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Abstract

Abstract— A crucial task for steering an autonomous
vehicle along a safe path in a vehicle following scenario
is the lateral control. The sensory input of such a lat-
eral control are the position coordinates of the leader
vehicle. The following problem occurs: Due to the dis-
tance between the leader vehicle and the autonomous
ego-vehicle, the lateral control has to interpolate a tra-
jectory between the two vehicles. Using as a trajectory
either a straight line or a curve of constant curvature
causes the ego-vehicle to deviate from the leader vehi-
cle’s trajectory.

Given a system delivering 3D points of the leader
vehicle with time tags, one has a handle to reconstruct
the leader vehicle’s trajectory. In addition, one has to
compensate the motion of the ego-vehicle by using its
motion parameters. Once this transformation is per-
formed, the position coordinates of the leader vehicle
are available in a coordinate system at rest. Knowing
the position of the ego-vehicle in that coordinate sys-
tem, one can select the trajectory point of the leader
vehicle that is closest to the ego-vehicle as input to
the lateral controller. This simple approach increases
significantly the precision of vehicle following systems.

The algorithm is applied successfully to an au-
tonomous vehicle for platooning at small velocities.

Keywords— Autonomous Systems, Lateral Control,
Path Following, Vehicle Following, Computer Vision

I. Introduction

In recent years an abundance of autonomous ve-
hicle systems have been presented (e.g. [3], [5], [10],
[13]). In these presentations a popular approach to
laterally guide the ego-vehicle was either lane follow-
ing (e.g. [13]) or platooning (e.g. [4], [2]). In this paper
we address platooning. For the lateral control there
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is one serious drawback: With only the current po-
sition information of the leader vehicle available, one
has to interpolate the trajectory between the two vehi-
cles. Both a straight line (tractor model) and a curve
with constant curvature (arch) have been tried in pre-
vious applications (e.g. [2]). These interpolation ap-
proaches cause the autonomous vehicle to deviate from
the leader vehicle’s trajectory. The phenomenon scales
with the distance to the leader vehicle. In platooning
applications this behaviour can cause the autonomous
vehicle to hit an obstacle such as the curb in a curve or
a parking vehicle. The deviation Ad of the trajectories
is illustrated in Figure 1.
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Fig. 1. Trajectories of the autonomous vehicle contrasted with
the leader vehicle. The autonomous vehicle uses a controller
corresponding to the tractor model.

A different approach in vehicle following is to fol-
low the path of the leader vehicle, not the leader
vehicle itself. This approach has been tried in
applications, where vehicle-to-vehicle communication
(e.g. [12]) and typically also some absolute positioning
system (e.g. [8]) is available. Platooning systems, that



control platoons using absolute positioning methods
(e.g. magnetic markers [6]) are referred to as point-
following systems [11]. However, this paper applies
path following to a vision-based autonomous system
without using any communication infrastructure or
absolute positioning system.

How is this paper organized ? Section 2 introduces
a new algorithm that solves the problem explained
above. In Section 3 a short mathematical treatment
of the algorithm is provided. Lateral controller design
issues are discussed briefly in Section 4. Section 5
contains both simulation results and results from our
research vehicle. The final section summarizes the re-
sults and points out future work.

II. Introduction to the CUT Algorithm

For the sake of simplicity, we assume perfect sensor
data and a very fast controller to explain the basic
idea.

Unlike previous vehicle following systems, the algo-
rithm makes use of the time history associated with
the leader vehicle. To determine the leader vehicle’s
trajectory it is sufficient to store the position coordi-
nates of the leader vehicle and the motion parameters
of the ego-vehicle over time. In order to transform the
position coordinates into a coordinate system at rest,
one has to compensate the motion of the ego-vehicle
by using the ego-vehicle’s velocity and steering angle.
Knowing the position of the ego-vehicle in that coor-
dinate system, one can select the trajectory point of
the leader vehicle that is closest to the front of the
ego-vehicle as input to the lateral control.

However, real lateral controllers have a certain de-
lay to guarantee stability and compensate measure-
ment errors of the sensor data. The next trajectory
point to travel through must be a certain distance
away from the ego-vehicle in order to allow the desired
steering angle to have an impact on the ego-trajectory.
To account for that, our algorithm always selects the
trajectory point that exceeds a certain lookahead dis-
tance measured from the ego-vehicle. The mechanism
is illustrated in Figure 2. Previous algorithms would
have selected the trajectory point at t,.

The algorithm explained above is referred to as the
CUT algorithm (CUT - Control Using Trajectory) in
subsequent sections.
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Fig. 2. Mechanism of the CUT algorithm. Circles represent
trajectory points of the ego-vehicle, crosses represent points
of the leader vehicle.

IT1. Quantitative Analysis

A. Transformation to a Coordinate System
at Rest

For the following analysis, the coordinate system of
the previous figures is used. The y-axis pertrudes out
of the paper plane. The (z,y,z) coordinates of the
leader vehicle, the ego-velocity and steering angle are
needed to reconstruct both trajectories. A flat road
(y = 0) is assumed for all transformations. In a first
step the coordinates of the ego-vehicle are transformed
into a coordinate system at rest:
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Myos = ( cos(y) —sin(y) ), (1)

sin(y)  cos(v)

Here ~ denotes the angle of the arch that the ego-
vehicle has passed through since initialization:

Vegon (AL _ oy, (2)
Tego
n refers to the current time step, n — 1 to the pre-
vious one. 74, is the radius of curvature of the ego-
vehicle. The primed coordinates refer to the coordi-
nate system at rest.



In a second step, the coordinates for the leader ve-
hicle are transformed into the same coordinate system:

mln — w::go,n Tn
( z; >— ( ztlago,n +MT0t Zn . (3)

The above transfomations are applied iteratively for
every time step allowing the coordinates to be trans-
formed to any point and orientation the autonomous
vehicle has passed through.

B. The Vehicle Model

The radius of curvature reg, is derived from the
steering angle ¢ using the Ackermann model [15]:

w a+b
2 " tan(6)’ 4)

Tego = /22 + b2. (5)

See Figure 3 for an explanation of the used quanti-
ties.
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Fig. 3. Ackermann Model (w: width of vehicle, a: distance
center to front axle, b: distance center to rear axle).

The Ackermann model is limited to small velocities
and small lateral accelerations. Other models [15] that
include side slip can be used to compute r¢4, from ¢ to
extend the validity of the transformation equation 1.

IV. The Underlying Lateral Control

A. Interface of the Underlying Lateral
Controller

In previously presented lateral control algorithms
[4], the current = and z position of the leader vehicle

has been the input to the lateral control. These quan-
tities are now replaced by the x and z position of a
trajectory point closer to the ego-vehicle determined
by the lookahead distance. Using the appropriate con-
trol law, the desired steering angle is computed. The
output to the actuator is the filtered desired steering
angle.

B. The Underlying Lateral Controller

The choice of the underlying lateral control algo-
rithm is uncritical with respect to the interpolation
strategy since the distance to the target trajectory
point is small. Hence no significant deviations occur.
All lateral control algorithms regulate the z-offset to
zero. The trajectory interpolation strategy determines
the control law.

However, a controller and actuator with little delay
and comparatively high dynamics is needed to follow
arbitrary trajectories. Design issues of such controllers
are not addressed in this paper. These issues including
a stability analysis are treated in [9] and references
therein.

For the simulations and for the research vehicle the
lateral control algorithm interpolates an arch.

V. Results
A. Simulation Results

For the simulation a typical European street profile
including a clothoid followed by an arch shape such
as shown in Figure 4 is used. The velocity of both
vehicles is 10m/s approximately constant over time
and their distance is 25m constant over time.

The chosen street profile reflects a worst-case-
scenario for vehicle following in our application with
limited opening angle of the sensor (30°) and limited
velocity range in urban areas.

The simulated controller assumes an arch and reg-
ulates the new steering angle within 80ms. The looka-
head distance is 12m from the sensor (11m from the
front axle). Simulation results can be seen in Figure 5.
Negative deviations are deviations towards the center
of the curve. The dashed line denotes the old approach
and the solid line marks the deviation using the CUT
algorithm. Even less deviation can be achieved by fur-
ther reducing the lookahead but this also compromises
the stability of a realistic underlying lateral controller.

The above simulation did not take any uncertainties
into account. For a simple noise model, we take a noise
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Fig. 4. Route used for the simulation (coordinates in m).
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Fig. 5. Deviation of the trajectories between the autonomous
vehicle and the leader vehicle. The solid line denotes the de-
viation using the CUT algorithm, the dashed line indicates
the standard approach.

signal of 3% of the distance evenly distributed in z and
of 0.5m evenly distributed in . That reflects the fact
that position measurements with 3D sensors (range
images, radar scanners, stereo cameras) have an error
proportional to the distance. The noise z-direction
was assumed to be independent of the distance since
other effects incurring noise (occlusion, ...) dominate
the error. There was no filtering of the sensor data.
Figure 6 shows the results of the simulation including
noise. No significant changes occur compared to the
perfect sensor data.
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Fig. 6. Deviation of the trajectories of the autonomous vehicle
to the leader vehicle. The simulated noise is 3% of the
distance evenly distributed in z and 0.5m evenly distributed
in x.

B. Limitations of the Simulation

Above simulations illustrate the principal mecha-
nism of the CUT algorithm. However, it does not
reflect reality in several respects:

o Real 3D sensor data needs filtering. The Kalman
filter [7] proves to be a good means of filtering
for data that can be associated with a dynamic
model. It is used for the trajectory measurements
in our autonomous vehicle.

e The lateral controller has slower control charac-
teristics than the simulated controller and differ-
entiating terms. Hence more delay occurs than in
the simulation. This is needed to provide driving
comfort and to suppress oscillations.

e The motion parameters used for the transforma-
tion have measurement errors. In addition, sys-
tematic errors occur when the Ackermann model
is violated, e.g. when side slip occurs. These er-
rors are bounded and do not accumulate over
time. The autonomous vehicle’s velocity and
steering angle are quite accurate since effects such
as skewing are negligible in the urban velocity
range. Although measurements of the steering
angle are inaccurate for small velocities and hence
yield inaccurate trajectory curvature, their con-
tribution to the uncertainties is small because
only the product vey, - f(8) appears in the trans-
formation equations. Also, the imprecise veloc-

! Plugging in Equation 4 into Equation 5 and that result into
Equation 2 yields Function f.
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ity measurements for velocities close to zero do
not contribute much to errors since only the inte-
gral of the velocity contributes to the transforma-
tion. For higher velocities, the Ackermann model
becomes invalid for comparatively small steering
angles. More refined models have to be used.

« 3D imaging devices have limited opening angle.
For extremely curved trajectories the leader ve-
hicle might fall out of range of the sensor device.
This is not taken into account in the simulation.

¢ The noise model used in the simulation is not re-
alistic. Effects like occlusion are not taken into
account and are expensive to simulate.

C. Preliminary Results from an Au-
tonomous Vehicle

Our test vehicle is a Mercedes-Benz E420 equipped
with actuators for throttle, brake and steering wheel.
The sensor system consists of two CCD-cameras using
stereopsis.

How can the center of the leader vehicle be mea-
sured adequately ? There are different approaches de-
pending on the sensor. For truck platoons, the leader
vehicle can be equipped with a fixed pattern to de-
termine the center [4]. We choose to use a symmetry
finder [14] for precise center measurement. The z and
z coordinates of that point are sent to the lateral con-
trol.

In order to have the same initial conditions and
the same behaviour of the leader vehicle we chose to
use another simulation in the vehicle that creates a
virtual leader vehicle. We pick the same profile as in
the offline simulation for the leader vehicle (the first
part of it). The distance to the ego-vehicle is around
25m. The lookahead distance is set to 11m.

The controller used here applies a control law that
interpolates an arch like in the simulation. For pas-
senger comfort and to compensate measurement errors
the controller performs extensive low-pass filtering. It
has a delay of around 400ms between desired steering
angle as computed from the z and z coordinates and
actual steering angle due to filtering and delay of the
actuator. To filter the desired steering angle, a simple
PD-controller with several limiters is used.

Figure 7 shows a plot of the deviations of the tra-
jectories between the leader and the ego-vehicle. Neg-
ative deviations refer to deviations towards the inner
side of the curve (cutting the corner). As expected
the standard approach of vehicle following results in
cutting the corner when driving through a clothoid.
Due to the controller delay and the relatively inert
controller behaviour the trajectory of the ego-vehicle

exhibits a slight overshoot. Moreover, slight oscilla-
tions indicate that the controller parameters are not
yet perfectly adapted to the CUT algorithm.

Deviation of Trajectories

deviation with CUT algorithm —
deviation without CUT algorithm -----
1
0.5
E
j =
S [0 )] A
8
>
[
=
-0.5
-1
0 50 150 200

100
time in frames [80 ms]

Fig. 7. Deviation of the trajectories between the autonomous
vehicle and the leader vehicle (solid: CUT algorithm,
dashed: Controller interpolating an arch), measured in the
autonomous test car.

In addition, the new CUT algorithm has been
tested under real traffic conditions. No instabilities or
oscillating phenomena were registered. A comfortable
ride was provided at all times. Storing several traf-
fic scenes with lateral and longitudinal controller ac-
tive and reconstructing the trajectories never yielded
a deviation above 0.4m for the CUT algorithm. With-
out the CUT algorithm, the observed deviations were
much larger in very similar traffic situations. These
numbers are somewhat imprecise since the measure-
ment errors of the leader vehicle are not known. On
the other hand the on-board leader vehicle simulation
provides perfect sensor data for proper comparison.

The motion parameters were evaluated in a sepa-
rate analysis. Velocity measurements showed errors of
less than 1% above 2m/s and the absolute errors for
smaller velocities were also within 0.2m/s, which does
not contribute much to errors of the trajectory recon-
struction. The steering angle inertia turned out to be
a critical parameter. The steering angle offset of the
sensor can be compensated by comparing the recon-
structed trajectories going through a circle trajectory
both clockwise and counter-clockwise. Errors on the
steering angle sensor were found to be less than 2%
for trajectory reconstruction under low lateral acceler-
ations and dry weather conditions. Motion parameter
errors can be compensated by measuring stationary
objects in the traffic scene (see next section).



VI. Conclusions and Future Work

The CUT algorithm achieves a significant improve-
ment in precision for the lateral control in vehicle fol-
lowing systems at very little computational expense.
To take varying measurement quality of the position
into account, it is planned to adjust the lookahead
distance accordingly. Furthermore, one could adjust
the lookahead proportional to the ego-velocity which
yields a constant time difference between leader vehi-
cle and ego-vehicle for all the trajectory points passed
through. This accounts for the delay of the controller.
A constant lookahead part should be added to account
for the measurement errors of the sensors. From the
control theory viewpoint, a more general review in-
cluding insights from [6] is deemed appropriate.

In addition, it is possible to estimate the current
deviation of the ego-vehicle from the leader vehicle’s
path. From that quantity one can derive the total un-
certainty of the control loop and adjust the lookahead
distance accordingly.

Similar to the lateral control, a longitudinal control
algorithm can be built: The acceleration of the leader
vehicle can be stored at every trajectory point and
could be used to obtain the same acceleration at the
same position for the ego-vehicle.

The transformation into a coordinate system at rest
and consequently the measurement of the motion pa-
rameters can be improved significantly by measuring
stationary objects in the scene. This is a common
approach in the field of robotics (see e.g. [1]).
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