case: $p_{gc} = p_{ec} = p_{oa} = p_{oe} = 0,$ $p_e = 0.1 (if ask) \& = 0 (otherwise)$

Reformulated model

 $S = Gu \times Du + end = \{a1, a0, b1, b0, c1, c0, end\}$ $Z = OAu \times OEu$ $= \{a - \text{stress}, a - \text{nostress}, b - \text{stress}, \dots, \text{no - nostress}\}$ $\gamma = 0.95$ $b_0 = <\frac{1}{3}, 0, \frac{1}{3}, 0, \frac{1}{3}, 0, 0 >$

Value function table

$\mathrm{Node}\#$	Action	a1	a0	b1	b0	c1	cO	end
0	confirm-b	-12.5	-10.5	6.5	8.5	8.5	8.5	0
1	rd-c	-10.0	-10.0	-10.0	-10.0	10.0	10.0	0
2	rd-b	-10.0	-10.0	10.0	10.0	-10.0	-10.0	0
3	confirm-c	5.0	7.0	5.0	7.0	6.5	8.5	0
4	confirm-b	5.0	7.0	6.5	8.5	7.0	7.0	0
5	confirm-a	6.5	8.5	-12.5	-10.5	6.5	8.5	0
6	confirm-a	6.5	8.5	5.0	7.0	5.0	7.0	0
7	confirm-b	6.5	8.5	6.5	8.5	-10.5	-10.5	0
8	ask	7.7	7.7	7.7	7.7	7.7	7.7	0
9	rd-a	10.0	10.0	-10.0	-10.0	-10.0	-10.0	0

the optimal the action should start given the initial belief:

$$b_0 = <\frac{1}{3}, 0, \frac{1}{3}, 0, \frac{1}{3}, 0, 0 >$$

Expected return vs. user's action error being induced by stress (p_e)

Test results were carried out using Perseus algorithm on full POMDP model (61 states, 8 actions, 10 observations)

Conclusions

- The optimal dialogue strategy depends on the correlation between the user's emotion state & action
- 2TBN of factored POMDP allows integrating the features of states, actions, & observations in a *flexible* way
- But!!!
 - Computational complexity in finding the optimal policy using both exact and some approximate algorithms except small, toy dialogue problems
- Recent advances in approximate POMDP techniques plus heuristics in dialogue model design are expected to solve real-world dialogue applications

Future work

- Scaling up the model with larger state, action, & observation sets for real-world dialogue management problems
- Extending the model representation, e.g. correlations between user's emotion & goal
- Collecting & generating both real & artificial data to build and train the model

Questions?