
MATHSAT: Tight Integration of SAT and Mathematical
Decision Procedures

�

Marco Bozzano, Roberto Bruttomesso and Alessandro Cimatti
(

�
bozzano,bruttomesso,cimatti � @itc.it)

ITC-IRST, via Sommarive 18, 38050 Povo, Trento, Italy

Tommi Junttila (tommi.junttila@tkk.fi)
Helsinki University of Technology, P.O.Box 5400, FIN-02015 TKK, Finland

Peter van Rossum (vanrossum@itc.it)
ITC-IRST, Via Sommarive 18, 38050 Povo, Trento, Italy

Stephan Schulz (schulz@eprover.org)
Università di Verona, Strada le Grazie 15, 37134 Verona, Italy

Roberto Sebastiani (roberto.sebastiani@dit.unitn.it)
DIT, Università di Trento, via Sommarive 14, 38050 Povo, Trento, Italy

Abstract. Recent improvements in propositional satisfiability techniques (SAT) made it possi-
ble to tackle successfully some hard real-world problems (e.g. model-checking, circuit testing,
propositional planning) by encoding into SAT. However, a purely boolean representation is
not expressive enough for many other real-world applications, including the verification of
timed and hybrid systems, of proof obligations in software, and of circuit design at RTL level.
These problems can be naturally modeled as satisfiability in Linear Arithmetic Logic (LAL),
i.e., the boolean combination of propositional variables and linear constraints over numerical
variables.

In this paper we present MATHSAT, a new, SAT-based decision procedure for LAL, based
on the (known approach) of integrating a state-of-the-art SAT solver with a dedicated mathe-
matical solver for LAL. We improve MATHSAT in two different directions. First, the top level
procedure is enhanced, and now features a tighter integration between the boolean search and
the mathematical solver. In particular, we allow for theory-driven backjumping and learning,
and theory-driven deduction; we use static learning in order to reduce the number of boolean
models that are mathematically inconsistent; we exploit problem clustering in order to parti-
tion mathematical reasoning; and we define a stack-based interface that allows us to implement
mathematical reasoning in an incremental and backtrackable way. Second, the mathematical
solver is based on layering, i.e. the consistency of (partial) assignments is checked in theories
of increasing strength (equality and uninterpreted functions, linear arithmetic over the reals,
linear arithmetic over the integers). For each of these layers, a dedicated (sub)solver is used.
Cheaper solvers are called first, and detection of inconsistency makes calls of the subsequent
solvers superfluous.

We provide a thorough experimental evaluation of our approach, by taking into account a
large set of previously proposed benchmarks. We first investigate the relative benefits and
drawbacks of each proposed technique by comparison with respect to a reference option
setting. We then demonstrate the global effectiveness of our approach by a comparison with
several state-of-the-art decision procedures. We show that the behavior of MATHSAT is often
superior to its competitors, both on LAL, and in the subclass of Difference Logic.

c
�

2005 Kluwer Academic Publishers. Printed in the Netherlands.

main.tex; 16/03/2005; 21:56; p.1

2

1. Motivations and Goals

Many practical domains of reasoning require a degree of expressiveness be-
yond propositional logic. For instance, timed and hybrid systems have a dis-
crete component as well as a dynamic evolution of real variables; proof obli-
gations arising in software verification are often boolean combinations of
constraints over integer variables; circuits described at the Register Trans-
fer Level, even though expressible via booleanization, might be easier to
analyze at a higher level of abstraction (see e.g. [12]). The verification prob-
lems arising in such domains can often be modeled as satisfiability in Linear
Arithmetic Logic (LAL), i.e., the boolean combination of propositional vari-
ables and linear constraints over numerical variables. Because of its practical
relevance, LAL has attracted a lot of interest, and several decision proce-
dures (e.g., SVC [15], ICS [23, 18], CVCLITE [15, 7], UCLID [43, 35],
HDPLL [31]) are able to deal with it.

In this paper, we propose a new decision procedure for the satisfiability of
LAL, both for the real-valued and integer-valued case. We start from a well
known approach, previously applied in MATHSAT [27, 3] and in several other
systems [23, 18, 15, 7, 42, 2, 20]: a propositional SAT procedure, modified to
enumerate propositional assignments for the propositional abstraction of the
problem, is integrated with dedicated theory deciders, used to check consis-
tency of propositional assignments with respect to the theory. We extend this
approach by improving (i) the top level procedure, and (ii) the mathematical
reasoner.

The top level procedure features a tighter integration between the boolean
search and the mathematical solver. First, we allow for theory conflict-driven
backjumping (i.e. sets of inconsistent constraints identified in the mathemat-
ical solver are used to drive backjumping and learning at the boolean level)
and theory deduction (i.e. when possible, assignments for unassigned theory
atoms are automatically inferred from the current partial assignment). Both
theory conflicts and theory deductions are learned as clauses codifying the
relationships between mathematical atoms at the boolean level; subsequent
search will thus avoid the generation of boolean assignments that are not
mathematically consistent. Second, we suggest a systematic use of static
learning, i.e. the a-priori encoding of some basic mathematical facts at the
boolean level before the boolean search. This will stop many inconsistent
assignments from ever being enumerated. A moderate increase in the size of
the problem is often compensated by significant speed-ups in performance.

�

This work has been partly supported by ISAAC, an European sponsored project, contract
no. AST3-CT-2003-501848, by ORCHID, a project sponsored by Provincia Autonoma di
Trento, and by a grant from Intel Corporation. The work of T. Junttila has also been supported
by the Academy of Finland, project 53695. S. Schulz has also been supported by a grant of the
Italian Ministero dell’Istruzione, dell’Università e della Ricerca and the University of Verona.

main.tex; 16/03/2005; 21:56; p.2

3

In this way, MATHSAT settles in the middle ground between the “eager”
approach, where mathematical facts are discovered during the search, and the
“lazy approaches” approach (e.g. [43, 39]), where a very large number of facts
may be required in order to lift mathematical reasoning to boolean reasoning.
Third, we define a stack-based interface between the boolean level and the
mathematical level, that enables the top level to add constraints, set points
of backtracking, and backjump, in order to exploit the fact that increasingly
larger sets of constraints are analyzed while extending a boolean model. As
a result, the mathematical reasoner can be incremental and backtrackable,
and exploit previously derived information rather than restarting from scratch
at each call. Finally, we consider that mathematical reasoning is, in many
practical cases, performed on the disjoint union of several sub-theories (or
clusters). Therefore, rather than solving the problem with a single, monolithic
mathematical solver, we use a separate instance of the mathematical solver for
each independent cluster.

The main idea underlying the mathematical solver for linear arithmetic is
that it is layered, i.e. it is implemented as a hierarchy of solvers for theories
of increasing strength. The consistency of (partial) assignments is checked
first in the logic of Equality and Uninterpreted Functions (EUF), then in Dif-
ference Logics, then in Linear Arithmetic over the reals, and then in Linear
Arithmetic over the integers (if needed by the problem). The rationale is that
cheaper, more abstract solvers are called first. If unsatisfiability at a more
abstract level is detected, this is sufficient to prune the search.

We provide a thorough experimental evaluation of our approach, based
on a large set of benchmarks previously proposed in the literature. We first
show the respective merits of each of the proposed optimizations, comparing
different configurations of MATHSAT with respect to a “golden setting”, and
we show to which extent each of the improvements impacts performance.
Then we compare MATHSAT against the state-of-the-art systems (ICS, CV-
CLITE, and UCLID) on general LAL problems. We show that our approach
is able to deal efficiently with a wide class of problems, with performance
comparable with and often superior to the other systems. We also compare
MATHSAT against the specialized decision procedures DLSAT and TSAT++
on the subclass of Difference Logics.

This paper is structured as follows. In Sect. 2 we define Linear Arithmetic
Logic. In Sect. 3 we describe the basic MATHSAT approach, and in Sect. 4
we present the enhanced algorithm. In Sect. 5 we describe the ideas under-
lying the mathematical solver. In Sect. 6 we describe the implementation of
the MATHSAT system. In Sect. 7 we present the result of the experimental
evaluation. In Sect. 8 we discuss some related work; finally, in Sect. 9 we
draw some conclusions and outline the directions for future work.

This paper updates and extends the content and results presented in a much
shorter conference paper [11].

main.tex; 16/03/2005; 21:56; p.3

4

2. Background: Linear Arithmetic Logic

Let
�

: � ������� � be the domain of boolean values. Let � and 	 be the domains
of real and integer numbers, respectively, and let D denote either of them. By
math-terms over D we denote the linear mathematical expressions built on
constants, variables and arithmetical operators over D . Examples of math-
terms are constants ci
 D, variables vi over D, possibly with coefficients
(i.e. civ j), and applications of the arithmetic operators � and � to math-terms.
Boolean atoms are propositions Ai from

�
. Mathematical atoms are formed

by the applications of the arithmetic relations � ��� ��������������� to math-terms.
Unspecified atoms can be either boolean or mathematical. By math-formulas
we denote atoms and their combinations through the standard boolean con-
nectives � , � , � , � , � . For instance, A1 ����� v1 � 5 � � 2v3 � is a math-formula
on either � or 	 . A literal is either an atom (a positive literal) or its negation
(a negative literal). Examples of literals are A1, � A2, � v1 � 5v2

�
2v3 � 2 � ,��� 2v1 � v2 � 5 � . If l is a negative literal � ψ, then by “ � l” we denote ψ rather

than ��� ψ. We denote the set of all atoms in φ by Atoms � φ � , and the subset of
mathematical atoms by MathAtoms � φ � .

An interpretation in D is a mapping I which assigns values in D to
variables and truth values in

�
to boolean atoms. Given an interpretation,

math-terms and math-formulas are given values in D and in
�

, respectively,
by interpreting constants, arithmetical operators and boolean connectives ac-
cording to their standard (arithmetical or logical) semantics. We write I � φ �
for the truth value of φ under the interpretation I , and similarly I � t � for the
domain value of the math-term t. We say that I satisfies a math-formula φ,
written I � φ, iff I � φ �!� �

. For example, the math-formula ϕ : �"� A1 �� v1 � 2v2
�

4 ���#�$�%� A1 �&� v1 � v2 � 3 ��� is satisfied by an interpretation I in	 s.t. I � A1 �'� �
, I � v1 �(� 8, and I � v2 �)� 1.

We say that a math-formula ϕ is satisfiable in D if there exists an inter-
pretation in D which satisfies ϕ. The problem of checking the satisfiability of
math-formulas is NP-hard, since standard boolean formulas are a strict sub-
case of math-formulas (this means theoretically “at least as hard” as standard
boolean satisfiability, but in practice it turns out to be much harder).

A total (resp., partial) truth assignment for a math-formula φ is a function µ
from all (resp., a subset of) the atoms of φ to truth values. We represent a truth
assignment as a set of literals, with the intended meaning that positive and
negative literals represent atoms assigned to true and to false, respectively. We
use the notation µ � �

α1
��*�*�*+�

αN
� � β1

��*�*�*,� � βM
�
A1
��*�*�*��

AR
� � AR - 1

��*�*�*,� � AS � ,
where α1,

��*
, αN , β1,

��*
, βM are mathematical atoms and A1

��*�*�*��
AS are

boolean atoms. We say that µ propositionally satisfies φ, written µ � p φ, iff
it makes φ evaluate to true. We say that an interpretation I satisfies a truth
assignment µ iff I satisfies all the elements of µ; if there exists an (resp., no)
interpretation which satisfies an assignment µ, then µ is said LAL-satisfiable

main.tex; 16/03/2005; 21:56; p.4

5

(resp., LAL-unsatisfiable). The truth assignment
�
A1
� � v1 � 2v2

�
4 � � ��� v1 �

v2 � 3 � � propositionally satisfies � A1 � � v1 � 2v2
�

4 ��� ���%� A1 � � v1 � v2 �
3 ��� , and it is satisfied by I s.t. I � A1 �)� �

, I � v1 �(� 8, and I � v2 �'� 1.

EXAMPLE 2.1. Consider the following math-formula ϕ:
� ��� 2v2 � v3

�
2 � � A1 � � � � A2 � � 2v1 � 4v5

�
3 � �

� � � 3v1 � 2v2
�

3 � � A2 � � � � � 2v3 � v4
�

5 � � ��� 3v1 � v3
�

6 � � � A1 �
� �

A1 �$� 3v1 � 2v2
�

3 � � � � � v1 � v5
�

1 � �$� v5 � 5 � 3v4 �#� � A1 �
� �

A1 �$� v3 � 3v5 � 4 � � A2 � *
The truth assignment µ corresponding to the underlined literals is:

� ��� 2v2 � v3
�

2 � � � A2
� � 3v1 � 2v2

�
3 � � ��� 3v1 � v3

�
6 � � � v1 � v5

�
1 � �� v3 � 3v5 � 4 � � *

(Notice that µ is a partial assignment, because it assigns truth values only to
a subset of the atoms of ϕ.) µ propositionally satisfies ϕ as it sets to true one
literal of every disjunction in ϕ. Notice that µ is not LAL-satisfiable – in fact,
neither of the following sub-assignments of µ has a satisfying interpretation:

� ��� 2v2 � v3
�

2 � � � 3v1 � 2v2
�

3 � � ��� 3v1 � v3
�

6 � � (1)� ��� 3v1 � v3
�

6 � � � v1 � v5
�

1 � � � v3 � 3v5 � 4 � � (2)
�

Given a LAL-unsatisfiable assignment µ, we call a conflict set any LAL-
unsatisfiable sub-assignment µ ��� µ; we say that µ � is a minimal conflict set
if all subsets of µ � are LAL-consistent. E.g., both (1) and (2) are minimal
conflict sets of µ.

3. The MATHSAT Algorithm: Basics

A much simplified, recursive representation of the basic MATHSAT proce-
dure is outlined in Fig. 1. MATHSAT takes as input a math-formula φ, and (by
reference) an empty interpretation I . Without loss of generality, φ is assumed
to be in conjunctive normal form (CNF). MATHSAT returns

�
if φ is LAL-

satisfiable (with I containing a satisfying interpretation), and
�

otherwise.
MATHSAT invokes MATHDPLL passing as arguments the boolean formula
ϕ : � M 2B � φ � and (by reference) an empty assignment for ϕ and the empty
interpretation I .

We introduce a bijective function M 2B (for “Math-to-Boolean”), also
called boolean abstraction function, that maps boolean atoms into them-
selves, math-atoms into fresh boolean atoms —so that two atom instances in

main.tex; 16/03/2005; 21:56; p.5

6

function MATHSAT (Math-formula φ,interpretation & I)
return MATHDPLL (M 2B � φ � � � � � I);

function MATHDPLL (Boolean-formula ϕ
�
assignment & µ,

interpretation & I)
if (ϕ � � �

) /* base */
then return MATHSOLVE (B2M (µ),I) ;

if (ϕ � � �
) /* backtrack */

then return Unsat;
if

�
l occurs in ϕ as a unit clause � /* unit prop. */
then return MATHDPLL (assign � l � ϕ � � µ �

�
l � � I);

if (MATHSOLVE (B2M (µ),I) == Unsat) /* early pruning */
then return Unsat;

l := choose-literal(ϕ); /* split */
if (MATHDPLL (assign � l � ϕ � � µ �

�
l � � I) == Sat)

then return Sat;
else return MATHDPLL (assign �%� l

�
ϕ � � µ �

� � l � � I);

Figure 1. High level view of the MATHSAT algorithm

ϕ are mapped into the same boolean atom iff they are syntactically identical—
and distributes over sets and boolean connectives. Its inverse function B2M
(for “Boolean-to-Math”) is called refinement respectively. Both functions can
be implemented efficiently, so that they require a small constant time for
mapping one atom.

MATHDPLL tries to build an assignment µ satisfying ϕ, such that its re-
finement is satisfiable in LAL, and the interpretation I satisfies B2M (µ) (and
φ). This is done recursively, with a variant of DPLL modified to enumerate
assignments, and trying to refine them according to LAL. In particular:
Base. If ϕ � � �

, then µ propositionally satisfies M 2B � φ � . In order to check
if µ is LAL-satisfiable, which shows that ϕ is LAL-satisfiable, MATHD-
PLL invokes the linear mathematical solver MATHSOLVE on the refinement
B2M � µ � , and returns a Sat or Unsat value accordingly.
Backtrack. If ϕ � � �

, then µ has led to a propositional contradiction. There-
fore MATHDPLL returns Unsat and backtracks.
Unit. If a literal l occurs in ϕ as a unit clause, then l must be assigned a true
value. Thus, MATHDPLL is invoked recursively with the formula returned
by assign(l

�
ϕ) and the assignment obtained by adding l to µ as arguments.

assign(l
�
ϕ) substitutes every occurrence of l in ϕ with

�
and propositionally

simplifies the result.

main.tex; 16/03/2005; 21:56; p.6

7

Early pruning. MATHSOLVE is invoked on (the refinement of) the current
assignment µ. If this is found unsatisfiable, then there is no need to proceed,
and the procedure backtracks.
Split. If none of the above situations occurs, then choose-literal(ϕ) returns an
unassigned literal l according to some heuristic criterion. Then MATHDPLL

is first invoked recursively with arguments assign(l
�
ϕ) and µ �

�
l � . If the

result is Unsat, then MATHDPLL is invoked with arguments assign(� l
�
ϕ)

and µ �
� � l � .

4. The MATHSAT Algorithm: Enhancements

The algorithm presented in the previous section is over-simplified for ex-
planatory purposes. It can be easily adapted to deal with advanced SAT solv-
ing techniques such as splitting heuristics, two-literals watching, and restarts
(see [44] for an overview). This section describes several enhancements that
have been made to the interplay between the boolean and mathematical solvers.

4.1. THEORY-DRIVEN BACKJUMPING AND LEARNING

When MATHSOLVE finds the assignment µ to be LAL-unsatisfiable, it also
returns a conflict set η causing the unsatisfiability. This enables MATHDPLL

to backjump in its search to the most recent branching point in which at least
one literal l
 η is not assigned a truth value, pruning the search space below.
We call this technique theory-driven backjumping. Clearly, its effectiveness
strongly depends on the quality of the conflict sets generated.

EXAMPLE 4.1. Consider the formula ϕ and the assignment µ of Ex. 2.1.
Suppose that MATHDPLL generates µ following the order of occurrence within
ϕ, and that MATHSOLVE(µ) returns the conflict set (1). Thus MATHDPLL

can jump back directly to the branching point � � 3v1 � v3
�

6 � without ex-
ploring the right branches of � v3 � 3v5 � 4 � and � v1 � v5

�
1 � . If instead

MATHSOLVE(µ) returns the conflict set (2), then MATHSAT backtracks to� v3 � 3v5 � 4 � . Thus, (2) causes no reduction in search.
�

When MATHSOLVE returns a conflict set η, the clause � η can be added
in conjunction to ϕ: this will prevent MATHDPLL from generating again any
branch containing η. We call this technique theory-driven learning.

EXAMPLE 4.2. As in Ex. 4.1, suppose MATHSOLVE(µ) returns the conflict
set (1). Then the clause � 2v2 � v3

�
2 �#� ��� 3v1 � 2v2

�
3 � � � 3v1 � v3

�
6 � is

added in conjunction to ϕ. Thus, whenever a branch contains two elements of
(1), MATHDPLL will assign the third to false by unit propagation.

�

main.tex; 16/03/2005; 21:56; p.7

8

As in the boolean case, learning must be used with some care, since it may
cause an explosion in the size of ϕ. Therefore, some techniques can be used
to discard learned clauses when necessary [8]. Notice however the differ-
ence with standard boolean backjumping and learning [8]: in the latter case,
the conflict set propositionally falsifies the formula, while in our case it is
inconsistent from the mathematical viewpoint.

4.2. THEORY-DRIVEN DEDUCTION

With early pruning, MATHSOLVE is used to check if µ is LAL-satisfiable,
and thus to possibly prune whole branches of the search. It is also possible to
use MATHSOLVE to reduce the remaining boolean search: the mathematical
analysis of µ performed by MATHSOLVE can discover that the value of some
mathematical atom ψ

 µ is already determined, based on some subset µ �
 µ
of the current assignment. For instance, consider the case where the literals� v1 � v2 � and � v2 � v3 � 4 � are in the current (partial) assignment µ, while� v1 � v3 � 4 � is currently unassigned. Since

� � v1 � v2 � � � v2 � v3 � 4 � � �� v1 � v3 � 4 � , atom � v1 � v3 � 4 � must be assigned to
�

, because assigning it
to
�

would make µ LAL-inconsistent.
MATHSOLVE is therefore used to detect and suggest to the boolean search

which unassigned literals have forced values. This kind of deduction is of-
ten very useful, since it can trigger new boolean constraint propagation: the
search is deepened without the need to split. Moreover, the implication clauses
describing the deduction (e.g. ��� v1 � v2 � ����� v2 � v3 � 4 ��� � v1 � v3 � 4 �) can
be learned at the boolean level, and added to the main formula: this constrains
the remaining boolean search even after backtracking.

4.3. A STACK-BASED INTERFACE TO MATHSOLVE

Since the search is driven by the “stack-based” boolean procedure, we define
a stack-based interface to call the math solver. In this way, MATHSOLVE can
significantly exploit previous computations. Consider the following trace (left
column first, then right):

MATHSOLVE (µ1) � Sat Undo µ2

MATHSOLVE (µ1
�

µ2) � Sat MATHSOLVE (µ1
�

µ �2) � Sat

MATHSOLVE (µ1
�

µ2
�

µ3) � Sat MATHSOLVE (µ1
�

µ �2
�

µ �3) � Sat

MATHSOLVE (µ1
�

µ2
�

µ3
�

µ4) � Unsat MATHSOLVE (µ1
�

µ2
�

µ �3
�

µ �4) � Sat

On the left, an assignment is repeatedly extended until a conflict is found.
We notice that MATHSOLVE is invoked (during early pruning calls) on in-
cremental assignments. When a conflict is found, the search backtracks to
a previous point (on the right), and MATHSOLVE is then restarted from a
previously visited state. Based on these considerations, our MATHSOLVE is

main.tex; 16/03/2005; 21:56; p.8

9

not a function call: it has a persistent state, and is incremental and backtrack-
able. Incremental means that it avoids restarting the computation from scratch
whenever it is given in input an assignment µ � such that µ ��� µ and µ has
already proved satisfiable. Backtrackable means that it is possible to return
to a previous state on the stack in a relatively efficient manner. Therefore
MATHSOLVE has primitives to add constraints to the current state, to set
backtrack points, and to jump back to a previously set backtrack point.

4.4. FILTERING

Another way of speeding up MATHSOLVE is to give it smaller but in some
sense sufficient sets of constraints.

Pure Literal Filtering
Assume that a math-atom ψ only occurs positively in the formula φ, i.e., there
is no clause in φ having the literal � ψ. That is, ψ is a pure literal. Now if ψ
is assigned to false in the current truth assignment µ, i.e. � ψ
 µ, we don’t
have to pass � ψ to MATHSOLVE. This is because if an extension µ � of µ
propositionally satisfies φ, so will µ �

� � � ψ � as ψ is a pure literal. Similar
analysis applies to the case in which ψ only occurs negatively in φ.

Notice that if a pure literal ψ is assigned to true in µ, then it has to be
passed to MATHSOLVE. Furthermore, one may not fix ψ to true before the
MATHDPLL search as in the purely boolean case.

Theory-Deduced Literal Filtering
Another way of reducing the amount of math-atoms given to MATHSOLVE is
to exploit theory-deduced clauses, i.e. those clauses resulting from theory-
driven learning (Sect. 4.1), theory-driven deduction (Sect. 4.2), and static
learning (Sect. 4.6). For each theory-deduced clause C � l1 ������� � ln, each
li being a math-atom or its negation, the truth assignment

� � l1
��*�*�*�� � ln � is

LAL-unsatisfiable. That is, all interpretations that satisfy all � l1
��*�*�*�� � ln � 1

must satisfy the literal ln. Therefore, if the current truth assignment µ con-
tains the literals � l1

��*�*�*�� � ln � 1, and the literal ln is forced to true by unit
propagation on the clause C, there is no need to pass ln to MATHSOLVE

as µ is LAL-satisfiable iff µ �
�
ln � is. In order to detect these cases, the

theory-deduced clauses can be marked with a flag.
Combining the filtering methods requires some care. The literals � l1

��*�*�*�� � ln � 1

in the current truth assignment must have been passed to MATHSOLVE (i.e. not
filtered) in order to apply theory-deduced literal filtering to ln.

main.tex; 16/03/2005; 21:56; p.9

10

4.5. WEAKENED EARLY PRUNING

Early pruning calls are only used to prune the search; if the current (partial)
assignment µ is found to be unsatisfiable, the search backtracks, but if it is
found to be satisfiable, the search goes deeper and the assignment will be
extended.

Therefore, during early pruning calls, MATHSOLVE does not have to de-
tect all inconsistencies; as long as calls to MATHSOLVE at the end of a
search branch faithfully detect inconsistency, correctness and completeness
are guaranteed.

We exploit this fact by using a faster, but less powerful version of MATH-
SOLVE for early pruning calls. Specifically, in the � domain, handling dis-
equalities requires an extra solver which is often time-consuming (see Sec-
tion 5). As disequalities in � are typically very low-constraining, and thus
very rarely cause inconsistency, during early pruning calls MATHSOLVE ig-
nores disequalities, which are instead considered when checking complete
search branches.

In the 	 domain, as the theory of linear arithmetic on 	 is much harder, in
theory and in practice, than that on � [9], during early pruning calls MATH-
SOLVE looks for a solution on the reals only.

4.6. STATIC LEARNING

Before starting the actual MATHDPLL search, the problem can be pre-processed
by adding some basic mathematical relationships among the math-atoms as
boolean constraints to the problem. As the added constraints are consequences
of the underlying theory, the satisfiability of the problem is preserved. The
new constraints may significantly help to prune the search space in the boolean
level, thus avoiding some LAL-unsatisfiable models and calls to the more
expensive MATHSOLVE. In other words, before the search, we learn, at low
cost, some basic facts that most often would have to be discovered, at a much
higher cost, by the math solver during the search.

The simplest case of static learning is based on (in)equalities between
math-terms and constants. Assume that φ contains a set of math-atoms of
form St � � � t ��� 1 c1 � ��* * * � � t ��� n cn � � , where t is a math-term, ��� i
 � � ����� �������� � , and ci are constants. First, φ is conjoined with a set of constraints
over the equality atoms of form � t � ci � in St , ensuring that at most one
of them can be true. This can be achieved with pairwise mutual exclusion
constraints of form ��� t � ci � � ��� t � c j � . Second, the math-atoms in St are
connected with a linear number of binary constraints that compactly encode
the obvious mathematical (in)equality relationships between them. For in-
stance, if St � � � t � 2 � � � t � 3 � � � t � 5 � � � t � 7 � � , then φ is conjoined with the
constraints � t � 3 �)� ��� t � 5 � , � t � 3 �(� ��� t � 2 � , � t � 2 �(� ��� t � 5 � , and

main.tex; 16/03/2005; 21:56; p.10

11

� t � 7 �)� � t � 5 � . Now � t � 7 � implies � t � 5 � , ��� t � 3 � and ��� t � 2 � in the
boolean level.

Furthermore, some facts among difference constraints of the form t1 � t2 ���
c, ���
 � ����� � � ������� � , can be easily derived and added. First, mutually ex-
clusive pairs of difference constraints are handled. E.g., if � t1 � t2

�
3 � � � t2 �

t1
� � 4 �
 MathAtoms � φ � , then the clause ��� t1 � t2

�
3 � � ��� t2 � t1

� � 4 �
is conjoined to φ. Second, clauses corresponding to triangle inequalities and
equalities between difference constraints are added. E.g., if � t1 � t2

�
3 � � � t2 �

t3
�

5 � � � t1 � t3
�

9 �
 MathAtoms � φ � , then � t1 � t2
�

3 � � � t2 � t3
�

5 ���� t1 � t3
�

9 � is added to φ. Similarly, for � t1 � t2 � 3 � � � t2 � t3 � 0 � � � t1 � t3 �
5 �
 MathAtoms � φ � we add the constraint � t1 � t2 � 3 � � � t2 � t3 � 0 � ���� t1 � t3 � 5 � to φ.

4.7. CLUSTERING

At the beginning of the search, MathAtoms � φ � , i.e. the set of mathematical
atoms, is partitioned into a set of disjoint clusters C1 � ����� � Ck: intuitively,
two atoms belong to the same cluster if they share a variable. If Li is the
sets of literals built with the atoms in cluster i, it is easy to see that an as-
signment µ is LAL-satisfiable if and only if each µ � Li is LAL-satisfiable.
Based on this idea, instead of having a single, monolithic solver for linear
arithmetic, the mathematical solver is instantiated k different times. Each is
responsible for handling the mathematical reasoning within a single cluster. A
dispatcher is responsible for the activation of the suitable mathematical solver
instances, depending on the mathematical atoms occurring in the assignment
to be analyzed.

The advantage of this approach is manifold. First, k solvers running on
k disjoint problems are typically faster then running one solver monolithi-
cally on the union of the problems. Furthermore, the construction of smaller
conflict sets becomes easier, and this may result in a significant gain in the
overall search. Finally, when caching the results of previous calls to the linear
solvers, it increases the likelihood of a hit.

5. A Layered MATHSOLVE

In this section, we discuss the structure of MATHSOLVE. We disregard the
issues related to clustering, since the different instances of MATHSOLVE that
result are completely independent of each other. MATHSOLVE is responsible
for checking the satisfiability of a set of mathematical atoms µ and returning,
as appropriate, a model or a conflict set.

In many calls to MATHSOLVE, a general solver for linear constraints is
not needed: very often, the unsatisfiability of the current assignment µ can be

main.tex; 16/03/2005; 21:56; p.11

12

FM ELIM
time

out

Branch and
cut

Real
disequalitySIMPLEXDL (BF)EUF (CC)

unsat

sat

unsat

sat

int’s

sat

reals
sat

unsatunsat unsatunsat

satsatsat

unsat

sat

Reals IntegersEUF

Figure 2. Control flow of MATHSOLVE

established in less expressive, but much easier, sub-theories. Thus, MATH-
SOLVE is organized in a layered hierarchy of solvers of increasing solving
capabilities. If a higher level solver finds a conflict, then this conflict is used
to prune the search at the boolean level; if it does not, the lower level solvers
are activated.

Layering can be understood as trying to favour faster solvers for more
abstract theories over slower solvers for more general theories. Fig. 2 shows
a rough idea of the structure of MATHSOLVE. Three logical components can
be distinguished. Firstly, the current assignment µ is passed to the equational
solver, that only deals with (positive and negative) equalities (Sect. 5.1).
Secondly, if this solver does not find a conflict, MATHSOLVE tries to find
a conflict over the reals (see Sect. 5.2). Finally, if the current assignment
is also satisfiable over the reals and the variables are to be interpreted over
the integers, a solver for linear arithmetic over the integers is invoked (see
Sect. 5.3).

5.1. EQUALITY AND UNINTERPRETED FUNCTIONS

The first layer of MATHSOLVE is provided by the equational solver, a satis-
fiability checker for the logic of unconditional ground equality over uninter-
preted function symbols. It is incremental and supports efficient backtracking.
The solver generates conflict sets, deduces assignments for equational literals,
and can provide explanations for its deductions. Thanks to the equational
solver, MATHSAT can be used as an efficient decision procedure for the full
logic of equality over uninterpreted function symbols (EUF). However, in
this section we focus on the way the equational solver is used to improve the
performance on LAL.

The solver is based on the basic congruence closure algorithm suggested
in [29]. We slightly extend the logic by allowing for enumerated objects and
numbers, with the understanding that each object denotes a distinct domain
element (i.e. an object is implicitly different from all the other objects and

main.tex; 16/03/2005; 21:56; p.12

13

from all numbers). Similarly, different numbers are implicitly different from
each other (and from all objects).

The congruence closure module internally constructs a congruence data
structure that can determine if two arbitrary terms are necessarily forced to
be equal by the currently asserted constraints, and can thus be used to deter-
mine the value of (some) equational atoms. It also maintains a list of asserted
disequations, and signals unsatisfiability if either one of these or an implicit
disequation is violated by the current congruence.

If two terms are equal, an auxiliary proof tree data structure allows us
to extract the reason, i.e. the original constraints (and just those) that forced
this equality. If a disequality constraint is violated, we can return the reason
(together with the violated inequality) as a conflict set.

Similarly, we can perform forward deduction: for each unassigned equa-
tional atom, we can determine if the two sides are already forced to be equal
by the current assignment, and hence whether the atom has to be asserted as
true or false. Again, we can extract the reason for this deduction and use it to
represent the deduction as a learned clause on the Boolean level.

There are two ways in which the equational solver can be used: as a full
solver for a purely equational cluster, or as a layer in the arithmetic reasoning
process. In the first case, the equational solver is associated to a cluster not
involving any arithmetic at all, which only contains equations of the form
vi ��� v j, vi ��� c j , with ���
 � � ��� � . As stated above, the equational solver
implicitly knows that syntactically different constants in D are semantically
distinct. So, it provides a full solver for some clusters, avoiding the need to
call an expensive linear solver on an easy problem. This can significantly
improve performance, since in practical examples it is often the case that
a purely equational cluster is present – typical examples are the modeling of
assignments in a programming language, and gate and multiplexer definitions
in circuits.

In the second case, the equational solver also receives constraints involv-
ing arithmetic operators. While arithmetic functions are treated as fully un-
interpreted, the equational solver has a limited interpretation of

�
and

�
,

knowing only that s
�

t implies s
� t, and s � t implies s

�
t and � � s � t � .

However, all deductions and conflicts under EUF semantics are also valid
under fully interpreted semantics. Thus, the efficient equational solver can be
used to prune the search space. Only if the equational solver cannot deduce
any new assignments and reports a tentative model, does this model need to
be analyzed by lower level solvers.

5.2. LINEAR ARITHMETIC OVER THE REALS

To check a given assignment µ of linear constraints for satisfiability over the
reals, MATHSOLVE first considers only those constraints that are in the differ-

main.tex; 16/03/2005; 21:56; p.13

14

ence logic fragment. I.e., it considers the subassignment of µ consisting of all
constraints of the forms vi � v j ��� c and vi ��� c, with ���
 � � ��� ����������� ��� � .
Satisfiability checking for this subassignment is reduced to a negative-cycle
detection problem in the graph whose nodes correspond to variables and
whose edges correspond to the constraints. MATHSOLVE uses an incremental
version of the Bellman-Ford algorithm to search for a negative-cycle and
hence for a conflict. See, for instance, [13], for background information. In
many practical cases, for instance in bounded model checking problems of
timed automata, a sizable amount or even all of µ is in the difference logic
fragment. This causes a considerable speed up, since the Bellman-Ford al-
gorithm is much more efficient than a general linear solver and generally
generates much better (smaller) conflict sets.

If the difference logic fragment of µ turns out to be satisfiable, MATH-
SOLVE checks the satisfiability of the subassignment of µ consisting of all
constraints except the disequalities by means of the simplex method. MATH-
SOLVE uses a variant of the simplex method, namely the Cassowary algo-
rithm (see [10]), that uses slack variables to efficiently allow the addition and
removal of constraints and the generation of a minimal conflict set.

When this also turns out to be consistent, disequalities are taken into ac-
count: the incremental and backtrackable machinery is used to check, for each
disequality ∑civi

� c j in µ, and separately from the other disequalities, if it
is consistent with the non-disequality constraints in µ. We do so by adding
and retracting both ∑civi

�
c j and ∑civi

�
c j . If one of the disequalities

is inconsistent, the whole assignment µ is inconsistent. However, because
the theory of the reals is (logically) convex, if each disequality separately
is consistent, then all of µ is consistent — this follows from a dimensionality
argument, basically because it is impossible to write an affine subspace A of� k as a finite union of proper affine subspaces of A.

5.3. LINEAR ARITHMETIC OVER THE INTEGERS

Whenever the variables are interpreted over the reals, MATHSOLVE is done
at this point. If the variables are to be interpreted over the integers, and the
problem is unsatisfiable in � , then it also is so over 	 . When the prob-
lem is satisfiable in the reals, it is possible that it is not so in the integers.
The first step carried out by MATHSOLVE in this case is a simple form of
branch-and-cut (see, e.g., [26]), that searches for solutions over the integers
by tightening the constraints. The algorithm acts on the representation of
the solution space constructed over the integers, and makes use of the incre-
mental and backtrackable machinery. Branch-and-cut also takes into account
disequalities.

Branch-and-cut is only complete when the solution space is bounded, and
there are practical cases when it can be very slow to converge. Therefore,

main.tex; 16/03/2005; 21:56; p.14

15

if it does not find either an integer solution or a conflict within a small,
predetermined amount of search, the current assignment is analyzed with the
Fourier-Motzkin Elimination (FME) procedure. Since it is computationally
expensive, FME is called only as a last resort.

6. The MATHSAT system

The MATHSAT system is a general solver implementing the ideas and al-
gorithms described earlier in this paper. It also has some other features and
accepts a richer input language than pure LAL, as e.g. equalities over unin-
terpreted functions are allowed.

It is structured in three main components: (i) a preprocessor, (ii) a boolean
satisfiability solver, and (iii) the MATHSOLVE theory reasoner.

Preprocessor
MATHSAT supports a rich input language, with a large variety of boolean
and arithmetic operators, including ternary if-then-else constructs on the term
and formula level. For reasons of simplicity and efficiency, MATHDPLL, the
core engine of the solver, handles a much simplified language. Reducing the
rich input language to this simpler form is done by a preprocessor module.

The preprocessor performs some basic normalization of atoms, so that the
core engine only has to deal with a restricted set of predicates. It eliminates
each ternary if-then-else term t � ITE � b � t1

�
t2 � over math terms t1 and t2

by replacing it with a new variable vt and adding the boolean if-then-else
constraint ITE � b � vt � t1

�
vt � t2 � to the formula. Finally, it uses a standard

linear-time, satisfiability preserving translation to transform the formula (in-
cluding the remaining if-then-else on the boolean level) into clause normal
form.

Boolean solver
The propositional abstraction of the math-formula produced by the prepro-
cessor is given to the boolean satisfiability solver extended to implement
the MATHDPLL algorithm described in Sect. 3. This solver is built upon
the MINISAT solver [17], from which it inherits conflict-driven learning and
back-jumping, restarts [37, 8, 22], optimized boolean constraint propagation
based on the two-watched literal scheme, and the VSIDS splitting heuristics
[28]. In fact, if MATHSAT is given a purely Boolean problem, it behaves sub-
stantially like MINISAT, as MATHSOLVE is not instantiated. 1 The commu-
nication with MATHSOLVE is carried out through an interface (similar to the

1 In some experiments on some very big pure SAT formulas, which are not reported here,
MATHSAT took on average 10-20% more time than MINISAT to solve the same instances.

main.tex; 16/03/2005; 21:56; p.15

16

one in [20]) that passes assigned literals, LAL-consistency queries and back-
tracking commands, and receives back answers to the queries, mathematical
conflict sets and implied literals (Sect. 3).

The boolean solver has been extended to handle some options relevant
when dealing with math-formulas. For instance, MATHSAT inherits MIN-
ISAT’s feature of periodically discarding some of the learned clauses to pre-
vent explosion of the formula size. However, clauses generated by theory-
driven learning and forward deduction mechanisms (Sect. 3) are never dis-
carded, as a default option, since they may have required a lot of work in
MATHSOLVE. As a second example, it is possible to initialize the VSIDS
heuristics weights of literals so that either boolean or theory atoms are pre-
ferred as splitting choices early in the MATHDPLL search.

MATHSOLVE

The implementation of MATHSOLVE is composed of several software mod-
ules. The equational reasoner is implemented in C/C++, and reuses some of
the data structures of the theorem prover E [33] to store and process terms
and atoms. The module for handling difference constraints is developed in
C++. The simplex algorithm for linear arithmetic over the reals is based on
the Cassowary system [5]. The branch-and-cut procedure is implemented on
top of it, and uses the incrementality features of Cassowary to perform the
search. For the Fourier-Motzkin elimination, MATHSOLVE uses the Omega
system [30].

A very important point is that MATHSAT is able to deal with infinite
precision arithmetic. To this end, the mathematical solver handles arbitrary
large rational numbers by means of the GMP library [21].

7. Experimental Evaluation

In this section we report on the experiments we have carried out to eval-
uate the performance of our approach. The experiments were run on a bi-
processor XEON 3.0GHz machine with 4GB of memory (tests in Sect. 7.2),
on a 4-processor PentiumIII 700MHz machine with 6GB of memory (tests
in Sect. 7.3.1), and on a bi-processor XEON 1.4GHz machine with 2GB of
memory (tests in Sect. 7.3.2), all of them running Linux RedHat Enterprise.
The time limit for all the experiments was set to 300 seconds, and the memory
limit was set to 512 MB.

An executable version of MATHSAT and the source files of all the exper-
iments performed in the paper are available at [27].

main.tex; 16/03/2005; 21:56; p.16

17

7.1. DESCRIPTION OF THE TEST CASES

The set of benchmarks we used in the experimentation, described below, in-
volves all the suites available in the literature we are aware of. For the test
on LAL, we used the following suites. The SAL suite, originally presented
in [32], is a set of benchmarks for ground decision procedures, derived from
bounded model checking of timed automata and linear hybrid systems, and
from test-case generation for embedded controllers. The RTLC suite, pro-
vided by the authors of [31], formalizes safety properties for RTL circuits
(see [31] for a more detailed description). The CIRC suite, generated by our-
selves, encodes the verification of certain properties for some simple circuits.
The suite is composed of three different kinds of benchmarks, all of them
being parametric in (and scaling up with) N, i.e. the width of the data-path
of the circuit, so that � 0 * * 2N � 1 � is the range of integer variables. In the first
benchmark, the modular sum of two integers is checked for inequality against
the bit-wise sum of their bit decomposition. The negation of the resulting
formula is therefore unsatisfiable. In the second benchmark, two identical
shift-and-add multipliers and two integers a and b are given; a and the bit
decomposition of b (respectively b and the bit decomposition of a) are given
as input to the first (respectively, the second) multiplier, and the outputs of
the two multipliers are checked for inequality. The negation of the resulting
formula is therefore unsatisfiable. In the third benchmark, an integer a and
the bitwise decomposition of an integer b are given as input to a shift-and-add
multiplier; the output of the multiplier is compared with the constant integer
value p2, p being the biggest prime number strictly smaller than 2N . The
resulting formula is satisfiable, but it has only one solution, where a � b � p.
The TM suite is a set of benchmarks for (temporal) metric planning, provided
to us by the authors of [36] (see also [41]).

The benchmarks below have been used for the comparison in Sect. 7.3.2,
and fall into the difference logic fragment of LAL. The DLSAT suite is
provided to us by the authors of [14] (see the paper for more detail). The
suite contains two different sets of benchmarks: the first set formalizes the
problem of finding the optimal schedule for the job shop problem, a com-
binatorial optimization problem; the second set is concerned with bounded
model checking of timed automata that model digital circuits with delays,
and formalizes the problem of finding the maximal stabilization time for
the circuits. The SEP suite [34] is a set of benchmarks for separation logic
(i.e., difference logic) derived from symbolic simulation of several hardware
designs, which is maintained by O. Strichman. The DTP suite [38, 1] is a set
of benchmarks from the field of temporal reasoning. The set of benchmarks is
similar in spirit to the standard random k-CNF SAT benchmark, and consists
of randomly-generated 2-CNF difference formulas. For our tests we have

main.tex; 16/03/2005; 21:56; p.17

18

selected 60 randomly-generated DTP formulas with 35 numerical variables
in the “hard” satisfiability transition area.

The SAL, TM, DLSAT and DTP suites are in the domain of reals, whilst
the RTCL, CIRC and SEP suites are in the domain of integers. Due to the
different sources of problems within one suite, the benchmark suites cannot
be straightforwardly characterized in terms of structural properties of their
formulas (except for the DTP suite, in which only positive difference inequal-
ities in the form � x � y

�
c � occur). Nearly all problems contain a significant

quantity of boolean atoms (e.g., control variables in circuits, actions in plan-
ning problems, discrete variables in timed and hybrid systems). Nearly all
problems contain many difference inequalities in the form � x � y

�
c � (e.g.,

time constraints in scheduling problems and in timed and hybrid systems
verification problems, range constraints in RTL circuits). Some problems,
like ATPG problems in RTLC and timed and hybrid systems in SAL, contain
lots of simple equalities in the form � x � y � or � x � c � . The problems in the
CIRC suite contain complex LAL atoms with very big integer constants, like� b � Σi 2ibi � or � x � 232 � .
7.2. EVALUATING DIFFERENT OPTIMIZATIONS

In this section we evaluate the impact of several optimizations on the over-
all performance of MATHSAT. The experimental evaluation has been con-
ducted in the following way. We chose a “default” option configuration for
MATHSAT, that involves theory-driven backjumping and learning, theory-
driven deduction, weakened early pruning, static learning, clustering, and EQ
layering (that is, using the EUF solver as described in the second case of
Sect. 5.1).

This configuration has been tested against each of the configurations ob-
tained by switching off (or changing) different options one at a time (in other
words, each version that has been tested differs from the default version only
with respect to one of the optimizations). Specifically, the variants we con-
sidered are respectively the default version without (weakened) early pruning,
with full early pruning, without clustering, without theory-driven deduction,
without static learning, and without EQ-layering.

The six variants of MATHSAT have been run on the following test suites:
SAL, RTLC, CIRC, TM, DLSAT, SEP, DTP.

The scatter plots of the overall results are given in Fig. 3. Each plot re-
ports the results of the evaluation on each of the options. The X and Y axes
show, respectively, the performance of the default version and of the modified
version of MATHSAT. A dot in the upper part of a picture, i.e. above the
diagonal, means that the default version performs better, and vice versa. The
two uppermost horizontal lines represent benchmarks that ended in time-out
(lower) or out-of-memory (higher) for the modified version of MATHSAT,

main.tex; 16/03/2005; 21:56; p.18

19

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

Default / No-Early-Pruning

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

Default / Full-Early-Pruning

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

Default / No-Clustering

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

Default / No-Deduction

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

Default / No-Static-Learning

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

Default / No-EQLayering

Figure 3. Scatter plots for six different variations of MATHSAT (Y axis), compared against
the default version (X axis).

whereas the two rightmost vertical lines represent time-out (left) or out-of-
memory (right) for the default version. Notice that the axes are logarithmic, so
that only big performance gaps are highlighted. E.g., the fact that a variant is
50% faster or slower than the default on some sample (i.e., a 1.5 performance
factor) is hardly discernible on these plots.

From the plots in Fig. 3 we observe the following facts.

� Dropping (weakened) early pruning worsens the performances signifi-
cantly, or even drastically, in most benchmarks. This is due to the fact
that early pruning may allow for significant cuts to the boolean search
tree, and that the extra cost of intermediate calls to MATHSOLVE is much
reduced by the incrementality of MATHSOLVE. From nearly all our ex-
periments, it turns out that early pruning causes a significant reduction
of the number of branches explored in the boolean search tree, which is
proportional to the overall reduction of CPU time.

� Using full early pruning instead of its weakened version most often
worsens performances, on both � and 	 domains. From the experimen-
tal data, we see that full early pruning does not introduce significant

main.tex; 16/03/2005; 21:56; p.19

20

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

Default / All-Disabled

Figure 4. Scatter plots for the version of MATHSAT with all features disabled (Y axis),
compared against the default version (X axis).

reductions in the number of boolean branches explored, whilst the calls
to MATHSOLVE require longer times on average.

Within the � domain, this fact seems to suggest that ignoring dise-
qualities in the consistency check makes MATHSOLVE faster without
reducing significantly the pruning effect of the boolean search space.
Within the 	 domain, this fact seems to suggest that in most cases the
assignments that are consistent in � are consistent also in 	 , and that the
overhead due to handling integers also in early pruning calls is some-
times heavy.

� Dropping clustering slightly worsens the performances in most cases,
although the gaps are not dramatic. A possible explanation is that the
effects of “dividing and conquering” the mathematical search space are
not as relevant as those of other factors (e.g., cutting the boolean search
space). This combines with the fact that the mathematical solver is very
effective in producing small conflict sets, even in presence of larger
problems. In our tests, only a few tests actually had more than one
cluster. A more refined analysis shows that for the problems with only a
single cluster the overhead is not significant.

� Dropping theory-driven deduction worsens the performance in most cases.
The importance of deduction is both in the immediate effect of assigning
truth values to unassigned literals, which fires boolean constraint propa-
gation, and in the learning of extra clauses from the deduction. From our
experiments, it turns out that theory-driven deduction is most effective
in problems which are rich of simpler equalities like � x � c � and � x � y �
(e.g., the problems in RTLC and the BMC on timed system problems in
SAL), which can be easily and effectively deduced by the EUF solver.

main.tex; 16/03/2005; 21:56; p.20

21

� Static learning seems to introduce only slight improvements on average.
This may be due to the fact that most benchmarks derive from the encod-
ing of verification problems, so that short clauses which can be learned
easily are already part of the encodings (see, e.g., [4]). Moreover, in
general, the effect of static learning is hindered in part by theory-driven
learning. From our experiments, it turns out that in some benchmarks
(e.g., DTP, and partly DLSAT and CIRC) where lots of clauses can be
learned off-line, static-learning is effective (e.g., more than one order
magnitude faster on DTP) whilst on other benchmarks where very few
or no clause can be learned off-line, static-learning is ineffective.

� Dropping EQ Layering worsens the performance in most cases. We be-
lieve this is due to the fact that many practical problems contain lots
of simple equalities, from which lots of information can be deduced
and learned by simply applying equality propagation and congruence
closure. From our experiments, it turns out that EQ Layering is most
effective in problems which are rich of simpler equalities like � x � c �
and � x � y � (e.g., the problems in RTLC and the BMC on timed system
problems in SAL), which can be easily and effectively handled by the
EUF solver.

Finally, Fig. 4 shows the impact of switching off simultaneously all the
six options described above. We notice that, altogether, the six optimizations
improve the performances significantly, and even drastically in most cases.

7.3. COMPARISON WITH OTHER STATE-OF-THE-ART TOOLS

In this section we report the results of the evaluation of MATHSAT with
respect to other state-of-the-art tools. We distinguish the evaluation into two
different parts: in Sect. 7.3.1 we compare MATHSAT against CVC, ICS, and
UCLID, that support linear arithmetic logic (LAL), whereas in Sect. 7.3.2
we compare MATHSAT against TSAT++ and DLSAT, that are specialized
solvers for difference logic (DL).

7.3.1. Comparison on Linear Arithmetic Logic
We have compared MATHSAT with ICS [23, 18], CVCLITE [15, 7], and
UCLID [43, 35]. We ran ICS version 2.0 and UCLID version 1.0. For CV-
CLITE, we used the version available on the online repository, as of 10th
October 2004, given that the latest officially released version showed a bug
related to the management of integer variables (the version we used turned
out to be much faster than the official one).

The results are reported in Fig. 5. Each column shows the comparison
between MATHSAT and, respectively, CVCLITE, ICS and UCLID. Each

main.tex; 16/03/2005; 21:56; p.21

22

SA
L

su
ite

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000
 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000
 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

R
T

L
C

su
ite

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000
 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000
 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

C
IR

C
su

ite

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000
 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000
 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

T
M

su
ite

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000
 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000
 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

CVCLITE ICS UCLID

Figure 5. Execution time ratio: the X and Y axes report MATHSAT and each competitor’s
times respectively

main.tex; 16/03/2005; 21:56; p.22

23

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0.01 0.1 1 10 100 1000 10000

of

 fo
rm

ul
as

 s
ol

ve
d

Total CPU Time (secs)

MathSat
ICS

CVCL
UCLID

 0

 5

 10

 15

 20

 25

 30

 0.01 0.1 1 10 100 1000 10000

of

 fo
rm

ul
as

 s
ol

ve
d

Total CPU Time (secs)

MathSat
ICS

CVCL
UCLID

SAL suite RTLC suite

 0

 5

 10

 15

 20

 25

 30

 0.01 0.1 1 10 100 1000 10000

of

 fo
rm

ul
as

 s
ol

ve
d

Total CPU Time (secs)

MathSat
ICS

CVCL

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.01 0.1 1 10 100 1000 10000

of

 fo
rm

ul
as

 s
ol

ve
d

Total CPU Time (secs)

MathSat
ICS

CVCL

CIRC suite TM suite

Figure 6. Number of benchmarks solved (Y axis) versus time (X axis) for each suite

of the rows corresponds to the comparison of the four systems on the SAL,
RTLC, CIRC, and TM test suites, respectively.

Each point in the scatter plot corresponds to a problem run; on the X axis
we have the execution time of MATHSAT, while the Y axis shows the execu-
tion time of the competitor system. A point above the diagonal means a better
performance of MATHSAT and viceversa. The two uppermost horizontal
lines represent benchmarks that ended in time-out (lower) or out-of-memory
(higher) for the competitor system, whereas the two rightmost vertical lines
represent time-out (left) or out-of-memory (right) for MATHSAT.

The comparison with CVCLITE shows that MATHSAT performs gener-
ally much better on the majority of the benchmarks in the SAL suite (CVCLITE

timeouts on several of them, MATHSAT only on five of them). On the RTLC
suite, the comparison is slightly in favour of MATHSAT. For the CIRC and
TM suites, the comparison is definitely in favour of MATHSAT, although
there are a few problems in the TM suite that neither of the systems can
solve.

The comparison with ICS is reported in the second column. We see that
on the SAL suite (i.e., on ICS own test suite) ICS is slightly superior on
the smaller problems. However, MATHSAT performs slightly better on the
medium and significantly better on the most difficult problems in the suite,

main.tex; 16/03/2005; 21:56; p.23

24

 0

 50

 100

 150

 200

 250

 300

 0.1 1 10 100 1000 10000

of

 fo
rm

ul
as

 s
ol

ve
d

Total CPU Time (secs)

MathSat
ICS

CVCL

TOTAL

Figure 7. Number of benchmarks solved (Y axis) versus time (X axis) (all suites)

where ICS repeatedly times out. In the RTLC suite, ICS is clearly dominated
by MATHSAT. In the CIRC suite MATHSAT performs better on nearly all
tests, although the performance gaps are not impressive. In the TM suite,
ICS performs slightly better than MATHSAT.

The comparison with UCLID is limited to the problems that can be ex-
pressed, i.e. some problems in SAL and RTLC, and shows a very substantial
performance gap in favour of MATHSAT.

An alternative view of the comparison is shown in Figs. 6 and 7 (these
curves are also known as runtime distributions). For each of the systems, we
report the number of benchmarks solved (Y axis) in a given amount of time
(X axis) (the samples are ordered by increasing computation time). The upper
point in the trace also shows how many samples were solved within the time
limit. (Notice that the data for UCLID must be interpreted with care, since
it was confronted only with a subset of the problems. For the same reason,
UCLID is not reported in the totals.)

The curves highlight that UCLID is the worst scorer except for the RTLC
suite, where it performs better than ICS, that MATHSAT and ICS perform
globally better than CVCLITE, and that MATHSAT is sometimes slower on
the smaller problems than ICS, but more powerful when it comes to harder
problems.

One potential criticism to every empirical comparison is that the choice
of the test cases may bias the results. For our tests, however, we remark that
we have run all the test cases used by the ICS team in [16], that we have
also introduced other suites with problems from other application domains,
and that, except for the CIRC suite, all the suites we have used have been
proposed by other authors in previous papers.

7.3.2. Comparison on Difference Logic
We also compared MATHSAT with TSAT++ [42, 2] and DLSAT [14], which
are specialized solvers for Difference Logics. We did not include in the com-

main.tex; 16/03/2005; 21:56; p.24

25

D
L

SA
T

su
ite

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000
 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

SE
P

su
ite

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000
 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

D
T

P
su

ite

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000
 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

TSAT++ DLSAT

Figure 8. Execution time ratio: the X and Y axes report MATHSAT and each competitor’s
times respectively.

parison SEP [34, 40], a decision procedure based on an eager encoding in
propositional logic, since it is known to be outperformed by TSAT++ [2].

In Fig. 8 we report the results of the comparison between MATHSAT
and TSAT++ (left column), and DLSAT (right column). Fig. 7.3.2 shows
an overall comparison using runtime distributions.

MATHSAT performs slightly better than TSAT++ on the DLSAT suite,
slightly worse or equivalently better on the SEP suite, and significantly better
on the DTP suite (i.e., TSAT++ own suite). MATHSAT performs signifi-
cantly better than DLSAT on its own test suite, slightly worse on the SEP
suite (notice that the samples here are much less and much simpler) and sig-
nificantly better in the DTP suite. On the whole, we can see that MATHSAT
and TSAT++ both outperform DLSAT. Interestingly, MATHSAT exhibits
on these problems a behaviour that is comparable to or even better than

main.tex; 16/03/2005; 21:56; p.25

26

 0

 10

 20

 30

 40

 50

 60

 0.01 0.1 1 10 100 1000 10000

of

 fo
rm

ul
as

 s
ol

ve
d

Total CPU Time (secs)

MathSat
TSAT

DLSAT

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.01 0.1 1 10 100 1000 10000

of

 fo
rm

ul
as

 s
ol

ve
d

Total CPU Time (secs)

MathSat
TSAT

DLSAT

DLSAT suite SEP suite

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.01 0.1 1 10 100 1000 10000

of

 fo
rm

ul
as

 s
ol

ve
d

Total CPU Time (secs)

MathSat
TSAT

DLSAT

 0

 20

 40

 60

 80

 100

 120

 0.01 0.1 1 10 100 1000 10000

of

 fo
rm

ul
as

 s
ol

ve
d

Total CPU Time (secs)

MathSat
TSAT

DLSAT

DTP suite TOTAL

Figure 9. Number of benchmarks solved (Y axis) versus time (X axis) for each suite

TSAT++, which is a highly specialized solver, despite its ability to deal with
a larger class of problems.

8. Related Work

In this paper we have presented a new decision procedure for Linear Arith-
metic Logic. The verification problem for LAL is well known, and has re-
ceived a lot of interest in the past. In particular, decision procedures are the
ones considered in Sect. 7.3, namely CVCLITE [15, 7], ICS [23, 18] and
UCLID [43, 35].

CVCLITE is a library for checking validity of quantifier-free first-order
formulas over several interpreted theories, including real and integer linear
arithmetic, arrays and uninterpreted functions. CVCLITE replaces the older
tools SVC and CVC [15]. ICS is a decision procedure for the satisfiability
of formulas in a quantifier-free, first-order theory containing both uninter-
preted function symbols and interpreted symbols from a set of theories in-
cluding arithmetic, tuples, arrays, and bit-vectors. Finally, UCLID is a tool
incorporating a decision procedure for arithmetic of counters, the theories
of uninterpreted functions and equality (EUF), separation predicates and ar-

main.tex; 16/03/2005; 21:56; p.26

27

rays. UCLID is based on an “eager” reduction to propositional SAT, that is,
the input formula is translated into a SAT formula in a single satisfiability-
preserving step, and the output formula is checked for satisfiability by a SAT
solver.

In this paper, we have compared these tools using benchmarks from linear
arithmetic logic (in the case of UCLID the subset of arithmetic of counters).
A comparison on the benchmarks dealing with the theory of EUF is part of
our future work.

Other relevant systems are Verifun [19], a tool using lazy-theorem proving
based on SAT-solving, supporting domain-specific procedures for the theories
of EUF, linear arithmetic and the theory of arrays, and the tool ZAPATO [6],
a tool for counterexample-driven abstraction refinement whose overall archi-
tecture is similar to Verifun. The DPLL(T) [20] tool is a decision procedure
for the theory of EUF. Similarly to MATHSAT, DPLL(T) is based on a
DPLL-like SAT-solver engine coupled with an efficient congruence closure
module [29] that has inspired our own equational reasoner. However, our
use of EUF reasoning is directed to tackling the harder problem of LAL
satisfiability.

ASAP [25] is a decision procedure for quantifier-free Presburger arith-
metic (that is, the theory of LAL over non-negative integers). ASAP is im-
plemented on top of UCLID, and would have been a natural candidate for our
experimental evaluation; unfortunately, a comparison was not possible since
neither the system nor the benchmarks described in [25] have been made
available.

Finally, we mention HDPLL, a decision procedure for LAL, specialized
for the verification of circuits at the RTL level [31]. The procedure is based on
DPLL-like Boolean search engine integrated with a constraint solver based
on Fourier-Motzkin elimination and finite domain constraint propagation.
According to the experimental results in [31], HDPLL seems to be very
effective for its application domain. We are very interested in incorporating
some of the ideas into MATHSAT, and in performing a thorough experimental
comparison. However, HDPLL is not publicly available.

Concerning the fragment of difference logic, other related tools are the
ones considered in Sect. 7.3.2, namely TSAT++ [42, 2], DLSAT [14]. While
TSAT++ and DLSAT implement an approach similar to MATHSAT, they
are specialized to dealing with difference logics, and do not implement any
form of layering. In general, TSAT++ appears to be much more efficient
than DLSAT, based on a lean implementation that tightly integrates the the-
ory solver with a state-of-the-art library for SAT. An alternative approach
is implemented in SEP [34, 40], that is based on a eager approach that re-
duces satisfiability of the difference logic to the satisfiability of a purely
propositional formula.

main.tex; 16/03/2005; 21:56; p.27

28

Concerning the very different domain of Constraint Logic Programming,
we notice that some ideas related to the mathematical solver(s) presented
in this paper (i.e., layering, stack-based interfaces, theory-deduction) are to
some extent similar to those presented in [24]. 2

9. Conclusions and Future Work

In this paper we have presented a new approach to the satisfiability of Linear
Arithmetic Logic. The work is carried out within the (known) framework of
integration between off-the-shelf SAT solvers, and specialized theory solvers.
We proposed several improvements. In the top level algorithm, we exploit
theory learning and deduction, theory-driven backjumping, and we adopt a
stack-based interface that allows for an incremental and backtrackable im-
plementation of the mathematical solver. We also use static learning and
clustering. We heavily exploit the idea of layering: the satisfiability of theory
constraints is evaluated in theories of increasing strength (Equality, Linear
Arithmetic over the reals, and Linear Arithmetic over the integers). The idea
is to prefer less expensive solvers (for weaker theories), thus reducing the
use of more expensive solvers. We carried out a thorough experimental eval-
uation of our approach: our MATHSAT solver is able to tackle effectively a
wide class of problems, with performance comparable with and often supe-
rior to the state-of-the-art competitors, both on LAL problems, and against
specialized competitors on the subclass of Difference Logics.

As future work, we plan to enhance MATHSAT by investigating differ-
ent splitting heuristics and the integration of other boolean reasoning tech-
niques, that are complementary to DPLL. An extension of MATHSAT to non-
linear arithmetics is currently ongoing, based on the integration of computer-
algebraic methods. Further extensions include the development of specialized
modules to deal with memory access, bit-vector arithmetic, and the extension
to the integration of EUF and LA. On the side of verification, we envisage
MATHSAT as a back-end for lifting SAT-based model checking beyond the
boolean case, to the verification of sequential RTL circuits and of hybrid
systems.

References

1. Armando, A., C. Castellini, and E. Giunchiglia.: 1999, ‘SAT-based procedures for
temporal reasoning.’. In: Proc. European Conference on Planning, CP-99.

2. Armando, A., C. Castellini, E. Giunchiglia, and M. Maratea: 2004, ‘A SAT-based De-
cision Procedure for the Boolean Combination of Difference Constraints’. In: Proc.
Conference on Theory and Applications of Satisfiability Testing (SAT’04).

2 We are grateful to an anonymous reviewer for pointing out this fact to us.

main.tex; 16/03/2005; 21:56; p.28

29

3. Audemard, G., P. Bertoli, A. Cimatti, A. Korniłowicz, and R. Sebastiani: 2002a, ‘A
SAT Based Approach for Solving Formulas over Boolean and Linear Mathematical
Propositions’. In: Proc. CADE’2002., Vol. 2392 of LNAI.

4. Audemard, G., A. Cimatti, A. Korniłowicz, and R. Sebastiani: 2002b, ‘SAT-Based
Bounded Model Checking for Timed Systems’. In: Proc. FORTE’02, Vol. 2529 of LNCS.

5. Badros, G. and A. Borning: 1998, ‘The Cassowary Linear Arithmetic Constraint Solv-
ing Algorithm: Interface and Implementation’. Technical Report UW-CSE-98-06-04,
University of Washington.

6. Ball, T., B. Cook, S. Lahiri, and L. Zhang: 2004, ‘Zapato: Automatic Theorem Proving
for Predicate Abstraction Refinement’. In: Proc. CAV’04, Vol. 3114 of LNCS. pp. 457–
461.

7. Barrett, C. and S. Berezin: 2004, ‘CVC Lite: A New Implementation of the Cooperating
Validity Checker’. In: Proc. CAV’04, Vol. 3114 of LNCS. pp. 515–518.

8. Bayardo, Jr., R. J. and R. C. Schrag: 1997, ‘Using CSP Look-Back Techniques to Solve
Real-World SAT Instances’. In: Proc. AAAI/IAAI’97. pp. 203–208.

9. Bockmayr, A. and V. Weispfenning: 2001, ‘Solving Numerical Constraints’. In:
Handbook of Automated Reasoning. MIT Press, pp. 751–842.

10. Borning, A., K. Marriott, P. Stuckey, and Y. Xiao: 1997, ‘Solving Linear Arithmetic
Constraints for User Interface Applications’. In: Proc. UIST’97. pp. 87–96.

11. Bozzano, M., R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Schulz, and R.
Sebastiani: 2005, ‘An Incremental and Layered Procedure for the Satisfiability of Linear
Arithmetic Logic’. In: Proc. TACAS 2005, Vol. 3440 of LNCS. pp. 317–333.

12. Brinkmann, R. and R. Drechsler: 2002, ‘RTL-Datapath Verification using Integer Linear
Programming’. In: Proc. ASP-DAC 2002. pp. 741–746.

13. Cherkassky, B. and A. Goldberg: 1999, ‘Negative-Cycle Detection Algorithms’. Math-
ematical Programming 85, 277–311.

14. Cotton, S., E. Asarin, O. Maler, and P. Niebert: 2004, ‘Some Progress in Satisfiability
Checking for Difference Logic’. In: Proc. FORMATS-FTRTFT 2004.

15. CVC. CVC, CVCLITE and SVC. http://verify.stanford.edu/ � CVC,CVCL,SVC � .
16. de Moura, L. and H. Ruess: 2004, ‘An Experimental Evaluation of Ground Decision

Procedures’. In: R. Alur and D. Peled (eds.): Proc. 15th Int. Conf. on Computer Aided
Verification - CAV04, Vol. 3114 of LNCS. Boston, MA, pp. 162–174.

17. Eén, N. and N. Sörensson: 2004, ‘An Extensible SAT-solver’. In: Theory and
Applications of Satisfiability Testing (SAT 2003), Vol. 2919 of LNCS. pp. 502–518.

18. Filliâtre, J.-C., S. Owre, H. Ruess, and N. Shankar: 2001, ‘ICS: Integrated Canonizer
and Solver’. In: Proc. CAV’01, Vol. 2102 of LNCS. pp. 246–249.

19. Flanagan, C., R. Joshi, X. Ou, and J. Saxe: 2003, ‘Theorem Proving using Lazy Proof
Explication’. In: Proc. CAV’03, Vol. 2725 of LNCS. pp. 355–367.

20. Ganzinger, H., G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli: 2004, ‘DPLL(T):
Fast Decision Procedures’. In: Proc. CAV’04, Vol. 3114 of LNCS. pp. 175–188.

21. GMP. GNU Multi Precision Library. http://www.swox.com/gmp.
22. Gomes, C., B. Selman, and H. Kautz: 1998, ‘Boosting Combinatorial Search Through

Randomization’. In: Proc. of the Fifteenth National Conf. on Artificial Intelligence. pp.
431–437.

23. ICS. ICS. http://www.icansolve.com.
24. Jaffar, J., S. Michaylov, P. J. Stuckey, and R. H. C. Yap: 1992, ‘The CLP(R) Language

and System’. ACM Transactions on Programming Languages and Systems (TOPLAS)
14(3), 339 – 395.

25. Kroening, D., J. Ouaknine, S. Seshia, and O. Strichman: 2004, ‘Abstraction-Based Sat-
isfiability Solving of Presburger Arithmetic’. In: Proc. CAV’04, Vol. 3114 of LNCS. pp.
308–320.

main.tex; 16/03/2005; 21:56; p.29

30

26. Land, H. and A. Doig: 1960, ‘An Automatic Method For Solving Discrete Programming
Problems’. Econometrica 28, 497–520.

27. MATHSAT. MATHSAT. http://mathsat.itc.it.
28. Moskewicz, M. W., C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik: 2001, ‘Chaff:

Engineering an Efficient SAT Solver’. In: Proc. DAC’01. pp. 530–535.
29. Nieuwenhuis, R. and A. Oliveras: 2003, ‘Congruence Closure with Integer Offsets’. In:

Proc. 10th LPAR. pp. 77–89.
30. Omega. Omega. http://www.cs.umd.edu/projects/omega.
31. Parthasarathy, G., M. Iyer, K.-T. Cheng, and L.-C. Wang: 2004, ‘An Efficient Finite-

Domain Constraint Solver for Circuits’. In: Proc. DAC’04. pp. 212–217.
32. SAL. SAL Suite. http://www.csl.sri.com/users/demoura/gdp-benchmarks.html.
33. Schulz, S.: 2002, ‘E – A Brainiac Theorem Prover’. AI Communications 15(2/3), 111–

126.
34. SEP. SEP Suite. http://iew3.technion.ac.il/ � ofers/smtlib-local/benchmarks.html.
35. Seshia, S., S. Lahiri, and R. Bryant: 2003, ‘A Hybrid SAT-Based Decision Procedure for

Separation Logic with Uninterpreted Functions’. In: Proc. DAC’03. pp. 425–430.
36. Shin, J.-A. and E. Davis: 2004, ‘Continuous Time in a SAT-based Planner’. In: Proc.

AAAI-04. pp. 531–536.
37. Silva, J. P. M. and K. A. Sakallah: 1996, ‘GRASP - A new Search Algorithm for

Satisfiability’. In: Proc. ICCAD’96. pp. 220–227.
38. Stergiou, K. and M. Koubarakis: 2000, ‘Backtracking Algorithms for Disjunctions of

Temporal Constraints’. Artificial Intelligence 120(1), 81 – 117.
39. Strichman, O.: 2002, ‘On Solving Presburger and Linear Arithmetic with SAT’. In: Proc.

of Formal Methods in Computer-Aided Design (FMCAD 2002).
40. Strichman, O., S. Seshia, and R. Bryant: 2002, ‘Deciding separation formulas with SAT’.

In: Proc. of Computer Aided Verification, (CAV’02).
41. TM. TM-LPSAT. http://cs1.cs.nyu.edu/ � jiae/.
42. TSAT. TSAT++. http://www.ai.dist.unige.it/Tsat.
43. UCLID. UCLID. http://www-2.cs.cmu.edu/ � uclid.
44. Zhang, L. and S. Malik: 2002, ‘The Quest for Efficient Boolean Satisfiability Solvers’.

In: Proc. CAV’02. pp. 17–36.

main.tex; 16/03/2005; 21:56; p.30

