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Abstract

Our main objective in this paper is to perform a car-
tography of a road scene into a reference frame at rest,
where 3D measurements delivered by on-board sensors
serve as input. The main sensors of our autonomous
vehicle are two CCD cameras. Their pictures are com-
bined using stereopsis to generate 3D data.

We need dead reckoning to properly associate 3D
data among the frames. This necessitates us to obtain
a precise ego-motion estimation. Dead reckoning us-
ing only standard vehicle odometry (velocity and steer-
ing angle) can cause non-negligible errors, especially
in situations where side slip or skidding occurs. We
use stationary points in the scene to support the deter-
mination of our ego-motion. Two types of stationary
objects are used: Firstly, stationary vertical landmarks
such as traffic signs are used to compensate errors in
our localization prediction. Secondly, lane markings
measured in consecutive frames are used to compen-
sate orientation errors.

Preliminary results show that dead reckoning using
stationary objects can vastly improve self-localization.

1 Introduction

In recent years tremendous progress has been made
in the field of intelligent vehicles for regular traffic (e.g.
[3, 5]). However, none of these approaches known to
the authors tried to map the environment of the au-
tonomous vehicle into a reference frame at rest.

Our approach matches 3D-data from one frame to
the next and generates object data out of this map.
Cartography is a common procedure in the field of
robotics, mostly used for partially known indoor envi-
ronments. The road scenario differs from the indoor
scenario in several ways.

e The environment around a vehicle on the road is
completely unknown.
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e Many fast moving objects appear in the scene.

e Cartography should be performed significantly
faster than nowadays video frame rate (40ms).

e For vision based sensors extremely varying illu-
mination conditions must be handled.

How is this paper organized ? Section 2 gives an
overview of related work both in the field of intelli-
gent vehicles and robotics. In Section 3 the neces-
sary transformations and the vehicle model for mo-
tion integration are introduced. Section 4 describes
the cartography based on 3D points. Dead reckoning
techniques for an unknown environment are detailed
in Section 5. Simulation results of our dead reckoning
algorithms and some preliminary cartography results
are shown in Section 6. Conclusions and future work
comprise the final Section.

2 Related Work
2.1 Related Work on Cartography

Cartography of range data is common for au-
tonomous mobile systems, especially for systems
equipped with unreliable range sensors (e.g. sonar
sensors). Integrating sensor readings taken at differ-
ent times/positions and superimposing them makes a
compensation of the erroneous measurement readings
feasible.

A popular approach for that, evidence grids, was
pioneered by Moravec [9]. This mapping technique is
also referred to as certainty grids or occupancy grids
(see e.g. [1, 8]). It basically models the free space
around an autonomous system for navigation and ob-
stacle avoidance.

One weakness of this mapping technique is its lim-
ited capability to map moving objects. Furthermore,
discretization of the environment is necessary which



might compromise managing the data if a sufficiently
large area is modeled with suitable accuracy.

For the subsequent discussion we use the follow-
ing convention: A global map is a map integrating
information from different times and positions into a
reference frame at rest. A local map, on the other
hand, uses only current information to model the en-
vironment and has its origin at the sensor center of
the moving vehicle.

2.2 Related Work on Dead Reckoning

Dead reckoning is needed in almost all mobile robot
applications. Dead reckoning in an unknown envi-
ronment leads to the problem of ego-motion estima-
tion. Integrating the motion of the ego-vehicle leads
to proper localization in a reference frame at rest.

For cars, ego-motion estimation using vision clues
has been investigated in [10] and [11]. In contrast to
our research, they utilized only one camera.

3 Motion Integration

3.1 Transformation into a Reference

Frame at Rest

For the subsequent analysis, the following reference
frames are used: For the local reference frame, the z-
axis runs parallel along the vehicle longitudinal axis,
the z-axis is perpendicular to the z-axis and parallel
to the ground plane directed to the left. The y-axis
protrudes upwards. The origin is located at the sen-
sor center (in the middle between the two CCD cam-
eras) projected onto the z-z-plane on the ground. The
global reference frame is equivalent to the local coor-
dinate system at the time of initialization and remains
stationary.

In order to transform the 3D measurements into
the global reference frame, two steps are performed.
A flat road (y = 0) is assumed for all transformations.
In the first step the coordinates of the ego-vehicle are
transformed into the global reference frame:
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Here ® denotes the current orientation of the ego-
vehicle w.r.t. the reference frame at rest, A® denotes
the change in orientation:
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where n refers to the current time step, n — 1 to the
previous one. r is the radius of curvature of the ego-
vehicle corresponding to the current steering angle. §
denotes the steering angle at the wheel of the vehicle.
vy, is the velocity of the ego-vehicle at time step n. ®
is set to 0 at the time of initialization.

In the second step, the 3D measurements are trans-
formed into the global reference frame:
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where the subscript m refers to measured 3D coordi-
nates and [ refers to the measurement in the moving
reference frame.

3.2 The Vehicle Model

The radius of curvature r is derived from the steer-
ing angle § using the kinematic Ackermann model [13].
In order to make the vehicle model also valid for higher
velocities, the self-steering gradient of the ego-vehicle
is taken into account:
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SSG denotes the self-steering gradient in [°-s?/m], v
is the velocity of the ego-vehicle. See Figure 1 for an
explanation of the other used quantities. The Acker-
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Figure 1: Ackermann Model (w: width of car, a: dis-
tance center to front axle, b: distance center to rear
axle).

mann model with the extension mentioned above is
limited to small lateral accelerations.

4 Cartography Based on 3D Points

Our range sensor, a calibrated stereo camera sys-
tem, delivers 3D measurement of significant points re-
sulting in a sparse 3D point cloud (less than 500 3D
measurements). The significant points of the left im-
age are matched in the right image by correspondence
analysis along the epipolar line similar to [4]. How-
ever, the algorithms described in the remainder of the
paper are applicable to any range sensor delivering
(sparse) range data.

To extract objects from 3D measurements, we ap-
ply a spatial clustering method to all 3D points except



the ones on or below the ground. The list of 3D points
is traversed and two 3D points are connected when
their Euclidian distance is below a certain threshold.
This cluster connectivity is protocoled using coloring
schemes known from Graph theory [2].

One difficulty in combining range data from dif-
ferent frames is the matching between consecutive
frames, also called the correspondence problem. How
can we match data from one frame to the next?
We match objects from different frames by requiring
them to be close together in space. This procedure
works well for small scene changes between consecu-
tive frames.

For dead reckoning, our basic assumption is that
all 3D points close to the ground are stationary (e.g.
moving shadows on the ground would violate this as-
sumption). In addition, we assume that a group of 3D
points vertically aligned alongside the road are sta-
tionary as well. This holds true for traffic lights, traffic
signs, reflection posts, and trees, but a skinny pedes-
trian walking alongside the road might be mistaken
as stationary. These primitives are input to our dead
reckoning algorithm explained in Section 5.

To avoid smearing of the moving objects in the
global map, old 3D points have to be deleted from
the map after a certain time period. 3D points that
have other 3D points from a more recent frame in
their vicinity are kept longer in the map than “lon-
ers”. That implicitly removes outliers and accidentals
from the map quickly. This approach is also able to
handle clipping and occlusions automatically.

5 Ego-Motion Estimation
5.1 Introduction

We do neither use an absolute positioning system
such as GPS nor a gyroscope to measure the yaw rate
which leaves us with only the steering angle and the
velocity to integrate the ego-motion.

The ego-motion estimation algorithms of [10] and
[11] rely heavily on good statistics since they need at
least 50 significant points in a scene to produce a good
estimation result. Hence, calculation times of these al-
gorithms with a fast processor are very high. However,
we need to perform an ego-motion estimate very fast.
Using the sensor data for velocity and steering angle
(see Section 3), our largest uncertainty lies in the es-
timation of the yaw angle and of small velocities.

We decided to use stationary points in the scene to
determine our ego-motion. Two types of stationary
objects are used (see Figure 3).

Vertical Landmarks: The first type of object are
vertical landmarks such as traffic signs, which are
used to compensate errors in our localization pre-
diction.

Lane markings: The second type are lane markings,
which are used to compensate orientation errors.

Matching of the current frame information with pre-
vious ones is performed using the Extended Kalman
Filter. This method is explained in the following sec-
tion.

5.2 Introduction to the Kalman Filter

The Kalman filter [7] is a set of mathematical equa-
tions that provides an efficient solution to the discrete-
data linear filtering problem. If the measurement or
process relations are not linear, the Extended Kalman
Filter is used to attack the problem. For the algo-
rithms presented here, we follow the notation con-
vention of [12]. We assume for simplicity that our
measurements are independent from each other. The
Kalman filter algorithm consists of two steps: A time
update step (“prediction”) which uses only the sys-
tem dynamics for prediction and a measurement up-
date (“correction”) step which incorporates the new
measurements.

5.3 Dead Reckoning Using Vertical Land-
marks

5.3.1 Finding Vertical Landmarks

Vertical Landmarks were chosen as reference objects
for dead reckoning because they appear frequently
along the road. Also, they have a unique and sim-
ple signature: Their 3D points are vertically aligned.
Searching through a pre-sorted list of 3D points and
checking for points with similar « and z coordinates
is highly discriminative in 3D and very fast. Typical
vertical landmarks that are suitable for dead reckoning
purposes are traffic signs, reflections posts and traffic
lights. Trees along the road are also used for that
purpose.

5.3.2 System Description

We estimate the following states:
=z z @ = zp]T, (6)

where z, 2, and @ are described in Section 3.1. z, and
zp are the z and z-positions of the measured point.
The measured point refers to the measured vertical
landmark projected onto the z-z-plane.
Measurements are taken for z,; and z,;, the 3D-
points of the local reference frame, i.e. the raw mea-
surement of the vertical landmark from the moving

vehicle:
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The steering angle ¢ constitutes the vector for the driv-
ing function is

u=14]. 8)



5.3.3 Process description

Using the equations derived in Section 3, we can for-
mulate the continuous system:

T = wv-sin® 9)

= wv-cos® (10)
¢ = 5 (11)
g, = 0 (12)
Zp 0 (13)

From that we can derive the Jacobian A.oniinuous OF
the process functions

0 0 w-cos® 0 O

0 0 —v-sin® 0 0
Acontinuous = 0 0 0 00 (14)

0 0 0 0 0

0 0 0 0 0

By means of discretization one obtains the transition
matrix A. The control function must be linearized and
hence the control matrix B appears as follows:

B= [Z 'erli] . (15)

To compute the predicted state &, the exact equa-
tions 10 to 13 are used in discretized form:

fEk-',—l = f(fk,uk). (16)

To compute the error covariances, the transition ma-
trix A is used:

PI;+1 = AkPkA{ + Qk; (17)

where P~ is the error covariance projected ahead and
@ is the system covariance matrix describing the sys-
tem uncertainty.

5.3.4 Measurement Description

The measurement update step incorporates the mea-
surements. We measure z,; and z,;, the coordinates
of the vertical landmark. These quantities can be ex-
pressed in terms of state variables (see Figure 2):

W) = [ Tpy ] _ [ Azcos® — Azsin® (18)
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where Az and Az are shorthands for (z, — z) and
(2p — 2), respectively The Jacobian H of the measure-
ment equations is straightforward to compute. These
equations and their derivatives w.r.t. the state vector
are the input to the Kalman filter. The Kalman gain
K is computed using

Ky =P HI(H,P~HT + R;)™1, (19)
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Figure 2: Vertical Landmark and Lane Marking mea-
sured from the global and the local frame.

where R is the measurement covariance matrix de-
scribing the measurement uncertainty. The corrected
state estimate is derived from

Ty = fk_ + Kk(gk - h(fk_)), (20)
and the corrected error covariance matrix is
P, = (I — Kka)P]; (21)

Time update is performed at each time step. Mea-
surement update steps are performed whenever new
measurements are available. Variances are estimated
using relations between pixel noise and distance/offset
(z/z). Simulation results are shown in Section 6.2.

5.4 Dead Reckoning Using Lanes
5.4.1 Finding Lane Markings

Finding lane markings is a standard procedure in in-
telligent vehicle applications (see e.g. [3]). For our
purpose we use 3D points extracted with our stereo
camera system and perform a Hough transform of all
3D points that lie close to the ground plane (flat road
assumption). Only straight lane markings are consid-
ered in the current model.

We update line data into our map from the lane
markings every frame using only the steering angle
and the velocity in the first step (time update). In the
second step, we match the old lane information in the
map with our current lane information and correct our
ego-position accordingly (measurement update).

5.4.2 Measurement Description

The system and process description of this system is
equivalent to the system described in the previous sec-



Figure 3: Typical traffic scene.

tion. Only z, and 2, have to be interchanged with d
and @ in the matrices, where d and 6 stand for dis-
tance of the line to the global reference frame origin
and orientation of the line w.r.t. the global reference
frame, respectively.

We measure d; and 6;, the parameters of the lane
marking in the local reference frame described by the
line parameters

di=d—x-cos(f) — z - sin(0), (22)
6=6—9a. (23)

Consult Figure 2 for the geometrical relations. The
computation of the Jacobian H of the measurement
equations is straightforward. Measurement variances
of d; and 6; are considered roughly constant since the
variances are bound by the Hough transform parame-
ters.

6 Results
6.1 Cartography Results

Figure 3 depicts a typical traffic scene with both
lane markings and vertical landmarks available for
dead reckoning. The superposition of the local maps
with pure motion integration is accurate for a few
frames. With an increasing number of frames enter-
ing the global map, smearing of the objects in the map
occurs due to positioning errors. In order to use this
map for control, the coordinates of the objects have to
be transformed back to the local reference frame [6].

6.2 Dead Reckoning Simulation Results

Only simulated data can easily be compared to sim-
ulated ground truth to evaluate the Kalman filters.

Our simulation uses the vehicle model as described
in Section 3.2 and allows for erroneous sensor readings
of velocity, steering angle, and 3D measurements.

In our simulated scenario the ego-vehicle takes the
path depicted in Figure 4. The ego-vehicle starts ac-
celerating from 0 to 1m/s within one second and the
velocity remains constant for the remainder of the sim-
ulation, whereas the steering angle takes values rang-
ing from -8° to 8°. Figure 5 gives an example of the

Trajectory of the Ego-Vehicle

s verf8 e~ |

lane marking -------
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Figure 4: Profile of the simulated path (solid line).
The square indicates the measured landmark, the
dashed line shows the measured line.

dead reckoning performance. In the simulation, the
velocity sensor always delivers a velocity 5% larger
than the actual velocity. In addition, a 2% measure-
ment error on the x and z-position of the vertical land-
mark was added (evenly distributed). In the simulated
sequence, a vertical landmark was approached from a
35m distance on a zig-zag path. The solid line shows
the Kalman filtered result of the z position of the ego-
vehicle with deviations of less than 60cm at all times.
Without the measurement feedback, pure motion in-
tegration leads to a much larger and increasing error
(dashed line). Figure 6 shows a result for the lane-
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Figure 5: Deviation of the z position of the ego-vehicle
compared to ground truth (simulated data). See text
for details.

based Kalman filter. Here, the steering angle sensor
delivered an offset of 2°. The measured lane marking
is located 2m to the right with an orientation of 0°.
The error on the distance parameter was set to 50cm
and the orientation error to 2°(evenly distributed). All
other simulation parameters and the ego-vehicle path



were kept the same. The steering angle offset can eas-
ily be compensated and leads to a stable localization
for the ego-vehicle (solid line). Pure motion integra-
tion leads to a large and increasing error (dashed line).
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Figure 6: Deviation of the z position of the ego-vehicle
compared to ground truth (simulated data). See text
for details.

6.3 Dead Reckoning Real World Results

The dead reckoning algorithm using vertical land-
marks has been run successfully in our research vehi-
cle.

Superimposing local maps by pure motion integra-
tion causes the stationary object to smear (see Fig-
ure 7, left side). The z-z view in the figure shows
all 3D measurements accumulated for a back court se-
quence with 100 frames. This “smearing” effect is re-
duced significantly with the dead reckoning algorithm
using vertical landmarks (see Figure 7, right side).

7 Conclusions and Future Work

Cartography of the environment of an autonomous
car is a beneficial procedure to superimpose vision

trajectory ego—vehicle oy

odometry dead reckoning Kalman filtered

Figure 7: Stationary Scene with pure motion integra-
tion (left) and with Kalman filtering (right).

clues from several frames. The dead reckoning algo-
rithms proposed in this paper improve the superposi-
tion of 3D points from different frames. Preliminary
real world results indicate that motion integration er-
rors are significantly reduced.

Future work includes tuning the algorithms and fus-
ing the Kalman filters for vertical landmarks and lane
markings.
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