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1 Introduction

First-order Automated Theorem Proving (ATP) is one of the oldest and most
developed areas of automated reasoning. Today, the most widely used first-order
provers are fully automatic and process first-order logic with equality. Many
state-of-the-art ATP systems consist of a clausifier, translating a full first-order
problem specification into clause normal form, and a saturation procedure that
tries to derive the empty clause to complete a proof by contradiction. Satura-
tion procedures are typically based on variants of the superposition calculus,
often combining restricted forms of paramodulation with resolution and strong
redundancy elimination techniques, in particular simplification via rewriting and
subsumption. The first widely used ATP system in this mold was Bill McCune’s
Otter [38], now succeeded by Prover9 [36]. Other major examples include Vam-
pire [69, 49], SPASS [70, 72], and E [55, 57].

Proof production was not a primary concern early on, and provers offered
different levels of support for explicit proof objects. Information was output
in a variety of formats. Nowadays, proof object output is supported by most
major provers, and many systems support the syntax used in the Thousands
of Problems for Theorem Provers (TPTP) project [65] for proof output. In this
syntax, proofs are represented as directed acyclic graphs (DAGs), where each
node is annotated with a clause or formula used in the proof. The original axioms,
assumptions and goals are nodes with in-degree 0, i.e. they correspond to leaves
if the DAG is unfolded into a proof tree. Inner nodes represent derived clauses
and formulas, linked to the premises used in their derivation via incoming edges.
The final node of the proof graph (i.e. the root in a proof tree) is the empty
clause, concluding the proof by contradiction. Nodes are annotated with the
inference(s) used to produce them.

The main difficulty in obtaining proof objects is the very high rate of infer-
ences and simplifications during proof search. Most of these inferences do not
contribute to the final proof, but the actual proof steps can only be identified a-
posteriori. Hence careful book-keeping is necessary. If done naively, the amount
of data quickly becomes unmanageable. Different provers have taken different
approaches to handling this problem, either dumping all derivation steps to an



external medium, keeping a full record of all inferences in main memory, or uti-
lizing invariants of the proof search algorithm that enable proof reconstruction
from less extensive records.

Both SPASS and E are mainstream proof-producing provers available under
open-source/free software licenses. E in particular implements the TPTP stan-
dard for proof output and includes a derivation not only for the saturation, but
also for the clausification steps.

2 Calculi and Proof Systems

It was understood early on that showing the validity of a sentence in first-order
logic can be reduced to demonstrating the unsatisfiability of a set of clauses.
Indeed, for a long time “first order theorem proving” was nearly synonymous
with “showing unsatisfiability of a formula in clause normal form”. This, again,
can be reduced to finding an unsatisfiable set of ground instances, or to deduce
the empty clause (an explicit witness of unsatisfiability) from a set of clauses.
Major early milestones were the original Davis-Putnam algorithm [10], which
combined the generation of ground instances with a separate propositional sat-
isfiability test, and Robinson’s resolution [51], which uses unification to integrate
instantiation and the search for an explicit contradiction in one simple inference
process.

Resolution was the first major example of a saturating calculus. The search
state is represented by a set of clauses. New clauses are systematically deduced
using a set of inference rules and added to the search state. The aim is to
eventually derive the empty clause. Resolution has proved to be an extremely
productive line of research, and spawned a number of refinements, including or-
dered resolution [48] and hyper-resolution [52]. The general saturation principle
and many of the inferences and techniques survive into current ATP systems.

Paramodulation [50] was introduced as a way to handle the important equal-
ity relation with an explicit inference rule. However, pure paramodulation was no
significant improvement over resolution with an axiomatic description of equal-
ity. In 1970, Knuth and Bendix introduced completion [25] as a way to efficiently
handle some pure unit equality problems, using a term ordering to transform a
set of equations into a confluent rewrite rule system. This was later extended to
completion without failure [20, 2], which provides a complete proof method for
unit-equational theories. In contrast to pure resolution calculi, completion based
methods make extensive use of simplification, in particular through rewriting.
Simplification replaces a clause in the search state by a different, in some sense
simpler, clause, which can be deduced from the original one (the main premise)
and possibly additional clauses (the side premises).

Resolution and completion-based techniques have merged in the current gen-
eration of superposition calculi [3, 4, 40]. These calculi combine paramodulation
and (possibly) resolution inferences restricted by literal selection and orderings
on terms and literals with powerful redundancy elimination techniques, in par-
ticular rewriting and subsumption. Most practical implementations combine su-



perposition with variants of resolution to handle non-equational literals, others
(in particular E) encode non-equational literals and handle them in a uniform
way via superposition and simplification.

Figure 1 shows examples of the most prolific generating inference rules (su-
perposition) and the most important simplification rules (unconditional rewrit-
ing) as an example of the type of rules used in saturating calculi for first-order
deduction. There are additional generating inference rules (in particular equal-
ity factoring and equality resolution) that are necessary for completeness of the
calculus. However, in practical applications, typically more than 95% of generat-
ing inferences are superposition or resolution inferences. Simplification has been
shown to be critical for the success of the proof search, and simplification effort
dominates the overall effort of most saturating first-order provers.

(SN)
s' t ∨ S u 6'v ∨R

σ(u[p← t] 6'v ∨ S ∨R)

if σ = mgu(u|p, s), σ(s) 6< σ(t), σ(u) 6<
σ(v), σ(s ' t) is eligible for paramodula-
tion, σ(u 6' v) is eligible for resolution, and
u|p /∈ V .

(RN)
s' t u 6'v ∨R

s' t u[p← σ(t)] 6'v ∨R
if u|p = σ(s) and σ(s) > σ(t).

Note that superposition is a generating inference (symbolized by the single line
separating premises and conclusion), while rewriting is a simplifying inference (the
conclusions replace the premises in the search space). The rules are instantiated
with a simplification ordering < on terms, lifted to literals and clauses, and op-
tionally a literal selection function. See e.g. [55] for details of the notation. These
rules are complemented by dual rules for positive literals with slightly different
conditions for the inference.

Fig. 1. Exemplary inference rules of the superposition calculus

Over time, there have been various other approaches to the CNF refuta-
tion problem. These include model elimination [32, 31] implemented, e.g., in
SETHEO [30, 39] and leanCOP [44], model evolution [6] implemented in Dar-
win [5], and modern instantiation-based methods as implemented in iProver [27].
These do not naturally generate a derivation-based proof. However, such a proof
can generally be extracted from information gathered during the proof search.

CNF translation has been performed using straightforward algorithms as,
e.g., described in [33], more often than not by tools external to the main refu-
tation prover. As a result, the clausification process was often not considered
part of the proof search, and was not represented in any proof object. FLOT-
TER [70] first demonstrated that advanced clausification methods as described
in [43] can significantly increase the class of first-order problems that can be



solved by automated theorem provers. However, FLOTTER (and its accompa-
nying prover SPASS) do not provide the clausification steps in a form useful for
a proof object. E and Vampire implement clausifiers using similar techniques
as FLOTTER, and are able to provide complete proof objects, including both
clausification and saturation.

3 Proof Search

All mainstream saturating provers are based on some version of the given-clause
algorithm. This algorithm represents the proof state by two distinct sets of
clauses, the set P of processed clauses (initially empty) and the set U of un-
processed clauses. In its simplest version, it moves clauses, one at a time, from
U to P , at each step adding all new clauses that can be derived from the given
clause and other premises in P using a single inference to U . Thus it maintains
the invariant that all direct inferences between clauses in P are represented in
P ∪U . Provers differ in how they add simplification to this algorithm. The DIS-
COUNT variant, first realized in the eponymous system [11] uses only clauses
from P as side premises for simplification, and simplifies P , the given clause, and
newly generated clauses. It is implemented in E, and, as an alternate method,
in SPASS and Vampire. The other main variant is named after Otter. It uses all
clauses in U and P as side premises for simplification. It is implemented e.g. in
Otter, Prover9, and, as an alternate method, in SPASS and Vampire.

For both of these variants, one critical parameter is the order in which given
clauses are selected from U . Completeness of the proof procedure requires a
rather weak fairness criterion (usually implemented by making sure that no
clause is allowed to remain in U forever). However, this leaves a large amount of
freedom, and heuristics for clause selection have a large effect on the practical
power of an ATP system.

A major challenge for reconstructing proof objects is simplification. Simpli-
fication modifies clauses in the search state or even removes them completely.
Thus, derivations that reference clauses later affected by simplification are left
with dangling references. On the other hand, simplification is crucial for the
success of theorem provers. Section 5 discusses possible solutions.

4 Proof Formats

Historically, there has been a large number of languages for writing proof prob-
lems, and a different and only partially overlapping set of languages for writing
proof objects.

Some languages, e.g., the LOP format [53], were designed for writing prob-
lems, and do not support writing solutions. Some languages for writing solu-
tions are limited in scope, e.g., the PCL language [14] is limited to solutions
to equational problems, and the OpenTheory language [21] is designed only to
be a computer-processable form for systems that implement the HOL logic [17].



There are some general purpose languages that have features for writing deriva-
tions, e.g., Otter’s proof object format [37, 34] and the DFG syntax [18], but
none of these (that we know of) also provide support for writing finite interpre-
tations. Mark-up languages such as OmDoc [26], OpenMath [9], and MathML
[9] are quite expressive (especially for mathematical content), but their XML
based format is not suitable for human processing. Most of these languages have
not seen much use outside the groups that originally developed them.

The current standard for writing first-order problems and solutions is the
TPTP language [65]. The language was originally developed to realize the Thou-
sands of Problems for Theorem Provers library [63]. Version 1 of the language
supported only clause normal form (CNF), version 2 added support for full first-
order logic (FOF), and version 3 unified the syntax for CNF and FOF, and
added the ability to represent proof objects, derivations, and models. Version 3
has also been conservatively extended to cover other logics, in particular simply
typed first-order logic and typed higher-order logic.

The language was designed to be suitable for writing both ATP problems
and ATP solutions, to be flexible and extensible, and easily processed by both
humans and computers. The syntax shares many features with Prolog, a lan-
guage that is widely known in the ATP community. Indeed, with a few operator
definitions, units of TPTP data can be read in Prolog using a single read/1 call,
and written with a single writeq/1 call. The features were designed for writ-
ing derivations, but their flexibility makes it possible to write a range of DAG
structures. Additionally, there are features of the language that make it possible
to conveniently specify finite interpretations. The ability of the TPTP language
to express solutions as well as problems, in conjunction with the simplicity of
the syntax, sets it apart from other languages used in ATP. Overall, the TPTP
language is more expressive and usable than other languages. Its use has been
bolstered both by its use in the CADE ATP System Competition (CASC), and
also by its support in many different provers and tools.

The TPTP language definition3 uses a modified Backus-Naur Form (BNF)
meta-language that separates semantic, syntactic, lexical, and character-macro
rules. Syntactic rules use the standard ::= separator, e.g.,

<source> ::= <general term>

When only a subset of the syntactically acceptable values for a non-terminal
make semantic sense, a second rule for the non-terminal is provided using a :==

separator, e.g.,
<source> :== <dag source> | <internal source> | , etc.

Any further semantic rules that may be reached only from the right hand side
of a semantic rule are also written using the :== separator, e.g.,

<dag source> :== <name> | <inference record>

This separation of syntax from semantics eases the task of building a syntactic
analyzer, as only the ::= rules need be considered. At the same time, the se-
mantic rules provide the detail necessary for semantic checking. The rules that
produce tokens from the lexical level use a ::- separator, e.g.,

3 http://www.tptp.org/TPTP/SyntaxBNF.html



<lower word> ::- <lower alpha><alpha numeric>*

with the bottom level character-macros defined by regular expressions in rules
using a ::: separator, e.g.,

<lower alpha> ::: [a-z]

The top level building blocks of TPTP files are annotated formulae, include di-
rectives, and comments. An annotated formula has the form:

language(name, role, formula[, source[, useful info]]).
The languages currently supported are thf - typed higher-order form, tff -
typed first-order form, fof - first order form, and cnf - clause normal form. The
role gives the user semantics of the formula, e.g., axiom, lemma, conjecture,
and hence defines its use in an ATP system - see the BNF for the list of recog-
nized roles and their meaning. The logical formula uses a consistent and easily
understood notation [64] that can be seen in the BNF. The source describes
where the formula came from, e.g., an input file or an inference. The useful info
is a list of arbitrary useful information, as required for user applications. The
useful info field is optional, and if it is not used then the source field becomes
optional. An example of a FOF formula, supplied from a file, is:

fof(formula_27,axiom,

! [X,Y] :

( subclass(X,Y) <=>

! [U] :

( member(U,X) => member(U,Y) )),

file(’SET005+0.ax’,subclass_defn),

[description(’Definition of subclass’), relevance(0.9)]).

An example of an inferred CNF formula is:

cnf(175,lemma,

( rsymProp(ib,sk_c3)

| sk_c4 = sk_c3 ),

inference(factor_simp,[status(thm)],[

inference(para_into,[status(thm)],[96,78,theory(equality)])]),

[iquote(’para_into,96.2.1,78.1.1,factor_simp’)]).

The source field of an annotated formula is most commonly a file record or
an inference record. A file record stores the name of the file from which the
annotated formula was read, and optionally the name of the annotated formula
as it occurs in the file (this may be different from the name of the annotated
formula itself, e.g., if the ATP system renames the annotated formulae that
it reads in). An inference record stores three items of information about an
inferred formula: the name of the inference rule; a list of “useful information
items”, and a list of the parents.

There currently is no fixed standard of supported inference rules, i.e. the in-
ference rule is simply a name provided by the ATP system. However, the “useful
information” field allows the system to specify the logical relation between a
derived formula and its parents in the SZS ontology [64] – commonly, inferred
formulae are theorems of their parents, but in some cases the semantic rela-
tionship is weaker, as in Skolemization steps. The parents are either names of



existing clauses and formulas, nested inference records, or theory records. A the-
ory record is used when the axioms of some theory are built into the inference
rule.

A derivation is a directed acyclic graph (DAG) whose leaf nodes are formulae
from the input, whose interior nodes are formulae inferred from parent formulae,
and whose root nodes are the final derived formulae. For example, a proof of a
FOF theorem from some axioms, by refutation of the CNF of the axioms and
negated conjecture, is a derivation whose leaf nodes are the FOF axioms and
conjecture, whose internal nodes are formed from the process of clausification
and then from inferences performed on the clauses, and whose root node is the
false formula.

The information required to record a derivation is, minimally, the leaf for-
mulae, and each inferred formula with references to its parent formulae. More
detailed information that may be recorded and useful includes: the name of the
inference rule used in each inference step; sufficient details of each inference step
to deterministically reproduce the inference; and the semantic relationships of
inferred formulae with respect to their parents. The TPTP language is suffi-
cient for recording all this, and more. A comprehensively recorded derivation
provides the information required for various forms of processing, such as proof
verification [60], proof visualization [59], and lemma extraction [15].

A derivation written in the TPTP language is a list of annotated formulae.
Each annotated formula has a name, a role, and the logical formula. Each inferred
formula has an inference record with the inference rule name, the semantic
relationship of the formula to its parents as an SZS ontology value in a status

record, and a list of references to its parent formulae. For example, consider the
following toy FOF problem, to prove the conjecture from the axioms.

%------------------------------------------------------------------------

%----All (hu)men are created equal. John is a human. John got an F grade.

%----There is someone (a human) who got an A grade. An A grade is not

%----equal to an F grade. Grades are not human. Therefore there is a

%----human other than John.

fof(all_created_equal,axiom,(

! [H1,H2] : ( ( human(H1) & human(H2) ) => created_equal(H1,H2) ) )).

fof(john,axiom,(

human(john) )).

fof(john_failed,axiom,(

grade(john) = f )).

fof(someone_got_an_a,axiom,(

? [H] : ( human(H) & grade(H) = a ) )).

fof(distinct_grades,axiom,(

a != f )).

fof(grades_not_human,axiom,(

! [G] : ~ human(grade(G)) )).

fof(someone_not_john,conjecture,(

? [H] : ( human(H) & H != john ) )).

%--------------------------------------------------------------------



Figure 4 shows a derivation recording a proof by refutation of the CNF,
adapted (removing inferences that simply copy the parent formula) from the
one produced by the ATP system E 1.8 [57].

5 Proof Production

As described above, current mainstream theorem provers combine a clausifier
that converts a formula in full first-order logic into clause normal form, with a
saturating refutation core that tries to derive the empty clause from the clause
set. Proof objects are derivation graphs, showing at least how the empty clause
was derived from the initial clause set, and should also show how the initial
clauses were generated from the first-order axioms.

While this is fairly straightforward without simplification, it becomes much
harder if simplification is present. For reasons of both time and space efficiency,
most provers use destructive simplification (i.e., the old clause is modified in
memory or discarded and replaced by the modified copy). In particular, some
clauses that have been used in the proof may not be present in the final clause
set. There are several approaches to dealing with this problem.

Older versions of E wrote all intermediate steps into a protocol file and ex-
tracted the needed inferences in a post-processing step. This results in about
100% to 200% overhead in proof time, and fails for proof searches beyond a
few minutes because the amount of data becomes unmanagable even for mod-
ern computers. Recent versions of E ensure that versions of clauses that have
participated in generating inferences or as side premises in simplifications (a
proportionally very small number of clauses) are archived in memory. This re-
sulted in barely measurable overhead [57]. SPASS retains the full history and
all versions of each clause in memory, and pays an overhead of about 100%.4

Prover9 has a concept of “kept clauses”, i.e. clauses the system has decided it
will use or consider for future inferences and simplifications. If a “kept” clause
would be affected by simplification, it is not completely deleted, but deactivated
and, if necessary, replaced in the proof state by a simplified copy.

6 Proof Applications

The first and original use of proof objects is the analysis of proofs by human
users. This helps people to understand the proof and the application domain, to
verify the correctness of the proof, but also to understand the behaviour of the
ATP search process.

First-order ATP systems have directly been used for significant mathemati-
cal work, most famously for McCune’s (and EQP’s) proof of the Robbins prob-
lem [35]. In such cases, both manual and automatic proof checking increases the
trust placed into the proof and hence the validity if the theorem. Proof checking,
analysis, and visualization is supported by tools as described in the next section.

4 Christoph Weidenbach, personal communication.



%--------------------------------------------------------------------

fof(c_0_0, conjecture,

(?[X3]:(human(X3)&X3!=john)),

file(’CreatedEqual.p’, someone_not_john)).

fof(c_0_1, axiom,

(?[X3]:(human(X3)&grade(X3)=a)),

file(’CreatedEqual.p’, someone_got_an_a)).

fof(c_0_2, axiom,

(grade(john)=f),

file(’CreatedEqual.p’, john_failed)).

fof(c_0_3, axiom,

(a!=f),

file(’CreatedEqual.p’, distinct_grades)).

fof(c_0_4, negated_conjecture,

(~(?[X3]:(human(X3)&X3!=john))),

inference(assume_negation,[status(cth)],[c_0_0])).

fof(c_0_5, negated_conjecture,

(![X4]:(~human(X4)|X4=john)),

inference(variable_rename,[status(thm)],

[inference(fof_nnf,[status(thm)],[c_0_4])])).

fof(c_0_6, plain,

((human(esk1_0)&grade(esk1_0)=a)),

inference(skolemize,[status(esa)],

[inference(variable_rename,[status(thm)],[c_0_1])])).

cnf(c_0_7,negated_conjecture,

(X1=john|~human(X1)),

inference(split_conjunct,[status(thm)],[c_0_5])).

cnf(c_0_8,plain,

(human(esk1_0)),

inference(split_conjunct,[status(thm)],[c_0_6])).

cnf(c_0_9,plain,

(grade(john)=f),

inference(split_conjunct,[status(thm)],[c_0_2])).

cnf(c_0_10,negated_conjecture,

(john=esk1_0),

inference(spm,[status(thm)],[c_0_7, c_0_8])).

cnf(c_0_11,plain,

(grade(esk1_0)=f),

inference(rw,[status(thm)],[c_0_9, c_0_10])).

cnf(c_0_12,plain,

(grade(esk1_0)=a),

inference(split_conjunct,[status(thm)],[c_0_6])).

cnf(c_0_13,plain,(a!=f),

inference(split_conjunct,[status(thm)],[c_0_3])).

cnf(c_0_14,plain,($false),

inference(sr,[status(thm)],

[inference(spm,[status(thm)],[c_0_11, c_0_12]), c_0_13]),

[’proof’]).

%--------------------------------------------------------------------

Fig. 2. Example of a simple TPTP proof



First order ATP systems are increasingly integrated into higher-order inter-
active proof assistants. A prominent example is the Sledgehammer tool [45, 8]
in Isabelle [42]. Via the interactive system, ATP systems contribute to large
scale projects like the formal proof of Kepler’s conjecture in Flyspeck [19] or the
verification of the L4 micro-kernel [24, 23].

In these applications, first-order proofs are used to guide the reconstruction
of a proof in the native calculus of the embedding ITP system, which uses only
the small set of trusted inferences of the very kernel of the system.

Another application is the validation and debugging not only of proofs,
but also of specifications. Often large, manually assembled ontologies such as
SUMO [41] or CYC [29, 47] contain unintended contradictions. Since most first-
order systems are based on refutational calculi, they can be employed to find
such contradictions, either directly on the full corpus, or a-posteriori, by check-
ing if a given proof uses the negated conjecture to find the contradiction, or if it
is based on a contradiction in the axioms. Because of the powerful goal-directed
heuristics used by modern provers, the second approach often is more successful.

Finally, proofs reveal a large amount of information about the domain and
reasoning strategies. As such, they have been mined for useful information to
help further proof attempts. One approach is the learning of heuristic evaluation
functions for the selection of the given clauses in the refutation procedure, e.g.,
by annotating patterns [13, 16, 54] and other abstractions [56] of clauses. While
heuristic evaluation functions guide the selection of the given clauses, for domains
with large background theories, processing the problem specification may alone
overwhelm a theorem prover. To overcome this, machine learning techniques have
been used to extract information from proofs to guide the selection of a subset
of the axioms and assumptions that is likely to be useful in a subsequent proof
search [1, 28]. A successful example of this has been the use of the MaLARea
system [67] in emulating the development of the Flyspeck project [22].

Finding proofs can be resource-intensive. Many applications of proofs can
profit by using existing proofs from a proof repository. The Thousands of So-
lutions for Theorem Provers (TSTP) solution library [61, 62] contains proofs
for many TPTP problems. In most cases, it contains proofs by several differ-
ent ATP systems, thus facilitating comparisons of the different approaches to
theorem proving.

7 Proof Consumption

Proof presentation is supported by two different kinds of tools. First, one can
try to structure and present the proof as a sequential text, analogous to a clas-
sical mathematical textbook proof. This has been particularly successful in the
case of purely equational proofs, where the reasoning can be represented as an
equational chain [12, 14]. To improve the presentation of a proof, and to make it
more easily understandable, proofs by contradiction can be post-processed and
converted into forward deductions of the conjecture from the axioms [7, 58].



The other approach is to visualize the proof as a DAG. IDV [66] is a tool for
graphical rendering and analysis of TPTP format derivations. IDV provides an in-
teractive interface that allows the user to quickly view features of the derivation,
and access analysis facilities. The left hand side of Figure 3 shows the render-
ing of the derivation output by E for the TPTP problem PUZ001+1. PUZ001+1
provides axioms about three people – Charles, the butler, and Aunt Agatha –
who live together in a mansion, one of whom killed Aunt Agatha, and a con-
jecture to prove that Aunt Agatha killed herself. The proof shown in Figure 3
converts the axioms and negated conjecture to clause normal form, and refutes
the resultant clause set. The IDV window is divided into three panes: the top
pane contains control buttons and sliders, the middle pane shows the rendered
DAG, and the bottom pane gives the text of the annotated formula for the
node pointed to by the mouse. The rendering of the derivation DAG uses shapes
(e.g., inverted triangles for axioms), colors (e.g., to show which nodes lead to
and from the node highlighted with the mouse), and tags (e.g., red dots inside
nodes to indicate steps of non-logical consequence) to provide information about
the derivation. The user can interact with the rendering in various ways using
mouse-over and mouse clicks. The buttons and sliders in the control pane pro-
vide a range of manipulations on the rendering – zooming, hiding and displaying
parts of the DAG, and access to GDV (see below) for verification. A particularly
novel feature of IDV is its ability to provide a synopsis of a derivation by using
the AGInTRater [46] to identify interesting lemmas, and hiding less interesting
intermediate formulae. A synopsis is shown on the right hand side of Figure 3.
The node highlighted with the mouse in the original derivation on the left hand
side is derived from only axioms, and is thus a lemma. It states that the but-
ler hates the person who killed Aunt Agatha. This is considered an interesting
lemma, and is thus retained (highlighted again) in the synopsis.

Proof verification can be done on a syntactic level, or on a semantic level. On
a syntactic level, a trusted checker reproduces each individual inference. Most
current ATP systems do no export enough information to make that directly
feasible, however, as stated in the previous section, many ITP proofs first re-
produce the proof in their native format, and then validate this via their own
trusted kernel.

The alternative is semantic verification, i.e. showing that each derived clause
and formula is in the stated semantic relationship with its parents. GDV [60] is
a tool that uses structural and then semantic techniques to verify TPTP for-
mat derivations. Structural verification checks that inferences have been done
correctly in the context of the derivation, e.g., checking that the derivation is
acyclic, checking that assumptions have been discharged (introduced in GDV
for the cross-verification of the Mizar Mathematical Library [68]), checking that
both sides of split derivations have been refuted (e.g., as often found in deriva-
tions generated by SPASS [71]), and checking that introduced symbols are dis-
tinct (e.g., as in Skolemization and introduction of new symbols in definitions
[43]). Semantic verification checks the expected semantic relationship between
the parents and inferred formula of each inference step. This is done by encoding



Fig. 3. E’s proof by refutation of PUZ001+1

the expectation as a logical obligation in an ATP problem, and then discharging
the obligation by solving the problem with trusted ATP systems. The expected
semantic relationship between the parents and inferred formula of an inference
step depends on the intent of the inference rule used. For example, deduction
steps expect the inferred formula to be a theorem of its parent formulae. The
expected relationship is recorded as an SZS value in each inferred formula of a
derivation.

8 Conclusions

The generation of explicit proof objects has not originally been a primary focus
for first-order ATP systems. However, by now it is an expected feature for sys-
tems that are widely used. Earlier ad-hoc formats are now strongly converging
to the TPTP syntax, driven in part by the CASC competition, and in part by
the increasing availability of tools that can process this information.



Proofs are used for several different applications:

– Human consumption
– Proof checking
– Embedding into interactive proofs
– Heuristics learning

The TPTP format is sufficiently detailed to support these applications. How-
ever, because of its high level of abstraction, TPTP proof objects do not always
allow direct step-by-step reconstruction of the proof. The future will show if
this feature is important enough to emerge despite the greater effort for both
producers and consumers of proofs.
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8. Sascha Böhme and Tobias Nipkow. Sledgehammer: Judgement Day. In Jürgen
Giesel and Reiner Hähnle, editors, Proc. of the 5th IJCAR, Edinburgh, volume
6173 of LNAI, pages 107–121. Springer, 2012.

9. O. Caprotti and D. Carlisle. OpenMath and MathML: Semantic Mark Up for
Mathematics. ACM Crossroads, 6(2), 1999.

10. M. Davis and H. Putnam. A Computing Procedure for Quantification Theory.
Journal of the ACM, 7(1):215–215, 1960.

11. J. Denzinger, M. Kronenburg, and S. Schulz. DISCOUNT: A Distributed and
Learning Equational Prover. Journal of Automated Reasoning, 18(2):189–198,
1997. Special Issue on the CADE 13 ATP System Competition.

12. J. Denzinger and S. Schulz. Analysis and Representation of Equational Proofs
Generated by a Distributed Completion Based Proof System. Seki-Report SR-94-
05, Universität Kaiserslautern, 1994.



13. J. Denzinger and S. Schulz. Learning Domain Knowledge to Improve Theorem
Proving. In M.A. McRobbie and J.K. Slaney, editors, Proc. of the 13th CADE,
New Brunswick, volume 1104 of LNAI, pages 62–76. Springer, 1996.

14. J. Denzinger and S. Schulz. Recording and Analysing Knowledge-Based Dis-
tributed Deduction Processes. Journal of Symbolic Computation, 21(4/5):523–541,
1996.

15. J. Denzinger and S. Schulz. Recording and Analysing Knowledge-Based Dis-
tributed Deduction Processes. Journal of Symbolic Computation, 21:523–541, 1996.

16. J. Denzinger and S. Schulz. Automatic Acquisition of Search Control Knowledge
from Multiple Proof Attempts. Journal of Information and Computation, 162:59–
79, 2000.

17. M. Gordon and T. Melham. Introduction to HOL, a Theorem Proving Environment
for Higher Order Logic. Cambridge University Press, 1993.
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