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Abstract

Our main objective in this paper is to perform a car-
tography of a road scene into a reference frame at rest,
where 3D measurements delivered by on-board sensors
serve as input. The main sensors of our autonomous
vehicle are two CCD cameras. Their pictures are com-
bined using stereopsis to generate 3D data.

We need dead reckoning to properly associate 3D
data among the frames. This necessitates us to obtain
a precise ego-motion estimation. Dead reckoning using
only standard vehicle odometry (velocity and steering
angle) can cause non-negligible errors We use station-
ary points in the scene to support the determination of
our ego-motion. Two types of stationary objects are
used: Firstly, stationary vertical landmarks such as
traffic signs are used to compensate errors in our local-
ization prediction. Secondly, lane markings measured
in consecutive frames are used to compensate orienta-
tion errors.

Preliminary results show that dead reckoning using
stationary objects can vastly improve self-localization.

1 Introduction

In recent years tremendous progress has been made
in the field of intelligent vehicles for regular traffic (e.g.
[L, 2]).

We try to map the environment of our car into a
reference frame at rest. Our approach matches 3D-
data from one frame to the next and generates object
data out of this map.

How is this paper organized ? Section 2 gives an
overview of related work both in the field of intelligent
vehicles and robotics. Section 3 introduced the basics
for motion integration. Section 4 describes the cartog-
raphy based on 3D points. Dead reckoning techniques
for an unknown environment are detailed in Section 5.
Simulation results of our dead reckoning algorithms
and some preliminary cartography results are shown
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in Section 6. Conclusions and future work comprise
the final Section.

2 Related Work
2.1 Related Work on Cartography

Cartography of range data is common for au-
tonomous mobile systems, especially for systems
equipped with unreliable range sensors (e.g. sonar sen-
sors). Integrating sensor readings taken at different
times/positions and superimposing them makes a com-
pensation of the erroneous measurement readings fea-
sible.

A popular approach for that, evidence grids, was
pioneered by Moravec [5]. This mapping technique is
also referred to as certainty grids or occupancy grids. It
basically models the free space around an autonomous
system for navigation and obstacle avoidance.

One weakness of this mapping technique is its lim-
ited capability to map moving objects. Furthermore,
discretization of the environment is necessary which
might compromise managing the data if a sufficiently
large area is modeled with suitable accuracy.

For the subsequent discussion we use the following
convention: A global map or sometimes abbreviated
map is a map integrating information from different
times and positions into a reference frame at rest. A
local map, on the other hand, uses only current infor-
mation to model the environment and has its origin at
the sensor center of the moving vehicle.

2.2 Related Work on Dead Reckoning

In the intelligent vehicle realm, dead reckoning in an
unknown environment without any absolute position-
ing system leads to the problem of ego-motion estima-
tion. Integrating the motion of the ego-vehicle leads to
proper localization in a reference frame at rest.

For cars, ego-motion estimation using vision clues
has been investigated in [6] and [7]. In contrast to our
research, they utilized only one camera.



3 Motion Integration

For the remainder of this paper, the following refer-
ence frames are used: For the local reference frame, the
z-axis runs parallel along the vehicle longitudinal axis,
the z-axis is perpendicular to the z-axis and parallel
to the ground plane directed to the left. The y-axis
protrudes upwards. The origin is located at the sen-
sor center (in the middle between the two CCD cam-
eras) projected onto the z-z-plane on the ground. The
global reference frame is equivalent to the local coor-
dinate system at the time of initialization and remains
stationary.

In order to transform the 3D measurements into the
global reference frame, two steps are performed. A
flat road (y = 0) is assumed for all transformations.
In the first step the coordinates of the ego-vehicle are
transformed into the global reference frame. In the
second step, the 3D measurements are transformed into
the global reference frame knowing the orientation of
the local map in the global reference frame.

For the underlying vehicle model in the coordi-
nate transformations we use the kinematic Ackermann
model extended by the self-steering gradient ([9]).

4 Cartography Based on 3D Points

Our range sensor, a calibrated stereo camera system,
delivers 3D measurement of significant points resulting
in a sparse 3D point cloud (less than 500 3D measure-
ments).

To extract objects from the global map, we apply a
clustering method to all 3D points except the ones on
or below the ground. The cluster criterion is based on
Euclidian distance.

One difficulty in combining range data from differ-
ent frames is the matching between consecutive frames,
also called the correspondence problem. How can we
match data from one frame to the next? We match
objects from different frames by requiring them to be
close together in space. This procedure works well for
small scene changes between consecutive frames.

For dead reckoning, our basic assumption is that
all 3D points close to the ground are stationary. In
addition, we assume that a group of 3D points verti-
cally aligned alongside the road are stationary as well.
This holds true for traffic lights, traffic signs, reflec-
tion posts, and trees, but a skinny pedestrian walking
alongside the road might be mistaken as stationary.

To avoid smearing of the moving objects in the
global map, old 3D points have to be deleted from the
map after a certain time period. A survival account
is given to 3D points: 3D points that have other 3D
points from a more recent frame in their vicinity are
kept longer in the map than “loners”. That implicitly
removes outliers and accidentals from the map quickly.

5 Ego-Motion Estimation
5.1 Introduction

Using the rather precise sensor data for velocity and
steering angle (see Section 3), our largest uncertainty
lies in the estimation of the yaw angle and small veloc-
ities.

We decided to use stationary points in the scene to
determine our ego-motion. Two types of stationary
objects are used.

Vertical Landmarks: The first type of object are
vertical landmarks such as traffic signs, which are
used to compensate errors in our localization pre-
diction.

Lane markings: The second type are lane markings,
which are used to compensate orientation errors.

Matching of the current frame information with pre-
vious ones is performed using the Extended Kalman
Filter.

5.2 Introduction to the Kalman Filter

The Kalman filter [4] is a set of mathematical equa-
tions that provides an efficient solution to the discrete-
data linear filtering problem. If the measurement or
process relations are not linear, the Extended Kalman
Filter is used to attack the problem. For the algorithms
presented here, we follow the notation convention of [8]
where the basic filter equations can also be found.

5.3 Dead Reckoning Using Vertical Land-
marks

5.3.1 Finding Vertical Landmarks

Vertical Landmarks were chosen as reference ob-
jects for dead reckoning because they appear frequently
along the road. Also, they have a unique and simple
signature: Their 3D points are aligned in a vertical line.
Typical vertical landmarks that are suitable for dead
reckoning purposes are traffic signs, reflections posts
and traffic lights. Trees along the road are also used
for that purpose. Searching through a list of 3D points
and checking for points with similar  and z coordi-
nates is highly discriminative in 3D.

5.3.2 System Description
We estimate the following states:

i=[z z & =z zp]T: (1)

where z, z, and ® are position and orientation of the
ego-vehicle, respectively. z, and 2, are the z and z-
positions of the measured point. The measured point
refers to the measured vertical landmark projected onto
the z-z-plane.



Measurements are taken for z,; and zp;, the 3D-
points of the local reference frame, i.e. the raw mea-
surement of the vertical landmark from the moving ve-

hicle:
- Tp,l
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The steering angle § constitutes the vector for the driv-
ing function.

u = [d] 3)

5.3.3 Process description
Using the equations derived in Section 3, we can
formulate the continuous system:

t=v-sind 4)

z=wv-cosd (5)
v

0 (6)

Zp =0 )

Zp =0 (8)

The control function must be linearized and hence the
control matrix B appears as follows:

r=[) g

5.3.4 Measurement Description

The measurement update step incorporates the mea-
surements. We measure z,; and zp;, the coordinates
of the vertical landmark. These quantities can be ex-
pressed in terms of state variables:

o [ Tp ] B [ (zp —z)cos® — (2, — 2)sin ®
h(Z) = = .
Zp.l (zp —x)sin® + (zp — 2) cos @
(10)
These equations and their derivatives w.r.t. the state
vector are the input to the Kalman filter. Time update
is performed at each time step. Measurement update
steps are performed whenever new measurements are
available. Variances are estimated using relations be-
tween pixel noise and distance/offset (z/z). The results
are shown in Section 6.2.

5.4 Dead Reckoning Using Lanes
5.4.1 Finding Lane Markings

Finding lane markings is a standard procedure in
intelligent vehicle applications (see e.g. [1]). For our
purpose we use 3D points extracted with our stereo
camera system and perform a Hough transform of all
3D points that lie close to the ground plane (flat road
assumption). Only straight lane markings are consid-
ered in the current model.

Figure 1: Typical traffic scene.

We update line data into our map from the lane
markings every frame using only the steering angle and
the velocity in the first step (time update). In the
second step, we match the old lane information in the
map with our current lane information and correct our
ego-position accordingly (measurement update).

5.4.2 Measurement Description

The system and process description of this system
is equivalent to the system described in the previous
section. Only z, and 2z, have to be interchanged with
d and 6 in the matrices, where d and € stand for dis-
tance of the line to the global reference frame origin
and orientation of the line w.r.t. the global reference
frame, respectively.

We measure d; and 6;, the parameters of the lane
marking in the local reference frame described by the
line parameters

dy=d—x-cos(0) — z - sin(0), (11)

0, =60—9. (12)

The computation of the Jacobian H of the measure-
ment equations is straightforward. Measurement vari-
ances of d; and 6; are considered roughly constant since
the variances are bound by the Hough transform pa-
rameters. In addition, both Kalman filters can be
combined resulting in a state vector with seven states,
which is expected to yield better results.

6 Results
6.1 Cartography Results

Figure 1 depicts a typical traffic scene with both
lane markings and vertical landmarks available for dead
reckoning. With an increasing number of frames enter-
ing the global map, smearing of the objects in the map
occurs due to positioning errors. In order to use this
map for control, the coordinates of the objects have to
be transformed back to the local reference frame [3].

6.2 Dead Reckoning Simulation Results
Only simulated data can easily be compared to simu-
lated ground truth to evaluate the Kalman filters. OQur



simulation uses the vehicle model as described in Sec-
tion 3 and allows for erroneous sensor readings of ve-
locity, steering angle, and 3D measurements.

Trajectory of the Ego-Vehicle
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Figure 2: Profile of the simulated path (solid line). The
square indicates the measured landmark, the dashed
line shows the measured line.

In our simulated scenario the ego-vehicle takes the
path depicted in Figure 2. The ego-vehicle starts ac-
celerating from 0 to 1m/s within one second and the
velocity remains constant for the remainder of the sim-
ulation, whereas the steering angle takes values ranging
from -8° to 8°. Figure 3 shows a result for the lane-
based Kalman filter. Here, the steering angle sensor
delivered an offset of 2°. The measured lane marking
islocated 2m to the right with an orientation of 0°. The
error on the distance parameter was set to 50cm and
the orientation error to 2°(evenly distributed). The
steering angle offset can easily be compensated and
leads to a stable localization for the ego-vehicle (solid
line). Pure motion integration leads to a large and in-
creasing error (dashed line).

6.3 Dead Reckoning Real World Results

The dead reckoning algorithm using vertical land-
marks has been run successfully on our research vehicle
platform. Superimposing local maps by pure motion
integration causes the stationary object to smear (vir-
tual motion). This “smearing” effect is reduced signifi-
cantly with the dead reckoning algorithm using vertical
landmarks.

7 Conclusions and Future Work

Cartography of the environment of an autonomous
car is a beneficial procedure to superimpose vision clues
from several frames.

In addition, the dead reckoning algorithm proposed
above improves the superposition of 3D points from dif-
ferent frames. Preliminary real world results on above
algorithms indicate an improved ego-motion determi-
nation at a low computational expense in real-time.

05 S .
Kainian fit —
maton Adarared X pes diff —

-0.5

-1.5

-2.5

x position difference [m]

-3.5

0 5 10 15 25 30 ] 35 40

2
timi eo[s]

Figure 3: Deviation of the x position of the ego-vehicle
compared to ground truth (simulated data). See text
for details.

Future work includes tuning the algorithms and fus-
ing the Kalman filters for vertical landmarks and lane
markings.
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