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Abstract

Our main objective in this paper is to perform a car-
tography of a road scene into a reference frame at rest,
where 3D measurements delivered by on-board sensors
serve as input. The main sensors of our autonomous
vehicle are two CCD cameras. Their pictures are com-
bined using stereopsis to generate 3D data.

We need dead reckoning to properly associate 3D
data among the frames. This necessitates us to ob-
tain a precise ego-motion estimation. Dead reckoning
using only standard vehicle odometry can cause non-
negligible errors. We use stationary points in the scene
to support the determination of our ego-motion. Two
types of stationary objects are used: Vertical land-
marks such as traffic signs and lane markings are used
to compensate positioning errors.

Preliminary results show that cartography as pro-
posed in this paper is beneficial to detect stationary
objects but needs further work for fast moving objects.

1 Introduction

In recent years tremendous progress has been made
in the field of intelligent vehicles for regular traffic (e.g.
[3, 5]). However, none of these approaches known to
the authors tried to map the environment of the au-
tonomous vehicle into a reference frame at rest.

How is this paper organized ? Section 2 gives an
overview of related work both in the field of intelli-
gent vehicles and robotics. In Section 3 the necessary
transformations and the vehicle model for motion in-
tegration are briefly introduced. Section 4 describes
the cartography based on 3D points. Dead reckoning
techniques for an unknown environment are detailed
in Section 5. Cartography results and simulation re-
sults of our dead reckoning algorithms are shown in
Section 6. Conclusions and future work comprise the
final Section.
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2 Related Work
2.1 Related Work on Cartography

Cartography of range data is common for au-
tonomous mobile systems, especially for systems
equipped with unreliable range sensors (e.g. sonar
sensors). Integrating sensor readings taken at differ-
ent times/positions and superimposing them makes a
compensation of the erroneous measurement readings
feasible.

A popular approach for that, evidence grids, was
pioneered by Moravec [10]. This mapping technique
is also referred to as certainty grids or occupancy grids
(see e.g. [1] and [9]). It models the free space around
an autonomous system for navigation and obstacle
avoidance.

One weakness of this mapping technique is its lim-
ited capability to map moving objects. Furthermore,
discretization of the environment is necessary which
might compromise managing the data if a sufficiently
large area is modeled with suitable accuracy.

For the subsequent discussion we use the follow-
ing convention: A global map is a map integrating
information from different times and positions into a
reference frame at rest. A local map, on the other
hand, uses only current information to model the en-
vironment and has its origin at the sensor center of
the moving vehicle.

2.2 Related Work on Dead Reckoning

Dead reckoning is needed in almost all mobile robot
applications. Dead reckoning with local sensors in an
unknown environment leads to the problem of ego-
motion estimation. Integrating the motion of the ego-
vehicle leads to proper localization in a reference frame
at rest.

For cars, ego-motion estimation using vision clues
has been investigated e.g. in [11] and [12]. In contrast
to our research, they utilized only one camera.

3 Motion Integration
For the remainder of this paper, the following ref-
erence frames are used: For the local reference frame,



the z-axis runs parallel along the vehicle longitudinal
axis, the z-axis is perpendicular to the z-axis and par-
allel to the ground plane directed to the left. The
y-axis protrudes upwards. The origin is located at the
sensor center (in the middle between the two CCD
cameras) projected onto the z-z-plane on the ground.
The global reference frame is equivalent to the local
coordinate system at the time of initialization and re-
mains stationary.

In order to transform the 3D measurements into
the global reference frame, two steps are performed.
A flat road (y = 0) is assumed for all transformations.
In the first step the coordinates of the ego-vehicle are
transformed into the global reference frame. In the
second step, the 3D measurements are transformed
into the global reference frame knowing the orientation
of the local map in the global reference frame.

For the underlying vehicle model in the coordi-
nate transformations we use the kinematic Ackermann
model extended by the self-steering gradient [14].

4 Cartography Based on 3D Points
4.1 Creating the Global Map

Our range sensor, a calibrated stereo camera sys-
tem, delivers 3D measurement of significant points re-
sulting in a sparse 3D point cloud (less than 500 3D
measurements). The significant points of the left im-
age are matched in the right image by correspondence
analysis along the epipolar line similar to [4]. How-
ever, the algorithms described in the remainder of the
paper are applicable to any range sensor delivering
(sparse) range data.

The global map is created accumulating 3D points
from the current and previous frames. To extract ob-
jects from 3D measurements, we apply a spatial clus-
tering method to all 3D points except the ones on or
below the ground. The list of 3D points is traversed
and two 3D points are connected when their Euclidian
distance is below a certain threshold. This cluster con-
nectivity is protocoled using coloring schemes known
from Graph theory [2].

One difficulty in combining range data from dif-
ferent frames is the matching between consecutive
frames, also called the correspondence problem. How
can we match data from one frame to the next?
We match objects from different frames by requiring
them to be close together in space. This procedure
works well for small scene changes between consecu-
tive frames.

4.2 Ageing of 3D Points

To avoid smearing of the moving objects in the
global map, old 3D points have to be deleted from
the map after a certain time period. 3D points that

Figure 1: Typical traffic scene.

have other 3D points from a more recent frame in
their vicinity are kept longer in the map than “lon-
ers”. That implicitly removes outliers and accidentals
from the map quickly. This approach is also able to
handle clipping and occlusions automatically.

5 Ego-Motion Estimation
5.1 Introduction

We are trying to improve the imprecise velocity and
steering angle data by using visual cues. This extends
the ego-motion estimation to skidding situations.

For dead reckoning, our basic assumption is that
all aligned 3D points close to the ground are station-
ary (lane markings). In addition, we assume that
a group of 3D points vertically aligned alongside the
road are stationary as well (vertical landmarks, see
Figure 1), e.g. traffic lights, traffic signs, reflection
posts, lampposts and trees. These primitives are in-
put to our dead reckoning algorithm. Matching of the
current frame information with previous ones is per-
formed using the Extended Kalman Filter.

5.2 Introduction to the Kalman Filter

The Kalman filter [8] is a set of mathematical equa-
tions that provides an efficient solution to the discrete-
data linear filtering problem. If the measurement or
process relations are not linear, the Extended Kalman
Filter is used to attack the problem. For the algo-
rithms presented here, we follow the notation conven-
tion of [13] where the basic filter equations can also be
found.

5.3 Dead Reckoning Using Vertical Land-
marks

Finding Vertical Landmarks. Vertical Land-
marks were chosen as reference objects for dead reck-
oning because they appear frequently along the road.
Also, they have a unique and simple signature: Their
3D points are aligned in a vertical line. Searching
through a list of 3D points and checking for points
with similar z and z coordinates is highly discrimina-
tive in 3D.



System Description.
states:

We estimate the following

t=[z z & = zp]T, (1)

where z, z, and ® are position and orientation of the
ego-vehicle, respectively. z, and 2, are the z and z-
positions of the measured point. The measured point
refers to the measured vertical landmark projected
onto the z-z-plane.

Measurements are taken for z,; and zp;, the mea-
surement of the vertical landmark from the moving
vehicle, generated by averaging over the x and z coor-
dinates of the vertically aligned 3D points:

7= [ pl ] 2)

Zp,l

The steering angle § constitutes the vector for the driv-
ing function.

u=[d] 3)

Process description. Knowing the relation be-
tween radius r and steering angle ¢ from the extended
Ackermann model, we can formulate the continuous
system:

& =v-sin®, (4)
Z2=wv-cos P, (5)
®= 0y (6)
Tp = 07 (7)
Zp = 0. (8)

The control function must be linearized and hence the
control matrix B appears as follows:

v=[) g

Measurement Description. The measurement up-
date step incorporates the new measurements. z,;
and z,; can be expressed in terms of state variables:

o [ Tpy ] B [ (x, —x)cos® — (2, — 2)sin
h(Z) = Pl | — P ¢ i
Zp.l (xp —x)sin® + (2, — 2) cos @
(10)
These equations and their derivatives w.r.t. the state
vector are the input to the Kalman filter. Time up-
date is performed at each time step. Measurement up-
date steps are performed whenever new measurements
are available. Variances are estimated using relations
between pixel noise and distance/offset (z/z). The
results are shown in Section 6.2.

5.4 Dead Reckoning Using Lanes
Finding Lane Markings. Finding lane markings is
a standard procedure in intelligent vehicle applications
(see e.g. [3]). For our purpose we use 3D points ex-
tracted with our stereo camera system and perform a
Hough transform of all 3D points that lie close to the
ground plane (flat road assumption). Only straight
lane markings are considered in the current model.
We update line data into our map from the lane
markings every frame using only the steering angle
and the velocity in the first step (time update). In the
second step, we match the old lane information in the
map with our current lane information and correct our
ego-position accordingly (measurement update).
Measurement Description. The system and pro-
cess description of this system is equivalent to the sys-
tem described in the previous section. Only z, and 2,
have to be interchanged with d and 8 in the matrices,
where d and 6 stand for distance of the line to the
global reference frame origin and orientation of the
line w.r.t. the global reference frame, respectively.
We measure d; and 6;, the parameters of the lane
marking in the local reference frame described by the
line parameters

d = d—z-cos(f) —z-sin(h), (11)
0, = 6-—9. (12)

The computation of the Jacobian of the measure-
ment equations is straightforward. Measurement vari-
ances of d; and 6; are considered roughly constant
since the variances are bound by the Hough transform
parameters. In addition, both Kalman filters can be
combined resulting in a state vector with seven states,
which is expected to yield better results.

A more detailed analysis of these dead reckoning
algorithms including more results can be found in [7].

6 Results
6.1 Cartography Results

Figure 2 depicts a sequence with only stationary
objects. Figure 3 shows that superimposing several
frames in the global map facilitates object detection
tasks for stationary objects compared to using only
the local map (see Figure 4). On the other hand, Fig-
ure 5 shows a sequence where clustering on the global
map leads to heavy object smearing. A truck travel-
ing at 25m/s is depicted there. The recognition with
our stereo system based on the global map is shown in
Figure 6 on the left which exhibits a severe smearing
effect and which leads to a wrong distance determina-
tion. Figure 6 on the right shows the sequence with
only using the local map. Note, that in both sequences
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Figure 3: Global map representation of the back court
sequence. Note that all objects protruding from the
ground are detected.

obstacle 4

Figure 4: Local map representation of the back court
sequence. Note that one lamppost and the fence on
the left are not recognized (too few 3d measurements).

Figure 5: Dynamic freeway sequence with a truck.

Figure 6: Global (left) and local (right) map repre-
sentation of the freeway sequence. Due to old 3D
points from previous frames the position is estimated
too close to the ego-vehicle on the left.

all stereo features from 5 frames are accumulated in
the global map.

For the reason of better visibility, the ageing of the
3D points is omitted. The global map also allows to
extrapolate objects that disappeared out of the sensor
range. In order to use the global map for control, the
coordinates of the objects have to be transformed back
to the local reference frame [6].

6.2 Dead Reckoning Simulation Results

Only simulated data can easily be compared to sim-
ulated ground truth to evaluate the Kalman filters.

Our simulation uses the vehicle model as described
in Section 3 and allows for erroneous sensor readings of
velocity, steering angle, and 3D measurements. In our
simulated scenario, the ego-vehicle starts accelerating
from 0 to 1m/s within one second and the velocity
remains constant for the remainder of the simulation,
whereas the steering angle takes values ranging from
-8° to 8°.

Figure 7 shows a result for the lane-based Kalman
filter. Here, the steering angle sensor delivered an off-
set of 2°. The measured lane marking is located 2m
to the right with an orientation of 0°. The error on
the distance parameter was set to 50cm and the ori-
entation error to 2°(evenly distributed). The steering
angle offset can easily be compensated and leads to a
stable localization for the ego-vehicle (solid line). Pure
motion integration leads to a large and increasing er-
ror (dashed line).

6.3 Dead Reckoning Real World Results

The dead reckoning algorithm using vertical land-
marks has been run successfully in our research vehi-
cle.
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Figure 7: Deviation of the z position of the ego-vehicle
compared to ground truth (simulated data). See text
for details.

odometry dead reckoning
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Figure 8: Stationary sequence with pure motion inte-
gration (left) and with Kalman filtering (right).

Superimposing local maps by pure motion integra-
tion causes the stationary object to smear (see Fig-
ure 8, left side). The z-z view in the figure shows
all 3D measurements accumulated for a back court se-
quence with 100 frames. This “smearing” effect is re-
duced significantly with the dead reckoning algorithm
using vertical landmarks (see Figure 8, right side).

7 Conclusions and Future Work

Cartography of the environment of an autonomous
car is a beneficial procedure to superimpose vision
clues from several frames, especially for stationary ob-
jects. More care must be taken for moving objects.
The dead reckoning algorithms proposed in this paper
improve the superposition of 3D points from different
frames. Preliminary real world results indicate that
motion integration errors are significantly reduced.

Future work includes tuning the algorithms and fus-
ing the Kalman filters for vertical landmarks and lane
markings. In addition, our proposed algorithm for
deleting 3D points from the global map will be im-

plemented in the near future.
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