
Using the TPTP Language for Writing
Derivations and Finite Interpretations

Geoff Sutcliffe1, Stephan Schulz2, Koen Claessen3, and Allen Van Gelder4

1 University of Miami, USA, geoff@cs.miami.edu
2 Technische Universität München, Germany, schulz@eprover.org
3 Chalmers University of Technology, Sweden, koen@chalmers.se
4 University of California at Santa Cruz, USA, avg@cs.ucsc.edu

Abstract. One of the keys to the success of the TPTP and related
projects is their consistent use of the TPTP language. The ability of the
TPTP language to express solutions as well as problems, in conjunction
with the simplicity of the syntax, sets it apart from other languages used
in ATP. This paper provides a complete definition of the TPTP language,
and describes how the language should be used to write derivations and
finite interpretations.

1 Introduction

The TPTP problem library [19] is a well known standard set of test problems
for first order automated theorem proving (ATP) systems. The TSTP solution
library [18], the “flip side” of the TPTP, is becoming known as a resource for con-
temporary ATP systems’ solutions to TPTP problems. The SystemOnTPTP [16]
and associated software have been employed in a range of application projects,
e.g., [4, 21, 23]. One of the keys to the success of these projects is their consistent
use of the TPTP language, which enables convenient communication between
different systems and researchers.

TPTP v3.0.0 introduced a new version of the TPTP language [20]. The
language was designed to be suitable for writing both ATP problems and ATP
solutions, to be flexible and extensible, and easily processed by both humans and
computers. The entry barrier for using the TPTP language is (and has always
been) very low. The syntax shares many features with Prolog, a language that
is widely known in the ATP community. Indeed, with a few operator definitions,
units of TPTP data can be read in Prolog using a single read/1 call, and written
with a single writeq/1 call. Development, or at least prototyping, of reasoning
software in Prolog is common, and Prolog compatibility eliminates the mundane
task of writing IO routines for the reasoning software.

The key development from the old (pre-v3.0.0) TPTP language to the new
one was the addition of features for writing solutions to ATP problems. The fea-
tures were designed for writing derivations, but their flexibility makes it possible
to write a range of DAG structures. Additionally, there are features of the lan-
guage that make it possible to conveniently specify finite interpretations. This

paper provides a complete definition of the TPTP language, and describes how
the language should be used to write derivations and finite interpretations.

The ability of the TPTP language to express solutions as well as problems, in
conjunction with the simplicity of the syntax, sets it apart from other languages
used in ATP. Some languages, e.g., the LOP format [13], were designed for writ-
ing problems, and do not support writing solutions. Some languages for writing
solutions are limited in scope, e.g., the PCL language [5] is limited to solutions
to to equational problems, and the OpenTheory language [8] is designed only
to be a computer processible form for systems that implement the HOL logic
[6]. There are some general purpose languages that have features for writing
derivations, e.g., Otter’s proof object format [11, 10] and the DFG syntax [7],
but none of these (that we know of) also provide support for writing finite inter-
pretations. Mark-up languages such as OmDoc [9], OpenMath [2], and MathML
[2] are quite expressive (especially for mathematical content), but their XML
based format is not suitable for human processing. Overall, the TPTP language
is more expressive and usable than other languages. Interoperability with other
languages is supported in some cases, through translation tools.

2 The TPTP Language

The new TPTP language was first used in TPTP v3.0.0, released in November
2004. It has been taken up by a number of developers and received valuable
comments and feedback. As a consequence, since that first release there have
been some small, but significant, changes and extensions. The BNF definition of
the language has recently been thoroughly overhauled. A principal goal has been
to make it easy to translate the BNF into lex/yacc/flex/bison input, so that
construction of parsers (in languages other than Prolog) can be a reasonably
easy task. The BNF definition is in the appendix of this paper.

The TPTP language definition uses a modified BNF meta-language that sep-
arates semantic, syntactic, lexical, and character-macro rules. Syntactic rules use
the standard ::= separator, e.g.,

<source> ::= <general term>
When only a subset of the syntactically acceptable values for a non-terminal
make semantic sense, a second rule for the non-terminal is provided using a :==
separator, e.g.,

<source> :== <dag source> | <internal source> | , etc.
Any further semantic rules that may be reached only from the right hand side
of a semantic rule are also written using the :== separator, e.g.,

<dag source> :== <name> | <inference record>
This separation of syntax from semantics eases the task of building a syntactic
analyzer, as only the ::= rules need be considered. At the same time, the se-
mantic rules provide the detail necessary for semantic checking. The rules that
produce tokens from the lexical level use a ::- separator, e.g.,

<lower word> ::- <lower alpha><alpha numeric>*
with the bottom level character-macros defined by regular expressions in rules

using a ::: separator, e.g.,
<lower alpha> ::: [a-z]

The BNF is documented with comments.
The top level building blocks of TPTP files are annotated formulae, include

directives, and comments. An annotated formula has the form:
language(name, role, formula, source, [useful info]).

The languages currently supported are fof - formulae in full first order form, and
cnf - formulae in clause normal form. The role gives the user semantics of the
formula, e.g., axiom, lemma, conjecture, and hence defines its use in an ATP
system - see the BNF for the list of recognized roles and their meaning. The
logical formula, in either FOF or CNF, uses a consistent and easily understood
notation [20] that can be seen in the BNF. The source describes where the
formula came from, e.g., an input file or an inference. The useful info is a list of
arbitrary useful information, as required for user applications. The useful info
field is optional, and if it is not used then the source field becomes optional. An
example of a FOF formula, supplied from a file, is:

fof(formula_27,axiom,

! [X,Y] :

(subclass(X,Y) <=>

! [U] :

(member(U,X) => member(U,Y))),

file(’SET005+0.ax’,subclass_defn),

[description(’Definition of subclass’), relevance(0.9)]).

An example of an inferred CNF formula is:

cnf(175,lemma,

(rsymProp(ib,sk_c3)

| sk_c4 = sk_c3),

inference(factor_simp,[status(thm)],[

inference(para_into,[status(thm)],[96,78,theory(equality)])]),

[iquote(’para_into,96.2.1,78.1.1,factor_simp’)]).

A novel feature of the TPTP language, which is employed in the represen-
tation of finite interpretations, is the recognition of interpreted predicates and
functors. These come in two varieties: defined predicates and functors, whose
interpretation is specified by the TPTP language, and system predicates and
functors, whose interpretation is ATP system specific. Interpreted predicates
and functors are syntactically different from uninterpreted predicates and func-
tors. Defined predicates and functors either start with a $, or are composed
of non-alphanumeric characters. System predicates and functors start with $$.
Uninterpreted predicates and functors start with a lower case alphabetic. The
defined predicates recognized so far are $true and $false, with the obvious
interpretations, and = and != for equality and inequality. The defined functors
recognized so far are "distinct object"s, written in double quotes, and numbers.
A "distinct object" is interpreted as the domain element in the double quotes.
Numbers are interpreted as themselves (as domain elements). A consequence of

the predefined interpretations is that all different "distinct object"s and num-
bers are known to be unequal, e.g., "Apple" != "Microsoft" and 1 != 2 are
implicit axioms. Such implicit axioms may be built into an ATP system, e.g.,
[14], or generated. System predicates and functors are used for interpreted pred-
icates and functors that are available in particular ATP tools. The names are
not controlled by the TPTP language, so they must be used with caution.

The source field of an annotated formula is most commonly a file record or
an inference record. A file record stores the name of the file from which the
annotated formula was read, and optionally the name of the annotated formula
as it occurs in the file (this may be different from the name of the annotated
formula itself, e.g., if the ATP system renames the annotated formulae that
it reads in). An inference record stores three items of information about an
inferred formula: the name of the inference rule provided by the ATP system,
i.e., there are no standards; a list of useful information items, e.g., the semantic
status of the formula and with respect to its parents as an SZS ontology value
[20] (commonly inferred formulae are theorems of their parents, but in some
cases the semantic relationship is weaker, as in Skolemization steps); and a list of
the parents, which most commonly are parent annotated formula names, nested
inference records, and theory records. A theory record is used when the axioms
of some theory are built into the inference rule, e.g., equality axioms are built
into paramodulation.

The include directives of the TPTP language are analogous to C’s #include
directives. An include directive may include an entire file, or may specify the
names of the annotated formulae that are to be included from the file, thus
providing a more finely grained include mechanism.

Regular comments in the TPTP language extend from a % character to the
end of the line, or may be block comments within /* ...*/ bracketing. System
comments in the TPTP language are used for system specific annotations. They
extend from a %$$ sequence to the end of the line, or may be block comments
within /*$$...*/ bracketing. System comments look like regular comments,
so normally they would be discarded. However, a wily user of the language
can store/extract information from the comment before discarding it. System
comments should identify the ATP system, followed by a :, e.g., /*$$Otter
3.3: Demodulator */. Comments may occur between any two tokens.

Parsing tools written in C are available for the TPTP language, conversion of
the BNF into lex/yacc input is available [22], and the tptp2X utility distributed
with the TPTP is compatible with the language.

3 Derivations

A derivation is a directed acyclic graph (DAG) whose leaf nodes are formulae
from the input, whose interior nodes are formulae inferred from parent formulae,
and whose root nodes are the final derived formulae. For example, a proof of a
FOF theorem from some axioms, by refutation of the CNF of the axioms and
negated conjecture, is a derivation whose leaf nodes are the FOF axioms and

conjecture, whose internal nodes are formed from the process of clausification
and then from inferences performed on the clauses, and whose root node is the
false formula.

The information required to record a derivation is, minimally, the leaf for-
mulae, and each inferred formula with references to its parent formulae. More
detailed information that may be recorded and useful includes: the role of each
formula; the name of the inference rule used in each inference step; sufficient
details of each inference step to deterministically reproduce the inference; and
the semantic relationships of inferred formulae with respect to their parents.
The TPTP language is sufficient for recording all this, and more. A comprehen-
sively recorded derivation provides the information required for various forms of
processing, such as proof verification [17], proof visualization [15], and lemma
extraction [5].

A derivation written in the TPTP language is a list of annotated formulae.
Each annotated formula has a name, a role, and the logical formula. Each inferred
formula has an inference record with the inference rule name, the semantic
relationship of the formula to its parents as an SZS ontology value in a status
record, and a list of references to its parent formulae.

Example. Consider the following toy FOF problem, to prove the conjecture
from the axioms (not all the axioms are needed for the proof - the extra axioms
come into play when the example is used again in Section 4 to illustrate the
finite interpretation format):

%--

%----All (hu)men are created equal. John is a human. John got an F grade.

%----There is someone (a human) who got an A grade. An A grade is not

%----equal to an F grade. Grades are not human. Therefore there is a

%----human other than John.

fof(all_created_equal,axiom,(

! [H1,H2] : ((human(H1) & human(H2)) => created_equal(H1,H2)))).

fof(john,axiom,(

human(john))).

fof(john_failed,axiom,(

grade(john) = f)).

fof(someone_got_an_a,axiom,(

? [H] : (human(H) & grade(H) = a))).

fof(distinct_grades,axiom,(

a != f)).

fof(grades_not_human,axiom,(

! [G] : ~ human(grade(G)))).

fof(someone_not_john,conjecture,(

? [H] : (human(H) & H != john))).

%--

Here is a derivation recording a proof by refutation of the CNF, adapted
(removing inferences that simply copy the parent formula) from the one produced
by the ATP system EP v0.91 [12]:

%--

fof(3,axiom,(

grade(john) = f),

file(’CreatedEqual.p’,john_failed)).

fof(4,axiom,(

? [X3] : (human(X3) & grade(X3) = a)),

file(’CreatedEqual.p’,someone_got_an_a)).

fof(5,axiom,(

a != f),

file(’CreatedEqual.p’,distinct_grades)).

fof(7,conjecture,(

? [X3] : (human(X3) & X3 != john)),

file(’CreatedEqual.p’,someone_not_john)).

fof(8,negated_conjecture,(

~ ? [X3] : (human(X3) & X3 != john)),

inference(assume_negation,[status(cth)],[7])).

cnf(14,plain,

(grade(john) = f),

inference(split_conjunct,[status(thm)],[3])).

fof(16,plain,

(human(esk1_0) & grade(esk1_0) = a),

inference(skolemize,[status(sab)],[4])).

cnf(17,plain,

(grade(esk1_0) = a),

inference(split_conjunct,[status(thm)],[16])).

cnf(18,plain,

(human(esk1_0)),

inference(split_conjunct,[status(thm)],[16])).

cnf(19,plain,

(a != f),

inference(split_conjunct,[status(thm)],[5])).

fof(22,negated_conjecture,(

! [X3] : (~ human(X3) | X3 = john)),

inference(fof_nnf,[status(thm)],[8])).

cnf(24,negated_conjecture,

(X1 = john | ~ human(X1)),

inference(split_conjunct,[status(thm)],[22])).

cnf(25,negated_conjecture,

(john = esk1_0),

inference(spm,[status(thm)],[24,18,theory(equality)])).

cnf(28,plain,

(f = a),

inference(rw,[status(thm)],[

inference(rw,[status(thm)],[17,25,theory(equality)]),

14,theory(equality)])).

cnf(29,plain,

($false),

inference(sr,[status(thm)],[28,19,theory(equality)])).

%--

4 Finite Interpretations

A finite interpretation (or “finite model” of some identified formulae) consists
of a finite domain, an interpretation of functors - a functor applied to domain
elements is interpreted as a domain element, and an interpretation of predicates
- a predicate applied to domain elements is interpreted as true or false. The
elements of the domain are known to be distinct. The interpretation of functors
and predicates is total, i.e., there is an interpretation for every functor and
predicate for every pattern of domain element arguments.

The TPTP language is sufficient for recording a finite interpretation. The
domain, interpretation of functors, and interpretation of predicates, are written
as FOF annotated formulae. A recorded interpretation provides the information
required for various forms of processing, such as model verification, interpretation
of formulae, and identification of isomorphic interpretations.

The domain of a finite interpretation is written in the form:
fof(fi name,fi domain,

! [X] : (X = e1 | X = e2 | ... | X = en)).
where the ei are all "distinct object"s, or all distinct integers, or all distinct
constant terms. If "distinct object" or integer terms appear in the interpreted
signature, then all those terms must appear in the domain. If constant terms are
used they are freely chosen constant terms that do not appear in the signature
being interpreted. The ei values then provide an exhaustive list of constant terms
whose interpretation form the domain (there is a bijection from the constant
terms to the domain, so one may think of the constant terms directly as the
domain elements). The use of "distinct object"s or integer terms for a domain
is preferred over constant terms, because that takes advantage of the predefined
interpretation of such terms - all such terms and corresponding domain elements
are known to be distinct (see Section 2). If the domain elements are constant
terms then their inequality must be explicitly stated in annotated formulae of
the form:

fof(ei not ej,fi domain,
ei != ej).

The interpretation of functors is written in the form:
fof(fi name,fi functors,

(f(e1,...,em) = er

& f(e1,...,ep) = es

...)).
specifying that, e.g., f(e1,...,em) is interpreted as the domain element er.
If "distinct object"s or integer terms appear in the interpreted signature, then
those terms are necessarily interpreted as themselves and must not be interpreted
in the fi functors.

The interpretation of predicates is written in the form:
fof(fi name,fi predicates,

(p(e1,...,em)
& ~ p(e1,...,ep)
...)).

specifying that, e.g., p(e1,...,em) is interpreted as true and p(e1,...,ep) is
interpreted as false. Equality is interpreted naturally by the domain, with the
understanding that identical elements are equal.

Example. Consider again the FOF problem from Section 3, but with the
conjecture replaced by:

fof(equality_lost,conjecture,(

! [H1,H2] :

(created_equal(H1,H2)

<=> H1 = H2))).

The resultant problem is CounterSatisfiable, i.e., there is a model for the
axioms and negated conjecture. Here is one such model, adapted (by converting
constant term domain elements to "distinct object" domain elements) from the
one found by the model finding system Paradox 1.3 [3]:

%--

fof(equality_lost,fi_domain,

! [X] : (X = "a" | X = "f" | X = "john" | X = "got_a")).

fof(equality_lost,fi_functors,

(a = "a" & f = "f" & john = "john"

& grade("a") = "f" & grade("f") = "a"

& grade("john") = "f" & grade("got_a") = "a")).

fof(equality_lost,fi_predicates,

(human("john") & human("got_a")

& ~ human("a") & ~ human("f")

& ~ created_equal("a","a") & ~ created_equal("a","f")

& ~ created_equal("a","john") & ~ created_equal("a","got_a")

& ~ created_equal("f","a") & ~ created_equal("f","f")

& ~ created_equal("f","john") & ~ created_equal("f","got_a")

& ~ created_equal("john","a") & ~ created_equal("john","f")

& created_equal("john","john") & created_equal("john","got_a")

& ~ created_equal("got_a","a") & ~ created_equal("got_a","f")

& created_equal("got_a","john") & created_equal("got_a","got_a"))).

%--

Variations, Layout, and Verification
Normally every functor and predicate is interpreted once for every pattern

of domain element arguments. No functor or predicate may be interpreted more
than once for an argument pattern. If a functor or predicate is not interpreted for
a given argument pattern then multiple interpretations are being represented, in
which that functor or predicate applied to the argument pattern is interpreted
as each of the possible values (each domain element for a functor, both true and
false for a predicate).

It is recommended that interpretations follow a standard layout, as illus-
trated by the examples above. However, the conjuncts of functor and predicate
interpretations may be separated into individual annotated formulae. Compact
forms are possible using universally quantified formulae, e.g.,

fof(equality_lost,fi_predicates,

(human("john") & human("got_a")

& ~ human("a") & ~ human("f")

& ! [X] : ~ created_equal("a",X)

& ! [X] : ~ created_equal("f",X)

& ! [X] : ~ created_equal(X,"a")

& ! [X] : ~ created_equal(X,"f")

& created_equal("john","john") & created_equal("john","got_a")

& created_equal("got_a","john") & created_equal("got_a","got_a"))).

An interpretation can be verified as a model of a set of formulae by directly
evaluating each formula in the model. The TPTP format also provides an alter-
native approach - the interpretation is adjoined to the formulae, and a trusted
model finder is then used to find a model of the combined formula set.

5 Conclusion

Standards for writing derivations and finite interpretations have been presented.
These standards should be adopted by the ATP community, to increase the range
of ATP tools that can be seamlessly integrated into more complex and effective
reasoning systems. Increased interoperability will contribute to the usability and
uptake of ATP technology in application domains.

Current work is extending the TPTP language for higher order logic [22].
When this is available, it will be used for extending the TPTP to higher order
logic [1]. Future work will include the design of standards for representing infinite
interpretations. As a first step, it is planned to represent Herbrand interpreta-
tions by term grammars, e.g., formulae of the form:

! [X,Y] : (p(X,Y) <=> ((X != a & Y != a) | (X = a & Y = a)))
There are decision procedures for the truth of ground atoms in the context of
such formulae. Compaction of finite interpretations using normal-form theory
from relational databases is also being considered.

References

1. C. Benzmüller and C. Brown. A Structured Set of Higher-Order Problems. In
J. Hurd and T. Melham, editors, Proceedings of the 18th International Conference
on Theorem Proving in Higher Order Logics, LNAI 3606, pages 66–81, 2005.

2. O. Caprotti and D. Carlisle. OpenMath and MathML: Semantic Mark Up for
Mathematics. ACM Crossroads, 6(2), 1999.

3. K. Claessen and N. Sorensson. New Techniques that Improve MACE-style Finite
Model Finding. In P. Baumgartner and C. Fermueller, editors, Proceedings of the
CADE-19 Workshop: Model Computation - Principles, Algorithms, Applications,
2003.

4. E. Denney, B. Fischer, and J. Schumann. Using Automated Theorem Provers to
Certify Auto-generated Aerospace Software. In M. Rusinowitch and D. Basin,
editors, Proceedings of the 2nd International Joint Conference on Automated Rea-
soning, LNAI 3097, pages 198–212, 2004.

5. J. Denzinger and S. Schulz. Recording and Analysing Knowledge-Based Dis-
tributed Deduction Processes. Journal of Symbolic Computation, 21:523–541, 1996.

6. M. Gordon and T. Melham. Introduction to HOL, a Theorem Proving Environment
for Higher Order Logic. Cambridge University Press, 1993.

7. R. Hähnle, M. Kerber, and C. Weidenbach. Common Syntax of the DFG-
Schwerpunktprogramm Deduction. Technical Report TR 10/96, Fakultät für In-
formatik, Universät Karlsruhe, Karlsruhe, Germany, 1996.

8. J. Hurd and R. Arthan. OpenTheory. http://www.cl.cam.ac.uk/ jeh1004/research/
opentheory, URL.

9. M. Kohlhase. OMDOC: Towards an Internet Standard for the Administration,
Distribution, and Teaching of Mathematical Knowledge. In J.A. Campbell and
E. Roanes-Lozano, editors, Proceedings of the Artificial Intelligence and Symbolic
Computation Conference, 2000, LNCS 1930, pages 32–52, 2000.

10. W. McCune and O. Shumsky-Matlin. Ivy: A Preprocessor and Proof Checker for
First-Order Logic. In M. Kaufmann, P. Manolios, and J. Strother Moore, editors,
Computer-Aided Reasoning: ACL2 Case Studies, number 4 in Advances in Formal
Methods, pages 265–282. Kluwer Academic Publishers, 2000.

11. W.W. McCune. Otter 3.3 Reference Manual. Technical Report ANL/MSC-TM-
263, Argonne National Laboratory, Argonne, USA, 2003.

12. S. Schulz. E: A Brainiac Theorem Prover. AI Communications, 15(2-3):111–126,
2002.

13. S. Schulz. LOP-Syntax for Theorem Proving Applications.
http://www4.informatik.tu-muenchen.de/ schulz/WORK/lop.syntax, URL.

14. S. Schulz and Maria Paola Bonacina. On Handling Distinct Objects in the Su-
perposition Calculus. In B. Konev and S. Schulz, editors, Proceedings of the 5th
International Workshop on the Implementation of Logics, pages 66–77, 2005.

15. G. Steel. Visualising First-Order Proof Search. In C. Aspinall, D. Lüth, editor,
Proceedings of User Interfaces for Theorem Provers 2005, pages 179–189, 2005.

16. G. Sutcliffe. SystemOnTPTP. In D. McAllester, editor, Proceedings of the 17th
International Conference on Automated Deduction, LNAI 1831, pages 406–410,
2000.

17. G. Sutcliffe. Semantic Derivation Verification. International Journal on Artificial
Intelligence Tools, page To appear, 2006.

18. G. Sutcliffe. The TSTP Solution Library. http://www.TPTP.org/TSTP, URL.
19. G. Sutcliffe and C.B. Suttner. The TPTP Problem Library: CNF Release v1.2.1.

Journal of Automated Reasoning, 21(2):177–203, 1998.
20. G. Sutcliffe, J. Zimmer, and S. Schulz. TSTP Data-Exchange Formats for Auto-

mated Theorem Proving Tools. In W. Zhang and V. Sorge, editors, Distributed
Constraint Problem Solving and Reasoning in Multi-Agent Systems, number 112
in Frontiers in Artificial Intelligence and Applications, pages 201–215. IOS Press,
2004.

21. J. Urban. MPTP - Motivation, Implementation, First Experiments. Journal of
Automated Reasoning, 33(3-4):319–339, 2004.

22. A. Van Gelder and G. Sutcliffe. Extending the TPTP Language to Higher-Order
Logic with Automated Parser Generation. In U. Furbach and N. Shankar, editors,
Proceedings of the 3rd International Joint Conference on Automated Reasoning,
Lecture Notes in Artificial Intelligence, 2006.

23. J. Zimmer. A New Framework for Reasoning Agents. In V. Sorge, S. Colton,
M. Fisher, and J. Gow, editors, Proceedings of the Workshop on Agents and Au-
tomated Reasoning, 18th International Joint Conference on Artificial Intelligence,
pages 58–64, 2003.

6 Appendix

%--
%----README ... this header provides important meta- and usage information
%----
%----Intended uses of the various parts of the TPTP syntax are explained
%----in the TPTP technical manual, linked from www.tptp.org.
%----
%----Four kinds of separators are used, to indicate different types of rules:
%---- ::= is used for regular grammar rules, for syntactic parsing.
%---- :== is used for semantic grammar rules. These define specific values
%---- that make semantic sense when more general syntactic rules apply.
%---- ::- is used for rules that produce tokens.
%---- ::: is used for rules that define character classes used in the
%---- construction of tokens.
%----
%----White space may occur between any two tokens. White space is not specified
%----in the grammar, but the are some restrictions to ensure that the grammar
%----is campatible with standard Prolog: a <TPTP_file> should be readable with
%----read/1.
%----
%----The syntax of comments is defined by the <comment> rule. Comments may
%----occur between any two tokens, but do not act as white space. Comments
%----will normally be discarded at the lexical level, but may be processed
%----by systems that understand them e.g., if the system comment convention
%----is followed).
%--
%----Files. Empty file is OK.
<TPTP_file> ::= <TPTP_input>*
<TPTP_input> ::= <annotated_formula> | <include>

%----Formula records
<annotated_formula> ::= <fof_annotated> | <cnf_annotated>
%----Future languages may include ... english | efof | tfof | mathml | ...
<fof_annotated> ::= fof(<name>,<formula_role>,<fof_formula><annotations>).
<cnf_annotated> ::= cnf(<name>,<formula_role>,<cnf_formula><annotations>).
<annotations> ::= <null> | ,<source><optional_info>
%----In derivations the annotated formulae names must be unique, so that
%----parent references (see <inference_record>) are unambiguous.

%----Types for problems.
%----Note: The previous <source_type> from ...
%---- <formula_role> ::= <user_role>-<source>
%----... is now gone. Parsers may choose to be tolerant of it for backwards
%----compatibility.
<formula_role> ::= <lower_word>
<formula_role> :== axiom | hypothesis | definition | lemma | theorem |

conjecture | lemma_conjecture | negated_conjecture |
plain | fi_domain | fi_functors | fi_predicates |
unknown

%----"axiom"s are accepted, without proof, as a basis for proving "conjecture"s
%----and "lemma_conjecture"s in FOF problems. In CNF problems "axiom"s are
%----accepted as part of the set whose satisfiability has to be established.
%----There is no guarantee that the axioms of a problem are consistent.
%----"hypothesis"s are assumed to be true for a particular problem, and are
%----used like "axiom"s.
%----"definition"s are used to define symbols, and are used like "axiom"s.
%----"lemma"s and "theorem"s have been proven from the "axiom"s, can be used
%----like "axiom"s, but are redundant wrt the "axiom"s. "lemma" is used as the
%----role of proven "lemma_conjecture"s, and "theorem" is used as the role of
%----proven "conjecture"s, in output. A problem containing a "lemma" or
%----"theorem" that is not redundant wrt the "axiom"s is ill-formed. "theorem"s
%----are more important than "lemma"s from the user perspective.
%----"conjecture"s occur in only FOF problems, and are to all be proven from
%----the "axiom"(-like) formulae. A problem is solved only when all
%----"conjecture"s are proven.
%----"lemma_conjecture"s are expected to be provable, and may be useful to
%----prove, while proving "conjecture"s.

%----"negated_conjecture"s occur in only CNF problems, and are formed from
%----negation of a "conjecture" in a FOF to CNF conversion.
%----"plain"s have no special user semantics, and can be used like "axiom"s.
%----"fi_domain", "fi_functors", and "fi_predicates" are used to record the
%----domain, interpretation of functors, and interpretation of predicates, for
%----a finite interpretation.
%----"unknown"s have unknown role, and this is an error situation.

%----FOF formulae. All formulae must be closed.
<fof_formula> ::= <binary_formula> | <unitary_formula>
<binary_formula> ::= <nonassoc_binary> | <assoc_binary>
%----Only some binary connectives are associative
%----There’s no precedence among binary connectives
<nonassoc_binary> ::= <unitary_formula> <binary_connective> <unitary_formula>
<binary_connective> ::= <=> | => | <= | <~> | ~<vline> | ~&
%----Associative connectives & and | are in <assoc_binary>
<assoc_binary> ::= <or_formula> | <and_formula>
<or_formula> ::= <unitary_formula> <vline> <unitary_formula>

<more_or_formula>*
<more_or_formula> ::= <vline> <unitary_formula>
<and_formula> ::= <unitary_formula> & <unitary_formula>

<more_and_formula>*
<more_and_formula> ::= & <unitary_formula>
%----<unitary_formula> are in ()s or do not have a <binary_connective> at the
%----top level.
<unitary_formula> ::= <quantified_formula> | <unary_formula> |

(<fof_formula>) | <atomic_formula>
<quantified_formula> ::= <quantifier> [<variable_list>] : <unitary_formula>
<quantifier> ::= ! | ?
%----! is universal quantification and ? is existential. Syntactically, the
%----quantification is the left operand of :, and the <unitary_formula> is
%----the right operand. Although : is a binary operator syntactically, it is
%----not a <binary_connective>, and thus a <quantified_formula> is a
%----<unitary_formula>.
%----Universal example: ! [X,Y] : ((p(X) & p(Y)) => q(X,Y)).
%----Existential example: ? [X,Y] : (p(X) & p(Y)) & ~ q(X,Y).
%----Quantifiers have higher precedence than binary connectives, so in
%----the existential example the quantifier applies to only (p(X) & p(Y)).
<variable_list> ::= <variable> | <variable>,<variable_list>
%----Future variables may have sorts and existential counting
%----Unary connectives bind more tightly than binary
<unary_formula> ::= <unary_connective> <unitary_formula>
<unary_connective> ::= ~

%----CNF formulae (variables implicitly universally quantified)
<cnf_formula> ::= (<disjunction>) | <disjunction>
<disjunction> ::= <literal> <more_disjunction>*
<more_disjunction> ::= <vline> <literal>
<literal> ::= <atomic_formula> | ~ <atomic_formula>

%----Atoms (<predicate> is not used currently)
<atomic_formula> ::= <plain_atom> | <defined_atom> | <system_atom>
<plain_atom> ::= <plain_term>
%----A <plain_atom> looks like a <plain_term>, but really we mean
%---- <plain_atom> ::= <proposition> | <predicate>(<arguments>)
%---- <proposition> ::= <atomic_word>
%---- <predicate> ::= <atomic_word>
%----Using <plain_term> removes a reduce/reduce ambiguity in lex/yacc.
<arguments> ::= <term> | <term>,<arguments>
<defined_atom> ::= $true | $false |

<term> <defined_infix_pred> <term>
<defined_infix_pred> ::= = | !=
%----A more general formulation, which syntactically admits more defined atoms,
%----is as follows. Developers may prefer to adopt this.
%---- <defined_atom> ::= <defined_prop> | <defined_pred>(<arguments>) |
%---- <term> <defined_infix_pred> <term>
%---- <defined_prop> ::= <atomic_defined_word>
%---- <defined_prop> :== $true | $false

%---- <defined_pred> ::= <atomic_defined_word>
%---- <defined_pred> :==
%----Some systems still interpret equal/2 as equality. The use of equal/2
%----for other purposes is therefore discouraged. Please refrain from either
%----use. Use infix ’=’ for equality. Note: <term> != <term> is equivalent
%----to ~ <term> = <term>
%----More defined atoms may be added in the future.
<system_atom> ::= <system_term>
%----<system_atom>s are used for evaluable predicates that are available
%----in particular tools. The predicate names are not controlled by the
%----TPTP syntax, so use with due care. The same is true for <system_term>s.

%----Terms
<term> ::= <function_term> | <variable>
<function_term> ::= <plain_term> | <defined_term> | <system_term>
<plain_term> ::= <constant> | <functor>(<arguments>)
<constant> ::= <atomic_word>
<functor> ::= <atomic_word>
<defined_term> ::= <number> | <distinct_object>
%----A more general formulation, which syntactically admits more defined terms,
%----is as follows. Developers may prefer to adopt this.
%---- <defined_term> ::= <number> | <distinct_object> |
%---- <defined_constant> |
%---- <defined_functor>(<arguments>) |
%---- <term> <defined_infix_func> <term>
%---- <defined_constant> ::= <atomic_defined_word>
%---- <defined_constant> :==
%---- <defined_functor> ::= <atomic_defined_word>
%---- <defined_functor> :==
%---- <defined_infix_func> ::=
%----System terms have system specific interpretations
<system_term> ::= <system_constant> | <system_functor>(<arguments>)
<system_functor> ::= <atomic_system_word>
<system_constant> ::= <atomic_system_word>
<variable> ::= <upper_word>

%----Formula sources
<source> ::= <general_term>
<source> :== <dag_source> | <internal_source> | <external_source> |

unknown
%----Only a <dag_source> can be a <name>, i.e., derived formulae can be
%----identified by a <name> or an <inference_record>
<dag_source> :== <name> | <inference_record>
<inference_record> :== inference(<inference_rule>,<useful_info>,

[<parent_list>])
<inference_rule> :== <atomic_word>
%----Examples are deduction | modus_tollens | modus_ponens | rewrite |
% resolution | paramodulation | factorization |
% cnf_conversion | cnf_refutation | ...
<parent_list> :== <parent_info> | <parent_info>,<parent_list>
<parent_info> :== <source><parent_details>
<parent_details> :== :<atomic_word> | <null>
<internal_source> :== introduced(<intro_type><optional_info>)
<intro_type> :== definition | axiom_of_choice | tautology
%----This should be used to record the symbol being defined, or the function
%----for the axiom of choice
<external_source> :== <file_source> | <theory> | <creator_source>
<file_source> :== file(<file_name><file_info>)
<file_info> :== ,<name> | <null>
<theory> :== theory(<theory_name><optional_info>)
<theory_name> :== equality | ac
%----More theory names may be added in the future. The <optional_info> is
%----used to store, e.g., which axioms of equality have been implicitly used,
%----e.g., theory(equality,[rst]). Standard format still to be decided.
<creator_source> :== creator(<creator_name><optional_info>)
<creator_name> :== <atomic_word>

%----Useful info fields

<optional_info> ::= ,<useful_info> | <null>
<useful_info> ::= <general_term_list>
<useful_info> :== [] | [<info_items>]
<info_items> :== <info_item> | <info_item>,<info_items>
<info_item> :== <formula_item> | <inference_item> | <general_function>
%----Useful info for formula records
<formula_item> :== <description_item> | <iquote_item>
<description_item> :== description(<atomic_word>)
<iquote_item> :== iquote(<atomic_word>)
%----<iquote_item>s are used for recording exactly what the system output about
%----the inference step. In the future it is planned to encode this information
%----in standardized forms as <parent_details> in each <inference_record>.
%----Useful info for inference records
<inference_item> :== <inference_status> | <refutation>
<inference_status> :== status(<status_value>) | <inference_info>
%----These are the status values from the SZS ontology
<status_value> :== tau | tac | eqv | thm | sat | cax | noc | csa | cth |

ceq | unc | uns | sab | sam | sar | sap | csp | csr |
csm | csb

%----The most commonly used status values are:
%---- thm - Every model (and there are some) of the parent formulae is a
%---- model of the inferred formula. Regular logical consequences.
%---- cth - Every model (and there are some) of the parent formulae is a
%---- model of the negation of the inferred formula. Used for negation
%---- of conjectures in FOF to CNF conversion.
%---- sab - There is a bijection between the models (and there are some) of
%---- the parent formulae and models of the inferred formula. Used for
%---- Skolemization steps.
%----For the full hierarchy see the SZSOntology file distributed with the TPTP.
<inference_info> :== <inference_rule>(<atomic_word>,<general_list>)
<refutation> :== refutation(<file_source>)
%----Useful info for creators is just <general_function>

%----Include directives
<include> ::= include(<file_name><formula_selection>).
<formula_selection> ::= ,[<name_list>] | <null>
<name_list> ::= <name> | <name>,<name_list>

%----Non-logical data
<general_term> ::= <general_data> | <general_data>:<general_term> |

<general_list>
<general_data> ::= <atomic_word> | <atomic_word>(<general_arguments>) |

<number> | <distinct_object>
<general_arguments> ::= <general_term> | <general_term>,<general_arguments>
<general_list> ::= [] | [<general_term_list>]
<general_term_list> ::= <general_term> | <general_term>,<general_term_list>

%----General purpose
<name> ::= <atomic_word> | <unsigned_integer>
<atomic_word> ::= <lower_word> | <single_quoted>
%----This maybe useful in the future
%---- <atomic_defined_word> ::= <dollar_word>
<atomic_system_word> ::= <dollar_dollar_word>
<number> ::= <real> | <signed_integer> | <unsigned_integer>
%----Numbers are always interpreted as themselves, and are thus implicitly
%----distinct if they have different values, e.g., 1 != 2 is an implicit axiom.
%----All numbers are base 10 at the moment.
<file_name> ::= <atomic_word>
<null> ::=

%--
%----Rules from here on down are for defining tokens (terminal symbols) of the
%----grammar, assuming they will be recognized by a lexical scanner.
%----A ::- rule defines a token, a ::: rule defines a macro that is not a
%----token. Usual regexp notation is used. Single characters are always placed
%----in []s to disable any special meanings (for uniformity this is done to
%----all characters, not only those with special meanings).

%----These are tokens that appear in the syntax rules above. No rules
%----defined here because they appear explicitly in the syntax rules.
%----Keywords: fof cnf include
%----Punctuation: () , . [] :
%----Operators: ! ? ~ & | <=> => <= <~> ~| ~&
%----Predicates: = != $true $false

<comment> ::- <comment_line>|<comment_block>
<comment_line> ::: [%]<printable_char>*
<comment_block> ::: [/][*]<not_star_slash>[*][*]*[/]
<not_star_slash> ::: ([^*]*[*][*]*[^/*])*[^*]*
%----System comments are a convention used for annotations that may used as
%----additional input to a specific system. They look like comments, but start
%----with %$$ or /*$$. A wily user of the syntax can notice the $$ and extract
%----information from the "comment" and pass that on as input to the system.
%----The specific system for which the information is intended should be
%----identified after the $$, e.g., /*$$Otter 3.3: Demodulator */
%----To extract these separately from regular comments, the rules are:
%---- <system_comment> ::- <sys_comment_line>|<sys_comment_block>
%---- <sys_comment_line> ::: [%]<dollar_dollar><printable_char>*
%---- <sys_comment_block> ::: [/][*]<dollar_dollar><not_star_slash>[*][*]*[/]
%----A string that matches both <system_comment> and <comment> should be
%----recognized as <system_comment>, so put these before regular comments.

<single_quoted> ::- [’]([^\\’]|[\\][’]|[\\][\\])*[’]
%----<single_quoted> ::- ’<printable_char>*’, but ’ and \ are escaped.
%----\ is used as the escape character for ’ and \, i.e., if \’ is encountered
%----the ’ is not the end of the <single_quoted>, and if \\ is encountered the
%----second \ is not an escape. Both characters (the escape \ and the following
%----’ or \) are retained and printed on output. Behaviour is undefined if the
%----escape \ is followed by anything other than ’ or \. Behaviour is undefined
%----if a non-<printable_char> is encountered. If the contents of a <single
%----quoted> constitute a <lower_word>, then the ’’s should be stripped to
%----produce a <lower_word>.
<distinct_object> ::- ["]([^\\"]|[\\]["]|[\\][\\])*["]
%----<distinct_object> ::- "<printable_char>*", but " and \ are escaped. The
%----comments for <single_quoted> apply, with ’ replaced by ".
%----Distinct objects are always interpreted as themselves, and are thus
%----implicitly distinct if they look different, e.g., "Apple" != "Microsoft"
%----is an implicit axiom.

<dollar_dollar_word> ::- <dollar_dollar><lower_word>
<upper_word> ::- <upper_alpha><alpha_numeric>*
<lower_word> ::- <lower_alpha><alpha_numeric>*

%----Numbers
<real> ::- (<signed_decimal>|<unsigned_decimal>)<fraction_decimal>
<signed_integer> ::- <sign><unsigned_integer>
<unsigned_integer> ::- <unsigned_decimal>
<signed_decimal> ::: <sign><unsigned_decimal>
<sign> ::: [+-]
<unsigned_decimal> ::: ([0]|<non_zero_numeric><numeric>*)
<fraction_decimal> ::: [.]<numeric><numeric>*

%----Character classes
<numeric> ::: [0-9]
<non_zero_numeric> ::: [1-9]
<lower_alpha> ::: [a-z]
<upper_alpha> ::: [A-Z]
<alpha_numeric> ::: (<lower_alpha>|<upper_alpha>|<numeric>|[_])
<dollar_dollar> ::: [$][$]
<printable_char> ::: .
%----<printable_char> ::: any printable ASCII character, codes 32-126
%----<printable_char> thus includes spaces, but not tabs, newlines, bells, etc.
%----This definition does not capture that.
<vline> ::: [|]

%--

