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Lane Recognition on Poorly Structured Roads - the
Bots Dot Problem in California

Stefan K. Gehrig, Axel Gern, Stefan Heinrich, Bernd Woltermann

Abstract—

Lane recognition is the basis for many driver assistance
systems, including Lane Departure Warning (LDW), the as-
signment of vehicles to specific lanes, and fully autonomous
driving. A major problem of common vision-based lane
recognition systems is their susceptibility to weather and
poorly structured roads. Especially when driving in adverse
weather conditions such as rain or snow, it is difficult to es-
timate the road course. The contrast between the white
lane markings and the pavement is poor, sometimes the col-
ors of the markings are negated. Furthermore the range of
sight is reduced enormously causing a bad prediction of the
lane parameters, particularly the curvature. We present a
solution which relies not only on finding white markings.
In addition we are recognizing reflective lane markers and
bots dots. These measurements are then integrated in the
lane recognition system estimating the position of the ve-
hicle within the lane and the curvature parameters of the
road ahead. The system allows us to perform lane depar-
ture warning and to drive laterally controlled autonomously
even under adverse weather conditions.

Keywords— Intelligent vehicle, computer vision, stereo vi-
sion

I. INTRODUCTION

In the past, many different vision-based lane recognition
systems have been presented. Most of them try to find road
features such as lane markings or road surface textures.
These are matched against a specific geometrical model of
the road (e.g. [1], [2], [3])- These features are used to deter-
mine the parameters of the chosen model and the position
of the car in the lane, for example using a least-squares fit-
ting or a Kalman filter [2]. Many lane recognition systems
encounter problems when driving in adverse weather con-
ditions such as rain or snow. Often the contrast between
the markings and the pavement is poor (see Fig. 1). The
range of sight is reduced enormously, causing a bad pre-
diction of the lane parameters, particularly the curvature.
Another problem are non-standard lane markings such as
reflective markers or bots dots.

There are many different solutions to this problem. In-
stead of only searching locally for white lane markings, [4]
and [5] analyze the complete image. ALVINN [4] is based
on an artificial neural network, which is trained to learn
the characteristic features of particular roads under spe-
cific conditions. It uses this learned road model to deter-
mine how to steer keeping the vehicle in the lane. Problems
emerge when driving in unknown areas the neural network
isn’t trained on. In RALPH [5] the road in front of the car
is converted into a bird’s-eye view. This low-resolution im-
age is deformed with several road-curvature hypotheses to

S. Gehrig is with DaimlerChrysler AG, HPC T 728, 70546
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Fig. 1. A typical scene when driving on a highway with bots dots.
The contrast between the bots dots and the pavement is poor.

determine the curvature. The advantage of this approach is
that in advance no model of the road is needed. As can be
seen in Fig. 1, the overall structure of the road indicates the
road course. Disadvantages of this approach are the lack
of estimation of the yaw angle of the own vehicle relative
to the lane and the accuracy of the curvature estimation
due to only analyzing low resolution images. In LOIS [6]
the determination of the road course and the position of
the vehicle within the lane is reduced to an optimization
problem in a multidimensional parameter space. The con-
tribution made by every pixel to a likelihood function is
defined by its intensity gradient magnitude and gradient
direction. In this approach, there is no need for the typical
gradient magnitude thresholding.

A different solution is to use other sensors. For example
other obstacles, seen by a radar sensor, can be taken into
account as described in [7], [8] and [9]. This stabilizes the
estimation of the yaw angle of the own vehicle relative to
the lane and the curvature parameters enormously. On the
other hand, DGPS-based map information systems can be
used to stabilize the estimation of the road course (see [10],
[11], and [12]).

In order to use the poorly visible (but well audible) bots
dots for lane recognition, the typical gradient-based fea-
ture extraction delivers only results when keeping the gra-
dient threshold very low. However, a low gradient thresh-
old causes a lot of noise.

In this paper we present a new approach fusing two differ-
ent types of road features. Firstly, we are using the classic
geometrical approach, tracking locally the white markings.
Secondly, we use a dedicated bots dots algorithm that rec-
ognizes these features without gradient thresholding.

How is this paper organized? In Section II the standard
lane recognition algorithm is introduced. Section III de-
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scribes the additional algorithm that is necessary to deal
with “poorly structured” roadways such as Californian
roadways marked by bots dots. The fusion of these two
feature extraction algorithms is presented in Section IV.
Section V briefly describes the sensor system used in our
demonstrator. Results are detailed in Section VI. Conclu-
sions and future work comprise the final Section.

II. VisioN-BASED LANE RECOGNITION

According to the recommendations for highway construc-
tion, highways are built under the constraint of slowly
changing curvatures. Specifically in the U.S., piece-wise
constant curvature segments are recommended. Most lane
recognition systems are based on a clothoidal lane model,
that is given by the following equation:

o(L)y=co+ci- L. (1)

¢(L) describes the curvature at the length L of the
clothoid, ¢q is the initial curvature and c¢; the curvature-
rate, which is called the clothoidal parameter. The curva-
ture is defined as ¢ = %, where R denotes the radius of the
curve.

Besides these curvature parameters, lateral position z,s s
and yaw angle A relative to the lane axis are of interest
for modeling the vehicle position within the lane.

Assuming the pinhole-camera model and knowing the
camera parameters focal length f, tilt angle a and height-
over-ground H, the relation between a point on a marking
and its image point P;(z;,y;) can be described by the fol-
lowing equations:

T = %(a wW—Tofr — A - L+— L? + 6 -L3)(2)
H
o+ il ©

w is the lane width and @ = £0.5 is used for the left or
the right marking. Hence, every measurement is projected
onto a virtual measurement directly on the centerline of
the lane. In all equations, the trigonometrical functions
are approximated by the argument (sinz = z,tanz = ),
because we consider only small angles. These equations
allow to determine the relevant run of the curve and vehicle
position parameters.

The image processing used to detect the lane marking
features is basically edge detection. The edges of the lane
markings are detected with gradient operators and a cer-
tain edge threshold is applied to reject noise.

Driving at higher speeds, dynamic and kinematic restric-
tions have to be taken into account. These constraints can
be expressed by the following differential equations:

.’boff = ’U-A’d}-i-vm (4)
A¢ @/}veh —Co -V (5)
é() = (1Y (6)
& = 0 (7)
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In these equations, v denotes the longitudinal speed of
the vehicle, v, the lateral speed caused by a possible side
slip angle and ¢Ueh the yaw rate. v, and d}veh are measured
by inertial sensors.

Based on the dynamic and kinematic model (Eqn. (4)
through Eqn. (7)) the road markings are tracked from
frame to frame by using Kalman filter techniques as first
proposed by [2]. The geometrical equation (2) is used as
the measurement equation updating the filter. The search
areas are centered at the predicted position in the image.
The size of the regions is determined by calculating the 3o-
area of the expected measurement, assuming a Gaussian
noise process.

The above described system is independent of the image
source, using a monocular or a stereo camera system. Our
first approach as e.g. described in [13] uses a monocular
camera and relies on the assumption, that the road is flat.
Sometimes problems occur because 'markings’ are falsely
found on cars cutting in or crash barriers. This causes a
wrong state estimation.

These problems can be solved using stereo information.
Every point on the markings found in one image is cor-
related against a small region in the second image. This
delivers three-dimensional information allowing a vertical
modeling.

In our approach, we divide the vertical modeling into two
components:

1. A linear part, described by the tilt angle a.
2. A non-linear part, described by the vertical curvature,
approximated by a clothoid.

German Highways are designed according to a parabolic
vertical curvature ¢,. The vertical and horizontal curvature
models are separated. The parabola curvature is approxi-
mated using a clothoid as described in [14]:

co(L) = co0 + o - L (8)

Tilt angle and vertical curvature are estimated in one
joint Kalman filter using the following measurement equa-
tion for the height over ground y:

L2+ LB

y=H— ozL+2 6

9)

The change A« of tilt angle o between two cycles caused
by ground bumps or acceleration/deceleration is estimated
using a model of an oscillating damped system:

Aa+2-D-wy-Aa+wi A = knag - Wi - a (10)
The parameters are defined as follows:

o Aq: change of tilt angle caused by ground bumps or

acceleration /deceleration.

o D: spring constant of the oscillating system.

e wo = 2-7- f: angular frequency and f the resonant

frequency.

« a: longitudinal acceleration of the vehicle, measured by

an inertial sensor.

o kimaz: gain.
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Summarizing, the stereo lane recognition system as de-
scribed above consists of two independent Kalman filters —
one estimating the horizontal curvature, the other estimat-
ing the tilt angle and the vertical curvature. They are the
central components and basis for the fusion approach.

The calibration of the camera can be performed itera-
tively. After crudely estimating the initial yaw and pitch
angle, these values are observed, and the correct calibra-
tion values are obtained by low-pass filtering the estimates
over hours of driving time.

One current version used for autonomous driving on Ger-
man highways runs on a single Pentium II at 400MHz and
tracks two markings reliably. Under good weather condi-
tions the system analyzes up to 150 search windows at a
range of sight of 50m to 70m. The monocular system runs
at a cycle time of about 5.5ms, the binocular takes about
10ms time for every cycle. The system allows to drive com-
fortable autonomously with a speed up to 160km/h if the
markings are well visible.

III. THE BoTs DOT RECOGNITION ALGORITHM

The lane recognition system described above works well
on reasonably well structured highways. However, along
the west coast of the United States, a special kind of
lane marking is often used: The bots dots (also com-
monly referred to as bot dots) - occasionally reflective dot-
or square-shaped points that protrude slightly out of the
ground to make an audible noise when crossing the lane.
In cases, when bots dots are set densely (more than 5 bots
dots per meter), the regular lane marking algorithms still
receive sufficient edge information to fit a lane. The more
common case of sparsely placed bots dots calls for an extra
feature extraction method. To avoid noisy measurements,
we consciously renounce on gradient-based methods.

Based on a priori knowledge, the proposed method is
using the morphological properties of small spot-like road-
markings. Starting from an input image, we are search-
ing for bots dot lane markings within regions of interest
(ROT’s). These ROT’s are defined by the prediction of the
road model. Together with the minimum and maximum
measurement distance and with the variance of the road
model parameters, the ROI’s cover the lane markings as
rectangular regions within the image (see e.g. Figure 7). In
order to enhance potential lane-marking pixels, a matched
filter is applied within the ROI’s. The gray values for an
image row within the ROI is shown in Figure 2. To de-
termine whether an image-pixel (41) at position (x0) be-
longs to a lane marking, its intensity as well as the statis-
tical information of the surrounding area (S1,52) is taken
into account. The width (d) of the matched filter is taken
from the lane-marking width of the road-model. Within
(S1,52), the average value (A1,A2) and the standard de-
viation (o1,02) is used to compute a threshold (T1,T2).
Comparison of the gray value (40) with the threshold (42)
generated from (T1,T2) is leading to a binarized image,
with enhanced lane marking pixels as shown in Figure 3.
An additional stage now checks for morphological proper-
ties such as shape, closeness, holes, and compactness. Only

Intensity

Fig. 2. Grayvalue intensity of an image row.

Fig. 3. Filter result of the bots dot detection run over the whole
image. For our algorithm, we only search within our lane marking
windows

blobs, which qualify as "reflective marker” will be used for
further computation. The image coordinates from the re-
maining bots dot pixels will be clustered and fed into the
tracking Kalman filter if they fit the road model within a
3-0 environment. The proposed bots dot algorithm is not
restricted to reflective marker recognition. It is also possi-
ble to detect lane marking lines even if they are degraded
from wearout and aging.

As explained above, one can see that the non-linear
thresholding step in this algorithm is different from a sim-
ple gradient thresholding. After searching within a lane
marking window, the candidate bots dot pixels are clus-
tered and used for measurement in the following way:

« Begin looking for bots dot candidates at the predicted
lane marking position, which is obtained via Kalman filter.
e When more than a minimum number of adjacent bots
dot pixels are found, mark their innermost position as a
potential bots dot measurement.

The above described algorithm is only run, when the classic
lane recognition algorithm fails to find enough lane mark-
ings. This way, we can prevent to pick up noise on well-
painted roads and are still able to obtain an acceptable
lane estimate on poorly structured bots dot roads. This
feature extraction method runs on a P-IIT PC operating on
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Fig. 4. Installed camera system in our research vehicle

a monocular image in well under 20ms computation time.

IV. FusioN

The central component of our approach is a combination
of the different feature extraction methods that provide
measurements to the Kalman filter, based on the dynami-
cal model described by Eqn. (4) through Eqn. (7). Each
sensor, such as the lane recognition system, the bots dot
detection system, or a GPS-based trajectory system [12]
provides additional measurements for a robust and reliable
estimation of the road course and/or the position of the
own vehicle within the lane. The basic idea of this multi-
sensor fusion approach is to overcome the sensitivity of all
single sensor systems with respect to unpredictable mea-
surement disturbances and sensor failures, e.g. caused by
weather conditions. Note that our fusion is not limited to
different sensors but also includes different feature extrac-
tion methods using the same sensor.

V. THE SENSOR SYSTEM

We equipped a Jeep Liberty with our lane recognition
system (see Figure 4 for the camera setup).

Specifically, the cameras we use deliver grayscale half-
images with a resolution of 768 by 284 pixels at a 25Hz
rate. These images are processed using an off-the-shelf
Pentium IIT PC with 1000MHz. Using such a system, it
is straightforward to process stereo images for lane recog-
nition in real-time.

VI. RESULTS
A. Algorithmic Results

To demonstrate the necessity of a bots dot recognition
algorithm, we compared the performance of the lane recog-
nition system with and without bots dot algorithm. For
well-structured roads, no difference was perceived. How-
ever, when lanes were only marked with bots dots, the
availability of the system dropped significantly.

To get an impression of the system performance, the
search windows with their results and the estimated lane is

Fig. 5. California freeway scene on Interstate I 280. Bots dot algo-
rithm active. The black windows constitute bots dot measure-
ments.

Fig. 6. California freeway scene on Interstate I 280. Standard lane
recognition only.

shown in Figures 5 and 6. In Figure 5, the bots dot algo-
rithm was active which yielded a good estimate of the lane
geometry. Without the bots dot algorithm, not enough
lane markings were found to even initialize the system (see
Figure 6).

What makes the bots dot recognition so powerful com-
pared to the edge-based approach? Given the non-linear
nature of the feature extraction, lower thresholds to find
features can be applied. The particular strong feature of
the bots dot algorithm is the recognition rate of bots dots
close to the car (up to 20m). Hence the estimation of the
offset w.r.t. the lane center can be robustly estimated.
However, projecting the Kalman filter result further away
from the car (50m in our example), a deviation from the
estimated road geometry to the real geometry becomes vis-
ible (see Figure 7).

On the other hand, running the same scene without bot
dot recognition yields no usable result due to the lack of
measurements. The algorithm takes dozens of frames to
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Fig. 7. California freeway scene on Interstate I 280. Bots dot algo-
rithm active. The offset estimate is accurate.

Fig. 8. California freeway scene on Interstate I 280. Standard lane
recognition only. Hardly any measurements are found with the
edge-based feature extraction

initialize rather arbitrary on random edges and performs
re-initialization on a regular basis (see Figure 8).

Running both feature extraction algorithms on our P-III
computer yielded a computation of well under 40ms for
every cycle consisting of image acquisition, feature extrac-
tion, tracking, and visualization.

B. System Performance Results

In order to determine the precision of lane recognition
results, a comparison to ground truth is necessary. Visual
inspection of hundreds of scenes off-line and driving dozens
of hours checking the system online yielded the following
qualitative result: Robust and precise estimation of the
offset and yaw angle even with very poorly structured roads
has been achieved. However, road curvature is harder to
estimate due to the lack of measurements further away.

Another very important quality criterion of a lane recog-
nition system is the availability of the lane information.
With the bots dot recognition algorithm, about 90% of the
driving time, lane information is available. Without this

algorithm, availability drops down to about half the time.
Basis for these statistics were dozens of hours driving time
along the west coast on freeways marked with bots dots
and poorly marked rural roads.

VII. CONCLUSIONS AND FUTURE WORK

In this paper a lane recognition system for American
roadways was introduced. The standard edge-based lane
marking approach fails for roads that are only marked by
square or circular reflective lane markings, so-called bots
dots. With an augmentation of the standard approach
this performance gap could be filled and a robust recogni-
tion performance on poorly structured roadways could be
achieved. As the next step, information about the vehicle
state, velocity, and heading direction, will be used to better
predict the estimated lane geometry. This information will
be obtained from the standard vehicle sensors. Due to the
lack of a yaw rate sensor in our demonstrator, we will use
the heading information instead.
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