

System Self Diagnosis for Industrial Devices

Markus Rentschler, Stephan Kehrer
Hirschmann Automation & Control GmbH

Stuttgarter Straße 45-51
72654 Neckartenzlingen, Germany

{Markus.Rentschler,
Stephan.Kehrer}@belden.com

Clemens Pirmin Zangl
Hochschule Karlsruhe

Moltkestraße 30
76133 Karlsruhe, Germany
zacl1011@hs-karlsruhe.de

Abstract

Downtimes of failed devices in an industrial plant

must be kept to a minimum to achieve high system

availability. Since failures are often caused by transient

hardware- or software faults, a well-defined System Self

Diagnosis (SSD) functionality is an important feature for

the effective long-term operation of industrial plants. To

achieve effective SSD techniques for network

infrastructure devices, a root cause analysis of past

failures was conducted and a fault model derived. A set

of error detection methods was derived based on the

checked root cause indicators. For productive

deployment, an extensible SSD framework in form of a

rule based system was designed and implemented to be

used as an embedded software tool throughout the whole

product lifecycle of an industrial device, achieving a

highly efficient “Design for Testability” approach.

1. Introduction

Industrial plants are often operated on the basis of an
Industrial Ethernet network [1], over which the plant
devices communicate. These installations are usually
composed of various infrastructure devices such as
switches and routers, interconnected within complex
wired and wireless topologies (Figure 1). The plant
operation relies on the reliable operation of the data
communication via this network.

Figure 1. Industrial Ethernet Network in the
Automation Pyramid

After an industrial network has been setup and is

operating productively, downtimes have to be avoided.
In the case of unexpected failure of network
components, their recovery or replacement has to be
performed in such a way as to keep the downtime of the
affected parts of the network to an absolute minimum
[2]. In case of permanent hardware failures, the device
has to be physically replaced, which is a manual task
performed by maintenance personnel. In the case of
software failures, physical replacement is not required
but rather appropriate recovery measures have to be
undertaken to bring the device back to its correct
operational state. Compared to the detection of faulty
hardware components, which already is a non-trivial
problem, the reliable detection of software failures in
systems is even more challenging. Suitable error
detection and associated recovery mechanisms are
therefore required components for dependable self-
healing systems.

The contribution of this work is a “Design for
Testability” approach [3] through the definition of error
detection rules and associated recovery strategies for
embedded software based on the operating systems
Linux and VxWorks [4]. A process model as basis for
generic diagnostic rules identification is also summed up
in this paper. Finally, a generic rule-based SSD
framework is proposed.

The structure of the paper is as follows: in section 2,
we sum up the established work on dependability and
define the scope of our work. In section 3 a failure model
for our type of system is defined. In section 4 an
architectural analysis of a typical network device is
performed to derive a system model. This model is then
used to identify the critical system components by
performing a root cause analysis on historical bug
tracking data. Section 5 presents general error detection
mechanisms. These are then used in section 6 as a base
for developing the error detection methods and
algorithms used in our approach. In section 7 we briefly
discuss some approaches on system failure recovery.
Section 8 presents our solution of a SSD framework.
Finally in section 9 we summarize our work.

MTTRMTTF

MTTF
A

+
=

+∞→

=
∑

∑

)t(t

t

t
lim

downup

up

2. Dependability

Dependability techniques are a much researched
subject. Numerous publications provide a good coverage
of its various aspects which are most importantly
availability, reliability and maintainability [5].
Dependability is largely driven by spacecraft, aircraft
and automotive industry for the development of long
mission and safety critical systems. Initially focusing on
hardware designs, the same principles were later also
applied to software based systems and further developed
in that direction. In [6], a good overview on the subject
and its history is provided.

Figure 2. Dependability Taxonomy [5]

We consider the most important dependability
attribute for industrial automation systems to be
availability, which is basically a function of reliability
and maintainability (Figure 3).

Figure 3. Availability Model

Availability A is the degree to which a system is
within a defined and operable state and depends on
MTTF and MTTR.

Mean Time to Failure (MTTF) expresses the
reliability of a system by the mean time a system is
expected to process correctly.

Mean Time to Recovery (MTTR) expresses the
maintainability of a system by the mean time required to
bring a failed system back into operation.

(1)

As can be seen in (1), availability improvement can

be achieved with a higher reliability (MTTF) and/or a

better recoverability (MTTR). Although a high MTTF
does not guarantee failure-free operation, a lower MTTR
always minimizes the impact of failure. Thus lowering
MTTR is obviously a powerful strategy to improve
availability.

2.1. Dependability Threats

“A system failure occurs when the delivered service
no longer complies with the specifications, the latter
being an agreed description of the system's expected
function and/or service” [5]. A failure is the
manifestation of an error caused by a system fault. If the
system is comprised of various interacting components,
the failure of one component might introduce a fault in
another component (Figure 4).

Figure 4. Chain of dependability threats [5]

2.2. Dependability Means

According to Laprie [5] et. al., the following basic
methods for creating dependable systems shall be
distinguished in the context of this work:

Fault Prevention (or fault avoidance) removes the
source of faults (i.e. programming or design flaws) in the
design phase prior to operation of the system in order to
prevent faults from happening. This improves system
reliability which is indicated by the mean time to failure
(MTTF) thus directly increasing availability. Fault
avoidance can be achieved through quality-focused
development methods. Model-based code generation [5],
test-driven development or design rules are typical fault-
prevention measures.

Fault Removal applies validation and testing
techniques to detect and remove faults before a system is
put into operation. It can also be applied during system
runtime by recording failures and removing them by
updating the software during a maintenance cycle. This
approach improves availability by making the system
more reliable (higher MTTF). Code analysis, static and
dynamic testing or advanced testing techniques such as
software fault injection (SFI) [7,8] are typical measures.
According to Dijkstra however “Program testing can be
used to show the presence of bugs, but never to show
their absence!”[10].

Fault Tolerance assumes faults to be present during
system operation. It employs design techniques which
ensure the continued correct system operation. One
method is improving system availability through
reliability (MTTF). Another method is the recovery of
the system, thus also improving the availability by
reducing downtime (MTTR). Fault tolerance can be
achieved by utilizing design redundancy [10] but also by
using error detection and recovery strategies.

Fault Forecasting uses techniques to predict
commonly occurring faults to avoid or remove them or
circumvent their effects. This approach improves
availability through improvement of reliability (MTTF).
Fault forecasting can be achieved by utilizing monitoring
and prognosis.

2.3. Scope

The functionality of industrial automation equipment
is often based on complex software systems, which
cannot be developed completely error-free. This is due to
the fact that a combinatorial explosion of possible
system states takes place which cannot be all verified by
testing. Thus, there is always some probability of faults
remaining in the software. These faults can transiently
and non-deterministically lead to error and subsequent
failure. As a consequence they can cause productivity
loss within the plant. Since availability must be at a
maximum at all times, this probability of non-
deterministic software failures has to be dealt with in
some manner.

A failure root cause analysis in an existing bug-
tracking database for complex embedded network
products will be conducted to have a solid analytical
base of the most important faults that result in expensive
failures which are hard to debug.

In the process of finding a solution, we will focus on
the aspects of fault removal and fault tolerance in the
form of single-processor embedded SSD techniques that
increase system availability through reduction of MTTR.
This kind of fault detection followed by isolation and
system reconfiguration is often referred to as “FDIR”
process that can also be performed online [11][12]. We
will focus in this work however on the diagnostics part
and only shortly outline possible approaches for
recovery.

3. Failure Modeling

3.1. Fault classification

Permanent faults are hardware or software design
faults whose resulting failures can be exactly
reproduced. In contrast, non-permanent faults occur
randomly and affect the system behavior for an
unspecified period of time. The detection and
localization of non-permanent faults is extremely
difficult and they are often not uncovered during
systematic testing. As shown in fig. 5, software faults are
often classified into Bohrbugs and Heisenbugs [13].

Figure 5. Fault Classification

 Bohrbugs are permanent design faults whose
resulting failures can be reproduced, thus are rather
easily uncovered and mostly fixed in early testing phases
of the software life cycle.

Heisenbugs are also essentially permanent faults, but
their conditions of activation occur rarely or are not
easily reproducible. The resulting transient failures may
not recur after the software is restarted. Heisenbugs are
therefore extremely difficult to identify through testing.
Transient failures due to Heisenbugs are of special
importance in multithreaded systems, which are usually
considered non-deterministic. In a non-deterministic
system, it is impossible to predict all the possible system
states. It is obvious that a permanent software fault
underlying complex activation conditions, in other words
a very special system state, is extremely difficult to
uncover. Race conditions are a typical example of
Heisenbugs in multithreading environments. In mature
software systems, failures caused by Heisenbugs are
more likely than failures caused by Bohrbugs.

Another category of transient software failures is the
manifestation of transient hardware faults. Modern
microprocessors for example are less reliable and more
susceptible to transient faults. This is largely due to
faster and denser transistors on chip with lower threshold
voltages and tighter noise margins [14]. These faults are
not permanent faults but may result in incorrect program
execution by inadvertently altering processor states,
signal transfers or register values etc. The effect of these
failures resembles the effects caused by Heisenbugs.

Another bug category is based on the well-known
phenomenon that software systems running continuously
for a long time tend to show a degraded performance and
an increased failure-occurrence rate due to resource
corruption over time.

3.2. Failure Model

A failure model describes the type of failures that
might happen and how the system behaves when the
failure has occurred. While there are slight discrepancies
in literature regarding their definitions [15], in this work
the following failure models are used [16]:

Crash Failures happen if a failed process stops
permanently at a certain time. This models a crash of a
process that does not recover.

Omission Failures occur if a process continues its
execution, but does not always respond to the inputs.
The faulty task sometimes omits a response.

Timing Failures also model a scenario where the
faulty task continues. In this case however it does not
omit replies but responses are sent either too early or too
late.

Byzantine Failures refer to a model where no
assumptions about the behavior of a faulty process are
made. A process can behave totally arbitrary and in the
worst case do everything possible to compromise the
system.

Figure 6. Failure Model

Failures can occur in value- and/or time-domain,
allowing a classification into valid replies (correct in
timing and value) and invalid replies (invalid in timing
or value). It is important to note that the first three failure
models are based on time-domain failures, while all kind
of failures in the value-domain are categorized as
Byzantine Failures.

The presented models refer to failures on the level of
processes. However, a failure of a process does not
imply a failure on system level. It is a major goal in the
design of self-healing systems to avoid failures on lower
levels cause failures on higher levels.

4. System Analysis

4.1. System Model

An embedded system consists of both hardware and
software components that interact with each other over
certain interfaces. On the hardware level this is usually
done using input/output lines or signals buses (Figure 7),
on the software level the interaction between hardware-
and software-components is done using operating system
mechanisms, such as message queues, semaphores,
events, etc.

Figure 7. Hardware Architecture

We combine these basic models to derive the model
of a concurrent system where processes communicate
with each other and work on shared data objects. Inter-
process communication mechanisms such as message
queues and semaphores are basically also shared data

objects (Figure 8). We will call this the “Component
Interaction Architecture model” (CIAM) and base our
system diagnosis analysis on this model.

Figure 8. Component Interaction
Architecture Model (CIAM)

Besides this interaction model, it is important to
regard the behavior of the software during runtime. As a
multithreaded system, the software is composed of a
group of tasks, which are executed simultaneously.
Resulting from the limitation of a single-core CPU, the
amount of available CPU time is separated and assigned
to the tasks by the operating system scheduler (Figure 9),
which is necessary to support multitasking. With this
method, the system simulates a concurrent execution of
multiple tasks on a single processor.

Figure 9. Dynamic Software Architecture

Depending on the task priority, the scheduler can also
induce context switches and interrupt the currently
running task in favor of another task with a higher
priority waiting for systems resources. This method
ensures that a system can always handle high priority
requests.

4.2. Root Cause Failure Analysis

Based on historical data in a bug tracking database, a
root cause analysis was conducted to identify the key
elements of the system which are susceptible to the most
expensive failures. This analysis revealed that the most
critical parts of the embedded system are the
mechanisms of the system that are responsible for

communication between subsystems. Most of them are
provided by the operating system: memory management,
task synchronization through semaphores, inter-task
communication through message queues etc. These are
the elements of the system model (Figure 8) which are of
special interest when developing a SSD system.

5. Fault Detection Methods

A self-healing software system is capable of
continuous and automatic monitoring, diagnosis and
remediation of software faults. Such a system’s
architecture is generally composed of two high-level
elements: the software service whose integrity and
availability is supervised and the components of the
system that perform the monitoring, diagnosis and
healing.

Because it is necessary for faults to become active to
make their detection possible the first stage of runtime
fault tolerance is always a mechanism founded on error
or failure detection.

Fault detection mechanisms can be integrated into a
system at two positions [17]: first, self-checking fault-
detection mechanisms perform tests on the own module
and review its internal state. Second, fault detection can
be performed on other modules: self-protection
mechanisms or acceptance tests are used to protect a
module from faults originated from outside of the
module. If not detected, these faults may induce a faulty
state inside another module.

5.1. Error Detection in Time-Domain

Time-domain error detection algorithms are
commonly used to monitor external modules, i.e. to
perform acceptance tests.

An error detection algorithm in time-domain can be
categorized by its ability to cover a set of failure models.
It is important to note that an algorithm which is able to
detect failures of one class also covers all underlying
failure classes (Figure 6). That means that an algorithm
which can reliably detect timing failures also detects
crash and omission failures. This hierarchy is
represented by the following statement, where “<”
indicates that an algorithm which is able to detect
failures of the class on the right also covers the failure
class on the left side:

Crash Failure < Omission Failure < Timing Failure <
Byzantine Failure

5.2. Error Detection in Value-Domain

Besides the error detection algorithms which can be
applied in time-domain, errors can also be detected by
performing checks on the data itself. The following types
of error detection methods are commonly considered
[18]:

Reasonableness Checks are used to verify if the data
of a reply makes sense, e.g. by performing threshold
checks or checking logical connections.

Structural Checks use known properties of module
replies to detect errors. Some data types, such as lists,
tables or trees can be verified for their correct logical
organization. Structural test verify these data types for
completeness, correct and valid referencing. A well-
known example of structural tests is a file system check.

Coding Checks perform error detection using
redundant information provided along with the data.
Checksum codes, such as cyclic redundancy checks
(CRC), are a type of coding checks. Coding checks can
not only be applied to single data types, but can be used
to check the integrity of a whole program.

Reversal Checks are a helpful error detection method
if the backwards computation of an operation is much
easier than the forward calculation. If backward
calculation based on the output values of an operation
results in the same input values given to the forward
computation, the operation was successful.

Run-time Checks using hardware exceptions are a
well-known and commonly used standard failure
detection mechanism. Run-time checks provide
application independent generic fault detection. A
hardware exception is generated by the CPU during the
execution of invalid instructions, such as division by
zero, page faults or stack exception. Systems featuring a
memory protection unit (MPU) also provide the
capability to detect invalid memory accesses when
separate address spaces are used. Memory protection can
detect and isolate faulty programs which try to access
invalid memory areas, e.g. by dereferencing dangling
pointers.

Besides the methods proposed by [18], the following
methods are also commonly considered as a mean to
detect failures:

Static Redundancy using software diversity (n-
version programming) is an error detection mechanism
in which the monitored function is implemented several
(n) times using different approaches, e.g. different
programming languages, algorithms, development
teams, etc. During runtime, these implementations are
executed simultaneously, followed by a comparison [19].

Control Flow Monitoring is an error detection
method which monitors the program execution and
ensures that only allowed instruction sequences are
executed and only allowed branches are taken. The
control flow monitoring method requires information
about the allowed control flow paths, which can be
defined manually or by collecting data during a test run.
Control flow monitoring can also make a program
tamper-proof. By verifying each basic code block using
signatures, control flow monitoring provides powerful
means to stem software cracking [20], thus increasing
system security.

6. Error Detection Mechanisms

By today’s standards, most software projects already
use a variety of measurements to achieve dependability:

Fault-Prevention and Fault-Removal strategies are
commonly applied, e.g. by using coding guidelines or
perform system tests. Fault-tolerance and fault-
forecasting strategies, however, are so far not widely
used.

Since a root cause failure analysis on historical data
has revealed that the most critical parts of the embedded
software are the mechanisms responsible for sub-system
communication, our SSD solution will enhance the
critical operating system mechanisms by applying the
following error detection mechanisms:

6.1. Task Monitoring

The task management mechanisms provided by the
operating system allows designing the software system
as a number of concurrently running tasks. As shown in
the failure model presented previously, the behavior of a
faulty task is unpredictable, but different fault detection
algorithms can be used to detect a subset of these
failures.

Our solution tackles the problem of detecting failed
tasks by using a time-domain error detection algorithm,
which is able to detect timing failures therefore also
covering omission and crash failures. A task is requested
to send regular heartbeat messages to indicate that it is
still running. If a heartbeat message is invalid or missing,
the monitored task is assumed to have failed.

6.2. Communication Mechanism Monitoring

Synchronization and communication mechanisms,
e.g. semaphores, message queues, events or timers are
prone to error propagation and thus a critical part of a
system. Consider a message queue which overflows
because a faulty task does not receive messages, making
communication between other tasks impossible. Another
example are accidentally locked semaphores, e.g. due to
a crashed task which failed to release them.

These problems demonstrate that run-time
supervision of these mechanisms is necessary. Our
approach supervises these mechanisms using two
methods:

Online Error Detection is used to detect locked
access control (mutual exclusion) semaphores. They are
monitored online by adding a time-domain error
detection algorithm. Similar to the method used for task
monitoring, a task which owns a mutual exclusion
semaphore used for access control is requested to send
regular heartbeat messages to indicate that it still
accesses the shared resource. If a heartbeat is omitted,
appropriate recovery measures can be deployed.

Integrity Checks mitigate the risk of possibly
occurring data corruption, e.g. when shared data objects
are used in multithreaded systems. If such data is
accessed by two or more threads at the same time
without access control, data corruption can likely occur.
Integrity checks can be used to handle such situations,
e.g. by extending the object with some sort of

redundancy (checksums) or by using robust data types.
Our solution validates the data using a magic number
check to detect invalid objects.

6.3. Application-Specific Self Tests

Error detection using a generic algorithm is often not
sufficient. To perform detailed error detection on
software modules, knowledge about the internal
structure is required to perform meaningful error
detection. In fact, most of the value-domain fault
detection algorithms mentioned can only be deployed as
case-by-case tests. Thus, the third error detection
mechanism of our SSD solution is based on ad-hoc self-
tests.

7. Failure Recovery

If a failure in a system occurs and is diagnosed or can
be predicted to occur soon, it is necessary to initiate an
action to correct or prevent the failure from affecting the
system to a degree that would make normal system
usage impossible.

A widely used method to recover from transient
failures in complex software systems is to reboot the
whole system. While this may be a method that can
easily be applied, the disadvantage of this approach is
that the downtime caused by a complete system reboot
directly contradicts the requirement of high system
availability for industrial automation systems. For this
reason, other approaches are to be found, taking into
account the availability requirements of industrial
systems.

One such alternative approach is to selectively restart
only the sub-system, where the failure has occurred. In
order to allow a selective restart of affected sub-systems,
several conditions have to be observed. This is non-
trivial and not the focus of this paper, thus we will not go
into further detail on possible approaches for system
recovery on sub-system level. Existing approaches to
solutions for this problem are already profoundly
covered in other publications. The focus of these
approaches varies from the recovery of faults at the
device driver level [21] to the recovery of failures in
multiprocessor systems or distributed computer grids
[22], [23] or [24].

As a final remark on failure recovery it has to be
noted that in some fields in the industry partial system
recovery is not an option. This is especially true for
safety critical systems. Due to legal and normative
guidelines, in such environments the safety of a system
has to be guaranteed at all times. If a failure occurs in the
safety critical system, it has to assume a safe state and
has to remain in this state until the failure has been
removed and safe operation can be guaranteed again.
While it might be possible to design systems that still
can recover on a sub-system level, the effort involved in
certifying such systems usually is too high to make this
feasible.

8. SSD Framework

The integration of the error detection and recovery
mechanisms into an existing software system resulted in
the development of a library to address self-diagnosis
and fault-tolerance requirements. The essence of the
library is a rule-based expert system [25], consisting of a
behavioral logic, the inference engine, and a rule base
(see Figure 10).

Figure 10. SSD Framework Architecture

To extend a software service with self-diagnosis and
self-healing abilities, the library’s user creates rules to
specify how errors are detected and how they are treated.
These rules are then stored inside of the rule base of the
expert system, from where they are monitored by the
inference engine. Each rule consists of a condition and
one or more actions.

The condition poses the error detection mechanism of
the rule. Based on the strategies described in section 6, a
condition can be configured to monitor a task for
responsiveness, to supervise an access control
semaphore or to perform a module self-test. Each rule
supports only one condition, it is therefore impossible to
use several error detection mechanisms within the same
rule.

To complete a rule for the SSD framework, the error
detection mechanism is combined with a recovery
strategy, which specifies the behavior of the SSD
functionality in case the condition identifies a faulty
state. The implementation of the recovery strategy is
done by dividing it into a set of single operations which,
within the context of the SSD framework, are called
actions. These actions are then added to the rule. The
number of actions per rule is not limited, thus it is
possible to implement more or less complex recovery
strategies. By correctly defining the set of actions, it is
possible to restart different sub-systems even if they are
dependent on each other by stopping and restarting them
in the proper sequence.

The library supports three major types of actions:
system recovery, notification and application-specific
actions. System recovery actions provide methods to

recover the device in a generic fashion using operating
system function. These include selective restarting of
tasks, restoring communication mechanisms or rebooting
the whole device. The second type is used for debug and
“Design for Testability” purposes: notification actions
are used to provide failure information. This action type
can be used to validate the hardware after manufacturing
or to store error information of rarely occurring
Heisenbugs after deployment. The third recovery
strategy is necessary if generic recovery approaches are
impractical: similar to self-tests, the library also supports
the definition of application-specific actions. In this case,
the library’s user himself implements the necessary
recovery measures.

Figure 11. SSD Framework Rule Structure

During runtime, the rule-based expert system is
executed as an additional system task. The rule base is
checked periodically by the inference engine. If a faulty
state is detected, the rule condition triggers the
corresponding actions, which are then executed
successively (Figure 11).

However, it cannot be guaranteed that a recovery
strategy will be successful. The same failure may
reoccur or a recovery mechanism proves to be
ineffective. To address such issues, the behavior of the
SSD framework can be customized depending on the
attempt to recover from the same failure.

The usage of the SSD framework’s functionality
should be made compliant in the development process,
forcing the software engineers to think about possible
faults and failures from the very beginning in the design
and implementation process, thus increasing the
likelihood of preventing them in the first place. All
created SSD rules are applicable not only throughout the
development phases, but in the overall product lifecycle.
In this way, a “Design for Testability” approach with a
very high leverage regarding efficiency can be achieved
[2].

9. Summary and Conclusion

In this work, a generic model and methodological
guidelines were developed for a software based self-
diagnosis system and associated recovery strategies on
embedded systems. This can be used as a basis for
development of a related embedded diagnostics and
recovery module.

Preliminary research in issue databases of complex
embedded network products has shown that almost all
expensive to debug transient errors had their root cause
in the erroneous behavior of internal system
communications mechanisms.

Many faults are detectable indirectly, in form of
performance disorders that manifests as anomalies in
monitored data. Anomaly detection is therefore a
primary means for fault detection.

Diagnosis and prognosis are basic tools for anomaly
detection, but they can simultaneously also improve
system security. Thus the anomaly detection can also be
used for intrusion detection, improving system security.

Not to be underestimated is the positive influence on
the engineering design process that is created by the
application of the SSD framework: The engineers are
forced to think in quality terms (“What can go wrong?”)
throughout the whole design cycle. In this way, many
faults will not even be coded into the software in the first
place.

References

[1] C. Rojas, P. Morell, “Guidelines for Industrial Ethernet
infrastructure implementation: A control engineer's
guide” Cement Industry Technical Conference, 2010

IEEE-IAS/PCA 52nd , vol., no., pp.1,18, March 28 2010-
April 1 2010

[2] M. Rentschler, “Faulty Device Replacement for
Industrial Networks”, INDIN 2012, Beijing, China, 2012

[3] M. Rentschler, "Design for Testability – The Holistic
Future of Testing?" in Testing Experience 12/2011, Nr.

16, available at www.testingexperience.com
[4] C. Wehner, Tornado and VxWorks, Book on Demand,

2006. See also http://en.wikipedia.org/wiki/VxWorks
[5] J. C. Laprie, Dependability: Basic Concepts &

Terminology, Springer-Verlag, New York, 1992.
[6] A. Avižienis, J. C. Laprie, B. Randell, “Dependability

and its Threats: A Taxonomy”, Building the Information

Society, Topic 3, pp. 91-120, 2004.
[7] A. Avižienis, J.C. Laprie, B. Randell, C. E. Landwehr,

“Basic Concepts and Taxonomy of Dependable and
Secure Computing”, IEEE Transactions on Dependable

and Secure Computing, 2004.
[8] R. Natella, D. Cotroneo, "Emulation of Transient

Software Faults for Dependability Assessment: A Case
Study", Proceedings of the 2010 European Dependable

Computing Conference, pp. 23-32, 2010.
[9] E. W. Dijkstra, “Notes on Structural Programming”,

T.H.-Report 70-WSK-03 second edition, 1970.
[10] C. Buckl, A. Knoll, G. Schrott, “Model-based

Development of Fault-Tolerant Embedded Software”,
Second International Symposium on Leveraging

Applications of Formal Methods, Verification and

Validation, pp. 103-110, 2006.

[11] C. Walter, M. M. Hugue, N. Suri, “Continual On-Line
Diagnosis of Hybrid Faults,” IEEE Transactions on

Software Engineering, Vol.23, No.11, pp. 684-721, 1997.
[12] C. Walter, P. Lincoln, and N. Suri, “Formally Verified

On-Line Diagnosis,” IEEE Trans. Software Eng., Vol.23,
No.11, pp. 684-721, 1997.

[13] J. Gray, “Why Do Computers Stop and What Can Be
Done About It?”, Technical Report 85.7., Tandem
Computers, pp. 17-19, 1985.

[14] P. Shivakumar, M. D. Kistler, S. W. Keckler, D. C.
Burger, L. Alvisi, “Modeling the effect of technology
trends on the soft error rate of combinational logic”,
Proc. of the 2002 International Conference on

Dependable Systems and Networks, pp. 389 – 398, 2002.
[15] M. Barborak, M. Malek, A. Dahbura, “The Consensus

Problem in Fault-Tolerant Computing”, University of
Texas, Austin, Texas, USA, 1991.

[16] F. Christian, H. Aghili, R. Strong, D. Dolev, “Atomic
Broadcast: From Simple Message Diffusion to Byzantine
Agreement”, Fifteenth International Symposium on

Fault-Tolerant Computing, pp. 200-206, 1985.
[17] W. Torres-Pomales, “Software Fault Tolerance: A

Tutorial”, Langley Research Center, Hampton, Virginia,
USA, 2000.

[18] T. Anderson, P. A. Lee, Fault Tolerance: Principles and

Practice, Prentice/Hall International, 1981.
[19] L. Chen, A. Avižienis, “N-Version Programming: A

Fault-Tolerance Approach to Reliability of Software
Operation”, Proceedings of FTCS-8, pp 3 - 9, 1978.

[20] M. Abadi, M. Budiu, Ú. Erlingsson, J. Ligatti, “Control
Flow Integrity”, ACM Transactions on Information and

System Security, Vol.3 Issue 1, No.4, 2009.
[21] M. Swift, M. Annamalai, B. Bershad, H. Levy,

“Recovering Device Drivers”, ACM Transactions on

Computer Systems, Vol.24 Issue 4, pp. 333-360, 2006.
[22] J. Hursey, J. Squyres, T. Mattox, A. Lumsdaine, “The

Design and Implementation of Checkpoint/Restart
Process Fault Tolerance for Open MPI”, Proceedings of

the 21st International Parallel and Distributed

Processing Symposium, 2007.
[23] Zizhong Cheng, J. J. Dongarra, “Algorithm-Based

Checkpoint-Free Fault Tolerance for Parallel Matrix
Computations on Volatile Resources.”, Proceedings of

the 20th International Parallel and Distributed

Processing Symposium, 2006.
[24] G. Candea, Shinichi Kawamoto, Yuichi Fujiki, G.

Friedman, A. Fox, “Microreboot – A Technique for
Cheap Recovery”, USENIX Association OSDI’04: 6th

Symposium on Operating System Design and

Implementation, San Francisco, USA, December 2004.

[25] A. Abraham, “Rule-based Expert Systems”, Handbook of

Measuring System Design”, edited by Peter H.
Sydenham and Richard Thorn, John Wiley & Sons, Ltd.,
ISBN 0-470-02143-8, 2005.

