
Efficient Implementation of Large-Scale Watchlists
Constantin Ruhdorfera, Stephan Schulza

aDuale Hochschule Baden Württemberg Stuttgart

Abstract
In this work, we explore techniques for improving the performance of the automated theorem proving system
E when dealing with large watchlists. A watchlist can focus the proof search towards so-called hints, likely
useful intermediate results provided externally. Recently, hints have been automatically extracted from pre-
vious proofs, creating massive watchlists and thus making evaluation of new clauses against the wachtlist a
performance bottleneck. We introduce a new index for the frequent special case of unit clause hints, taking
advantage of the fact that subsumption can be implemented much more efficiently for unit clauses than for the
general case. We implement several strategies for exploiting the structure and properties of equational unit
clauses. Additionally, we have added a new soft subsumption mechanism to E that can abstract away differ-
ences of constant or Skolem symbols, effectively allowing a less precise match when evaluating a given clause
against the watchlist. We have tested the new mechanisms on a large set of problems taken from the Mizar
40 project, using a large watchlist containing over 300 000 clauses. We show that the usage of the unit clause
index significantly increases performance with this given watchlist. The use of soft subsumption shows more
mixed results. We believe that most watchlists can take advantage of these techniques and have made them
available to the user via E’s command line interface.

Keywords
Automated theorem proving, Hints, First order logic

1. Introduction

Automated theorem provers (ATPs or ATP systems) are programs that accept a set of axioms and a
conjecture in a suitable logic, and then try to automatically derive a proof of the conjecture. Many
of the most successful theorem provers are based on first-order logic (with equality), an expressive
logic with unambiguous semantics for which relatively mature calculi exist. First order logic is semi-
decidable. In theory, proofs for valid conjectures can always be found, but proof search for an invalid
conjecture may not terminate. This means that an ATP has to search for proofs in an infinite and
highly branching search space. Thus, guiding this search is of critical importance for the success of
the system. For systems based on forward deduction, the critical choice is which of the many possible
intermediate steps should be taken next, i.e. which new formulas should be deduced. This is usually
based on simple syntactic criteria (as e.g. described in [11]). However, these heuristics are often
insufficient to find complex proofs.

One way to improve the proof search is via hints. Originally [13], hints are possible intermediate
lemmas provided by the user of the prover. If the prover finds such a lemma (or a more general one), it
can focus its search on this lemma. User hints can come from the user’s domain expertise and intuition,
or possibly from simplified settings. In recent years, we have utilized the same mechanism with a very
different source of hints, namely intermediate results contributing to proofs of other theorems in the

Proceedings of the 7th Workshop on Practical Aspects of Automated Reasoning 2020
" mail@ruhdorfer.me (C. Ruhdorfer); schulz@eprover.org (S. Schulz)
~ eprover.org (S. Schulz)
� 0000-0001-6262-8555 (S. Schulz)

© 2020 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:mail@ruhdorfer.me
mailto:schulz@eprover.org
eprover.org
https://orcid.org/0000-0001-6262-8555
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


domain [3]. The system can iteratively build a database of results that are often useful in the domain.
In contrast to manually provided hints, the number of hints mined from existing proofs can often be
extremely large, and hence evaluating new formulas against the hint set can become quite expensive.

In this work, we are interested in two aspects of the field at hand: Firstly, we want to improve the
efficiency of using large sets of hints in guiding a theorem prover (more concretely, the equational
theorem prover E [7, 10]). Secondly, we explore a variety of notions about what it means for a hint to
match a new formula (or more specifically, clause), with the aim of broadening the potential influence
of a hint to also influence the selection of clauses that are similar to the hint, not only those that are
strictly more general.

2. Preliminiaries

First-order logic with equality We will assume two disjoint sets 𝐹 and 𝑉 where 𝐹 is the set of
function symbols and 𝑉 the set of variable symbols. Function symbols have an associated arity which
we will denote with 𝑓 /𝑛 for symbol 𝑓 and arity 𝑛 ∈ ℕ. Constants are function symbols with 𝑛 = 0.

We will typically use 𝑎, 𝑏, 𝑐 to denote constants, 𝑓 , 𝑔, ℎ to denote function symbols and either 𝑥, 𝑦, 𝑧
or X1,… ,X𝑁 to denote variables.

The set of syntactically correct terms is denoted by 𝑇𝑒𝑟𝑚(𝐹 , 𝑉 ), where 𝑇𝑒𝑟𝑚(𝐹 , 𝑉 ) is the smallest
set that satisfies the following conditions:

1. 𝑋 ∈ 𝑇𝑒𝑟𝑚(𝐹 , 𝑉 ) for all 𝑋 ∈ 𝑉

2. 𝑓 /𝑛 ∈ 𝐹 , 𝑠1,… , 𝑠𝑛 ∈ 𝑇𝑒𝑟𝑚(𝐹 , 𝑉 ) implies 𝑓 (𝑠1,… , 𝑠𝑛) ∈ 𝑇𝑒𝑟𝑚(𝐹 , 𝑉 )

An (equational) atom is an unordered pair of terms, written as 𝑠 ≃ 𝑡 . Observe that we handle the
non-equational case as a special case where we encode non-equational atoms as equalities with the
reserved constant $𝑡𝑟𝑢𝑒, e.g. 𝑝(𝑎) ≃ $𝑡𝑟𝑢𝑒. We will typically write non-equational literals in the
conventional manner for convenience (e.g. 𝑝(𝑎)). A literal is either an atom, or a negated atom. We
write a negative literal as 𝑠≄ 𝑡 and define a negation operator on literals as 𝑠≃ 𝑡 = 𝑠≄ 𝑡 and 𝑠≄ 𝑡 = 𝑠≃ 𝑡 .
We use 𝑠 ≃̇ 𝑡 if we do not want to specify the polarity of a literal, or, in a less precise way, let 𝑙, 𝑙1, 𝑙2,…
stand for arbitrary literals. In this notation ≃ is commutative.

A clause is a multiset of literals {𝑙1, 𝑙2, ..., 𝑙𝑛}, usually written and always interpreted as a disjunction
𝑙1 ∨ 𝑙2 ∨ ... ∨ 𝑙𝑛. A unit clause is a clause containing only one literal. We denote the set of all clauses as
𝐶𝑙𝑎𝑢𝑠𝑒𝑠(𝐹 , 𝑉 ) and the empty clause as □.

A substitution is a mapping 𝜎 ∶ 𝑉 → 𝑇𝑒𝑟𝑚(𝐹 , 𝑉 ) with the property that 𝐷𝑜𝑚(𝜎 ) = {𝑥 ∈ 𝑉 ∣ 𝜎 (𝑥) ≠

𝑥} is finite. This mapping can be extended to terms, atoms, literals and clauses in the obvious way. If
𝜎 is a substitution, we call 𝜎 (𝑡), 𝜎 (𝑙), 𝜎 (𝐶) instances of 𝑡 , 𝑙, or 𝐶 .

Similarly, a match from a term (atom, literal, clause) 𝑠 to another 𝑡 is a substitution 𝜎 such that
𝜎 (𝑠) ≡ 𝑡 , where ≡ is the syntactic identity.

In most theorem provers for classical first-order logic, proofs are found via contradiction. In other
words proof search tries to establish if a given set of clauses is unsatisfiable. For generating calculi,
new clauses are deduced via a set of inference rules that take one or more (most often two) clauses as
premises, and generate a new clause entailed by these premises. If this process eventually derives the
empty clause, unsatisfiability has been established (the empty clause is inherently unsatisfiable, and
so is any set of clauses that entails it).

Subsumption is a syntactic relation between two clauses. A clause 𝐶 subsumes another clause 𝐷, if
one of its instances is a multi-subset of the the other, i.e. if 𝜎 (𝐶) ⊆ 𝐷. A subsuming clause is more
general than the subsumed clause, i.e. the subsumed clause is entailed by the subsuming clause (but



not, in general, the other way round). Subsumption plays a double role in this work. On the one
hand, in most calculi we can ignore subsumed clauses, and subsumption (the removal of subsumed
clauses from the proof search) is a major and important optimisation technique. On the other hand,
if a clause subsumed another, it is considered “at least as good” as the first one. The original notion
of a clause matching a hint is based on subsumption. We do not require a clause to be identical to a
hint to prefer it, but we also prefer clauses that subsume a hint (but note that we further generalise
this relation later).

Positions in a term A potential position 𝑝 ∈ ℕ
∗ in a term is defined as a sequence over natural

numbers. The empty position is denoted with the special symbol 𝜖.
The set of positions in a term 𝑡 is denoted with pos(𝑡) and defined recursively by case distinction:

If 𝑡 only consists of a variable symbol 𝑣 ∈ 𝑉 then pos(𝑡) = 𝜖. If on the other hand 𝑡 ≡ 𝑓 (𝑡1, ..., 𝑡𝑛) then
pos(𝑡) = {𝜖} ∪ {𝑖.𝑝 | 1 ≤ 𝑖 ≤ 𝑛, 𝑝 ∈ pos(𝑡𝑖)} with 𝑛 ∈ ℕ

∗. A position 𝑝 ∈ pos(𝑡) of a term 𝑡 can be
used to refer to the subterm of 𝑡 at 𝑝. To be more exact: if 𝑝 = 𝜖, then 𝑡 |𝑝 = 𝑡 . Otherwise, 𝑝 ≡ 𝑖.𝑝

′ and
𝑡 ≡ 𝑓 (𝑡1,… , 𝑡𝑛). In that case, 𝑡𝑝 = 𝑡𝑖 |𝑝′ . The top symbol of 𝑥 ∈ 𝑉 is top(𝑥) = 𝑥 and the top symbol of
𝑓 (𝑡1,… , 𝑡𝑛) is top(𝑓 (𝑡1,… , 𝑡𝑛)) = 𝑓 .

2.1. Proof search

E is a saturating theorem prover based on the superposition calculus [1]. To prove a conjecture,
axioms and the negated conjecture are converted to clause normal form, resulting in a set of clauses
that is unsatisfiable if and only if the conjecture holds. The proof state thus is a set of clauses, and the
proof search is realised by saturating this set of clauses by adding logical consequences that can be
deduced from existing clauses by application of a number of inference rules. If this process generates
the empty clause as an explicit witness of unsatisfiability, the proof has been concluded.

In practice, this proof search is realised via the given-clause algorithm. The proof state is represented
by two disjoint sets of clauses, the set 𝑈 of unprocessed clauses, and the set 𝑃 of processed clauses.
The algorithm repeatedly picks a clause 𝑔 from 𝑈 , computes all possible consequences between this
given clause and all clauses in 𝑃 , and adds them to 𝑈 . It then adds 𝑔 (the given clause) to 𝑃 . This
maintains the invariant that all direct consequences of clauses in 𝑃 have been computed. In addition
to these generating inferences, the algorithm can use simplifying rules to replace clauses by simpler
clauses, or to delete redundant clauses.

The most critical choice point for the given-clause algorithm is the selection of the given clause
for each iteration of the main loop. This is traditionally controlled by heuristic evaluations, based on
symbol counting (smaller clauses are preferred), clause age (older clauses are preferred), and various
combinations and refinements of these measures (compare [12]).

2.2. Watchlist

Large parts of this work focus around the watchlist technique which was originally developed by
Robert Veroff who named it the hint strategy [13]. The strategy was developed for guiding ATP
programs in their proof search by comparing newly generated clauses against a list of hints. Such a
list of hints is user-provided and usually contains lemmas, facts or otherwise clauses the user suspects
might be relevant to the given problem. This technique was first implemented into Otter [5].

In the E ATP system the watchlist mechanism is implemented two-fold as a dynamic and a static
variant [2]. Regardless of the variant used the list is loaded on start-up and stored as a Clause-Set
where it is simplified like processed clauses. A Clause-Set is a internal data structure in E that stores



clauses using a doubly linked list and provides access to its members via various indices. Every newly
generated or processed clause is compared against the watchlist by checking whether or not the new
clause matches one or more clauses in the watchlist. If it does it is prioritized for processing.

2.3. Indexing techniques

One of the most important factors when it comes to the performance of ATP systems is efficient in-
dexing. Indexing helps to avoid, or at least reduce, time spent on sequential search within large sets of
clauses or terms. E has included several different indices for a while, including (perfect) discrimination
tree indexing [6], feature vector indexing [9] and fingerprint indexing [8].

E has been using feature vector indexing for non-unit subsumption [9], and indexes only the pro-
cessed set of clauses 𝑃 . Feature vector indexing is particularly suitable for indexing relatively large
multi-literal clauses, since it handles the complexity of equation- and literal permutation by using
features that are invariant under these permutations. This is a major advantage compared to other
approaches of handling subsumption via indices. It does not, however, come into play for relatively
small unit clauses, for which better indices exist. One of which is fingerprint indexing which is a
technique that samples positions in terms for its indexing representation. We can adjust these sam-
pled positions in a way that takes advantage of the fact that every unit clause exactly consist out two
terms (more on that later). First, we will introduce fingerprint indexing for this purpose.

Fingerprint Indexing A fingerprint index [8] is as trie over fingerprints fp of terms. The general
fingerprint feature function gfpf ∶ 𝑇𝑒𝑟𝑚(𝐹 , 𝑉 ) ×ℕ

∗
→ 𝐹

′ where 𝐹 ′ = 𝐹 ⊎ {A, B, N} is defined by case
distinction:

gfpf(𝑡, 𝑝) =

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

A if 𝑝 ∈ pos(𝑡), 𝑡 |𝑝 ∈ 𝑉

top(𝑡 |𝑝) if 𝑝 ∈ pos(𝑡), 𝑡 |𝑝 ∉ 𝑉

B if 𝑝 = 𝑞.𝑟 , 𝑞 ∈ pos(𝑡) and 𝑡 |𝑞 ∈ 𝑉 for some 𝑞

N otherwise

Here top(𝑥) is 𝑥 if 𝑥 ∈ 𝑉 and 𝑓 if 𝑥 ≡ 𝑓 (𝑡1, ..., 𝑡𝑛). Given that the fingerprint feature function is a function
fpf ∶ 𝑇𝑒𝑟𝑚(𝐹 , 𝑉 ) → 𝐹

′ and is defined by fpf(𝑡) = gfpf(𝑡, 𝑝) for a fixed 𝑝 ∈ ℕ
∗. Lastly the fingerprint

function is defined by fp ∶ 𝑇𝑒𝑟𝑚(𝐹 , 𝑉 ) → (𝐹
′
)
𝑛 for a fixed 𝑛 ∈ ℕ. A fingerprint is a vector of elements

of 𝐹 ′ and is calculated by fp(𝑡) for a given term 𝑡 .
For an arbitrary fpf and two terms 𝑠 and 𝑡 assume two values 𝑢 = fpf(𝑠) and 𝑣 = fpf(𝑡). An overview

for the compatibility of unification and matching from 𝑠 onto 𝑡 , given 𝑢 and 𝑣, is presented in Figure 1.

Unification
𝑓1 𝑓2 A B N

𝑓1 Y N Y Y N
𝑓2 N Y Y Y N
A Y Y Y Y N
B Y Y Y Y Y
N N N N Y Y

Matching
𝑓1 𝑓2 A B N

𝑓1 Y N N N N
𝑓2 N Y N N N
A Y Y Y N N
B Y Y Y Y Y
N N N N N Y

Figure 1: Compatibility for unification and matching where 𝑓1 and 𝑓2 are arbitrary but distinct. Taken from
[8].



3. Implementation

When we originally introduced the watchlist feature, we expected to work with fairly small watchlists,
and decided to use feature vector indexing for all hint matching. However, watchlists now contain
several hundred thousand clauses, and evaluating new clauses against the watchlist has become a
major bottleneck. To reduce this bottleneck, we have split the watchlist index into a pair of unit and
non-unit clause indices, to decrease access times by storing fewer clauses in either by using the most
appropriate indexing technique for either set. For a similar idea see [3].

Unit clause index We have implemented a new unit clause index in E based on fingerprint index-
ing. Since this is a technique for term and not clause indexing we exploit the structure of unit clauses
to generate an indexing representation for the given unit clause. We use the fact that all unit clauses
are of the form {lterm ≃ ̇ rterm} to construct a new term, represented by a $𝐸𝑄𝑁 cell of the form
≃ ̇ (lterm, rterm), over which we calculate the fingerprint. We do that by alternating between lterm
and rterm for sampling positions. Since all indexed terms start with one kind of equality symbol (e.g.
≃ or ≄) we can skip it when constructing the fingerprint for a term. The 𝜖 position is therefore never
sampled.

Clauses that are not orientable are inserted twice into the index since changing the orientation of a
clause also changes its fingerprint. In the worst-case this would lead to the size of index doubling. We
therefore checked old runs of E and found that around 15% of clauses were not orientable and would
therefore be inserted twice. Although this is a considerate increase we guess that this would have
a negligible impact on performance while designing this data structure. Inserted clauses are simply
stored as a pointer in the leaf of the fingerprint trie using a splay tree.

We present an example index in Figure 2 which assumes an example fingerprint function FPW4
that samples at (1, 2, 1.1, 2.1) and 𝐹 = {𝑓 /2, 𝑔/1, 𝑎/0, 𝑏/0, 𝑐/0}.

g

g,f g,f,A

g,f,A,b 𝑔(X1) ≃ 𝑓 (𝑏, 𝑎)

g,f,A,A 𝑔(X1) ≃ 𝑓 (X2, 𝑏)

g,A g,A,A g,A,A,N
𝑔(X1) ≃ X2
𝑔(X1) ≃ X1

f f,c f,c,a f,c,a,N 𝑓 (𝑎) ≃ 𝑐

g

f

A

b

A

A

A N

f

c a N

Figure 2: Example unit clause index given FPW4

We have implemented several fingerprint functions to cover a wide variety of needs. We started



with functions that assume full equality in the terms they sample which means that they sample
both sides equally: NoIdx (no unit clause index), FPW2, FPW4, FPW6, FPW8 and FPW10 (see Table 1
for details). Although E is an equality based ATP system not all problems are purely equational
or equational at all. The same also applies to watchlists. E already categorizes problems based on
whether they are non-equational 𝑁 , somewhat equational 𝑆 and purely equational 𝑃 . We use the
same mechanism to classify the degree of equality in the given watchlists.

Based on that we alter the strategy used to sample the positions. This is since with increasingly
less equational watchlist the right side of a term is more likely to simply be $𝑡𝑟𝑢𝑒 and there is no
useful information to be sampled. To address this we also introduced a left only (marked with "L",
e.g. FPW2L) and a left leaning (marked with "LL", e.g. FPW2LL) version of each fingerprint function.
The left only version will skip position 𝜖 and continue to only sample positions on the left side,
e.g. FPW2L samples at 1, 1.1 and FPW6L at 1, 1.1, 1.1, 1.1.1, 1.2.1, 1.1.2. The left leaning version will
sample roughly between 2/3 and 3/4 of the positions from the left side, depending on the size of the
fingerprint function. Since FPW2 samples so few positions FPW2LL is the same function as FPW2L.
For an overview over all strategies please consult Table 1.

Strategy name Positions sampled

NoIdx -
FPW2 1, 2
FPW2L 1, 1.1
FPW2Flex FPW2 or FPW2L (see text)
FPW4 1, 2, 1.1, 2.1
FPW4L 1, 1.1, 1.2, 1.1.1
FPW4LL 1, 2, 1.1, 1.2,
FPW6 1, 2, 1.1, 2.1, 1.1.1, 2.1.1
FPW6L 1, 1.1, 1.1, 1.1.1, 1.2.1, 1.1.2
FPW6LL 1, 2, 1.1, 2.1, 1.1.1, 1.2.1
FPW6Flex FPW6 or FPW6L (see text)
FPW8 1, 2, 1.1, 1.2, 2.1, 2.2, 1.1.1, 2.1.1
FPW8L 1, 1.1, 1.2, 1.1.1, 1.2.1, 1.1.2, 1.1.1.1, 1.1.1.2
FPW8LL 1, 2, 1.1, 2.1, 1.1.1, 1.2.1, 1.1.2, 2.1.1
FPW10 1, 2, 1.1, 1.2, 2.1, 2.2, 1.1.1, 1.1.2, 2.1.1, 2.1.2
FPW10L 1, 1.1, 1.2, 1.1.1, 1.2.1, 1.1.2, 1.1.1.1, 1.2.1.1, 1.1.2.1, 1.1.1.2
FPW10LL 1, 2, 1.1, 2.1, 1.1.1, 1.2.1, 1.1.2, 2.1.1, 1.1.1.1, 2.1.1.1

Table 1
Sampling strategies overview

While the left leaning version surely is more useful for somewhat equational clause sets, using
the strategy will still result in many sampled positions that are non-existent and therefore not useful
when it comes to matching. We therefore propose yet another strategy to be used for partly equational
clause sets which we will denote by "*Flex" (e.g. FPW2Flex). A flex type strategy is one where we
first classify the input based on whether or not the right side of the term is $𝑡𝑟𝑢𝑒. We then use an L
type sampling method on the term if it is or a balanced one if it is not. On the one hand this allows
us to better exploit the structure of the given term while on the other hand this will result in the
index returning some terms that are not actually a match if they had been sampled with the same
fingerprint function. This is since now their fingerprints might be sampled from different positions.
While that seems troublesome at first this is not really an issue for two reasons: (i) It is unlikely that
this will affect many terms since one unmatchable symbol in the fingerprint will already reject the



match and (ii) since fingerprint indexing is an non-perfect indexing method to begin with we need
to check whether the given clause subsumes the every returned clause anyway. In the worst case we
will need to check slightly more results for subsumption.

We implemented all these options into E and made them available through Es domain-specific
language (DSL). On top of that we also implemented an automatic mode (available as "auto") that
maps a 𝑁 watchlist to an "LL" type function, an 𝑆 watchlist to an "L" type function and a 𝑃 watchlist
to a normal strategy. As a basis for that we used "FPW6" since we expect it to perform well across
many different watchlists.

Clause abstraction We have also implemented a clause abstraction mechanism in E for the watch-
list feature. The mechanism supports two modes of operation: One abstracting constants and one
abstracting skolem symbols. If turned on our implementation will rewrite all clauses that are inserted
into or checked against the watchlist to adhere to the abstraction. This effectively allows for less
precise matches against the watchlist.

If constants are to be abstracted all constants are rewritten to the first constant met during the
proof for an untyped problem and for a typed one to the first constant met with the appropriate sort.
That is given a clause 𝑐1 = {𝑓 (𝑏, 𝑐) ≃̇ 𝑔(𝑋1), 𝑔(𝑋1) ≃̇ 𝑔(𝑎)}, 𝐹 = {𝑓 /2, 𝑔/1, 𝑎/0, 𝑏/0, 𝑐/0} and the first met
constant 𝑎 we will rewrite the clause 𝑐1 to 𝑐

′

1
= {𝑓 (𝑎, 𝑎) ≃̇ 𝑔(𝑋1), 𝑔(𝑋1) ≃̇ 𝑔(𝑎)} assuming 𝑎, 𝑏, 𝑐 share

the same sort.
The mechanism works similarly for abstracting skolem symbols where we rewrite them to the first

met skolem symbol with the same type. We have also made this an available option to turn on through
Es DSL.

4. Experimental Results

We tested on Intel Xeon E5-2698 v3 CPUs at 2.30 GHz using the Linux 3.19.0-25-generic kernel in 64-
bit mode. All tests were run with a time limit of 720 seconds and a limit of 10.000 generated clauses.
For orchestrating the experiments we used the ATPy library1.

4.1. Unit clause index

For testing we used a strategy2 provided by the automated reasoning group at Czech Technical Uni-
versity in Prague who also provided a watchlist based on previous runs of the system. The watchlist
contained 367.408 clauses of which 153.997 are unit. The strategy was run against a tenth of the
Mizar 40 project [4] amounting to 5787 problems. We have made all of this data and the E version
used available at http://eprover.eu/E-eu/SoftWatch.html.

Table 2 shows different versions of the index and their performance. Observe that we compare our
implementation against a version of E that only uses feature vector indexing as an indexing technique
for the watchlist. This version is refereed to as “Conventional” or “NoIdx” (no index) since it is missing

1Written by Jan Jakubův; Online accessible at https://github.com/ai4reason/pyprove
2The exact options given were: −− definitional −cnf=24 −− split−aggressive −−simul−paramod −−forward−context−

sr −−destructive−er−aggressive −−destructive−er −−prefer− initial −clauses −tKBO6 −winvfreqrank −c1 −Ginvfreq −F1
−−delete−bad−limit=150000000 −WSelectMaxLComplexAvoidPosPred −H’(1∗ConjectureTermPrefixWeight(
PreferProcessed ,1,3,0.1,5,0,0.1,1,4) ,1∗ConjectureTermPrefixWeight( PreferWatchlist ,1,3,0.5,100,0,0.2,0.2,4) ,1∗
Refinedweight( PreferWatchlist ,4,300,4,4,0.7) ,1∗RelevanceLevelWeight2( PreferWatchlist

,0,1,2,1,1,1,200,200,2.5,9999.9,9999.9) ,1∗ StaggeredWeight( PreferWatchlist ,1) ,1∗ SymbolTypeweight(
PreferWatchlist ,18,7,−2,5,9999.9,2,1.5) ,2∗Clauseweight( PreferWatchlist ,20,9999,4) ,2∗ConjectureSymbolWeight(
PreferWatchlist ,9999,20,50,−1,50,3,3,0.5) ,2∗ StaggeredWeight( PreferWatchlist ,2) ) ’ −−free−numbers

http://eprover.eu/E-eu/SoftWatch.html


All runs Successfull runs3

Strategy # proofs Total time Mean time Total time Mean time

NoIdx (baseline) 1679 462880.8 79.9 59131.6 35.2
FPW2 1685 397159.8 68.6 49357.8 29.2
FPW2L 1694 346104.6 59.7 37460.5 22.1
FPW2Flex 1686 405478.3 70.0 50220.2 29.7
FPW4 1684 402009.4 69.4 49601.9 29.4
FPW4L 1688 413876.4 71.5 51165.3 30.3
FPW4LL 1688 416879.8 72.0 51639.3 30.5
FPW6 1685 397808.6 68.7 49398.9 29.3
FPW6L 1688 407316.0 70.3 50617.3 29.9
FPW6LL 1685 408941.3 70.6 50594.4 30.0
FPW6Flex 1689 407502.0 70.4 50673.4 30.0
FPW8 1686 399834.2 69.1 49678.4 29.4
FPW8L 1689 407277.4 70.3 50638.9 29.9
FPW8LL 1686 408242.1 70.5 50574.7 29.9
FPW10 1685 400546.6 69.2 49778.3 29.5
FPW10L 1689 409653.3 70.7 51000.8 30.1
FPW10LL 1686 409560.7 70.7 50808.7 30.1

Table 2
Performance of various indices (in seconds).

the unit clause index. To measure performance we observe the runtime E given the set of problems.
We chose to compare runtimes since the proof search for any given problem nearly always stays the
same between different indexing strategies. To verify that the runs indeed stay the same we compared
a random subsample of proof searches. In our comparisons we will differentiate between the runtime
for all problems and only those that were deemed successful 3.

We expected to find similar results compared with the original fingerprint paper [8]. Meaning that
we expected to find that a fingerprint size of 6 is a good balance of trie depth and clause distribution.
Although comparing FPW6 with the no indexed version yields an improvement of 16.35% for all runs
and 19.65% for all runs that were successful we find that other strategies were even more successful.
Surprisingly FPW2L yielded the best performance performing 28.86% for all runs and 44.87% for all
successful runs.

While this index increases performance on average Figure 3 shows that the actual performance is
dependent on the problem itself. Please note the figures’ logarithmic scale. Notice that most strategies
perform very similar. This very likely is an effect of testing on the same watchlist where all strategies
perform well, but one can exploit some inherent structure of the watchlist better. The “auto” strategy
is not listed since for the watchlist tested it would evaluate to the performance of FPW6LL.

Lastly, we were interested in examining wether the different strategies solve the same problems or
instead if they are proving different problems. We found that they overwhelmingly do. That is to say
the intersection of problems solved by all strategies, which is a very limiting factor, is 1668 problems
big (includes the baseline). Given that most strategies solve around 1680 problems this means that
the overlap of solved problems is 99%. We compiled the runtimes on these 1668 problems in Table 3.

The problems solved by all strategies are very likely the easier problems in the whole set. We
therefore might expect the performance timings to be better than the the runtimes observed in Table 2

3Runs with exit status "Theorem" or "CounterSatisfiable"



(a) FPW2L runtime comparison (in seconds). (b) FPW6 runtime comparison (in seconds).

Figure 3: Conventional vs FPW6 vs FPW2L

Index Total time Mean time

NoIdx (baseline) 58499.3 35.1
FPW2 48716.8 29.1
FPW2L 36409.3 21.8
FPW4 49043.4 29.3
FPW4L 50299.4 30.1
FPW4LL 50757.9 30.4
FPW6 48756.3 29.2
FPW6L 49765.5 29.8
FPW6LL 49932.8 29.9
FPW8 48968.1 29.3
FPW8L 49727.5 29.7
FPW8LL 49824.9 29.8
FPW10 49061.0 29.3
FPW10L 50070.1 30.0
FPW10LL 50044.4 29.9

Table 3
Performance of various indices on problems every strategy solved (in seconds).

but this is not the case.

4.2. Validating the use of fingerprint indexing

One central claim of this paper is that exploiting the structure of unit clauses leads to better perfor-
mance compared to a standard feature vector index. This claim can easily be verified by comparing
the performance of E when either indexing technique is only filled with unit clauses. This can be
achieved by using a watchlist that only contains unit clauses. We do that by removing all non-unit
clauses from the watchlist described above. We did not alter the set of problems.



All runs Successfull runs3

Index # proofs Total time Mean time Total time Mean time

FVI (baseline) 1409 80189.6 13.8 13935.6 9.8
FPW2 1412 31460.9 5.4 6560.4 4.6
FPW2L 1410 43707.7 7.6 9434.5 6.7
FPW4 1415 45400.1 7.8 10006.0 7.0
FPW4L 1413 42495.9 7.3 9466.7 6.7
FPW4LL 1409 45186.3 7.8 9937.3 7.0
FPW6 1413 46181.0 7.9 10159.6 7.1
FPW6L 1415 41666.4 6.3 8928.4 7.2
FPW6LL 1414 38294.2 6.6 8182.9 5.8
FPW8 1412 46142.1 7.9 10188.5 7.2
FPW8L 1416 43763.7 7.6 9622.5 6.8
FPW8LL 1410 44122.2 7.6 9695.4 6.8
FPW10 1416 46537.6 8.0 10262.2 7.2
FPW10L 1410 45082.0 7.8 9967.4 7.1
FPW10LL 1409 43593.1 7.5 9666.9 6.9

Table 4
Performance of various indices on a unit clause only watchlist (in seconds).

Table 4 shows that a fingerprint index using the FPW2 fpf significantly outperforms all other used
indices but especially standard feature vector indexing. This does indeed verify that exploiting the
structure of unit clauses for sampling yields better performance. Notice that the fastest strategy FPW2
does not solve the most problems. This is most likely due to random variations in the proof search.

(a) All runs (in seconds). (b) Successful runs (in seconds).

Figure 4: FPW2 vs standard Feature Vector Indexing using only unit clauses.

Figure 4 shows that this is true across all problems when comparing runtimes. Interestingly a trie
depth of only two outperforms all other strategies tried which goes against the original papers finding
where a balance of trie depth and leaf size performs best [8].



4.3. Clause Abstraction

We used a similar test setup for determining performance of the clause abstraction feature. We have
used the previous options for the prover (as stated in footnote 2) together with either adding the
flag −−watchlist−clause− abstraction =constant or −−watchlist−clause− abstraction =skolem respec-
tively. The results are shown in Table 5.

All runs Successfull runs3

Strategy # proofs Total time Mean time Total time Mean time

No 1679 462880.8 79.9 59131.6 35.2
Constant 1612 796494.2 137.6 96920.8 60.1
Skolem 1612 770005.3 133.0 96920.8 60.1

Table 5
Performance of various clause abstraction strategies (in seconds).

(a) Constant abstraction (in seconds). (b) Skolem symbol abstraction (in seconds).

Figure 5: Conventional vs clause abstraction

We find that the performance varies from problem to problem. This is especially true when ab-
stracting constant symbols where some problems started to run out of time. Compare this to just one
problem for all other strategies tested (see Figure 3). This effect is clearly visible in the scatter plot
Figure 5a.

5. Future Work

We have identified at least two more interesting areas of study. Firstly instead of rewriting a skolem
symbol to one of the same arity, we would also be interested in rewriting complete skolem terms to
a constant. Secondly, we are also interested in generalizing the idea of splitting the watchlist indices
into even more smaller ones to increase performance.



6. Conclusion

In this work, we have presented a special unit clause index for the watchlist feature based on fin-
gerprint indexing. We explored the performance for several strategies with that index given a large
watchlist of 300 000 clauses and showed that the index largely increases performance compared to
a version without the index. We conclude that the performance of the index is dependent on the
watchlist, its structure and the strategy used. We believe that most watchlists can benefit from this
index.

We have also introduced some mechanism to E that allow for less precise matches on the watchlist.
While that showed more mixed results in terms of performance it is an interesting topic that would
benefit from additional exploration.

Acknowledgments

Special thanks to the Automated Reasoning Group at Czech Technical University in Prague for pro-
viding the watchlist, the problem files and the experimental environment.

References

[1] Leo Bachmair and Harald Ganzinger. Rewrite-Based Equational Theorem Proving with Selection
and Simplification. Journal of Logic and Computation, 3(4):217–247, 1994.

[2] Zarathustra Goertzel, Jan Jakubův, Stephan Schulz, and Josef Urban. ProofWatch: Watchlist
guidance for large theories in E. In Jeremy Avigad and Assia Mahboubi, editors, Interactive
Theorem Proving: 9th International Conference, Oxford, UK, pages 270–288. Springer, 2018.

[3] Zarathustra Goertzel, Jan Jakubuv, and Josef Urban. Enigmawatch: Proofwatch meets ENIGMA.
CoRR, abs/1905.09565, 2019.

[4] Cezary Kaliszyk and Josef Urban. Mizar 40 for mizar 40. CoRR, abs/1310.2805, 2013.
[5] William McCune. Otter 2.0. In Mark E. Stickel, editor, 10th International Conference on Automated

Deduction, pages 663–664, Berlin, Heidelberg, 1990. Springer Berlin Heidelberg.
[6] William McCune. Experiments with discrimination-tree indexing and path indexing for term

retrieval. J. Autom. Reason., 9(2):147–167, October 1992.
[7] Stephan Schulz. E – A Brainiac Theorem Prover. Journal of AI Communications, 15(2/3):111–126,

2002.
[8] Stephan Schulz. Fingerprint Indexing for Paramodulation and Rewriting. In Bernhard Gramlich,

Ulrike Sattler, and Dale Miller, editors, Proc. of the 6th IJCAR, Manchester, volume 7364 of LNAI,
pages 477–483. Springer, 2012.

[9] Stephan Schulz. Simple and Efficient Clause Subsumption with Feature Vector Indexing. In
Maria Paola Bonacina and Mark E. Stickel, editors, Automated Reasoning and Mathematics: Essays
in Memory of William W. McCune, volume 7788 of LNAI, pages 45–67. Springer, 2013.

[10] Stephan Schulz, Simon Cruanes, and Petar Vukmirović. Faster, higher, stronger: E 2.3. In Pacal
Fontaine, editor, Proc. of the 27th CADE, Natal, Brasil, number 11716 in LNAI, pages 495–507.
Springer, 2019.

[11] Stephan Schulz and Martin Möhrmann. Performance of clause selection heuristics for saturation-
based theorem proving. In Nicola Olivetti and Ashish Tiwari, editors, Proc. of the 8th IJCAR,
Coimbra, volume 9706 of LNAI, pages 330–345. Springer, 2016.



[12] Stephan Schulz and Martin Möhrmann. Performance of clause selection heuristics for saturation-
based theorem proving. In Proceedings of the 8th International Joint Conference on Automated
Reasoning - Volume 9706, page 330–345, Berlin, Heidelberg, 2016. Springer-Verlag.

[13] Robert Veroff. Using hints to increase the effectiveness of an automated reasoning program:
Case studies. Journal of Automated Reasoning, 16(3):223–239, Jun 1996.


	1 Introduction
	2 Preliminiaries
	2.1 Proof search
	2.2 Watchlist
	2.3 Indexing techniques

	3 Implementation
	4 Experimental Results
	4.1 Unit clause index
	4.2 Validating the use of fingerprint indexing
	4.3 Clause Abstraction

	5 Future Work
	6 Conclusion

