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Abstract 

Downtimes of failed devices in an industrial plant 

must be kept to a minimum to achieve high system 

availability. Since failures are often caused by transient 

hardware- or software faults, a well-defined System Self 

Diagnosis (SSD) functionality is an important feature for 

the effective long-term operation of industrial plants. To 

achieve effective SSD techniques for network 

infrastructure devices, a root cause analysis of past 

failures was conducted and a fault model derived. A set 

of error detection methods was derived based on the 

checked root cause indicators. For productive 

deployment, an extensible SSD framework in form of a 

rule based system was designed and implemented to be 

used as an embedded software tool throughout the whole 

product lifecycle of an industrial device, achieving a 

highly efficient “Design for Testability” approach. 

1.  Introduction 

Industrial plants are often operated on the basis of an 
Industrial Ethernet network [1], over which the plant 
devices communicate. These installations are usually 
composed of various infrastructure devices such as 
switches and routers, interconnected within complex 
wired and wireless topologies (Figure 1). The plant 
operation relies on the reliable operation of the data 
communication via this network. 

 

Figure 1. Industrial Ethernet Network in the 
Automation Pyramid 

 
After an industrial network has been setup and is 

operating productively, downtimes have to be avoided. 
In the case of unexpected failure of network 
components, their recovery or replacement has to be 
performed in such a way as to keep the downtime of the 
affected parts of the network to an absolute minimum 
[2]. In case of permanent hardware failures, the device 
has to be physically replaced, which is a manual task 
performed by maintenance personnel. In the case of 
software failures, physical replacement is not required 
but rather appropriate recovery measures have to be 
undertaken to bring the device back to its correct 
operational state. Compared to the detection of faulty 
hardware components, which already is a non-trivial 
problem, the reliable detection of software failures in 
systems is even more challenging. Suitable error 
detection and associated recovery mechanisms are 
therefore required components for dependable self-
healing systems. 

The contribution of this work is a “Design for 
Testability” approach [3] through the definition of error 
detection rules and associated recovery strategies for 
embedded software based on the operating systems 
Linux and VxWorks [4]. A process model as basis for 
generic diagnostic rules identification is also summed up 
in this paper. Finally, a generic rule-based SSD 
framework is proposed. 

The structure of the paper is as follows: in section 2, 
we sum up the established work on dependability and 
define the scope of our work. In section 3 a failure model 
for our type of system is defined. In section 4 an 
architectural analysis of a typical network device is 
performed to derive a system model. This model is then 
used to identify the critical system components by 
performing a root cause analysis on historical bug 
tracking data. Section 5 presents general error detection 
mechanisms. These are then used in section 6 as a base 
for developing the error detection methods and 
algorithms used in our approach. In section 7 we briefly 
discuss some approaches on system failure recovery. 
Section 8 presents our solution of a SSD framework. 
Finally in section 9 we summarize our work. 
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2. Dependability 

Dependability techniques are a much researched 
subject. Numerous publications provide a good coverage 
of its various aspects which are most importantly 
availability, reliability and maintainability [5]. 
Dependability is largely driven by spacecraft, aircraft 
and automotive industry for the development of long 
mission and safety critical systems. Initially focusing on 
hardware designs, the same principles were later also 
applied to software based systems and further developed 
in that direction. In [6], a good overview on the subject 
and its history is provided. 

 

Figure 2. Dependability Taxonomy [5] 

We consider the most important dependability 
attribute for industrial automation systems to be 
availability, which is basically a function of reliability 
and maintainability (Figure 3).  

 

Figure 3. Availability Model 

Availability A is the degree to which a system is 
within a defined and operable state and depends on 
MTTF and MTTR.  

Mean Time to Failure (MTTF) expresses the 
reliability of a system by the mean time a system is 
expected to process correctly. 

Mean Time to Recovery (MTTR) expresses the 
maintainability of a system by the mean time required to 
bring a failed system back into operation.   

 
(1) 

 
 
As can be seen in (1), availability improvement can 

be achieved with a higher reliability (MTTF) and/or a 

better recoverability (MTTR). Although a high MTTF 
does not guarantee failure-free operation, a lower MTTR 
always minimizes the impact of failure. Thus lowering 
MTTR is obviously a powerful strategy to improve 
availability. 

2.1. Dependability Threats 

“A system failure occurs when the delivered service 
no longer complies with the specifications, the latter 
being an agreed description of the system's expected 
function and/or service” [5]. A failure is the 
manifestation of an error caused by a system fault. If the 
system is comprised of various interacting components, 
the failure of one component might introduce a fault in 
another component (Figure 4).  

 

Figure 4. Chain of dependability threats [5] 

2.2. Dependability Means 

According to Laprie [5] et. al., the following basic 
methods for creating dependable systems shall be 
distinguished in the context of this work: 

Fault Prevention (or fault avoidance) removes the 
source of faults (i.e. programming or design flaws) in the 
design phase prior to operation of the system in order to 
prevent faults from happening. This improves system 
reliability which is indicated by the mean time to failure 
(MTTF) thus directly increasing availability. Fault 
avoidance can be achieved through quality-focused 
development methods. Model-based code generation [5], 
test-driven development or design rules are typical fault-
prevention measures. 

Fault Removal applies validation and testing 
techniques to detect and remove faults before a system is 
put into operation. It can also be applied during system 
runtime by recording failures and removing them by 
updating the software during a maintenance cycle. This 
approach improves availability by making the system 
more reliable (higher MTTF). Code analysis, static and 
dynamic testing or advanced testing techniques such as 
software fault injection (SFI) [7,8] are typical measures. 
According to Dijkstra however “Program testing can be 
used to show the presence of bugs, but never to show 
their absence!”[10]. 

Fault Tolerance assumes faults to be present during 
system operation. It employs design techniques which 
ensure the continued correct system operation. One 
method is improving system availability through 
reliability (MTTF). Another method is the recovery of 
the system, thus also improving the availability by 
reducing downtime (MTTR). Fault tolerance can be 
achieved by utilizing design redundancy [10] but also by 
using error detection and recovery strategies. 



 

 

Fault Forecasting uses techniques to predict 
commonly occurring faults to avoid or remove them or 
circumvent their effects. This approach improves 
availability through improvement of reliability (MTTF). 
Fault forecasting can be achieved by utilizing monitoring 
and prognosis. 

2.3. Scope 

The functionality of industrial automation equipment 
is often based on complex software systems, which 
cannot be developed completely error-free. This is due to 
the fact that a combinatorial explosion of possible 
system states takes place which cannot be all verified by 
testing. Thus, there is always some probability of faults 
remaining in the software. These faults can transiently 
and non-deterministically lead to error and subsequent 
failure. As a consequence they can cause productivity 
loss within the plant. Since availability must be at a 
maximum at all times, this probability of non-
deterministic software failures has to be dealt with in 
some manner. 

A failure root cause analysis in an existing bug-
tracking database for complex embedded network 
products will be conducted to have a solid analytical 
base of the most important faults that result in expensive 
failures which are hard to debug. 

In the process of finding a solution, we will focus on 
the aspects of fault removal and fault tolerance in the 
form of single-processor embedded SSD techniques that 
increase system availability through reduction of MTTR. 
This kind of fault detection followed by isolation and 
system reconfiguration is often referred to as “FDIR” 
process that can also be performed online [11][12]. We 
will focus in this work however on the diagnostics part 
and only shortly outline possible approaches for 
recovery. 

3. Failure Modeling 

3.1. Fault classification 

Permanent faults are hardware or software design 
faults whose resulting failures can be exactly 
reproduced. In contrast, non-permanent faults occur 
randomly and affect the system behavior for an 
unspecified period of time. The detection and 
localization of non-permanent faults is extremely 
difficult and they are often not uncovered during 
systematic testing. As shown in fig. 5, software faults are 
often classified into Bohrbugs and Heisenbugs [13]. 

 

Figure 5. Fault Classification 

 Bohrbugs are permanent design faults whose 
resulting failures can be reproduced, thus are rather 
easily uncovered and mostly fixed in early testing phases 
of the software life cycle.  

Heisenbugs are also essentially permanent faults, but 
their conditions of activation occur rarely or are not 
easily reproducible. The resulting transient failures may 
not recur after the software is restarted. Heisenbugs are 
therefore extremely difficult to identify through testing. 
Transient failures due to Heisenbugs are of special 
importance in multithreaded systems, which are usually 
considered non-deterministic. In a non-deterministic 
system, it is impossible to predict all the possible system 
states. It is obvious that a permanent software fault 
underlying complex activation conditions, in other words 
a very special system state, is extremely difficult to 
uncover. Race conditions are a typical example of 
Heisenbugs in multithreading environments. In mature 
software systems, failures caused by Heisenbugs are 
more likely than failures caused by Bohrbugs.  

Another category of transient software failures is the 
manifestation of transient hardware faults. Modern 
microprocessors for example are less reliable and more 
susceptible to transient faults. This is largely due to 
faster and denser transistors on chip with lower threshold 
voltages and tighter noise margins [14]. These faults are 
not permanent faults but may result in incorrect program 
execution by inadvertently altering processor states, 
signal transfers or register values etc. The effect of these 
failures resembles the effects caused by Heisenbugs. 

Another bug category is based on the well-known 
phenomenon that software systems running continuously 
for a long time tend to show a degraded performance and 
an increased failure-occurrence rate due to resource 
corruption over time.  

3.2. Failure Model 

A failure model describes the type of failures that 
might happen and how the system behaves when the 
failure has occurred. While there are slight discrepancies 
in literature regarding their definitions [15], in this work 
the following failure models are used [16]: 

Crash Failures happen if a failed process stops 
permanently at a certain time. This models a crash of a 
process that does not recover. 

Omission Failures occur if a process continues its 
execution, but does not always respond to the inputs. 
The faulty task sometimes omits a response. 

Timing Failures also model a scenario where the 
faulty task continues. In this case however it does not 
omit replies but responses are sent either too early or too 
late.  

Byzantine Failures refer to a model where no 
assumptions about the behavior of a faulty process are 
made. A process can behave totally arbitrary and in the 
worst case do everything possible to compromise the 
system.  



 

 

 

Figure 6. Failure Model 

Failures can occur in value- and/or time-domain, 
allowing a classification into valid replies (correct in 
timing and value) and invalid replies (invalid in timing 
or value). It is important to note that the first three failure 
models are based on time-domain failures, while all kind 
of failures in the value-domain are categorized as 
Byzantine Failures.  

The presented models refer to failures on the level of 
processes. However, a failure of a process does not 
imply a failure on system level. It is a major goal in the 
design of self-healing systems to avoid failures on lower 
levels cause failures on higher levels.  

4. System Analysis 

4.1. System Model 

An embedded system consists of both hardware and 
software components that interact with each other over 
certain interfaces. On the hardware level this is usually 
done using input/output lines or signals buses (Figure 7), 
on the software level the interaction between hardware- 
and software-components is done using operating system 
mechanisms, such as message queues, semaphores, 
events, etc.  

 

Figure 7. Hardware Architecture 

We combine these basic models to derive the model 
of a concurrent system where processes communicate 
with each other and work on shared data objects. Inter-
process communication mechanisms such as message 
queues and semaphores are basically also shared data 

objects (Figure 8). We will call this the “Component 
Interaction Architecture model” (CIAM) and base our 
system diagnosis analysis on this model.  

 

Figure 8. Component Interaction 
Architecture Model (CIAM) 

Besides this interaction model, it is important to 
regard the behavior of the software during runtime. As a 
multithreaded system, the software is composed of a 
group of tasks, which are executed simultaneously. 
Resulting from the limitation of a single-core CPU, the 
amount of available CPU time is separated and assigned 
to the tasks by the operating system scheduler (Figure 9), 
which is necessary to support multitasking. With this 
method, the system simulates a concurrent execution of 
multiple tasks on a single processor.  

 

Figure 9. Dynamic Software Architecture 

Depending on the task priority, the scheduler can also 
induce context switches and interrupt the currently 
running task in favor of another task with a higher 
priority waiting for systems resources. This method 
ensures that a system can always handle high priority 
requests.  

4.2. Root Cause Failure Analysis 

Based on historical data in a bug tracking database, a 
root cause analysis was conducted to identify the key 
elements of the system which are susceptible to the most 
expensive failures. This analysis revealed that the most 
critical parts of the embedded system are the 
mechanisms of the system that are responsible for 



 

 

communication between subsystems. Most of them are 
provided by the operating system: memory management, 
task synchronization through semaphores, inter-task 
communication through message queues etc.  These are 
the elements of the system model (Figure 8) which are of 
special interest when developing a SSD system. 

5. Fault Detection Methods 

A self-healing software system is capable of 
continuous and automatic monitoring, diagnosis and 
remediation of software faults. Such a system’s 
architecture is generally composed of two high-level 
elements: the software service whose integrity and 
availability is supervised and the components of the 
system that perform the monitoring, diagnosis and 
healing.  

Because it is necessary for faults to become active to 
make their detection possible the first stage of runtime 
fault tolerance is always a mechanism founded on error 
or failure detection.  

Fault detection mechanisms can be integrated into a 
system at two positions [17]: first, self-checking fault-
detection mechanisms perform tests on the own module 
and review its internal state. Second, fault detection can 
be performed on other modules: self-protection 
mechanisms or acceptance tests are used to protect a 
module from faults originated from outside of the 
module. If not detected, these faults may induce a faulty 
state inside another module. 

5.1. Error Detection in Time-Domain 

Time-domain error detection algorithms are 
commonly used to monitor external modules, i.e. to 
perform acceptance tests. 

An error detection algorithm in time-domain can be 
categorized by its ability to cover a set of failure models. 
It is important to note that an algorithm which is able to 
detect failures of one class also covers all underlying 
failure classes (Figure 6). That means that an algorithm 
which can reliably detect timing failures also detects 
crash and omission failures. This hierarchy is 
represented by the following statement, where “<” 
indicates that an algorithm which is able to detect 
failures of the class on the right also covers the failure 
class on the left side:  

Crash Failure < Omission Failure < Timing Failure < 
Byzantine Failure 

5.2. Error Detection in Value-Domain 

Besides the error detection algorithms which can be 
applied in time-domain, errors can also be detected by 
performing checks on the data itself. The following types 
of error detection methods are commonly considered 
[18]: 

Reasonableness Checks are used to verify if the data 
of a reply makes sense, e.g. by performing threshold 
checks or checking logical connections. 

Structural Checks use known properties of module 
replies to detect errors. Some data types, such as lists, 
tables or trees can be verified for their correct logical 
organization. Structural test verify these data types for 
completeness, correct and valid referencing. A well-
known example of structural tests is a file system check. 

Coding Checks perform error detection using 
redundant information provided along with the data. 
Checksum codes, such as cyclic redundancy checks 
(CRC), are a type of coding checks. Coding checks can 
not only be applied to single data types, but can be used 
to check the integrity of a whole program.    

Reversal Checks are a helpful error detection method 
if the backwards computation of an operation is much 
easier than the forward calculation. If backward 
calculation based on the output values of an operation 
results in the same input values given to the forward 
computation, the operation was successful. 

Run-time Checks using hardware exceptions are a 
well-known and commonly used standard failure 
detection mechanism. Run-time checks provide 
application independent generic fault detection. A 
hardware exception is generated by the CPU during the 
execution of invalid instructions, such as division by 
zero, page faults or stack exception. Systems featuring a 
memory protection unit (MPU) also provide the 
capability to detect invalid memory accesses when 
separate address spaces are used. Memory protection can 
detect and isolate faulty programs which try to access 
invalid memory areas, e.g. by dereferencing dangling 
pointers. 

Besides the methods proposed by [18], the following 
methods are also commonly considered as a mean to 
detect failures:  

Static Redundancy using software diversity (n-
version programming) is an error detection mechanism 
in which the monitored function is implemented several 
(n) times using different approaches, e.g. different 
programming languages, algorithms, development 
teams, etc. During runtime, these implementations are 
executed simultaneously, followed by a comparison [19]. 

Control Flow Monitoring is an error detection 
method which monitors the program execution and 
ensures that only allowed instruction sequences are 
executed and only allowed branches are taken. The 
control flow monitoring method requires information 
about the allowed control flow paths, which can be 
defined manually or by collecting data during a test run. 
Control flow monitoring can also make a program 
tamper-proof. By verifying each basic code block using 
signatures, control flow monitoring provides powerful 
means to stem software cracking [20], thus increasing 
system security. 

6. Error Detection Mechanisms 

By today’s standards, most software projects already 
use a variety of measurements to achieve dependability: 



 

 

Fault-Prevention and Fault-Removal strategies are 
commonly applied, e.g. by using coding guidelines or 
perform system tests. Fault-tolerance and fault-
forecasting strategies, however, are so far not widely 
used. 

Since a root cause failure analysis on historical data 
has revealed that the most critical parts of the embedded 
software are the mechanisms responsible for sub-system 
communication, our SSD solution will enhance the 
critical operating system mechanisms by applying the 
following error detection mechanisms: 

6.1. Task Monitoring 

The task management mechanisms provided by the 
operating system allows designing the software system 
as a number of concurrently running tasks. As shown in 
the failure model presented previously, the behavior of a 
faulty task is unpredictable, but different fault detection 
algorithms can be used to detect a subset of these 
failures. 

Our solution tackles the problem of detecting failed 
tasks by using a time-domain error detection algorithm, 
which is able to detect timing failures therefore also 
covering omission and crash failures. A task is requested 
to send regular heartbeat messages to indicate that it is 
still running. If a heartbeat message is invalid or missing, 
the monitored task is assumed to have failed. 

6.2. Communication Mechanism Monitoring  

Synchronization and communication mechanisms, 
e.g. semaphores, message queues, events or timers are 
prone to error propagation and thus a critical part of a 
system. Consider a message queue which overflows 
because a faulty task does not receive messages, making 
communication between other tasks impossible. Another 
example are accidentally locked semaphores, e.g. due to 
a crashed task which failed to release them.  

These problems demonstrate that run-time 
supervision of these mechanisms is necessary. Our 
approach supervises these mechanisms using two 
methods: 

Online Error Detection is used to detect locked 
access control (mutual exclusion) semaphores.  They are 
monitored online by adding a time-domain error 
detection algorithm. Similar to the method used for task 
monitoring, a task which owns a mutual exclusion 
semaphore used for access control is requested to send 
regular heartbeat messages to indicate that it still 
accesses the shared resource. If a heartbeat is omitted, 
appropriate recovery measures can be deployed. 

Integrity Checks mitigate the risk of possibly 
occurring data corruption, e.g. when shared data objects 
are used in multithreaded systems. If such data is 
accessed by two or more threads at the same time 
without access control, data corruption can likely occur. 
Integrity checks can be used to handle such situations, 
e.g. by extending the object with some sort of 

redundancy (checksums) or by using robust data types. 
Our solution validates the data using a magic number 
check to detect invalid objects.  

6.3. Application-Specific Self Tests 

Error detection using a generic algorithm is often not 
sufficient. To perform detailed error detection on 
software modules, knowledge about the internal 
structure is required to perform meaningful error 
detection. In fact, most of the value-domain fault 
detection algorithms mentioned can only be deployed as 
case-by-case tests. Thus, the third error detection 
mechanism of our SSD solution is based on ad-hoc self-
tests. 

7. Failure Recovery 

If a failure in a system occurs and is diagnosed or can 
be predicted to occur soon, it is necessary to initiate an 
action to correct or prevent the failure from affecting the 
system to a degree that would make normal system 
usage impossible. 

A widely used method to recover from transient 
failures in complex software systems is to reboot the 
whole system. While this may be a method that can 
easily be applied, the disadvantage of this approach is 
that the downtime caused by a complete system reboot 
directly contradicts the requirement of high system 
availability for industrial automation systems. For this 
reason, other approaches are to be found, taking into 
account the availability requirements of industrial 
systems. 

One such alternative approach is to selectively restart 
only the sub-system, where the failure has occurred. In 
order to allow a selective restart of affected sub-systems, 
several conditions have to be observed. This is non-
trivial and not the focus of this paper, thus we will not go 
into further detail on possible approaches for system 
recovery on sub-system level. Existing approaches to 
solutions for this problem are already profoundly 
covered in other publications. The focus of these 
approaches varies from the recovery of faults at the 
device driver level [21] to the recovery of failures in 
multiprocessor systems or distributed computer grids 
[22], [23] or [24]. 

As a final remark on failure recovery it has to be 
noted that in some fields in the industry partial system 
recovery is not an option. This is especially true for 
safety critical systems. Due to legal and normative 
guidelines, in such environments the safety of a system 
has to be guaranteed at all times. If a failure occurs in the 
safety critical system, it has to assume a safe state and 
has to remain in this state until the failure has been 
removed and safe operation can be guaranteed again. 
While it might be possible to design systems that still 
can recover on a sub-system level, the effort involved in 
certifying such systems usually is too high to make this 
feasible. 



 

 

8. SSD Framework 

The integration of the error detection and recovery 
mechanisms into an existing software system resulted in 
the development of a library to address self-diagnosis 
and fault-tolerance requirements. The essence of the 
library is a rule-based expert system [25], consisting of a 
behavioral logic, the inference engine, and a rule base 
(see Figure 10). 

 

Figure 10. SSD Framework Architecture 

To extend a software service with self-diagnosis and 
self-healing abilities, the library’s user creates rules to 
specify how errors are detected and how they are treated. 
These rules are then stored inside of the rule base of the 
expert system, from where they are monitored by the 
inference engine. Each rule consists of a condition and 
one or more actions. 

The condition poses the error detection mechanism of 
the rule. Based on the strategies described in section 6, a 
condition can be configured to monitor a task for 
responsiveness, to supervise an access control 
semaphore or to perform a module self-test. Each rule 
supports only one condition, it is therefore impossible to 
use several error detection mechanisms within the same 
rule. 

To complete a rule for the SSD framework, the error 
detection mechanism is combined with a recovery 
strategy, which specifies the behavior of the SSD 
functionality in case the condition identifies a faulty 
state. The implementation of the recovery strategy is 
done by dividing it into a set of single operations which, 
within the context of the SSD framework, are called 
actions. These actions are then added to the rule. The 
number of actions per rule is not limited, thus it is 
possible to implement more or less complex recovery 
strategies. By correctly defining the set of actions, it is 
possible to restart different sub-systems even if they are 
dependent on each other by stopping and restarting them 
in the proper sequence. 

The library supports three major types of actions: 
system recovery, notification and application-specific 
actions. System recovery actions provide methods to 

recover the device in a generic fashion using operating 
system function. These include selective restarting of 
tasks, restoring communication mechanisms or rebooting 
the whole device. The second type is used for debug and 
“Design for Testability” purposes: notification actions 
are used to provide failure information. This action type 
can be used to validate the hardware after manufacturing 
or to store error information of rarely occurring 
Heisenbugs after deployment. The third recovery 
strategy is necessary if generic recovery approaches are 
impractical: similar to self-tests, the library also supports 
the definition of application-specific actions. In this case, 
the library’s user himself implements the necessary 
recovery measures.  

 

Figure 11. SSD Framework Rule Structure 

During runtime, the rule-based expert system is 
executed as an additional system task. The rule base is 
checked periodically by the inference engine. If a faulty 
state is detected, the rule condition triggers the 
corresponding actions, which are then executed 
successively (Figure 11).  

However, it cannot be guaranteed that a recovery 
strategy will be successful. The same failure may 
reoccur or a recovery mechanism proves to be 
ineffective. To address such issues, the behavior of the 
SSD framework can be customized depending on the 
attempt to recover from the same failure. 

The usage of the SSD framework’s functionality 
should be made compliant in the development process, 
forcing the software engineers to think about possible 
faults and failures from the very beginning in the design 
and implementation process, thus increasing the 
likelihood of preventing them in the first place. All 
created SSD rules are applicable not only throughout the 
development phases, but in the overall product lifecycle. 
In this way, a “Design for Testability” approach with a 
very high leverage regarding efficiency can be achieved 
[2]. 

9. Summary and Conclusion 

In this work, a generic model and methodological 
guidelines were developed for a software based self-
diagnosis system and associated recovery strategies on 
embedded systems. This can be used as a basis for 
development of a related embedded diagnostics and 
recovery module. 



 

 

Preliminary research in issue databases of complex 
embedded network products has shown that almost all 
expensive to debug transient errors had their root cause 
in the erroneous behavior of internal system 
communications mechanisms.  

Many faults are detectable indirectly, in form of 
performance disorders that manifests as anomalies in 
monitored data. Anomaly detection is therefore a 
primary means for fault detection. 

Diagnosis and prognosis are basic tools for anomaly 
detection, but they can simultaneously also improve 
system security. Thus the anomaly detection can also be 
used for intrusion detection, improving system security. 

Not to be underestimated is the positive influence on 
the engineering design process that is created by the 
application of the SSD framework: The engineers are 
forced to think in quality terms (“What can go wrong?”) 
throughout the whole design cycle. In this way, many 
faults will not even be coded into the software in the first 
place. 
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