E-MaLeS 1.1

Daniel Kiihlwein', Stephan Schulz?, and Josef Urban!

! Radboud University Nijmegen, Nijmegen, Netherlands*,
2 Technische Universitdt Miinchen, Miinchen, Germany

Abstract. Picking the right search strategy is important for the success
of automatic theorem provers. E-Mal.eS is a meta-system that uses ma-
chine learning and strategy scheduling to optimize the performance of
the first-order theorem prover E. E-MaleS applies a kernel-based learn-
ing method to predict the run-time of a strategy on a given problem
and dynamically constructs a schedule of multiple promising strategies
that are tried in sequence on the problem. This approach has signifi-
cantly improved the performance of E 1.6, resulting in the second place
of E-MaLeS 1.1 in the FOF divisions of CASC-J6 and CASC@QTuring.

1 Introduction

Automatic theorem provers (ATPs) for first-order logic search for proofs of a
conjecture in a potentially infinite space of derivations. Experience has shown
that no single search strategy can be expected to perform well over very diverse
proof problems. Thus, most theorem provers provide dozens or even hundreds of
parameters. For systems based on modern equational calculi, parameters include
clause selection schemes, term orderings, inference and reduction rules used, etc.

The theorem prover E [8] uses a language for describing useful combinations
of parameters as strategies. Such strategies can be automatically evaluated over
large problem sets and compiled directly into C source code. Over 200 strategies
have been named and evaluated for E 1.6, and the best of them are included in
the E source code.

This large number of strategies with associated performance data suggests
the use of data-driven methods to estimate how to solve new problems. E is one
of the the first ATPs that have applied machine learning to strategy selection.
Below, we first describe how the automatic mode of E is generated using sim-
ple analogy-based learning. We then introduce an alternative method based on
kernel-based learning that automatically determines a schedule of E strategies.
The resulting strategy-scheduling meta-system, E-MaLeS 1.1, outperforms the
E’s original single-strategy automated mode.

2 Learning of Strategy Selection

Characterizing ATP problems is a hard problem. An ambitious formulation could
be for example:

* The authors were supported by the NWO projects “MathWiki a Web-based Collab-
orative Authoring Environment for Formal Proofs” and “Learning2Reason”.



Given a set of ATP strategies and a large class of ATP problems problems,
find a (typically finite) set of efficiently computable problem features that can
be used to efficiently partition the set of problems into subclasses that share a
common best strategy.

The set of features is in practice suggested by the intuition of the ATP imple-
menter or other domain expert (for example, a mathematician who might know
what features could be important for distinguishing different classes of problems
in his domain). Some of the features can correspond to precise knowledge about
logical calculi, for example, if the problem is Horn, or effectively propositional.
Others can express hunches, for example, if there are many or few clauses, sym-
bols, terms, etc. If the set of problems uses symbols consistently (this is the case
for recent large-theory corpora created from the Mizar and Isabelle libraries,
and for the SUMO and Cyc common-sense ontologies), then the (combinations
of) symbols (and derived structures, like terms) are often also relevant for proof
search.

This paper presents two learning methods that have been developed to es-
timate the best strategy for a new problem. Both are based on the results of
strategies run on the TPTP problems [I2]. The traditional one by Stephan Schulz
is an instance of the case-based reasoning method. The newer alternative uses
kernel-based learning. Both methods rely on the TPTP being a sufficiently rep-
resentative set of ATP problems of different kinds, however the methods can be
applied for any sufficiently big corpus of problems (e.g. the MPTP [I5]). Both
methods require a relevant feature characterization of problems and a record of
the performance of different strategies for training. Once trained, both provide
suggestions for strategies to use on new problems, either a single strategy for the
original method, or a schedule of strategies for the newer method.

2.1 E’s Feature Characterization

The set of features used in E for problem characterization is listed in Table [T}
All features apply to the clausal form of a problem. A clause is called negative if
it only has negative literals. It is called positive if it only has positive literals. A
ground clause is a clause that contains no variables. In this setting, we refer to
all negative clauses as “goals”, and to all other clauses as “axioms”. Clauses can
be unit (having only a single literal), Horn (having at most one positive literal),
or general (no constraints on the form). All unit clauses are Horn, and all Horn
clauses are general. Goals have no positive literals and are hence always at least
Horn.

2.2 E’s automatic mode

E supports an automatic mode that analyzes the problem and determines all
major search parameters (literal selection function, clause selection heuristics,
term ordering, and a number of mostly discrete options controlling optional
simplifications and preprocessing steps). It has been conservatively extended
from the very first implementation in E 0.3 Castleton, released in 1999.



Feature Description

axioms Most specific class (unit, Horn, general) describ-
ing all axioms

goals Most specific class (unit, Horn) describing all
goals

equality Problem has no equational literals, some equa-
tional literals, or only equational literals

non_ground_units Number of unit axioms that are not ground

ground_goals Are all goals ground?

clauses Number of clauses

literals Number of literals

term_cells Number of terms (including subterms)

ground_positive_axioms Number of positive axioms that are ground

max_fun arity Maximal arity of a function or predicate symbol

avg_fun arity Average arity of symbols in the problem

sum_fun_arity Sum of arities of symbols in the problem

clause max_depth Maximal clause depth

Table 1. Problem features used by strategy selection in E

The automatic mode is based on a static partitioning of the set of all CNF
problems into disjoint classes. It is generated in two steps. First, the set of all
training examples (typically the set of all current TPTP problems) is classified
into disjoint classes using the features listed in Table[} For the numeric features,
threshold values have originally been selected to split the TPTP into 3 or 4 ap-
proximately equal subsets on each feature. Over time, these have been manually
adapted using trial and error.

Once the classification is fixed, a Python program reads the different classes
and a set of test protocols describing the performance of different strategies on
all problems from the test set. It assigns to each class one of the strategies that
solves the most examples in this class. For large classes (arbitrarily defined as
having more than 200 problems), it picks the strategy that also is fastest on that
class. For small classes, it picks the globally best strategy among those that solve
the maximum number of problems. A class with zero solutions by all strategies
is assigned the overall best strategy.

2.3 Strategy scheduling

Strategy learning is currently being used by E’s automatic mode to predict the
best strategy for a problem. The predicted strategy is then run for the full time.

An alternative approach (known mainly from Gandalf [14], E-SETHEO [I1],
and Vampire [7]) is strategy scheduling. The idea is to run different strategies for
fractions of the overall time. This can help when the strategies are sufficiently
orthogonal (solve different problems), and the problem classification is not good
enough to clearly point to one best strategy.



In the simplest setting, the suitable set of strategies is considered indepen-
dent of the problem features. In that case, given a database of results of many
strategies on a large set of problems (TPTP, MPTP, etc.), the goal is to cover
the set of solvable problems by as few strategies as possible. This is an NP-
complete problem, which however seems to be quite easy (for our instances) for
systems like MiniSat++ [10]. For example, for an experiment with covering ran-
domly chosen 400 problems from the MPTP2078 benchmark by 280 E strategies,
MiniSat++ can find the minimal cover (9 strategies) in 0.09 s.

We present a learning based method that depending on the problem features
predicts the time each strategy needs to solve the problem. The predictions are
used to schedule in which order and for how long the strategies should be run.

2.4 E-MaLeS 1.1

E-MaLeS (E Machine Learning of Strategies) uses the kernel-based MOR al-
gorithm, see [I] for details. E-MaleS is freely available at http://cs.ru.nl/
~kuehlwein/. E-MaLeS learns a function that predicts the performance for each
strategy on each problem. Given the features of a problem defined in Table
E-MaLeS predicts for each strategy s how long E running s will need to solve
the problem. A similar approach has successfully been used in the SAT commu-
nity [I7].

The MOR algorithm is an instance of kernel-based learning. Kernel-based
learning is a machine learning approach that finds (typically non-linear in the
features) approximations of the training data by minimizing a loss function de-
scribing the difference between learned approximation and training data. By
mapping the data in a higher-dimensional vector space, kernel methods combine
the expressiveness of a high-dimensional function space with the simplicity of lin-
ear regression. Intuitively, kernels can be seen as a similarity measure between
different data points (in our case problems). Kernel-based methods are among
the most successful algorithms applied to various problems from bioinformatics
to information retrieval to computer vision [9].

E-MalLeS uses a Gaussian kernel. The similarity measure induced by this ker-
nel can be imagined as a Gaussian distribution around each data point with the
width o of the distribution being an adjustable parameter. To ensure that the
learned functions generalize well, a regularization parameter X is used. Regular-
ization adds an additional term based on the complexity of the learned function
to the loss function. The more complex a function, the bigger the penalty. The
intuition behind this is that complex function are more likely to overfit. The
value of A determines the weight of the regularization term, with A\ = 0 being
equivalent to no regularization.

The values for 0 and A are determined via a 10-fold cross-validation. First,
we define logarithmically scaled grids of potential values. The training dataset is
then shuffled and divided into two parts using a 70/30 split. For each parameter
pair the algorithm trains a function based on the data points in the larger part
and evaluates it (i.e. compares the predicted run times with the actual run times)
on the data points in the smaller part. This process is repeated 10 times. The


http://cs.ru.nl/~kuehlwein/
http://cs.ru.nl/~kuehlwein/

parameter pair with the best average performance (i.e. the minimum average
squared difference between the predicted run times and the actual run times) on
the smaller set is then used for the final learning. The goal of cross-validation is
to estimate the performance of the learned function on unseen data points.

During the learning phase, the input to E-MalLeS is a list of strategies and
a list of problems with their features, together with the performances of the
strategies on the problems within a fixed time limit (e.g. 300 seconds). The
features are first normalized to values between 0 and 1. Ideally, we would have
the exact time needed until a proof is found for each problem-strategy pair.
Unfortunately, real world limitations restrict us to finite run times — in our case
300 seconds. Problems that were not solved within this time limit are ignored.
Note that this leads to different training data for different strategies and a bias
towards lower times. Thus, the learned prediction functions are likely to predict a
time that is lower than the actual needed time. An alternative to simply ignoring
unsolved problems would be to use a large fixed time for each (e.g. 600 seconds).
However, in initial experiments this did not show any improvement.

When trying to solve a new problem, E-MaLeS employs a combination of
E’s automatic mode and strategy scheduling. First, the automatic mode is run
for 60 secondsP] If the automatic mode fails to find a proof, the features of the
problem are computed and normalizedﬁ For each strategy the time needed to
solve the problem is predicted using the prediction function learned during the
setup. Since E’s timeout parameter expects seconds, the predicted times are
rounded up to next full second. The strategies are then run for their predicted
time, starting with the strategy with the smallest predicted timeﬂ If the sum of
the rounded predicted times is less than the total time given, the remaining free
time is spread equally over all strategies.

3 Results

Both E-MaLeS 1.1 and E 1.6 competed at CASC@Turing and CASC-J6. In both
competition, E-Mal.eS 1.1 won the second place in the FOF division, solving
more problems than E 1.6. The results are shown in Tables [2| and

In the FOF division of CASC@Turing, E-MaLeS solved 4.6% more problems
than E. If we only compare the results of the new problems, E-Mal.eS solved
14.5% more problems. The results for FOF division of CASC-J6 are similar, with

3 Running the auto mode first allows us to reduce the number of training examples
of the machine learning algorithm. We only learn from problems that cannot be
solved by the automatic mode within 60 seconds. The reason for this is that the
learning time of the algorithm is cubic in the number of training examples which
makes learning from all examples (the whole TPTP library) infeasible.

Since the normalization function is defined during setup, the normalized features of
new problems may fall out of the [0, 1] interval.

A possible improvement would be to take not only the predicted times, but also the
orthogonality (difference in problems solved between strategies) of strategies into
account. First experiments with this approach were promising.

ot



System All Problems New Problems
E 1.6 378/500 73/97
E-MalLeS 1.1 401/500 87/97

Table 2. Results for the CASC@QTuring problems

System All Problems New Problems
E 1.6 359/450 50/68
E-MalLeS 1.1 377/450 59/68

Table 3. Results for the CASC-J6 problems

E-MalLeS solving 4% more problems than E. On the new problems, E-MaLeS
solved 13.2% more problems than E.

A possible explanation of the discrepancy between old and new problems
solved is that E 1.6 is overspecialized for the old problems. Cross-validation and
regularization helps E-MaLeS to combat such overfitting.

E-MalLeS also competed in the LTB (Large Theory Batch) division of CASC-
J6 and placed fourth with 83 problems solved after E 1.6 with 87 solved problems.
The LTB division contains problems from large theories, namely problems ex-
ported from Isabelle, Mizar and SUMO. Unlike in the FOF division, the ATPs
may use all cores of the machine. The LTB version of E-MaLeS uses the extra
time and all available cores to run more strategies but is in no other way op-
timized. E 1.6, on the other hand, makes use of the batch structure to avoid
repeated parsing of the large background theories, and also makes better use of
the various SInE strategies that heuristically select relevant premises from the
large theories.

4 Future Work

There are several ways to improve the current algorithm. Extracting features
based on the FOF instead of the CNF representation of a formula could lead to
better learning performance. Using different learning algorithms might allow us
to run E-MaLeS without relying on E’s automatic mode.

Strategies themselves are just combinations of many ATP parameters. An
interesting application of machine learning to ATP is to develop new strategies
by searching for such good parameter combinations systematically (by methods
like hill-climbing) on a large corpus of problems. A related task is to produce a set
of strategies that are highly orthogonal, i.e., that solve very different problems,
so that their collective coverage is high.

We could also learn strategies based on conjecture features (like symbols) in
consistently-named corpora like MPTP, instead of just using abstract features
like on the TPTP problems.

The methods that we develop can probably be used for any ATP, and it would
be interesting to see how such learning and optimization works for systems like



Vampire [7], Z3 [6], and iProver [5]. Meta-systems like Isabelle/Sledgehammer [413]
and MaLARea [16] could then use this deeper knowledge about ATPs to attack

new conjectures with the strongest possible combinations of systems and strate-

gies.

References

1. Jesse Alama, Tom Heskes, Daniel Kiihlwein, Evgeni Tsivtsivadze & Josef Urban
(2011): Premise Selection for Mathematics by Corpus Analysis and Kernel Meth-
ods. CoRR abs/1108.3446. Accepted to JAR.

2. Alessandro Armando, Peter Baumgartner & Gilles Dowek, editors (2008): Auto-
mated Reasoning, 4th International Joint Conference, IJICAR 2008, Sydney, Aus-
tralia, August 12-15, 2008, Proceedings. LNCS 5195, Springer.

3. Jasmin Christian Blanchette, Sascha Béhme & Lawrence C. Paulson (2011): Ez-
tending Sledgehammer with SMT Solvers. In Nikolaj Bjgrner & Viorica Sofronie-
Stokkermans, editors: CADE, LNCS 6803, Springer, pp. 116-130.

4. Jasmin Christian Blanchette, Lukas Bulwahn & Tobias Nipkow (2011): Auto-
matic Proof and Disproof in Isabelle/HOL. In Cesare Tinelli & Viorica Sofronie-
Stokkermans, editors: FroCoS, LNCS 6989, Springer, pp. 12-27.

5. Konstantin Korovin (2008): iProver - An Instantiation-Based Theorem Prover for
First-Order Logic (System Description). In Armando et al. [2], pp. 292-298.

6. Leonardo Mendonga de Moura & Nikolaj Bjgrner (2008): Z3: An Efficient SMT
Solver. In C. R. Ramakrishnan & Jakob Rehof, editors: TACAS, LNCS 4963,
Springer, pp. 337-340.

7. Alexandre Riazanov & Andrei Voronkov (2002): The design and implementation
of VAMPIRE. AI Commun. 15(2-3), pp. 91-110.

8. Stephan Schulz (2002): E - A Brainiac Theorem Prover. AI Commun. 15(2-3), pp.
111-126.

9. John Shawe-Taylor & Nello Cristianini (2004): Kernel Methods for Pattern Anal-
ysis. Cambridge University Press, New York, NY, USA.

10. Niklas Sorensson & Niklas Eén (2008): MiniSat 2.1 and MiniSat++ 1.0 SAT Race
2008 Editions. Technical Report, Chalmers University of Technology, Sweden.

11. G. Stenz & A. Wolf (2000): E-SETHEO: An Automated® Theorem Prover — Sys-
tem Abstract. In R. Dyckhoff, editor: Proc. of the TABLEAUX’2000, LNAT 1847,
Springer, pp. 436-440.

12. G. Sutcliffe (2009): The TPTP Problem Library and Associated Infrastructure: The
FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), pp. 337-362.

13. Geoff Sutcliffe, Stephan Schulz, Koen Claessen & Allen Van Gelder (2006): Using
the TPTP Language for Writing Derivations and Finite Interpretations . In Ulrich
Fuhrbach & Natarajan Shankar, editors: Proc. of the 3rd IJCAR, Seattle, LNAI
4130, Springer, 4130, pp. 67-81.

14. Tanel Tammet (1997): Gandalf. Journal of Automated Reasoning 18, pp. 199-204.

15. Josef Urban (2006): MPTP 0.2: Design, Implementation, and Initial Experiments.
J. Autom. Reasoning 37(1-2), pp. 21-43.

16. Josef Urban, Geoff Sutcliffe, Petr Pudlak & Jiri Vyskocil (2008): MaLARea SG1-
Machine Learner for Automated Reasoning with Semantic Guidance. In Armando
et al. [2], pp. 441-456.

17. Lin Xu, Frank Hutter, Holger H. Hoos & Kevin Leyton-Brown (2008): SATzilla:
portfolio-based algorithm selection for SAT. J. Artif. Int. Res. 32(1), pp. 565-606.



	E-MaLeS 1.1

