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We describe the superposition-based theorem prover
E. E is a sound and complete prover for clausal first
order logic with equality. Important properties of the
prover include strong redundancy elimination criteria,
the DISCOUNT loop proof procedure, a very flexible
interface for specifying search control heuristics, and
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1. Introduction

E is a fully automatic theorem prover for clausal
logic with equality. It is a saturating prover based
on a purely equational view, with a strong empha-
sis on rewriting. E is sound, and, unless it runs out
of user-specified or physical resource limits, com-
plete.
The prover has participated in the CADE ATP

System Competitions since 1998. In 2000, it won
the first place in the MIX division of CASC-17, and
in 2001 achieved third places in the MIX assurance
class, the MIX proof class, and the UEQ division of
CASC-JC. In addition to this successes as a stand-
alone system, it also is one of the core components
of the strategy parallel prover E-SETHEO [25],
which won various CASC categories in both 2000
and 2001.
We believe that the reason for these successes

is a combination of good theoretical groundwork,
careful engineering, and extensive experimental
work. In this paper we will describe how E is con-
structed and which aspects of the prover are re-
sponsible for its power. There are four major ele-
ments that form the conceptual core of the prover:

Calculus: E is based on a variant of the superpo-
sition calculus [4] with literal selection. Su-

perposition is generally recognized as one of
the most powerful calculi for proof problems
with equality. The major reason for this is the
compatibility with a wide variety of redun-
dancy elimination criteria. E implements most
known redundancy elimination techniques, as
well as some new ones. We describe the cal-
culus in some detail in section 2.

Search Organization: The main proof procedure is
based on the DISCOUNT loop, which strictly
separates a small number of active clauses
(used for both generating inferences and sim-
plification) from the majority of passive clause
which are only activated one by one. This al-
lows a very good heuristic control of the proof
procedure, a high inference rate even with a
relatively simple engine, and easy control of
memory consumption. Section 3 covers the
DISCOUNT loop as used in E.

Heuristic Control: A good control of the proof
search is probably the major strength of E.
There are three major choice points: Clause
selection, literal selection, and term order-
ing. E has a uniquely flexible way of select-
ing clauses for processing, involving an arbi-
trary number of differently evaluated priority
queues. The selection of inference literals in a
clause, which in many cases can restrict the
number of necessary inferences, is less flexible.
However, there are about 60 useful predefined
literal selection schemes implemented in the
prover. Finally, term orderings can be created
according to a small number of simple weight-
and precedence schemes. The major heuristic
concepts used in E are described in section 4.

Inference Engine: E’s inference engine is reason-
ably efficient. While many other provers (as
e.g. Vampire [29,19] and Waldmeister [8]) are
more optimized for raw throughput or sub-
sumption rates, the inference engine in E has
been specifically designed and optimized with
its proof search organization in mind, and has
proved fully adequate. The most distinguish-
ing feature is the use of shared terms with
shared, non-local rewriting [12]. We discuss
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some aspects of the implementation in sec-
tion 5.

We consider E to be a brainiac1 prover for two
reasons: First, a very large amount of work has
been spend on developing and evaluating good
search control heuristics. Thus, E’s proof search of-
ten seems to be more intelligent than that of many
other automated deduction systems. Secondly, es-
pecially in the rewriting engine, E typically substi-
tutes a few very complex operations (shared, non-
local rewriting, time-stamp constrained matching)
for a large number of simpler operations.
This paper is organized as follows: After this in-

troduction, we devote one section to each of the
four major items mentioned above. We then dis-
cuss some aspects of the performance characteris-
tics of the prover. The paper concludes with some
sentences about possible future improvements.

2. Calculus

E implements the calculus SP, a variant of the
superposition calculus E described in [4] with a
slightly different notion of literal selection and ex-
plicit inference rules for simplification. Pure super-
position (as used in E) is a refutation-based satu-
rating calculus operating on the equational repre-
sentation of formulae in clause normal form2. The
proof state is represented by a set of equational
clauses, which initially all come from the problem
formalization. A proof derivation is a process that
systematically infers new clauses and adds them
to the proof state until the empty clause has been
derived and thus the unsatisfiability of this set has
been made explicit. It may also, optionally, sim-
plify or remove redundant clauses from the proof
state.
The major problem in automated theorem prov-

ing is the explosion of the number of clauses a
prover has to consider in each step. Therefore the
success of a calculus usually depends on the restric-

1Note that the classical antonym to brainiac is speed de-
mon. The terms describe different approaches to a given

problem, and do not imply a value judgment.
2The equational representation of a non-equational atom

A is the equation A ≃ ⊤, where ⊤ is a special function

symbol. In order to make the naive transformation correct,
it is necessary to introduce separate, disjoint sorts for atom
terms and ordinary terms. We abstract from this details in

the following and assume the pure equational case.

tions imposed on generating inferences and the
ability to remove redundant clauses. Our prover
uses a wide variety of efficiently implementable
contraction techniques.

2.1. Preliminaries

We assume that the reader is familiar with ba-
sic concepts from equational theorem proving and
only repeat some definitions to establish notation.
See [2] for an introduction to rewriting and [5,16]
for equational theorem proving. [22] covers the
same material presented here in more detail.

Term(F, V ) denotes the set of (first order) terms
over a set F of function symbols and set V of
variables. We use s, t, u, v (possibly primed or sub-
scripted) to denote terms, x, y, z for variables, f, g
for non-constant function symbols and a, b, c for
constants. We write t|p to denote the subterm of
t at a position p and write t[p ← t′] to denote t
with t|p replaced by t′. An equation s ≃ t is an
(implicitly symmetrical) pair of terms. A positive
literal is an equation s ≃ t, a negative literal is
a negated equation s ̸≃ t. We write s ≃̇ t to de-
note an a literal of unspecified polarity, i.e. a lit-
eral that is either positive or negative. An (equa-
tional) clause is a multi-set of literals, sometimes
written as l1 ∨ l2 ∨ . . . ∨ ln and interpreted as the
disjunction of its literals. We usually consider two
occurrences of the same clause as distinct objects
and implicitly assume that any two clauses do not
share any variable. If C is a clause, we denote by
C− the (multi-) subset of negative literals in C,
and by C+ the (multi-) subset of positive literals.
A substitution σ is a mapping from V to

Term(F, V ) so that {x|σ(x) ̸= x} is finite. It is
extended to terms, literals and clauses. A ground
reduction ordering > is a Noetherian partial or-
dering that is stable w.r.t. the term structure and
substitutions and total on ground terms. An or-
dering > can be extended to literals by comparing
the multi-set representation of literals with >>>>
(the multi-set-multi-set extension of >), where a
literal s≃ t is represented as {{s}, {t}} and s ̸≃ t is
represented as {{s, t}}. Similarly, it can be lifted
to clauses by considering clauses as multi-sets of
the literal multi-set representations.

Finally, if s≃ t is an equation (or a unit clause)
with s > t, we say that s≃ t is orientable. More-
over, if σ(s) > σ(t), we call σ(s≃ t) an orientable
instance of s≃ t.
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2.2. Generating Inferences

The superposition calculus restricts generating
inferences to positions in maximal terms of max-
imal literals. Alternatively, it is possible to arbi-
trarily select certain literals in clauses which have
at least one negative literal, and in this case to re-
strict inferences to selected literals. For SP, we use
the following notions to formalize this:
A literal selection function sel is a function that

maps a clause C to a multi-subset of C, with
the property that sel(C) ∩ C− = ∅ implies that
sel(C) = ∅. If l ∈ sel(C), we say that l is selected
(with respect to sel). The above definition then
implies that if any literals are selected in a clause,
then at least one of those is negative. Now assume
that sel is a literal selection function and that >
is a ground reduction ordering that has been lifted
to literals.
Let C = l ∨R be a clause and σ a substitution.

We say σ(l) is eligible for resolution if either

– sel(C) = ∅ and σ(l) is >-maximal in σ(C) or
– sel(C) ̸= ∅ and σ(l) is>-maximal in σ(sel(C)∩
C−) or

– sel(C) ̸= ∅ and σ(l) is>-maximal in σ(sel(C)∩
C+)

σ(l) is eligible for paramodulation if l ∈ C+,
sel(C) = ∅, and σ(l) is maximal in σ(C).
Conceptually, a literal that is eligible for reso-

lution is a passive inference partner. A literal el-
igible for paramodulation, on the other hand, is
actively used as a (conditional lazy) rewrite rule,
i.e. the equivalence expressed by the literal is ac-
tually used in the inference. Note that our defini-
tion allows the selection of literals that allow more
inferences then strictly necessary for a complete
calculus. A particular example is the selection of
positive literals in mixed clauses.

With these definitions, we can now formulate
the generating inference rules from SP, using the
normal notation for inference rules:

Equality resolution (ER)
s ̸≃ t ∨R

σ(R)

if σ = mgu(s, t) and σ(s ̸≃ t) is eligible for resolu-

tion.

Superposition into negative literals (SN)
s≃ t ∨ S u ̸≃v ∨R

σ(u[p← t] ̸≃v ∨ S ∨R)

if σ = mgu(u|p, s), σ(s) ̸< σ(t), σ(u) ̸< σ(v),

σ(s≃ t) is eligible for paramodulation, σ(u ̸≃v) is

eligible for resolution, and u|p /∈ V .

Superposition into positive literals (SP)
s≃ t ∨ S u≃v ∨R

σ(u[p← t]≃v ∨ S ∨R)

if σ = mgu(u|p, s), σ(s) ̸< σ(t), σ(u) ̸< σ(v),

σ(s≃ t) is eligible for paramodulation, σ(u ̸≃v) is

eligible for resolution, and u|p /∈ V .

Equality factoring (EF)
s≃ t ∨ u≃v ∨R

σ(t ̸≃v ∨ u≃v ∨R)

if σ = mgu(s, u), σ(s) ̸< σ(t) and σ(s≃ t) eligible

for paramodulation.

The inference system formed by the rules (ER),
(SN), (SP), and (EF) subsumes the system E [4]
(with literal selection), i.e. for each SP-selection
function there is a version of E that allows at most
the same inferences as SP. Since E is known to
be complete, this implies the the completeness of
our calculus as well. Moreover, we can inherit the
notions of fairness (all non-redundant generating
inferences between persistent clauses have eventu-
ally to be performed), and can also apply the gen-
eral redundancy elimination schemes described for
the standard superposition calculus. The potential
to also select positive literals as paramodulation
targets allows us a greater flexibility in the heuris-
tic control – of course at the cost of a larger local
branching factor. Experimental results show that
this greater flexibility often is useful.

2.3. Contraction

While generating inferences are theoretically
sufficient for completeness, most modern provers
spend a great part of their time in simplifying (or
contracting) operations, i.e. in inferences that re-
move or modify existing clauses. E is no exception.
It uses a wide variety of contraction techniques,
from the simple deletion of redundant literals to
rewriting and to special redundancy elimination
techniques for associative and commutative func-
tion symbols.
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All simplifying inferences in SP are based on the
notion of compositeness as defined in [4]. A clause
is composite with respect to a set of clauses F ,
if all its ground instances are implied by smaller
ground instances from clauses in F 3. Composite
clauses can be deleted from the proof state without
affecting completeness of the calculus, and infer-
ences which involve composite clauses are redun-
dant. Tautologies are an example of clauses that
are directly composite. We call inferences that sim-
ply delete composite clauses deleting inferences.
However, in many cases we first need to deduce
a new, simpler clause in order to make a clause
redundant. In this case, we speak of modifying or
simplifying inferences.

We can distinguish between three different classes
of redundancy elimination techniques, depending
on the number of clauses used in the justification
of the step. A clause can be simplifiable or redun-
dant on its own, with respect to another clause, or
with respect to a recognized first-order theory. We
use a common notational convention to describe
all of these cases. A contraction rule is a rule of
the form:

< precondition >

< conclusion >
if < condition >

An application of a rule is possible if the con-
dition holds. In this case, the proof state is mod-
ified by replacing all clauses in the precondition
with the clauses in the conclusion. Note the we
frequently have the case that < conlusion > is
empty. In this case we also speak of a deleting rule.

2.3.1. Intra-clause simplification
The most basic contraction techniques eliminate

unnecessary literals from a clause:

Deletion of duplicated literals (DD)
s≃̇ t ∨ s≃̇ t ∨R

s≃̇ t ∨R

Deletion of resolved literals (DR)

(DR)
s ̸≃s ∨R

R

3A few techniques, in particular rewriting of maximal
terms, subsumption, and AC tautology deletion, require a

more general definition of compositeness, based on a more
complex admissible literal ordering[5] taking into account
not only the ground instance, but also the substitution used

to generate it.

Superposition is also compatible with the ea-
ger deletion of tautologies (since any instance of a
tautology is a tautology and hence implied by the
empty theory). The deletion of tautological clauses
is quite important, especially in proof problems
with a significant unit-equational sub-theory, since
in this case often many clauses can be rewritten to
equational tautologies.

We can give three sufficient criteria to detect
tautologies: A clause is tautological, if it contains
two identical atoms with opposite signs, or if it
contains a trivial equation s ≃ s. Both of these
criteria can be tested very efficiently. The third
method, suggested in [17], subsumes these two, but
is significantly more expensive in terms of CPU
time. A clause is tautological, if the equational the-
ory induced by the set of negated negative literals
implies one of the positive literals, where all vari-
ables in the clause are treated as new constants.
Since ground completion is guaranteed to termi-
nate with a convergent system, this property can
be tested with some implementation work.

Written in the form of contraction rules, these
methods can be stated as follows:

Syntactic tautology deletion 1 (TD1)
s≃s ∨R

Syntactic tautology deletion 2 (TD2)
s≃ t ∨ s ̸≃ t ∨R

Semantic tautology deletion (SD)
s1 ̸≃ t1 ∨ . . . ∨ sn ̸≃ tn ∨ s≃ t ∨R

if σ(s1 ≃ t1), . . . , σ(sn ≃ tn) |= σ(s ≃ t), where

σ is a substitution that maps all variables in the

clause to distinct new constants

The last single-clause simplification in SP again
is a modifying inference. It covers a special case of
equality resolution:

Destructive equality resolution (DR)
x ̸≃s ∨R

σ(R)

if x ∈ V and σ = mgu(x, s)
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This allows us to destructively solve a negative
literal with one variable side simply by applying a
suitable substitution to the clause.

2.3.2. Clause-clause contraction
Clause-clause simplification steps are the most

important inferences in most current theorem
provers. In particular, rewriting is a relatively ef-
ficient way to compute many functions defined by
sets of equations. We distinguish between rewrit-
ing of positive literals (which is slightly more re-
stricted) and rewriting of negative literals.

Rewriting of positive literals (RP)
s≃ t u≃v ∨R

s≃ t u[p← σ(t)]≃v ∨R

if u|p = σ(s), σ(s) > σ(t), and if u ≃ v is not

eligible for paramodulation or u ̸> v or p ̸= λ or

σ is not a variable renaming.

Rewriting of negative literals (RN)
s≃ t u ̸≃v ∨R

s≃ t u[p← σ(t)] ̸≃v ∨R

if u|p = σ(s) and σ(s) > σ(t).

Rewriting only uses orientable instances of posi-
tive unit clauses. We can also use unorientable and
negative unit clauses for simplification if we can
eliminate a literal in one step.

Positive simplify-reflect (PS)
s≃ t u[p← σ(s)] ̸≃u[p← σ(t)] ∨R

s≃ t R

Negative simplify-reflect (NS)
s ̸≃ t σ(s≃ t) ∨R

s ̸≃ t R

Rewriting is a modifying inference that has
been primarily developed in the context of Knuth-
Bendix completion [10] and its variants [9,3]. Sub-
sumption, on the other hand, is a deleting contrac-
tion rule, and has its root in the field of resolu-
tion [21]. Subsumption allows us to delete a clause
if the proof state already contains a more general
clause that is, in a certain sense, smaller. In the
case of equational logic, we also have a new kind of
unit subsumption induced by positive unit clauses.
The two subsumption rules can be specified as fol-
lows:

Clause subsumption (CS)
T R ∨ S

T

if σ(T ) = S for a substitution σ

Equality subsumption (ES)
s≃ t u[p← σ(s)]≃u[p← σ(t)] ∨R

s≃ t

2.3.3. AC redundancy elimination
Associativity and commutativity are frequently

encountered properties of binary operators. The
most common examples are arithmetic addition
and multiplication, but the property is also shared
by many logical connectives occurring in hardware
verification problems. As can be seen from these
examples, both properties often occur together.
In this case, they are particularly troublesome,
because provers are bound to enumerate super-
exponentially growing classes of permutative equa-
tions. Although equality modulo AC is easily de-
cidable, conventional unfailing completion will not
terminate if given just the AC axioms for a single
function symbol.

Means of dealing with AC function symbols in-
clude AC unification and AC matching, combined
with rewriting modulo AC. Such methods have
been used to good effect in the prover EQP [14].
However, none of the current general purpose
provers includes one of these techniques. They re-
quire significant implementation work, are in prac-
tice hard to use efficiently, and, if completeness
of the prover is desired, restrict the choice of re-
duction orderings. In the case that dynamic AC
recognition is desired, i.e. that the prover should
also handles AC properties deduced only during
the proof search, this restriction applies to most
equational problems.

An alternative approach is to perform a nor-
mal proof search including explicit AC axioms, and
only use the AC theory for the simplification and
deletion of redundant clauses. This idea is based
on the work done for the unit equational prover
Waldmeister [1]. The core ideas for the AC case
carry over to full superposition. Basically, it can
be shown that there exists a small, ground con-
vergent system for describing the AC property (as
well as commutativity alone), and that no other
consequences of the AC axioms are needed for the
completeness. Moreover, we can simply delete neg-
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ative equational literals if both terms are equal
modulo the recognized AC theory.
More formally, consider the following defini-

tions: A commutativity axiom for the binary func-
tion symbol f is a positive unit clause f(x, y) ≃
f(y, x). An associativity axiom is a clause f(x, f(y, z))≃
f(f(x, y), z). An AC specification AC is a set of
associativity and commutativity axioms such that
AC contains either only a commutativity axiom
or both a commutativity and an associativity ax-
iom for each operator. We say two terms s and t
are equal modulo AC, written as s =AC t, if AC
|= s ≃ t. If f is associative and commutative, we
define ACf as the set of unit clauses
{f(x, y)≃f(y, x),
f(f(x, y), z)≃f(x, f(y, z)),
f(x, f(y, z))≃f(z, f(x, y)),
f(x, f(y, z))≃f(y, f(x, z)),
f(x, f(y, z))≃f(z, f(y, x))}
If f is only commutative, we define ACf as
{f(x, y) ≃ f(y, x)}. For an AC specification AC,
we define AC = ∪fACf . Note that each ACf is
equivalent to the AC axioms used to induce it. It
also is ground convergent for any Knuth-Bendix
ordering or lexicographic path ordering4. It is easy
to see that any AC also is convergent, since there
exist no non-trivial overlaps between the clauses
from different ACf .
Given these definitions, we can now specify our

AC contraction rules:

AC tautology deletion (ACD)
s≃ t ∨R AC

AC

if AC is an AC specification, s =AC t, and s ≃
t ∨R /∈ AC

AC simplification (ACS)
s ̸≃ t ∨R AC

R AC

if AC is an AC specification, s=AC t.

In addition to the rules explicitly stated in this
section, we have recently implemented splitting
without backtracking as originally introduced in

4We are aware of the fact that for the case of a function
symbol that is both associative and commutative, ACf is

not minimal. However, this definition simplifies implemen-
tation and, perhaps surprisingly, seems work even better
than the minimal 3 clause system.

Saturate [17] in the form of hyper-splitting with-
out naming [18]. However, our preliminary evalua-
tion rarely showed an improvement, and hence this
option is not activated by default in the current
version.

3. Proof Procedure

The calculus allows arbitrary application of in-
ferences rules. To create an efficient and complete
proof procedure, we have to determine in which
order inference rules should be applied. This sat-
uration algorithm takes the form of a loop, and
interleaves generating and contracting inferences.
It terminates in two cases: If it runs out of (non-
redundant) generating inferences, or if a proof (in
the form of the empty clause in the proof state) is
found. The three primary virtues we aim at with
of our proof procedure can be stated as fast, cheap,
and lazy :

– The proof procedure should be fast, i.e. allow
for a high inference rate. Moreover, each in-
dividual traversal of the main saturation loop
should only take a small amount of time. This
allows for a reasonably fine-grained control of
the proof search.

– The proof procedure should be cheap to im-
plement. In particular, it should be possible
to easily guide the proof search using only a
small number of choice points, and to avoid
too much administrative overhead. To achieve
this, we opt to replace explicitly stored data
with strong invariants on the proof state.

– Perhaps the most important property is lazi-
ness: The proof procedure should not do any
work it can avoid. Contracting inferences take
most of the time in current theorem provers.
However, generating inferences are the ulti-
mate cause of this work. So we try to avoid
generating inferences if we can show that they
are redundant. Moreover, we delay expensive
contraction inferences as much as possible.

Nearly all current saturating high performance
theorem provers use a variant of the given-clause
algorithm. This algorithm represents the proof
state by two sets of clauses, a set P of processed
clauses and a set U of unprocessed clauses. Ini-
tially, all clauses are in U and P is empty. At each
traversal of the main loop, the algorithm tries to
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pick a clause c (the given clause) from U . If U is
empty, the original clause set is satisfiable (and the
clauses in P describe a model). If c is the empty
clause, the unsatisfiability of the original clause
set has been shown. Otherwise the algorithm per-
forms all possible generating inferences where at
least one premise is c and all other premises are
arbitrary clauses from P . The generated clauses
are added to U , and the process repeats.
The different variants of the given-clause algo-

rithm differ in their handling of contraction. Most
provers use a variant of the loop popularized by
Otter [15], and hence sometimes called the Ot-
ter loop. The Otter loop is characterized by a
pragmatic approach to contraction rules: It uses
rewrite- and subsumption relations induced by dif-
ferent (disjoint) subsets of the clauses in the proof
state in different situations. For an example, see
the variant of the Otter loop described in [20]
and implemented in Vampire, which uses three dif-
ferent rewrite relations within a single main loop
traversal.
E, on the other hand, uses a different variant of

the given-clause algorithm, the DISCOUNT loop,
named after the first well-known system that im-
plemented it [6]. It uses only the set P (and the
given clause) to perform simplifications. A sketch
of the algorithm, adapted for E’s more general cal-
culus, is shown in Fig. 1. To our knowledge, E is
the only general purpose prover explicitly designed
around this loop. It is, however, shared by Wald-
meister, a system for pure unit equational prob-
lems, and both Vampire and SPASS added it later.
The algorithm uses a number of subroutines:

select best(U) selects the (according to a heuristic
evaluation) best clause from the set U .

simplify(c, P ) performs all modifying inferences
where c is the main premise (the clause
that is modified) and potential other premises
are clauses from P . This applies inference
rules (RN) and (RP), followed by (PS), (NS),
(ACS), (DD) and (DR).

cheap simplify(c, P ) is similar, but only applies in-
ferences rules that are implemented partic-
ularly efficiently in E: (RN), (RP), (ACS),
(DD) and (DR). Optionally, the user can re-
strict this function to use only orientable units
or to not perform rewriting at all. Except for
rewriting, the inference rules are implemented
in a way that they depend only on the clause
to be simplified, not on U or P (AC proper-

ties are detected at activation time and stored
as function symbol properties), and hence can
be applied efficiently regardless of the size of
the proof state.

redundant(c, P ) returns true if and only if c can
be shown to be redundant with respect to P
using one of the rules (SD), (CS), (ES) or
(ACD).

trivial(p, P ) similarly returns true if and only if c
can be shown to be redundant with respect to
P using only the efficiently implemented rules
(TD1), (TD2) and (ACD).

generate(c, P ) generates all direct conclusions be-
tween c and P using the rules (ER), (SN),
(SP) and (EF), where at least one premise is
c.

1: while U ̸= ∅ begin
2: c :=select best(U)
3: U := U\{c}
4: simplify(c, P )
5: if not redundant(c, P ) then
6: if c is the empty clause then
7: success; clause set is unsatisfiable
8: else
9: T := ∅

10: foreach p ∈ P do
11: if c simplifies a maximal literal of
12: p such that the set of maximal
13: terms, the set of maximal literals or
14: the number of literals in p potentially
15: changes
16: then
17: P := P\{p}
18: T := T ∪ {p}
19: U := U\{d|d is direct descendant of p}
20: fi
21: simplify(p, (P\{p}) ∪ {c})
22: done
23: T := T∪ generate(c, P )
24: foreach p ∈ T do
25: p :=cheap simplify(p, P )
26: if not trivial(p, P ) then
27: U := U ∪ {p}
26: fi
28: done
29: fi
30: fi
31: end
32: Failure: Initial U is satisfiable, P describes model

Fig. 1. E’s proof procedure



8 S. Schulz / E – A Brainiac Theorem Prover

As can be seen, the basic proof procedure of E
is quite straightforward. The proof state is rep-
resented by two clause sets U and P as in the
basic given clause algorithm. The algorithm se-
lects a new clause from U , simplifies it w.r.t. to P ,
then uses it to simplify the clauses in P in turn.
Critically modified processed clauses are removed
from P , their unprocessed direct descendents are
deleted.
After this interreduction phase, the algorithm

performs equality factoring, equality resolution
and superposition between the selected clause and
the set of processed clauses. The generated clauses
are simplified and added to the set of unprocessed
clauses. The process stops when the empty clause
is derived or no further inferences are possible.
This algorithm has a number of desirable fea-

tures, both from the theoretical and the implemen-
tation point of view:

– Most importantly, there is a strong invariant:
In addition to the general given-clause invari-
ant (at the start of the loop all, necessary gen-
erating inferences between clauses in P have
been performed), P is interreduced, i.e. max-
imally simplified with respect to itself. More-
over, when the generating inferences are per-
formed, even P ∪ {c} is interreduced. A sim-
ilar invariant also can be achieved with the
Otter loop, however, since full interreduction
of P ∪U is very expensive, most systems only
approximate it.

– There is only one rewrite relation used through-
out the whole main loop. With each traver-
sal of the loop, the strength of the relation
increases monotonically. Since this relation is
induced by the set P only, which is typically
much smaller than U , indexing is relatively
cheap, and indices do not consume significant
amounts of memory. Moreover, insertion and
removal of terms from the index are relatively
rare events.

– Clauses in U are truly passive, i.e. they are
not used unless they are selected as the given
clause and activated. Thus, they do not cause
any significant amount of work. As long as
sufficient memory is available, all clauses can
be kept. If memory is tight, clauses with a bad
evaluation can be deleted, in most cases with-
out affecting the search process at all, since U
typically is so large that only a small part of
it is ever processed.

– Since clauses in U are not used in the proof
process unless selected, we can easily and ef-
ficiently use an orphan-criterion (line 19 in
the algorithm) to delete direct descendants of
a clause d from P that can be shown to be
redundant, where a direct descendant of d is
any clause resulting from a generating infer-
ence where at least one premise is d, and an
arbitrary number of modifying inferences.

– The influence of the heuristic clause selection
(implemented by the function select best()) is
much more important than in the Otter loop,
where unprocessed clauses play an important
role and, if kept, cause significant amounts of
work. Heuristic control is more fine-grained
and typically more important than in the Ot-
ter loop.

– Since only the relatively small clause sets P
and T (newly generated clauses and clauses
removed from P by back-simplification) are
involved in all costly operations, the number
of processed clauses per unit time is typically
very high.

The major disadvantage compared to the Ot-
ter loop is, of course, that clauses in U may be
useful for rewriting, and may thus contribute to
a proof. However, this disadvantage is mitigated
in two ways: First, the higher inference rate also
means that more clauses are processed. Secondly,
even when using quite naive heuristic evaluation
functions like plain symbol counting, small clauses
will be selected early on. So most clauses in U are
fairly large and specialized, and rarely useful for
rewriting.

All in all, we made excellent experiences with
our proof procedure.

4. Search Control

Good search heuristics are crucial for any fully
automatic theorem prover for first-order logic. As
we already stated in the previous section, this is
particularly true for provers based on the DIS-
COUNT loop. Since E was always intended as a
test bed for search control heuristics, we imple-
mented a very flexible framework for integrating
different heuristics, and we believe that heuristic
search control is the major strength of E.

The three most important choice points are
clause selection, literal selection, and selection of
the term ordering.
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4.1. Conventional Clause Selection

Good literal selection strategies can significantly
improve the performance of a prover in the non-
unit case, and the choice of the right term ordering
sometimes is crucial especially for unit-equational
problems. However, we believe that the order in
which clauses are processed usually is the most
important choice point. In fact, most proofs are
short, and rarely need more than a few hundred
inferences in total. On current hardware, E can
usually select and activate several hundred clauses
in a few seconds, theoretically enough for the vast
majority of all proofs even for problems consid-
ered hard. However, a-posteriori analysis of proof
search protocols shows that in practice between
90% and 99% of all processed clauses are superflu-
ous, i.e. do not contribute to the proof. If we con-
sider generated clauses, this ratio is even worse.
The major reason for this is that typically, for
non-trivial proof problems the select best() func-
tion has to pick the given clause out of several tens
of thousands to several million clauses.
We are not aware of any work offering a strong

theoretical argument for any particular clause se-
lection heuristic, and we believe that such an argu-
ment will be very hard or even impossible to make.
Thus, major progress has to come as a result of
experimental work. To facilitate such work, we im-
plemented a very flexible interface for clause selec-
tion heuristics in E, allowing on the one hand easy
combination and configuration of all implemented
heuristics, and on the other hand easy addition of
completely new clause evaluation schemes.
We will now give a short overview of clause selec-

tion in E. For a more thorough discussion, see [22].
Fig. 2 shows a simplified functional description of
the select best() function of a given-clause based
theorem prover. The clauses in U are mapped to
a totally ordered set E by a heuristic evaluation
function eval(). The select function picks an arbi-
trary clause from those with the lowest (best) eval-
uation. Since the set U is very large, the evalua-
tions of the clauses in U are computed once (after
the initial simplification and before the clause is
moved from T to U), and stored with the clauses.
The set U is then organized as a priority queue or-
dered by the evaluations, new clauses are inserted
at the proper position, and at each traversal of the
main loop the first clause of the queue becomes
the given clause.

1: function select best(U)
2: e :=min>E{eval(c)|c ∈ U}
3: select c arbitrarily from {c ∈ U |eval(c) = e}
4: return c

Fig. 2. A simple select best() function

It is important to notice that the order in which
clauses are processed is fully determined by the
evaluation function. The most common evaluation
functions are based on symbol counting, i.e. they
return the number of function symbols and vari-
ables (possibly weighted in some way) of a clause
as the evaluation and thus prefer small clauses.

One common variation of this general scheme is
the introduction of a second priority queue, sorted
by age (time at which the clause was generated),
and the alternating selection of clauses from either
queue with a fixed ratio (the pick-given ratio. The
pick-given ratio was popularized by Otter [15] and
is e.g. used in Waldmeister [8] and Vampire [19].
We call this heuristic the standard clause selection
heuristic.

E generalizes this concept and allows the user to
specify an arbitrary number of priority queues and
a weighted round-robin scheme that determines
how many clauses are picked from each queue.
Each clause is entered into and removed from each
queue, but, of course, potentially ranked differ-
ently in each queue. Moreover, E uses compos-
ite evaluations, consisting of a clause priority (en-
coded as an integer value) and a heuristic weight
(encoded as a floating point number)5. Evaluations
are compared lexicographically in this order. Typ-
ically, the clause priority is used to specialize one
queue for one class of clauses (by assigning a lower
weight to this class), while the heuristic weight rep-
resents a measure for the expected usefulness of a
clause within this class.

Consider the following example: To emulate a
standard clause selection heuristic with pick-given
ratio 5, E sets up two priority queues. In both
queues, it assigns the same priority to all clauses.
In the first queue, the heuristic weight is the num-
ber of symbols in the clause. In the second queue,
the heuristic weight is the creation date of the
clause. Finally, the first queue is assigned a weight
of 5 and the second a weight of 1.

5In order to break ties in a defined way, E also adds the
clause age as a third, hidden component, and, if the first

two components are equivalent, prefers the older clause.
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As a second example, consider a unit-equational
proof problem with a single ground goal (a nega-
tive unit clause). Except in rare cases, there will
always be exactly one goal, and to solve this goal
it has to be rewritten to a trivial (in-)equation.
For such cases, E can simulate a completion-based
prover by setting up a single queue with an arbi-
trary heuristic weight function and a priority func-
tion that always prefers unit ground goals, ensur-
ing that the single goal will always be chosen first
and hence is guaranteed to be in normal form most
of the time.
E currently implements about 15 different prior-

ity functions. The most important ones either as-
sign a constant priority, prefer all negative clauses
(assumed to be goals), prefer non-negative clauses,
or prefer ground clauses. New priority functions
can be added in a few lines of C code.
At least a part of the success of E is based on

the strength of its heuristic weight functions. E has
more than 15 different generic weight functions,
which can be instantiated with different parame-
ters to yield a clause evaluation function. However,
only three of these are used frequently:

Clauseweight: This evaluation function implements
simple symbol counting. The generic function
takes three parameters: The weight to use for
a function symbol, predicate symbol, or con-
stant, the weight used for a variable, and a
modification factor for positive literals. The
basic idea behind symbol counting is two-fold.
First, small clauses typically represent general
concepts that are likely to be applicable in
many situations. Moreover, small clauses are
often useful for contracting inferences, espe-
cially subsumption and rewriting. Secondly,
small clauses, with fewer term positions, typi-
cally generate fewer descendants. Thus, work-
ing with smaller clauses will delay the in-
evitable explosion of the search space.

FIFOweight: To realize oldest-first clause selec-
tion, this evaluation function simply returns
the value of a counter that is incremented for
each new clause. Thus, it implements the first-
in-first-out heuristic, a refinement of breadth
first search. If we ignore contraction rules, this
heuristic will always find the shortest possible
proofs (by inference depth), since it enumer-
ates clauses in order of increasing depth.

Refinedweight: Perhaps the most important and
novel evaluation function in E is Refined-
weight(). This function modifies the sym-
bol counting heuristic by assigning a higher
weight to maximal terms and maximal (or se-
lected) literals. Again, the intention is two-
fold. First, for unit clauses, this will prefer ori-
entable clauses (rewrite rules) to unorientable
ones. Thus, it will lead to a stronger rewrite
relation earlier. Secondly, note that only max-
imal terms in maximal (or selected) literals
are available for generating inferences. By pre-
ferring clauses with few (and small) terms eli-
gible for inferences, we again curtail the early
explosion of the search space.

In practice, we found that we get the best re-
sults with clause selection functions that combine
three or four different priority queues, using two
different instances of Refinedweight() and concen-
trating on goals and non-goals, respectively, with
the remaining queues using a FIFO scheme and
sometimes simple clause weight with constant pri-
ority.

4.2. Learning Good Clause Evaluations

The great flexibility of specifying clause selec-
tion heuristics allows us to optimize E for different
domains with relative ease. However, this process
still requires tedious manual experimentation and
proof analysis. To relieve the users and develop-
ers from this task, E can also learn good clause
evaluation heuristics by automated analysis of its
own proof search protocols. The prover builds a
data base of patterns of clauses successfully used
in the proof and of superfluous clauses derived in
at most a small number of inferences from those.
Each pattern is assigned an evaluation, and one
of several term-based machine learning algorithms
is used to generate an evaluation function for new
patterns (and hence clauses). This feature is de-
scribed in detail in [22,23] and has not been used
in any CASC competition so far. Hence we refrain
from a more detailed discussion here.

4.3. Literal Selection

If we only consider completeness, literal selec-
tion is a case of don’t care non-determinism. Any
valid literal selection function will lead to a com-
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plete calculus. This freedom gives us the possibil-
ity to apply heuristic criteria to literal selection. In
fact, our experiments have shown that the choice
of a good literal selection function can have an
enormous influence on the efficiency of the proof
search.
We can split the problem of literal selection into

two distinct sub-problems. First, we have to decide
if we want to select any literals in the clause. If
we have decided in favour of literal selection, we
then have to decide which literals to select. In our
experience, the first decision is harder. We use the
following definitions: A literal selection function is
called strict, if C− ̸= ∅ implies that sel(C) ̸= ∅ for
all clauses C, i.e. if literals are selected whenever
possible. A literal selection function is minimal, if
|sel(C)| ≤ 1 for all clauses. Finally, sel is called
non-redundant if sel(C) ∩ C+ = ∅ for all clauses.

Literal selection functions potentially reduce the
local branching factor of the proof derivation by
two mechanisms. First, if there is more than one
maximal literal within a clause, literal selection
can be used to reduce the number of inference po-
sitions by selecting a smaller number of literals.
Secondly, if a clause has a positive literal that is
maximal, the clause is used both as the active and
as the passive partner for superposition inferences.
If a literal selection function is used, the clause
is only available as the passive inference partner.
Strict literal selection functions lead to a posi-
tive strategy, i.e. a strategy where the active part-
ner in a superposition inference always is a posi-
tive clause. Since in practice most long clauses are
mixed clauses, this reduces the effect of the dupli-
cation problem [11] encountered in resolution and
paramodulation inferences. The duplication prob-
lem originally refers to the fact that in a resolution
inference, all but two literals are instantiated and
copied from the premises to the conclusion. This
often leads to an exponential increase in clause
length over time. This is even worse for paramod-
ulation inferences, since typically all but one liter-
als are copied to the conclusion. By restricting at
least one partner to a positive (and hence usually
shorter) clause, this effect can be reduced signifi-
cantly. In particular, for the Horn case strict lit-
eral selection results in a unit strategy, and thus
clause length will never be increased by any infer-
ence. Non-strict literal selection still approximates
the effects of strict selection.
From the above, it appears that strictness, min-

imality and non-redundantness are desirable prop-

erties, since they all help to keep the branching fac-
tor low and hence limit the explosion of the search
space. However, in practice we found that this is
only true in some circumstances. We obtain our
very best results with literal selection functions
that have none of the above properties.

We can see a likely reason for this if we con-
sider a clause as a conditional rewrite rule. The
Horn clause f(x, y)≃ x ∨ y ̸≃ s(0) can be e.g. be
seen as the rule y ≃ s(0) → f(x, y) ≃ x. In any
conventional literal ordering, the positive literal is
maximal, and the clause can be used to paramod-
ulate into a term, binding the variable y. For this
fixed y we can then try to verify if the condition
y = s(0) holds. If, on the other hand, we select the
negative literal, only paramodulation into y ̸≃s(0)
is possible, and we rely on pure chance to find a
useful instantiation for x and y. Similar effects can
be seen with many proof problems specified in a
top-down manner, especially in problems written
by people used to the PROLOG depth first search
strategy. Consider a goal clause ¬P (f i(a)), and an
arbitrary theory including ¬P (x) ∨ P (f(x)), P (a)
and P (b) and P (c). Without literal selection, the
goal can be reduced directly to ¬P (a) in i steps.
However, with a strict literal selection function, we
have to generate all consequences of the theory,
potentially including the superfluous P (f j(b)) and
P (f j(c)). This and similar effects can be observed
very often in the PLA domain of TPTP.

In E, we use two approaches to deal with this
problem. First, we use a variety of non-strict literal
selection functions, each of which uses a different
heuristic to determine clauses in which no literal
selection should be performed. We will describe
one of these heuristics below. Secondly, we use non-
minimal and redundant literal selection functions
that allow us to overlap into positive literals to
(hopefully) generate useful instances of the clause.

If we have decided to select literals in a clause,
we next have to decide which literals to select. Note
that if we use a strict selection function, we have
to remove all all negative literals before we can use
the clause (or one of its descendants) as the active
partner in a generating inference. Thus, we should
generally try to solve the hardest literal first. If we
cannot solve the hardest literal, all work spent on
other literals is wasted. Unfortunately, determin-
ing the hardest literal to solve is, in general un-
decidable, and even reasonable approximations re-
quire consideration of the whole proof state, and
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hence are expensive. However, we think the follow-
ing criteria are useful:

– Ground literals are generally hard to solve,
since they can only be solved by (conditional
or unconditional) rewriting, not by instanti-
ation. Moreover, selecting ground literals has
two other benefits as well. First, there will
be (nearly) no generating inferences with unit
clauses necessary, since most potential super-
position inferences also are valid rewrite steps.
The only exception are unit clauses where a
free variable occurs in the non-matching side
(a very rare case in practice). Secondly, solv-
ing ground literals will not instantiate the re-
maining clause.

– In the equational paradigm, negative literals
are solved if both terms can be shown to be
equal under the equational theory at hand.
The difference in the size of the terms of the
inequation is a very rough measure of the dif-
ficulty of this proof.

Following these general ideas, we have created
and experimented with about 60 different literal
selection functions in E, about 15 of which we
found to be useful for a reasonably large class of
problems. At the moment, each literal selection
function is implemented as a separate piece of C
code in the prover. The functions have a simple
and uniform interface and usually consist only of a
few lines of code. Each function decides both if it
should select literals at all, and if yes, which liter-
als. While we aim at a more general interface sep-
arating these questions, due to the ease of adding
new hard-coded functions there has not yet been
any strong pressure to do so.
Some of our most interesting or useful literal

selection functions are the following:

NoSelection never selects a literal. The proof
search is performed using standard superpo-
sition. This strategy is useful e.g. in the plan-
ning domain (PLA) of the TPTP problem li-
brary [27].

SelectDiffNegLit is a strict, minimal and non-
redundant literal selection function. It always
selects an arbitrary negative literal among the
literals with the largest difference in symbol
count for both sides.

SelectComplex also is a strict, minimal and non-
redundant selection function. If there is at

least one literal of the form x ̸≃ y, it selects
the first one. If there is no such literal, but at
least one negative ground literal, it selects the
smallest negative ground literal. Otherwise it
selects as SelectDiffNegLit. This is one of our
strongest strict literal selection function and
is used as the base of most non-strict selection
functions.

SelectComplexExceptRRHorn is a non-strict, min-
imal and non-redundant selection function. If
the clause is a range-restricted Horn clause
(i.e. a clause where all variables occur in the
single positive literal), it assumes that this
clause should be used as a conditional rewrite
rule, and hence refrains from selection. Other-
wise, it selects as SelectComplex. This is one
of our strongest minimal literal selection func-
tions.

All of these literal selection functions (except
for NoSelection) have a non-minimal, redundant
counterpart that also selects all positive literals.
In this case only the selected negative literal and
the literals maximal among the positive literals are
eligible for resolution. In general, we found that if
we use relatively weak clause selection functions,
minimal and non-redundant literal selection func-
tions work best. However, if we use better clause
selection functions, the non-minimal literal selec-
tion functions outperform the minimal ones, al-
though usually by a small margin only.

To illustrate the effect of literal selection: If we
use the standard clause selection heuristic with a
pick-given ratio of 5, E can solve 1581 out of the
3952 non-unit problems from TPTP 2.4.1 on a
SUN Ultra 60/300 MHz within a 300 second time
limit. With SelectDiffNegLit, it can solve 1814
problems, with SelectComplex 1811, and with Se-
lectComplexExceptRRHorn 1908 problems. There
is no significant difference between the minimal
and the non-minimal variants for these parame-
ters.

4.4. Term Orderings

While literal selection is only important for non-
unit problems, the choice of the right term order-
ing is particularly important for unit-equational
problems. E implements both the Knuth-Bendix
ordering (KBO) and the lexicographic path or-
dering (LPO). Both classes of orderings are pa-
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rameterized. The KBO requires a weight function
assigning weights to individual function symbols
(and a fixed weight for all variables), and both or-
derings require a precedence on the function sym-
bols.
We believe that the selection and generation of

term orderings is the weakest part of E’s heuris-
tic control component. Basically, E offers a num-
ber of simple, problem-independent weight- and
precedence generation schemes which can be se-
lected by the user. Alternatively, the user can spec-
ify the precedence explicitly. As a typical exam-
ple, consider the term ordering most often used
by the automatic mode described in the next sec-
tion. This is a Knuth-Bendix ordering. All function
symbols receive the same weight 1 also used for
variables. Function symbols are ordered by arity,
with function symbols with a higher arity being
bigger than function symbols with a lower arity in
the precedence. The precedence between symbols
of the same arity is chosen arbitrarily.
This ordering has the nice property that it never

allows a rewrite step that would increase the sym-
bol count. Moreover, it tends to eliminate function
symbols with a high arity over time. Thus, it is
generally a reasonable choice. However, the success
of Waldmeister [8] shows that problem-specific or-
derings, generated after careful analysis of the ax-
ioms, can result in dramatic improvements.

4.5. Automatic Prover Configuration

Otter introduced an automatic mode that ana-
lyzes a proof problem and select a suitable strat-
egy, thus relieving the user from this task. Such
an automatic mode by now is standard for most
leading theorem provers. In E, the automatic mode
picks a clause selection heuristic, a literal selection
heuristic, a term ordering, and sets a number of
minor parameters. The novel property of E’s auto-
matic mode, however, is that it is not written by
the developers, but generated automatically from
a predefined partition of the problem space and a
list of test results.
First, we use a set of features to partition the

space of all proof problems into different classes.
The set of features used changes frequently, how-
ever, the most important properties we are cur-
rently using are the following:

– Are the axioms (non-negative clauses) in the
problem unit, Horn, or non-Horn clauses?

– Are the goals (negative clauses) unit or Horn?
– Does the problem contain only equational lit-
erals, some equational literals, or no equa-
tional literals?

– Do the goals contain variables or are they
ground?

– Is the maximal arity of any function symbol
0, 1, 2, or greater than 2?

– Is the maximal arity of a predicate symbol 0,
1, or greater than 2?

– Is the number of clauses in the problem spec-
ification small, medium or large? The limits
of these subclasses are automatically selected
so that they split a (hopefully representative)
training set into 3 approximately equal parts.

Each of the resulting classes is (potentially) as-
signed a separate search heuristic6. To determine
this assignment, we run as many heuristics as fea-
sible with our limited computing resources over a
training set. We order the set of heuristics by over-
all performance (measured primarily by number of
solutions found, and using the average time per
success in the case of ties). A small program tra-
verses the set of heuristics in descending order and
assign to each class the first (i.e. the most general)
heuristic that solves the maximal number of prob-
lems in this class. Output of this program is the C
code implementing the automatic mode.

Since the classes are predefined by the devel-
oper, there is a certain risk of over-specialization.
We have very occasionally observed this fact, es-
pecially if a class contains only a small number
of problems. However, in general the automatic
mode is much better than the first heuristic picked
even by an experienced user. This also showed in
the recent CASC-JC competition [26,28]. For the
first time since the inception of CASC, some of
the problems were new for all participants. While
the number of such problems was too small for a
reliable judgment, E performed at least as good
as other high-performance theorem provers on the
new problems in both the MIX and the UEQ cat-
egories.

5. Implementation

E is implemented in ANSI C, using the GNU C
compiler. One of our aims is wide portability. The

6In practice, most heuristics cover multiple classes.
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latest version of E has been tested on different ver-
sions of Solaris, GNU/Linux and HP-UX. Reason-
ably current versions have been compiled success-
fully for Intel/X86 processors, the Intel/Itanium,
HP’s PA-RISC, and various generations of SPARC
processors.

5.1. Term Representation and Shared Rewriting

The inference engine of E is built around per-
fectly shared terms as the core data type. This
means that any unique subterm in the current
proof state is only represented once. There are
two exceptions to this. First, a short-lived tem-
porary copy of the given clause is used to ensure
that all premises for an inference are actually vari-
able disjoint. The second exception are individual
term nodes that represent top positions of max-
imal terms in literals eligible for resolution. This
terms can only be rewritten under stricter condi-
tions, and need to be distinguished from syntacti-
cally identical terms that occur at different posi-
tions.
The shared term data structure is realized as

a general term bank where terms are indexed by
top symbol and pointers to the argument terms. A
combination of hashing and splay trees [24] is used
for efficient access to the terms stored in the bank.
Terms are administrated using reference counting
and superterm-pointers. Consequently, they are in-
serted bottom-up (starting with the subterms) and
removed top-down. For reasonably hard problems,
sharing typically saves between 80% of all term
nodes for unit-equational problems, and 99.995%
of all term nodes for hard non-Horn problems.
As term nodes are shared between a large num-

ber of clauses, we can afford to store several pre-
computed values with each term. In our case this
includes the term weight (which is computed au-
tomatically during normal form building), a flag
to denote reducibility with respect to a currently
investigated rule or equation, and, most impor-
tantly, normal form dates. As stated in section 3,
the strength of the rewrite relation increases mono-
tonically over time. Hence, if a term is in normal
form with respect to the rewrite relation at a cer-
tain certain time, only newer unit clauses have to
be considered in later rewrite attempts.
E not only shares terms to save memory, but also

performs rewriting on the shared term representa-
tion. If a rewrite rule is applied to any subterm in

any clause, all shared occurrences of this subterm
in all clauses will be replaced. As this may influ-
ence superterms, the change is propagated recur-
sively to all superterms. For a more detailed dis-
cussion of the shared rewriting paradigm, see [12].

5.2. Indexing and Subsumption

Like almost all other high-performance saturat-
ing provers, E uses indexing techniques to speed
up common operations. In particular, E uses per-
fect discrimination trees [13,7] with age and size
constraints to speed up most simplifying unit
operations: Subsumption, forward-rewriting, and
simplify-reflect. As current hot spots in the code
do not involve unification or, for most proof prob-
lems, non-unit-subsumption, we have not yet im-
plemented indexing for generating inferences and
non-unit-subsumption.

Matching is at the core of most contracting in-
ferences, unification at the core of most generat-
ing ones. Since generating inferences are only per-
formed between the selected clauses, the effort for
contraction usually outweighs the effort for gen-
eration by far. In particular, we found unification
to be very cheap despite its theoretically exponen-
tial behaviour. Consequently, unification is imple-
mented in a straightforward manner. Nevertheless,
it is still less costly than e.g. the checking of or-
dering constraints or even the construction of new
terms for newly generated clauses.

Matching attempts (and the associated tests for
orientability of the generated instances), on the
other hand, are a major contributor to the overall
CPU usage of most theorem provers which perform
rewriting. While each individual matching attempt
is cheap, the search for matching rules and equa-
tions from the set of processed clauses is quite ex-
pensive. We have therefore implemented an index-
ing scheme that makes use of our shared term rep-
resentation to optimize the access to these clauses.

The aim of an index for rewriting is the follow-
ing: Given a term t and a set of unit-clauses P ,
find (sequentially or all at once) all clauses l ≃ r
from P such that σ(l) = t. E uses perfect discrim-
ination trees to implement this operation. A per-
fect discrimination tree basically treats a term as
linear word, and branches on the symbol at each
position in this word. Each node in the tree thus
represents a set of terms with a common initial
sequence, each leaf represents complete term and
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points to the set of all clauses which are indexed
via this term. In E, we annotate all nodes in the
tree with age constraints. Each node contains the
activation date of the youngest clause indexed by
any leaf reachable from this node. When search-
ing for a rule that simplifies a term t, we usually
know that t is in normal form with respect to some
earlier rewrite relation. Thus, if we reach a node
in the discrimination tree which only indexes older
clauses, we can ignore this branch and immedi-
ately backtrack. We similarly use size constraints
to cut of branches, using the fact that a term can
only match terms of smaller or equal size. Use of
age and size constraints safes as much as 30% of
CPU time for matching, or about 10% of overall
run time for the prover.
While matching for unit operations is quite sat-

isfactory for E, non-unit subsumption is performed
using sequential search through the set of candi-
date clauses. While this is potentially costly, we
use weight comparisons and pre-matching to re-
duce the number of candidates for full subsump-
tion significantly. Moreover, subsumption is only
performed when a clause is selected for process-
ing, and only processed clauses are used as sub-
sumption candidates. Thus, in practice subsump-
tion is not a major problem for most proof prob-
lems. Nevertheless, extending the indexing scheme
to deal with non-unit clauses is a high priority for
us.

6. Performance

We have evaluated the current version of E,
E 0.62dev, on all clause normal form problems
from the TPTP problem library, version 2.4.1.
E was running in fully automatic mode7, with a
memory limit of 192 MB and a time limit of 500
seconds on our cluster of SUN Ultra 60/300MHz
machines. Table 1 shows the results.
If we compare these results with other state-of-

the-art systems, we find that E performs very well
for unit and Horn problems. It is relatively weak
in the general class without equality. It should also
be noted that E is complete as long as it does not
run out of memory, and thus is able to show the
satisfiability for a significant number of problems.

7The automatic mode was generated from test results

obtained on a previous TPTP release, 2.3.0.

Problem class Size Proofs Models Total

Unit, no equality 11 8 3 11

Unit, equality 456 368 3 371

Horn, no equality 644 564 16 580

Horn, equality 563 403 47 450

General, no eq. 870 345 143 488

General, equality 1875 643 75 718

Overall 4419 2331 287 2618

Table 1

Performance of E on different problem classes

For this test run, there is only a single problem for
which the prover terminates within the time limit,
but does not give a definitive answer on the sat-
isfiability of the problem. However, E terminates
less often than e.g. SPASS [30] on satisfiable prob-
lems. This is understandable, since we have never
optimized the prover for this case.

7. Conclusion

We have described the current state of our equa-
tional theorem prover E. E is a powerful, fully
automatic theorem prover combining a number
of well-known and novel features. It is stable,
portable, and, thanks to its powerful automatic
mode, easy to use.

The home page of E can be found on the web at
http://wwwjessen.informatik.tu-muenchen.de/

~schulz/WORK/eprover.html. It contains further
information, links to many relevant papers, and
the source distribution of the latest released ver-
sion.

Despite the success of E, there still is a lot to
do. We intend to work on three of the four major
areas of E.

Calculus: On the calculus level, more advanced
clause splitting techniques may be useful.
They cam be combined with restricted or even
full versions of contextual rewriting, i.e. the
eager use of conditional clauses for rewriting
if the conditions can be solved in the context
of the clause to be rewritten. In the longer
term, we will also experiment with inheritable
ordering constraints.

Heuristic Control: This area offers the most po-
tential for improvements. Future work will in-
clude a more flexible interface to the literal se-
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lection component, new generic weight func-
tions, and the possibility to dynamically ad-
just the generalized pick-given ratio used by
E. Moreover, better analysis of the proof prob-
lem should enable us to pick more suitable
term orderings in the future.

Inference Engine: The most urgent issues are the
use of non-unit indexing for subsumption, and
the online generation of detailed proof ob-
jects. Currently, proof objects are created in
an expensive reproduction process, and are
not very detailed.
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