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Abstract. This paper describes two data-exchange formats for Automated Theorem
Proving (ATP) tools. First, a language for writing the problems that are input to ATP
systems, and for writing the solutions that are output from ATP systems, is described.
Second, a hierarchy of values for specifying the logical status of an ATP problem, as
may be established by an ATP system, is described. These data-exchange formats will
support application and research in ATP, and will facilitate communication between
ATP tools in distributed and embedded environments.

1 Introduction

Automated Theorem Proving (ATP) deals with the development of computer programs that
show that some statement (the conjecture) is a logical consequence of a set of statements
(the axioms). The dual discipline, automated model finding, develops computer programs
that establish that a set of statements is consistent, and in this work we consider automated
model finding to be part of ATP. ATP systems are used in a wide variety of domains: prob-
lems in mathematics have been solved, e.g., [SFS95, McC97], software and hardware have
been designed and verified, e.g., [WSF02, CHM02], and applications to the internet seem
possible [HS01]. ATP has been highly successful when the problem is expressed in classical
first order logic, so that a refutation or model of the clause normal form of the problem can
be obtained. There are some well known high performance ATP systems that search for a
refutation or model of a set of clauses, e.g., E [Sch02], Gandalf [Tam97], MACE [McC01],
Paradox [CS03], SPASS [WBH+02], and Vampire [RV02]. This paper describes two data-
exchange formats for ATP tools for classical first order logic. First, a language for writing
the problems that are input to ATP systems, and for writing the solutions that are output from
ATP systems, is described. Second, a hierarchy of values for specifying the logical status of
an ATP problem, as may be established by an ATP system, is described. The general designs
are suitable for logics other than classical first order logic, and it would be desirable to adapt
or extend these formats to provide for communication between first order ATP systems and
systems for other logics, e.g., Coq [CoqRL], HOL [HOLRL], ACL2 [ACLRL].

The success of ATP systems is in large part attributable to progress in ATP research. Due
to the semi-decidable nature of reasoning in first order logic, advances in ATP research are
in part reliant on empirical analysis of system performance. This reliance drives a need for
problem and solution libraries that can form the basis for analysis and comparisons. This need
is met by the TPTP (Thousands of Problems for Theorem Provers) problem library [SS98]
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and the TSTP (Thousands of Solutions from Theorem Provers) solution library [SutRL].
The TPTP is a comprehensive collection of the ATP test problems that are available today,
along with documentation and utilities for accessing the library. The TSTP is the “flip side”
of the TPTP, being a comprehensive collection of solutions to TPTP problems, produced
by currently available ATP systems. When the TPTP was initiated in 1992, it was decided
to write the formulae in a syntax that could be read directly in Prolog, so as to provide a
very low entry barrier for use. The syntax was designed for problems in clause normal form
(CNF), and a separate syntax for problems in “natural” first order form (FOF) was introduced
in 1997. When the TSTP was initiated in 2002, it was necessary to design a language for
writing solutions to ATP problems. The TSTP syntax extends the TPTP syntaxes, so as to be
suitable for writing both ATP problems and their solutions. The TSTP syntax is described in
Section 2.

As ATP systems move into real application areas, they are typically embedded as just one
component in a larger system, including tools for proof analysis, transformation, presentation,
and verification. In this environment, the output from one tool is often used as input to another.
It is therefore desirable to have a common syntax for problem input and solution output,
so that system components can communicate directly without the need for middleware to
translate between their various input and output formats. The TSTP syntax meets these needs.
In addition to being able to communicate formulae directly between tools, it is also necessary
to be able to communicate precisely what has been established regarding the logical status of
the formulae. The TSTP status hierarchy, described in Section 3, is an adequate hierarchy of
such status values. In general, communication standards are crucial for the interoperability
of distributed reasoning agents, and are similarly important for the description of deduction
components as online services. Both multi-agent communication and service descriptions
depend on commonly agreed ontologies and languages to encode reasoning problems and the
outputs of reasoning systems.

The TSTP data-exchange formats are highly pragmatic and easy to adopt. The ease with
which the new formats can be installed into existing and new ATP tools is illustrated by the
fact that input and output in TSTP format was added to the equational theorem prover E in
just a few days, and that a number of tools have already been built around the formats. Some
sample applications are described in Section 4.

2 The TSTP Problem and Solution Language

Several different syntaxes exist for writing the first order logic problems that are input to
ATP systems. Some of these syntaxes were originally developed for particular ATP systems;
the Otter syntax [McC94], and the LOP syntax used in SETHEO [MIL+97] are examples.
These system specific syntaxes often assume or support features specific to the system, and
are therefore not consistently suitable for general use. Other syntaxes have been designed
for general purpose use. The Knowledge Interchange Format (KIF) [GF92] is a logically
comprehensive language for the representation of knowledge, and has declarative semantics.
KIF provides expressive power beyond that required for ATP. The “DFG” syntax [HKW96]
was designed as a common exchange format for logic problems used by members of the
German DFG-Schwerpunktprogramm Deduction. DFG has a prefix-style grammar that is
neither particularly easy for programs to parse nor for humans to read and write. Moreover,
despite its aim, it is not very widely used. The Common Logic (CL) syntax [CL-RL] is a
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framework for a family of logic-based languages. It does not specify any concrete syntax, but
rather specifies an abstract syntax that can be specialized to a concrete language. CL grew
out of work on the KIF language, and at this time the design of CL has not been completed.
The OMDoc [Koh00], OpenMath [CC99], and MathML [CC99] languages specify XML
based syntaxes for writing mathematical notions. These languages are quite expressive, but
require a large amount of mark-up for quite simple content. For humans, reading and writing
problems in these languages is difficult without specialized software. The syntax currently
used for problems in the TPTP problem library is widely used in the ATP community. It has
a simple syntax, but has the weakness that the CNF syntax is not a sub-syntax of the FOF
syntax (while CNF formulae are a subset of FOF formulae).

All of the syntaxes described above were designed for writing theinput to logical rea-
soning tools. There appear to be no consistently used general purpose formats for writing the
outputfrom reasoning tools. The PCL format [DS94, DS96] was designed for and is limited
to the unit equality fragment of first order logic - it is used for the output from the E, DIS-
COUNT [DKS97] and Waldmeister [LH02] ATP systems. Although many of the above input
formats could be (and in some cases are) used for writing the formulae output by reasoning
tools, none were designed or contain features specific for comprehensively capturing output
information. To provide seamless communication between reasoning tools it is necessary that
the output from one tool should immediately be suitable as input for other tools.

The goal of designing a language for communication between reasoning tools cannot
ignore the element of human readability. Human users, who are not necessarily ATP experts,
are often the source of the initial input to, and the destination of the final output from, ATP
tools. Human data formats are often semi-formal, and translation is required to and from a
machine usable format, e.g., [Fie01, MRS01]. In an ideal world it would not be necessary for
humans to look at the machine usable input and output, nor at intermediate data being passed
between tools in a component based system. However, in reality, close examination of the
input, output, and intermediate data of ATP tools is necessary for debugging, understanding
of system behavior, and development of ideas [WP99]. It is thus necessary that the machine
usable format be also human readable, at least to ATP developers and experts. It may not
be possible to design a language that perfectly suits all the needs, but certainly a syntax that
is designed for only machine processing, and ignores human readability, will not meet the
needs of the ATP developers and experts upon whom external human users rely for technical
support. One way around this issue is to provide two languages, one for humans and one
for machines. This approach, however, requires extra software support, and the necessary
translations may hide relevant details and may introduce errors.

The TSTP syntax is a comprehensive syntax, suitable for writing the input and output of
ATP tools. The TSTP syntax was designed with the following aims and constraints:

• It must be able to completely express the problems that are input to ATP systems.

• It must be able to capture sufficient details of ATP systems’ outputs to allow various forms
of post processing, e.g., various styles of proof verification and presentation.

• The same syntax must be used for both input and output.

• It must be possible to annotate formulae with arbitrary information.

• It must be easy for humans to read and write.
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– It must be easy to write using a plain text editor.

– It must be compact.

• It must be easy for programs to parse.

• It should be backward compatible with the TPTP syntax, but a single syntax must be used
for CNF and FOF formulae.

• It must be extensible, to allow for expression of new types of formulae.

• It need have only local context and semantics, i.e., the syntax need not support universal
denotation, as in, e.g., the semantic web.

The TSTP syntax is defined in BNF, and is available from the TSTP web site [SutRL].
The four top level building blocks of TSTP files areannotated formulae, non-formulaparts,
include directives, andcomments. The TSTP syntax does not provide a structure to store
information about the ATP tool and computing environment used to create the formulae and
other data. Such information is expected to be stored as comments, as in done in the TSTP
solution library - see Section 4.1.

An annotated TSTP formula has the following structure (where items in<> brackets are
placeholders for specific values, and items in[] brackets are optional):

<language>(<name>,<type>,
<formula>[,
<source>[,
<useful info>]]).

An example of a FOF input formula in TSTP syntax is:

fof(subclass_defn,axiom,
! [X,Y] :

( subclass(X,Y) <=>
! [U] :

( member(U,X) => member(U,Y) )),
file(’SET005+0.ax’,subclass_defn),
[description(’Definition of subclass’), relevance(0.9)]).

An example of a CNF output formula in TSTP syntax is:

cnf(140,derived,
( equal_sets(a,aUa)
| member(member_of(a,aUa),a) ),
inference(unit_del,[status(thm)],

[inference(hyper,[status(thm)],[5,16]),11]),
[iquote(’hyper,5,16.1,unit_del,11’)]).

The <language> field names the language of the<formula> . Initially full first order
form (the fof <language> ) and clause normal form (thecnf <language> ) have been
defined. New types of formulae are possible by specifying the new<language> name
and defining the<formula> syntax (it is not intended that users should extend the syntax,
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but rather to provide a mechanism for the syntax designers to do so). The<type> indi-
cates the role of input formulae, with values such asaxiom , definition , assumption ,
conjecture . For derived formulae a-derived tag is appended to these values.

The<formula> syntax for bothfof andcnf is the FOF syntax of the TPTP, with CNF
formulae expressed as FOF disjunctions with the universal quantifiers omitted. The TPTP
FOF syntax was very carefully designed, following a survey of notation used for first or-
der logic. It has features that make it easy for humans to read and write, e.g., it uses only
characters available on a standard keyboard, and uses short notations for connectives, e.g.,
! rather than a word such asforall for universal quantification. It is easy for programs to
parse, and a parser is easily constructed using a parser generator (such asbison ) that accepts
the language definition in BNF. The syntax for atoms is that of Prolog: atoms and terms are
written in prefix notation, predicates and functors start with lower case letters, and variables
start with upper case letters. The binary connectives are&, | , =>, <=, <=>, ˜& , and ˜| ,
for conjunction, disjunction, implication, reverse implication, equivalence, negated conjunc-
tion, and negated disjunction respectively. The only unary connective is˜ for negation. The
universal and existential quantifiers are! and? respectively, with the quantified variables
following in [] brackets. Negation has higher precedence than quantification, which in turn
has higher precedence than the binary connectives. No precedence is specified between the
binary connectives, but all are defined to be left associative.

The <source> contains informations about either an external source, such as a file or
human creator, or a derivation, for formulae derived from other formula. Derivations of for-
mulae are described ininference /3 terms, of the form:

inference(<rule name>,<useful info>,
[<parent info>,<parent info>, ...])

Each<parent info> is either the name of another annotated formula, another inference
term, or atheory /1 term. A theory term is used when axioms of some theory are encoded
into the rule that inferred the formula, e.g., equality axioms are encoded into paramodulation,
and a term such astheory(equality) may be used. In the future a selection of defined
<rule name> s will be explicitly supported in the TSTP syntax, and the<parent info>
will be annotated sufficiently for deterministic reproduction of the inference steps.

All <useful info> fields are lists of terms, and are used for various annotations. In
inference terms, one use of the<useful info> is to capture the status of the formula, as
described in Section 3. The<useful info> at the end of an annotated formula can be used
to record task specific information, e.g., in theAxiom Selector tool described in Section 4.3
it is used to record the relevance of each axiom to the conjecture

The non-formula part of the syntax provides an abstract definition of how non-logical
information, e.g., hints for ATP systems, must be written. The syntax does not specify any
concrete forms for non-logical information, which is system specific and beyond the scope of
a general purpose syntax. However, the abstract syntax ensures that parsing any non-logical
information will be possible using the same tokenizer and abstract parser as used for other
parts of annotated formulae.

The include directives are analogous to a C compiler’s#include directives. An include
directive may include an entire file at that point, or may specify the<name>s of the formulae
in the file that are to be included, thus providing a more fine grained include mechanism.
TSTP comments extend from the%character to the end of the line. There is no block comment
facility.



6 Geoff Sutcliffe, Jürgen Zimmer, Stephan Schulz

Parsing tools written in C are available for the TSTP syntax, and thetptp2X utility
distributed with the TPTP is compatible with the TSTP syntax.

3 The TSTP Status Hierarchy

The output from current ATP systems varies widely in quantity, quality, and meaning. At the
low end of the scale, systems that search for a refutation of a set of clauses may output only
an assurance that a refutation exists (the wonderful “yes” output). At the high end of the scale
a system may output a natural deduction proof of a problem expressed in FOF, e.g., [Mei00].
In some cases the output is misleading, e.g., when a CNF based system claims that a FOF
input problem is “unsatisfiable” it typically means that the negated CNF of the problem is
unsatisfiable.

The hierarchy of status values described below provides a precise and reasonably fine
grained set of status values that can be used to specify the logical status of an ATP prob-
lem, as may be established by an ATP system. The hierarchy was based on initial work
[AKR00], done to establish communication protocols for systems on the MathWeb Software
Bus [ZK02]. The hierarchy is shown in Figure 1.

Result
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Satisfiability 
preserving

Satisfiability 
partial mapping

Satisfiability 
mapping

Satisfiability 
bijection
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Gave upInput error Resource out Unknown

(Reason) (Other)

Figure 1: Status Hierarchy for ATP Systems’ Outputs

The hierarchy assumes that the inputF to the ATP system is of the formAx ⇒ C, where
Ax is a set of formulae,C is a single formula,Ax andC have no free variables, and⇒ is the
standard first order implication. An emptyAx, i.e.,F is a monolithic formula (a particular
example is a set of clauses), is the same asAx being{true}. An emptyC, e.g., when testing
the satisfiability of a set of axioms, is the same asC beingtrue. By showing thatF is valid, an
ATP system shows that the conjectureC is a theorem (a logical consequence) of the axioms
Ax, i.e.,Ax |= C, where|= is the standard first order entailment indicating that every model
of Ax is a model ofC. If F is not valid there are several other possible relationships between
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Ax andC, as shown in the hierarchy and enumerated below. Associated with each possible
status are possible outputs from an ATP system.

1. Tautologies
Every interpretation is a model ofAx and a model ofC

• Shows:F is valid;∼F is unsatisfiable;C is a tautology

• Outputs: Assurance; Proof ofF ; Refutation of∼F

2. Theorem
Every model ofAx (and there are some) is a model ofC, but not caseTautologies

• Shows:F is valid;C is a theorem ofAx

• Outputs: Assurance; Proof ofC from Ax; Refutation ofAx ∪ {∼C}; Refutation of
the clause normal form ofAx ∪ {∼C}

3. Satisfiable
Some models ofAx (and there are some) are models ofC

• Shows:F is satisfiable;∼F is not valid;C is not a theorem ofAx

• Outputs: Assurance; Model; Saturation

4. SatisfiabilityBijection
There is a bijection between the models ofAx (and there are some) and models ofC

• Examples: Skolemization; Pseudo-splitting [RV01]

• Shows: Nothing aboutF

• Outputs: Assurance

5. SatisfiabilityMapping
There is a mapping from the models ofAx (and there are some) to models ofC

• Shows: Nothing aboutF

• Outputs: Assurance

6. SatisfiabilityPartialMapping
There is a partial mapping from the models ofAx (and there are some) to models ofC

• Example:Ax = {p | q }, C = p & r

• Shows: Nothing aboutF

• Outputs: Assurance; Pairs of models; Pairs of saturations

7. SatisfiabilityPreserving
If there exists a model ofAx then there exists a model ofC

• Shows: Nothing aboutF

• Outputs: Assurance

8. ContradictoryAxioms
There are no models ofAx

• Shows:F is valid; Anything is a theorem ofAx

• Outputs: Assurance; Refutation ofAx; Refutation of the clause normal form ofAx
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9. NoConsequence
Some models ofAx (and there are some) are models ofC, and some are models of∼C.

• Shows:F is not valid;F is satisfiable;∼F is not valid;∼F is satisfiable;C is not a
theorem ofAx

• Outputs: Assurance; Pair of models; Pair of saturations

10. CounterSatisfiabilityPreserving
If there exists a model ofAx then there exists a model of∼C

• Shows: Nothing aboutF

• Outputs: Assurance

11. CounterSatisfiabilityPartialMapping
There is a partial mapping from the models ofAx (and there are some) to models of∼C

• Shows: Nothing aboutF

• Outputs: Assurance; Pairs of models

12. CounterSatisfiabilityMapping
There is a mapping from the models ofAx (and there are some) to models of∼C

• Shows: Nothing aboutF

• Outputs: Assurance

13. CounterSatisfiabilityBijection
There is a bijection between the models ofAx (and there are some) and models of∼C

• Shows: Nothing aboutF

• Outputs: Assurance

14. CounterSatisfiable
Some models ofAx (and there are some) are models of∼C

• Shows:F is not valid;∼F is satisfiable;C is not a theorem ofAx

• Outputs: Assurance; Model; Saturation

15. CounterTheorem
Every model ofAx (and there are some) is a model of∼C, but notUnsatisfiable

• Shows:F is not valid;∼F is valid;∼C is a theorem ofAx; C cannot be made into
a theorem by extendingAx;

• Outputs: Assurance; Proof of∼C from Ax; Refutation ofAx ∪ {C}; Refutation of
the clause normal form ofAx ∪ {C}

16. Unsatisfiable
Every interpretation is a model ofAx and a model of∼C

• Shows:F is unsatisfiable;∼F is valid;∼C is a tautology

• Outputs: Assurance; Refutation ofF ; Proof of∼F
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4 Applications

The TSTP data-exchange formats have been adopted in several automated reasoning projects.
These range from core ATP system development to multi-agent systems and theorem proving
services on the semantic web. Some of these applications are described here, illustrating the
benefits of adopting the TSTP formats.

4.1 Problem and Solution Libraries

The first use of the TSTP syntax has been in the TSTP solution library. The TSTP is a library
of solutions to test problems for ATP systems, in particular, solutions to TPTP problems.
The TSTP is built by running all contemporary ATP systems on all TPTP problems, and
translating their system specific output to the TSTP syntax and a TSTP status value.1 Each
TSTP file contains: information about the problem; information about the system, it’s input
format, and the command line options used; information about the computing environment
used to produce the output; the result status produced by the system, with the CPU time
taken; the type of output produced by the system, with the CPU time taken; the original
output from the ATP system; the TSTP format of the derivation output; statistical information
about successful derivations; and access to a graphical view of the derivation. The TSTP is
continuously updated as new TPTP versions are released and new (versions of) ATP systems
become available. The TSTP is available online at [SutRL].

The MPTP project [Urb03], which will make all the theorems of the Mizar project [Rud92]
available as first order ATP problems, will also use the TSTP formats. The problems extracted
from the Mizar library include more than just the logical formulae, e.g., they include sort in-
formation. This type of information may be encoded as non-logical information, as abstractly
supported by the TSTP language.

4.2 Developer Support

Common formats for input and output make the life of a system developer a lot easier. Imple-
menting a high performance stand-alone reasoning system already is a daunting task. How-
ever, in addition to the main reasoning engine, there are a multitude of useful tools that help
with analyzing the system behavior, verifying proofs, etc. In the case of the equational theo-
rem prover E, in addition to the main prover the distribution contains:

• A problem analysis tool that determines certain numeric and discrete features of proof
tasks.

• A proof analysis program that determines which clauses in the proof are the hardest to
select for conventional heuristics.

• A wrapper program combining the inference engine and the analysis tool.

• An example generator that analyses proof searches, determines good and bad search de-
cisions (represented by clauses), and stores them in a knowledge base that can be used to
guide future searches [Sch01].

1The development of translator software is ongoing, and it is hoped it will become unnecessary as ATP
system developers adopt the TSTP syntax as their native output format, as has already happened with E.
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• A lemma detection tool that tries to findinterestingfacts, based on syntactic criteria of
clauses and the structure of the search tree.

• A proof checker that verifies the proof, using one of a selection of other provers to estab-
lish the validity of each inference.

• A proof presentation program that extracts a proof from a full listing of all inferences.

In principle, much of this infrastructure can be reused by other ATP systems. However,
the development of most of these tools predates the TSTP formats, and they were developed
using various ad-hoc formalisms. The original native input syntax of E is E-LOP, which is a
variant of the LOP syntax developed for SETHEO [MIL+97]. E-LOP is used for input and
output of plain clauses. As an alternative, the TPTP syntax was added for both input and
output. The original native output syntax of E is PCL2 language, an extension of PCL to full
clausal logic. The exit status of E was denoted by somewhat ambiguous output strings, e.g.
“# Proof found! ” to denote unsatisfiability of the input clause set. All of these formats
are specialized towards E, are only partially documented, and hence are unlikely to be used
by other developers. While the richness of the tool set is somewhat unusual, the described
state of I/O is rather typical - in fact, many existing systems do not even support the de-facto
standard of TPTP, but only proprietary syntaxes.

The more generally useful parts of the E distribution are now migrating to the TSTP data-
exchange formats. In particular, E version 0.81 can read TSTP input, can produce both raw
and extracted proof protocols in TSTP syntax, and supports the relevant parts of the TSTP
status hierarchy. As a result, much of the infrastructure of E can now be reused by other ATP
systems that adopt the TSTP formats (and conversely, other interesting tools based on the
TSTP formats can be used with E). This process has already started. For example, a project
at the Charles University aims to automatically learn some field of mathematics by solving
problems [Pud03]. When a proof is found by an ATP system, the proof is analyzed so that
useful lemmas or theorems can be extracted, remembered, and used again. The project has
adopted the TSTP abstract syntax because of its linkages to different ATP systems and related
developer tools. The project also provides translation of the TSTP syntax to and from XML
and Java object trees.

4.3 Automated Reasoning Tools

The ART (Automated Reasoning Tools) projects at the University of Miami are making ex-
tensive use of the TSTP syntax, in order to communicate data between the various com-
ponents. One focus of the ART projects is to solve hard problems through selective use of
axioms and lemmas. Figure 2 shows the components of the ART projects relevant to this goal.
All tools and modules communicate in TSTP syntax.

TheLemma Creator aims to discover interesting lemmas and theorems by examining the
logical consequences of a set of axioms, as generated by an ATP system [SGC03]. The lemma
creator currently uses the E prover [Sch02] to generate logical consequences because it can
output formulae in TSTP syntax. TheRunTime andRanker modules filter out boring logical
consequences, leaving only interesting ones as the final output.

The Axiom Selector andLemma Builder tools both use theRelevance module and the
SystemOnTPTP module. TheRelevance module provides a heuristic measure of the rele-
vance of a formulae to a given conjecture.SystemOnTPTP [Sut00] controls the execution of
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Figure 2: ART Projects for Hard Problems

a named ATP system.SystemOnTPTP accepts a problem in TSTP format, uses thetptp2X
utility to convert the problem to the format of the ATP system, runs the ATP system, and uses
theX2tstp utility to convert the system’s output to TSTP format.

TheAxiom Selector uses theRelevance module to measure the relevance of the axioms to
the conjecture in a problem, and uses these measures to select subsets of the axioms to form
axiom reducedproblems that are submited toSystemOnTPTP. This is a more intelligent ver-
sion of the RedAx system [SD03]. TheLemma Builder measures the relevance of lemmas
that may assist in finding a proof of a conjecture, and incrementally builds a proof by prov-
ing the conjecture and the lemmas from the axioms and preceding lemmas. The component
subproofs are done usingSystemOnTPTP.

Given a proof or refutation in TSTP format, theSemantic Verifier does semantic and
structural verification of the solution, and theTree Viewer generates an annotated GIF image
of the solution tree. As data is passed between the various ATP tools, extra information may
be added to the<useful info> field of each annotated formula, e.g., the relevance module
adds arelevance /1 term.

4.4 Reasoning Agents and Semantic Web Services

A framework for distributed computation and deduction agents is currently being devel-
oped by the second author [Zim03]. A precondition for multi-agent communication is that
all agents must agree on a common ontology. Such an ontology for deduction systems, which
includes the status hierarchy of Section 3, is being developed. The TSTP formats are being
used to encode first order problems and the results of ATP systems.

One of the applications of the agent framework is the dynamic combination of ATP tools.
For example, given a conjecture in TSTP FOF format, one possible query is to find a Natural
Deduction (ND) proof for the conjecture. The brokering mechanism of the framework tries
to come up with a suitable combination of ATP tools to answer the query. Figure 3 shows a
combination of a specialized clausifying service, which produces the equivalent TSTP CNF
problem, with the theorem prover Otter and the proof transformation toolTramp [Mei00].

Such a combination of services heavily relies on a common syntax for first order ATP
problems and proofs. However, tools likeTramp also rely on an agreed calculus, i.e., a lim-
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Figure 3: A clausifier, the prover Otter, and the proof transformation toolTramp, communicating in TSTP
format

ited set of inference rules occurring in a TSTP proof. Therefore the definition of a standard
TSTP proof that allows only the system-independent rules of the resolution calculus, such as
binary resolution, paramodulation, hyperresolution, and factoring, is currently being devel-
oped. Standard TSTP proofs would also allow for independent proof checkers.

The idea of globally accepted ontologies is also required for the Semantic Web [BLHL01]
initiative, in which web resources, such as web pages and web services, are annotated with
semantic markup. Together with the research projects MONET [ConRL] and MathBroker
[SCRL], descriptions of web services for computation and deduction systems are being spec-
ified. The underlying ontologies will incorporate the TSTP formats to describe ATP services.

5 Conclusion

Two data-exchange formats for ATP tools have been presented. The ability of ATP tools to
interface directly with other components in a larger system has an important influence on
usability and uptake. The TSTP formats facilitate direct and correct communication between
ATP tools.

The formats presented in this paper are finding immediate application. A reason why the
formats can be put to use immediately is that they are highly pragmatic. They are sufficient to
be immediately useful, and have not become embroiled in any attempt to encompass highly
abstract and global ambitions. As the TSTP formats are used, their strengths and any weak-
nesses will be revealed, possibly leading to improvements. As with the TPTP syntax, which
is now commonly used in the ATP community, these formats are most likely to succeed if
there is sufficient successful real usage.

In order to assist the ATP community to use the TSTP syntax for input to ATP systems,
TPTP v3.0.0 will be distributed in both the TPTP syntax and in the TSTP syntax. To encour-
age adoption of the TSTP syntax and the output statuses, the TSTP library will be distributed
in the TSTP syntax, and a suite of TSTP postprocessing tools (which use the TSTP syntax
and status values) will be made freely available. Future versions of the MathWeb Software
Bus will provide full support for the TSTP language.

Future work includes designing formats for the output from model generation programs
such as MACE [McC01] and FINDER [Sla94], and building a hierarchy of possible outputs
(outputs such as “assurance”, “refutation”, “proof”) from ATP systems.
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