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Elastic Bands to Enhance Vehicle Following

Stefan K. Gehrig, Fridtjof J. Stein

Abstract— The vehicle-following principle has been widely
used in several intelligent-vehicle applications. Adaptive
cruise control systems, platooning systems, and systems for
stop-and-go traffic employ this principle: The ego-vehicle
follows a leader vehicle at a certain distance.

The vehicle-following principle comes to its limitations
when obstacles interfere with the path between the ego-
vehicle and the leader vehicle. We call such situations dy-
namic driving situations.

This work introduces a planning and decision component
to generalize vehicle following to situations dealing with non-
automated interfering vehicles in mixed traffic.

As a demonstrator we employ a car that is able to navigate
autonomously through regular traffic being longitudinally
and laterally guided by actuators controlled by a computer.
This paper focuses on lateral control for collision avoidance.

Previously, this autonomous driving capability was purely
based on the vehicle-following principle: The path of the
leader vehicle was tracked. To extend this capability to dy-
namic driving situations, a dynamic path planning compo-
nent is introduced. Several driving situations are identified
that necessitate responses to more than the leader vehicle.

‘We borrow an idea from robotics to solve the problem:
Treat the path of the leader vehicle as an elastic band that
is subjected to repelling forces of obstacles in the surround-
ings. This elastic band framework offers the necessary fea-
tures to cover dynamic driving situations. Simulation re-
sults show the power of this approach. Real-world results
obtained with our demonstrator validate the simulation re-
sults.

Keywords— Intelligent vehicle, computer vision, robotics,
stereo vision

I. INTRODUCTION

Collision avoidance has been the subject of extensive re-
search both in the field of robotics and intelligent vehi-
cles. A tremendous benefit is assessed for reducing col-
lisions with automated systems in regular traffic [1]. The
detection capabilities of vision-based intelligent vehicles are
mature enough to perform such a task (see e.g. [2]).

For lateral vehicle guidance, vision-based lane following
is a promising and well-tested strategy. However, lane fol-
lowing relies on lane markings and tends to fail in cluttered
scenes and in urban areas. Hence, a popular approach for
automated vehicle guidance is to follow a leader vehicle
both longitudinally and laterally. This intuitive behavior
comes to its limitations when other traffic participants in-
terfere with the leader vehicle’s path. Dynamic path mod-
ification becomes necessary. These dynamic driving situa-
tions motivated the work of this paper.

How is this paper organized? Section IT gives an overview
of related work both in the field of intelligent vehicles and
robotics. In Section III the elastic band framework is intro-
duced. Section IV describes the necessary adaptations to
the elastic band framework in order to tune the avoidance
behavior towards that of human beings. The selection of
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the leader vehicle is explained in Section V. Results are de-
tailed in Section VI. Conclusions and future work comprise
the final Section.

II. RELATED WORK
A. Potential Field Approaches

The most prominent idea for collision avoidance are arti-
ficial potential fields (e.g. [3], [4]). The obstacles are mod-
eled as potentials and the gradient of the superimposed
potential field yields the direction command for the mobile
robot. Potential fields are an elegant way to model obsta-
cles and can be analyzed globally. A formal verification of
the obstacle avoidance behavior is feasible.

Generalized potential fields depend not only on distance
to obstacles and can therefore determine irrelevant obsta-
cles pointing away from the ego-path. This method was
first applied to velocity-dependent potentials in [3].

A popular approach to avoid local minima, i.e. trapping
situations, in potential field applications is the use of har-
monic potentials (see e.g. [5], [6]).

B. Approaches Using Physical Models

Other physical models besides potential fields are also
popular for collision avoidance.

An alternative approach to the potential field methods is
presented in [7], where analogies of this problem to hydro
mechanics problems are shown. Fluid dynamics equations
are used. The fluid starts at the starting point towards
the goal point and obstacles obstruct the flow. From the
resulting flow field the planned path can be computed.

In [8], an approach to behavioral control of robots is
described that uses the model of dynamical systems. The
path for navigation and obstacle avoidance is generated
solving dynamical differential equations. The approach is
rather time-consuming due to the necessary relaxations.

Quinlan and Khatib present an approach to obstacle
avoidance that uses the model of an elastic band for a
robot (see e.g. [9]). The elastic band framework is used
for our application. An initial path has to be supplied.
This path is modeled as an elastic band that is subjected
to forces, exerted by obstacles which are represented as
potential fields. This approach has also been extended to
non-holonomic mobile robots [10].

Other approaches often include rule-based systems or
systems executing behavioral patterns. These systems are
not covered here due to space limitations.

C. Approaches for Intelligent Vehicles

A potential field application in driver assistance applica-
tions is described in [11]. On force-control basis, also vehi-
cle dynamics can be taken into account and combinations
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of different drive-assist systems are feasible. Simulation
results are presented.

A completely autonomous car with obstacle avoidance
capability is presented in [12]. The application of potential
fields to determine the risk yielded oscillatory behavior in
overtaking situations. As a consequence, behavioral pat-
terns were implemented for obstacle avoidance maneuvers.

A very interesting approach both for robotics and intel-
ligent vehicles applications is presented in [13]. In contrast
to the other approaches presented here, obstacle avoidance
is performed in configuration and in velocity space. Con-
stant velocity is assumed for all obstacles. However, this
constraint is not always met.

III. ErLAsTIC BANDS
A. Introduction to Elastic Bands

The original elastic band approach for collision avoidance
was proposed by Quinlan and Khatib [9]. Similar physical
properties are used for snakes in computer vision [14]. An
initial, feasible path must be delivered by a path planner.
This path is dynamically modified by treating the path
as an elastic band that is able to change its shape. The
starting and end points are kept fixed. The total energy
of the elastic band is minimized yielding smooth paths.
Forces acting on the elastic band are computed by taking
the gradient of the potential energy at discrete path points.
The repelling forces on the elastic band are produced by
obstacles in the vicinity of the path. In total, three types
of forces are acting on the elastic band. These forces are
described in the following sections.

B. The Internal Contraction Force

The elastic band is modeled as a series of particles with
a series of springs in between in the discrete case. See
Figure 1 for a representation of an elastic band. Hooke’s
law would suggest a force proportional to the amplitude
of the displacement. However, with defining zero as the
unstrained state, the internal force would become larger as
the length of the elastic band increases. This would yield
an avoidance behavior which depends on the length of the
elastic band which is undesirable. Hence we follow Quin-
lan’s approach and let the internal potential be indepen-
dent of the path length. This normalized force ensures the
same avoidance behavior independent of the band length.

C. The External Force

The external force is due to obstacles that are modeled
as potentials in the scene. Any potential shape that repels
the elastic band from obstacles is conceivable. We decided
to use Quinlan’s position dependent potential [15] super-
imposed by Krogh’s velocity-dependent potential [3]. The
gradient of this potential, f_;zt, yields the external force.
Details on the external force follow in Section IV-E.

D. The Constraint Force

The elastic band potentially reduces its internal energy
by moving particles along the elastic band. This is an un-

% -

fi

tot

=

Obstacle

Internal Force fint
External Force  fgy
Congtraint Force  f oongr
Total Force f tot

Elastic band model

Fig. 1. Representation of an elastic band as a series of particles with
springs in between.

desired property since the band might thin out at some
parts. To constrain the motion along the elastic band, a
constraint force f.onst is introduced along the direction of
the elastic band.

E. The FElastic Band Algorithm

The elastic band is simulated with reduced dynamics
since only the equilibrium state is of interest for obstacle
avoidance. For every time step, the algorithm is repeated.
The path is represented by particles ¢; and these particles
are subjected to the total force

f;ot = f:nt + f:zt + f:onstr- (1)

With our pseudo-static simulation, the particles are
moved along the total force to the new position

(Ti,new = (fi,old + a* ft'ot ((Tl) (2)

Higher order terms beyond particle acceleration are ne-
glected here. This procedure represents a very simple gra-
dient descent method performing Euler integration of the
underlying partial differential equations with a constant
step size. Applying this procedure iteratively yields an
approximately linear convergence and proved to be suffi-
ciently fast for our real-time application. The new con-
figurations are recomputed until the total force of all con-
figuration points is sufficiently small, i.e. until the force
equilibrium is reached.

In the original elastic band approach, the moving proce-
dure is supplemented with a procedure of adding and re-
moving particles in order to maintain a collision-free path
at all times (see Section IV). So-called bubbles model the
available free space around a configuration. Adding par-
ticles becomes necessary when two adjacent bubbles do
not overlap anymore. Bubbles are circles with a radius
of the minimum distance to the closest obstacle for our
two-dimensional case.

IV. ADAPTATIONS FOR VEHICLE FOLLOWING

A. The Basic Idea

The elastic band approach is adapted to the vehicle-
following scenario here. The path of the leader vehicle con-
stitutes the initial path. Obstacles in the environment exert
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forces on the band and move it into a final configuration.
This is the path the ego-vehicle tracks subsequently. There
are configurations where the final path is still infeasible in
contrast to the original elastic band approach. In order to
find these configurations, a final clearance check along the
envisioned ego-vehicle path is performed. If the clearance
check fails, the autonomous driving mode is switched off
and the driver has to take over the control of the vehicle
manually.

Driving situations that necessitate this dynamic modifi-
cation of the leader vehicle path are

» passing a cyclist or pedestrian along the road while fol-
lowing a leader vehicle, or

« driving too close to parking cars due to the smaller size
of the leader vehicle, or

o driving around a car that comes to a stop slightly inside
the road intersection, or

o driving around a pedestrian that moved one step into the
road.

Many more scenarios can be identified. In addition, further
extensions of the autonomous driving capability of such a
vehicle definitely need this dynamic path planning compo-
nent.

B. The Sensor System

Our range sensor delivers a list of objects in the scene.
We use a calibrated stereo camera system to obtain 3D
information of the car’s surroundings. However, the elastic
band algorithms in this paper are applicable to any sensor
delivering range data with a “suitable” angular resolution.

The calibrated stereo camera system delivers 3D mea-
surements of significant points resulting in a sparse 3D
point cloud (less than 500 3D measurements). The sig-
nificant points of the left image are matched in the right
image by correspondence analysis along the epipolar line
similar to [16].

To extract objects from 3D measurements, we apply a
spatial clustering method to all 3D points except the ones
on or below the ground. Here we assume a constant orien-
tation between the camera system and the flat road.

We match objects from different frames by requiring
them to be close together in space. This procedure works
well for small scene changes between consecutive frames.
We assume a flat environment and use only the z and z
coordinates of the objects for collision avoidance.

One object corresponds to one clustered 3D point cloud
projected to the z-z-plane represented by its convex hull
for collision avoidance purposes. A convex hull of a set of
points is defined as the smallest convex polygon containing
the points. In our algorithm, the convex hull represents
the outline of an obstacle, which is better suited than a
rectangular description such as a bounding box.

The relative velocities of the objects w.r.t. the ego-vehicle
are computed based on the center of the obstacles bound-
ing boxes using an extended Kalman filter. One of the
extracted objects is the leader vehicle supplying the initial
path. The other detected objects constitute obstacles.
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C. Efficient Distance Computation

The distance of the ego-vehicle path to the obstacles is
the most important quantity for the determination of the
external force. Since the distance is computed thousands of
times in one cycle, it is of uttermost importance to compute
it fast.

If the ego-vehicle path is not influenced by the poten-
tial generated by the bounding box of the obstacle, no re-
fined distance computation is necessary and the distance
between the bounding boxes is sufficient. The algorithm
described below is only necessary for obstacles being close
to the ego-vehicle. This coarse to fine strategy saves a sig-
nificant amount of computation time.

In our approach the distance computation between a
rectangle (our ego-vehicle) and a convex hull (obstacle) is
reduced to a distance computation between two line seg-
ments. The ego-vehicle’s orientation is parallel to the tan-
gent on the elastic band. When the ego-vehicle and the
obstacle do not intersect, the distance is computed from all
points of the ego-vehicle to all obstacle points. The points
with the minimum distance are taken and the distance of
the two adjacent line segments on both sides is computed
subsequently. Thus, a total of four line-segment-to-line-
segment distance computations is necessary.

The distance between the obtained obstacle line seg-
ments and the ego-vehicle line segments is computed using
Lumelsky’s algorithm [17]. This algorithm is about five
times faster than the straightforward approach.

D. Modifications to the Original Elastic Band Approach

The vehicle-following application of the elastic band
framework differs from the original idea in the following
ways:

o The initial path cannot be guaranteed to be collision free.
Since the initial path is created by the path of the leader
vehicle, changes in the scene might have occurred since the
leader vehicle has passed. It is possible that another traffic
participant has approached that path in the meantime. In
addition, the leader vehicle might be smaller in width than
the autonomous vehicle and might have chosen a path very
close to an obstacle.

o The equilibrium position of the configuration particles is
the leader vehicle path. We want the autonomous vehi-
cle to follow exactly this path in the absence of obstacles.
Hence the internal forces of the initial configuration receive
an offset yielding zero in the absence of obstacles. In the
original approach, the elastic band was assumed to have
zero length and would always collapse to a straight line in
the absence of obstacles.

e The concept of bubbles of free space disappears auto-
matically by allowing initial trajectories that are not colli-
sion free. By giving up on the bubble concept we need an
additional algorithm to reassure a collision-free path after
the equilibrium position has been found. This is done by
geometrically checking for overlaps along the final config-
uration of the elastic band. The procedure of adding and
removing particles becomes superfluous as well.
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o A regular car is an intrinsically non-holonomic vehicle.
The original algorithm applies only to holonomic robots.
This limitation has not been explicitly taken into account.
Hence the paths created by the elastic band could be in-
feasible for non-holonomic cars. Since uncertainties in the
3D measurement of objects and uncertainties in the vehicle
control require additional slack around the planned path,
this is not considered a serious problem. In addition, the
non-holonomic constraint also applies to the leader vehicle
and is reflected in the leader vehicle path. Work on elas-
tic bands for non-holonomic vehicles has been presented in
[10].

o In regular traffic situations, lane markings are also used
for vehicle guidance. The lane markings are detected and
are also modeled as virtual obstacles with repelling forces
pointing away from the lane boundaries towards the lane
center. Lanes are modeled as polygons so the same distance
computation algorithm as for obstacles is used.

e The external force of the elastic band must be shaped to
comply with natural driving behavior. Drivers keep more
distance from obstacles at high speed than at low speed
(e.g. parking situations). Therefore, a velocity-dependent
potential shape must be used. This is detailed in the fol-
lowing section.

E. The Potential Shape for the Obstacles

We have experimented with a lot of potential shapes
and came to the conclusion that potentials with limited
reach best model human driving behavior. Usually, events
and objects further away than a certain distance from our
planned path do not have an impact on our actually driven
path.

The original approach for elastic bands is designed for
mobile robots that rarely exceed 2 m/s. So a position-
dependent potential is sufficient. We modified this ap-
proach in a way that the effective reach of Quinlan’s po-
tential, d.ss, becomes a function of velocity as well. In
addition, we superimpose a velocity-dependent potential,
introduced by Krogh [3]. Since we already know an initial
path, only obstacles close to that path are considered.

When an obstacle is unavoidable for or inside a particle
of the elastic band, a maximum force is exerted towards
a direction, where obstacle clearance is obtained on the
shortest way. Details on how to find this direction are
presented in [18].

F. Control with the Elastic Band

The result of the elastic band algorithm is a path that
has to be tracked. Considering the leader vehicle path as
the initial path to be tracked, the elastic band framework
delivers a modified path. Path tracking is performed by
selecting a path point at a certain lookahead distance. This
path point is approached taking vehicle kinematics into
account (see [19] for a detailed description.).

Since the elastic band algorithm operates statically on
the current scene snapshot and is re-run at every time step,
no connection between the elastic band results from one
frame to another exist. Sudden changes in the controller

input might cause an oscillatory behavior. Hence, a low-
pass filter is applied to the resulting desired steering angle
delivered by the elastic band path.

V. LEADER VEHICLE SELECTION

In the standard vehicle-following approach, a planning
and decision module selects the leader vehicle and sends the
leader vehicle position to the controller. A leader vehicle is
initially selected by projecting the planned corridor forward
using the current steering angle and the first vehicle to
intersect with this corridor is the leader vehicle.

The elastic band framework can be integrated easily us-
ing a path-based approach for vehicle following [19]. Only
the leader vehicle path has to be exchanged with the elas-
tic band path. The longitudinal control is implemented in
such a way that we follow the leader vehicle at a safe dis-
tance. The elastic band algorithm only affects the lateral
control.

The corridor to be searched for the leader vehicle be-
comes the corridor around the elastic band path. Hence,
when small intersections with an obstacle occur, the elas-
tic band algorithm bends the path in such a way that no
intersection with the obstacle occurs. As a safety measure
the bent of the elastic band path is monitored and when
deviations beyond a certain threshold occur, the control is
returned to the driver. Although the elastic band is still
feasible in such a case, the behavior of the ego-vehicle would
already be far from that of a typical vehicle-following sys-
tem.

VI. RESULTS
A. Simulation Results

The initial verification of the implemented algorithms
was performed in an off-line environment, where only a
snapshot of a scene was analyzed. Parameter tuning was
performed in this environment.

In Figure 2 a situation is shown, where the leader vehicle
is slightly driving out of lane and other cars drive to the
left and right. Hence a slight path modification to the right
occurs due to the obstacles and also slightly due to the lane
markings with the elastic band algorithm. Obstacles are
modeled as rectangles for simplicity. The equilibrium state
is found within 18 iterations.

B. Real World Results
B.1 Real World Results without Lateral Control

We integrated our elastic band framework in the basic
vehicle-following system. Computing the modified path
runs in real-time without much optimization. With our
current parameterization, the elastic band finds its equilib-
rium state within 20 iterations for most situations.

Figure 3 shows a typical traffic scene with counter traffic
on the left and a parked obstacle (a dredger) on the right.

The leading vehicle drove very close to the dredger (see
initial path in Figure 4) and has a smaller car than our
research vehicle. Hence following the initial path brings
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utilizing both lanes and obstacles.

Fig. 3. Traffic scene with a dredger at the right side of the street
and with counter traffic.

us dangerously close to the dredger. The elastic band ap-
proach yields the dashed path in Figure 4 which avoids the
dredger and keeps a safety distance from the car on the left
at the same time. Lane markings were not used here.

B.2 Real World Results with Simulated Obstacles

Collision avoidance maneuvers are dangerous to conduct
in the real-world. It is not safe to interfere with a car’s path
when it moves. Maneuvers with especially little clearance
to obstacles are critical. So we decided to perform some of
these maneuvers in simulation first.

Experiments have been conducted using the elastic band
path as input to the lateral control. Results using simu-
lated obstacles in the research vehicle are described in the
following.

Above simulation results encouraged us to perform test
in our demonstrator, a Mercedes Benz E-class 420. It is
equipped with electronic gas, brake, and steering wheel en-
abling autonomous motion. On-board sensors deliver vehi-
cle velocity and steering angle that are used to integrate the
ego-motion for ego-position estimation. This is necessary
to determine the leader vehicle path [19].

We simulated obstacles in the research vehicle to test
the algorithm safely. The experiments can be reproduced
exactly this way. Figure 5 shows a scene, where the leader
vehicle drives straight. Another vehicle in the right lane
recognizes an obstacle ahead and starts to change its lane.
When recognizing the autonomous vehicle it brakes but

overlaps slightly with the other lane. The ego-vehicle

Simulation result of the elastic band algorithm (bird view)
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Fig. 4. Bird view for the dredger scene. The leader vehicle is located

at the end (z = 17.5m) of the path and smaller than the ego-
vehicle.

avoids this obstacle by performing a swerve maneuver. The
desired path as output from the elastic band algorithm
is depicted in a dashed line. Note that the ego-vehicle
does not follow exactly the elastic band path due to non-

holonomic constraints and due to the simple controller de-
sign.
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Bird view for a situation where a car slightly enters the
driving corridor which necessitates a swerve maneuver. The ego-

vehicle and the leader vehicle drive at 8m/s and they are about
18m apart.

B.3 Real World Results Using Stereo Vision

After extensive tests with simulated obstacles, we per-
formed avoidance maneuvers with real image processing
data in the research vehicle. In our chosen scenario, a
human as a thin leader vehicle runs on a straight path
at about 5m/s. A cardboard box is located next to that
path. The ego-vehicle has to avoid the box while following
the human. Figure 7 shows the deviation between leader
vehicle and ego-vehicle path. The deviation increases at
the cardboard box location due to the avoidance maneu-
ver. Figure 6 shows a snapshot of the scene. The depicted
corridor is the corridor modified by the elastic band algo-
rithm. In a simple vehicle-following scenario, the car would
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have touched the cardboard box.

Fig. 6. Avoidance scene with a human as a leader vehicle passing
close to a cardboard box on the left. Due to the larger width, the
ego-vehicle performs a swerve maneuver to avoid the box. The
elastic band path is depicted projected to the ground. The leader
vehicle and the ego-vehicle are about 12m apart.
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Fig. 7. Deviation plot for the scene in Figure 6. The frame number
roughly corresponds to the z position in the global reference frame
(constant velocity assumed). Compared to the image data, the
cardboard box location is depicted in the graph. Assuming the
leader vehicle path runs along the z axis at * = 0, the deviation
curve also shows the path of the ego-vehicle.

We performed further tests in real traffic using the elastic
band framework. The desired avoidance maneuvers were
properly performed in all encountered dynamic situations.

VII. CONCLUSIONS AND FUTURE WORK

In this paper a dynamic collision avoidance component
for the standard vehicle-following approach has been intro-
duced. The elastic band framework is used to modify the
initial path of the leader vehicle.

Modeling human driving behavior requires a lot of con-
text knowledge that has to be represented as a rule base
in some way. However, we consciously skipped that step
and tried to model human driving behavior with a physi-
cal model in order to keep things intuitive and to analyze
global properties of the planned path.

The results show, that for standard vehicle-following sit-
uations, no modification is necessary. In dynamic situa-
tions, the intuitive obstacle avoidance behavior is achieved.
Computation time measurements show that real-time per-
formance is achieved without much optimization effort.

By considering the leader vehicle, all obstacles in the

scene, and lane markings, an intelligent fusion of lane-
following and vehicle-following behavior has been achieved.

An interesting future area of research is the choice of
the lateral controller to follow the elastic band path. In
the intelligent vehicle community, lateral vehicle guidance
is often achieved performing lane following. A lot of robust
lateral controllers have been presented for that task (e.g.
[20]). These controllers could be used to track the elastic
band path by treating that path as a lane center.
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