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Abstract

We describe feature vector indexing, a new, non-perfect indexing method for clause
subsumption. It is suitable for both forward (i.e., finding a subsuming clause in a
set) and backward (finding all subsumed clauses in a set) subsumption. Moreover,
it is easy to implement, but still yields excellent performance in practice. As an
added benefit, by restricting the selection of features used in the index, our technique
immediately adapts to indexing modulo arbitrary AC theories with only minor loss
of efficiency. Alternatively, the feature selection can be restricted to result in set
subsumption.

Feature vector indexing has been implemented in our equational theorem prover
E, and has enabled us to integrate new simplification techniques making heavy use
of subsumption. We experimentally compare the performance of the prover for
a number of strategies using feature vector indexing and conventional sequential
subsumption.
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1 Introduction

First-order theorem proving is one of the core areas of automated deduction.
In this field, saturating theorem provers have, in the last few years, developed
a significant lead compared to systems based on other paradigms, such as
top-down reasoning or instance-based methods.

There are a number of reasons for this. At least one of these reasons is
the compatibility of saturating calculi with a large number of redundancy
elimination techniques, as e.g. tautology deletion, rewriting, and clause sub-
sumption. Subsumption allows us to discard a clause (i.e., exclude it from
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further proof search) if a (in a suitable sense) more general clause exists. In
many cases, subsumption can eliminate between 50% and 95% of all clauses
under consideration, with a corresponding decrease in the size of the search
state.

Subsumption of multi-literal clauses is an NP-complete problem [5]. If
some attention is paid to the implementation, the worst case is rarely (if ever)
encountered in practice, and single clause-clause subsumption tests rarely form
a critical bottleneck. However, the sheer number of possible subsumption
relations to test for means that a prover can spend a significant amount of
time in subsumption-related code. Even in the case of our prover E [12,13],
which, because of its DISCOUNT loop proof procedure, minimizes the use
of subsumption, frequently between 10% and 20% of all time was spent on
subsumption, with much higher values observed occasionally. The cost of
subsumption systematically increases if other simplification techniques based
on subsumption are implemented.

In a saturating prover, we are most often interested in subsumption rela-
tions between whole sets of clauses and a single clause. In forward subsump-
tion, we want to know if any clause from a set subsumes a given clause. In
backward subsumption, we want to find all clauses in a set that are subsumed
by a given clause.

We can use this observation to speed up subsumption, by using index-
ing techniques that only return candidates suitable for a given subsumption
relation from a set of clauses, thus reducing the number of explicit subsump-
tion tests necessary. A perfect index will return exactly the necessary clauses,
whereas a non-perfect index should return a superset of candidates for which
the desired relationship still has to be verified.

Term indexing techniques have been used in theorem provers for some time
now (see [7] for first implementations in Otter or [2,3,14] for increasingly up-
to-date overviews). However, lifting term indexing to clause indexing is not
trivial, because the associative and commutative properties of the disjunction
and the symmetry of the equality predicate are hard to handle. In many cases,
(perfect) term indexing is only used to retrieve subsumption candidates, i.e.,
to implement non-perfect clause indexing (see e.g. [17]). Moreover, often two
different indices are used for forward- and backward subsumption, as e.g. in
the very advanced indexing schemes currently implemented in Vampire [10].

We suggest a new indexing technique based on subsumption-compatible
numeric clause features. It is much easier to implement than known tech-
niques, and the same, relatively compact data structure can be used for both
forward- and backward subsumption. We have implemented the new tech-
nique for E 0.8, and in a more polished and configurable way, for E 0.81, with
excellent results.

In this paper, we will, after some initial definitions, describe the new tech-
nique. We will also discuss how it has been integrated into E, and how it also
serves to speed up contextual literal cutting, a subsumption-based simplifica-
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tion technique that has given another boost to E. We present the results of
various experiments to support our claims.

2 Preliminaries

We are primarily interested in first order formulae in clause normal form in
this paper. We assume the following notations and conventions. Let F be a
finite set of function symbols. We write f |n ∈ F to denote f as a function
symbol with arity n. Functions symbols are written as lower case letters, we
usually use a, b, c for function symbols with arity 0 (constants), and f, g, h
for other function symbols. Let V be an enumerable set of variable symbols.
We use upper case letters, usually X, Y, Z to denote variables. The set of all
terms over F and V , Term(F ,V ), is defined as the smallest set fulfilling the
following conditions:

(i) X ∈ Term(F ,V ) for all X ∈ V

(ii) f |n ∈ F , s1, . . . , sn ∈ Term(F ,V ) implies f(s1, . . . , sn) ∈ Term(F ,V )

We typically omit the parenthesis from constant terms, as for example in the
expression f(g(X), a) ∈ Term(F ,V ).

An (equational) atom 2 is an unordered pair of terms, written as s' t. A
literal is either an atom, or a negated atom, written as s 6' t. We define a
negation operator on literals as s' t = s 6' t and s 6' t = s' t. If we want to
write about arbitrary literals without specifying polarity, we use s'̇t, or, in
less precise way, l, l1, l2, . . .. Note that ' is commutative in this notation.

A clause is a multiset of literals, interpreted as an implicitly universally
quantified disjunction, and usually written as l1 ∨ l2 . . . ∨ ln. Please note
that in this notation, the ∨ operator is associative and commutative (but not
idempotent). The empty clause is written as �, and the set of all clauses
as Clauses(F ,V ). A formula in clause normal form is a multiset of clauses,
interpreted as a conjunction.

A substitution is a mapping σ : V → Term(F ,V ) with the property that
Dom(σ) = {X ∈ V | σ(X) 6= X} is finite. It is extended to a function on
terms, atoms, literals and clauses in the obvious way.

A match from a term (atom, literal, clause) s to another term (atom,
literal, clause) t is a substitution σ such that σ(s) ≡ t, where ≡ on terms
denotes syntactic identity and is lifted to atoms, literal, clauses in the obvious
way, using the unordered pair and multiset definitions.

2 For our current discussion, the non-equational case is a simple special case and can be
handled by encoding non-equational atoms as equalities with a reserved constant $true.
We will still write non-equational literals in the conventional manner, i.e., p(a) instead of
p(a)'$true.
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3 Subsumption

If we consider a (multi-)set of clauses, that is, a formula in clause normal
form, not all of the clauses necessarily contribute to the meaning of it. Often,
some clauses are redundant. Some clauses do not add any new constraints on
the possible models of a formula, because they are already implied by other
clauses. Depending on the mechanism of reasoning employed, we can delete
some of these clauses, thus reducing the size of the formula (and hence the
difficulty of finding a proof). In the case of current saturating calculi, sub-
sumption is a technique that allows us to syntactically identify certain clauses
that are implied by another clause, and can usually be discarded without loss
of completeness. We can specify the (multiset) subsumption rule as a deleting
simplification rule (i.e., the clauses in the precondition are replaced by the
clauses in the conclusion) as follows:

(CS)
σ(C) ∨ σ(R) C

C

where σ is a substitution, C
and R are arbitrary (partial)
clauses

In other words, a clause C ′ is subsumed by another clause C if there is an
instance σ(C) that is a sub-multiset of C ′.

This version of subsumption is used by most modern saturation procedures.
It is particularly useful in reducing search effort, since it allows us to discard
larger clauses in favor of smaller clauses. Smaller clauses typically have fewer
inference positions and generate fewer and smaller successor clauses.

Individual clause-clause subsumption relations are determined by trying to
find a simultaneous match from all literals in the potentially subsuming clause
to corresponding literals in the potentially subsumed clause. This is usually
implemented by a backtracking search over permutations of literals in the
potentially subsumed clause (and in the equational case, permutations of terms
in equational literals). The first order clause subsumption problem is well-
known to be NP-complete. However, there are a number of implementation
techniques that can usually avoid the worst case, so that in practice individual
subsumption attempts can be completed in acceptable time.

Most of the techniques used to speed up subsumption try to detect failures
early by testing necessary conditions. Those include compatibility of certain
clause measures (discussed in more detail below) and existence of individu-
ally matched literals in the potentially subsumed clause for each literal in the
potentially subsuming clause. Additionally, in many cases certain permuta-
tions of literals can be eliminated by partially ordering clauses with a suitable
ordering.

However, whereas individual subsumption attempts are reasonably cheap
in practice, the number of potential subsumption relations to test for in sat-
uration procedures is very high. Using a straightforward implementation of
subsumption, we have measured up to 100 000 000 calls to the subsumption
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subroutine of our prover E in just 5 minutes on a 300 MHz SUN Ultra-60 for
some proof tasks. Thus, the overall cost of subsumption is significant.

3.1 Subsumption Variants

In addition to standard multiset subsumption, there are a number of other
subsumption variants and related techniques. We will shortly discuss some of
them.

The definition of set subsumption is identical to that of multiset subsump-
tion, except in that clauses are viewed as sets of literals (i.e., no multiple
occurrences of the same literal are allowed). This allows for a slightly stronger
subsumption relation: p(X) ∨ p(Y ) can subsume p(a) with set subsumption,
but not with multiset subsumption. Set subsumption can be used in pre-
processing or by provers not based on saturation. For most saturation-based
calculi (especially those for which factorization is an explicit inference rule),
the fact that a clause can subsume some of its factors causes loss of complete-
ness.

Subsumption modulo AC is a stronger version of multiset or set subsump-
tion, where we do not require that the instantiated subsuming clause is a
subset of the subsumed clause, but only that it is equal to a subset modulo a
specified theory for associative and commutative function symbols. For exam-
ple, if f is commutative, then p(f(a, X)) subsumes p(f(b, a)) ∨ q(a). We are
not aware of any system currently using subsumption modulo AC, however,
it is generally believed to be useful for reasoning modulo AC.

Equality subsumption allows an equational unit clause to potentially sub-
sume another clause with an equational literal implied by it. It can be de-
scribed by the following simplification rule:

(ES)
s' t u[p← σ(s)]'u[p← σ(t)] ∨R

s' t

It is typically only applied if s ' t cannot be used for rewriting. This rule
is implemented by E and a number of other provers, including at least the
completion-based systems Waldmeister [6] and DISCOUNT [1].

Finally, a simplification rule that has been popularized by implementation
in SPASS [19] and Vampire [9], and is sometimes called subsumption resolu-
tion, combines resolution and subsumption to cut a literal out of a clause. In
the context of a modern superposition calculus, we believe the rule can be
better described as contextual literal cutting :

(CLC)
σ(C) ∨ σ(R) ∨ σ(l) C ∨ l

σ(C) ∨ σ(R) C ∨ l

where l is the negation of l and
σ is a substitution

It can be implemented via a standard subsumption engine (by negating each
individual literal in turn, and then testing for subsumption) and is imple-
mented thus at least in E and Vampire. Depending on how and when this

5



Schulz

Prover state: U ∪ P

U contains unprocessed clauses, P contains processed clauses.

Initially, all clauses are in U , P is empty.

while U 6= {}
g = delete best(U)
g = simplify(g, P )
if g == �

SUCCESS, Proof found
if g is not subsumed by any clause in P (or otherwise redundant w.r.t. P )

P = P\{c ∈ P | c subsumed by (or otherwise redundant w.r.t.) g}
T = {c ∈ P | c can be simplified with g}
P = (P\T ) ∪ {g}
T = T ∪ generate(g, P )
foreach c ∈ T

c = cheap simplify(c, P )
if c is not trivial

U = U ∪ {c}
SUCCESS, original U is satisfiable

Remarks: simplify(c, S) applies all simplification inferences in which the main
(simplified) premise is c and all the other premises are clauses from S. This
typically includes full rewriting and (CLC). cheap simplify(c, S) works similarly,
but only applies inference rules with a particularly efficient implementation,
often including rewriting with orientable units, but not usually (CLC).
Similarly, in this context, a clause is trivial, if it can be shown redundant with
simple, local syntactic checks. If we test for redundancy, we also apply more
complex and non-local techniques.

Fig. 1. Saturation procedure of E

rule is applied, it can increase the number of required subsumption tests by
many orders of magnitude.

3.2 Saturation Procedures and Clause Set Subsumption

Figure 1 shows a sketch of the main proof procedure of our prover E. It is
representative of a modern high-performance prover using a variant of the
DISCOUNT loop proof procedure (in which unprocessed clauses are passive,
i.e., not even used as side premises for simplification). The alternative Otter
loop primarily differs in that simplification and subsumption are also per-
formed between clauses in U and using clauses from U as side premises for
simplification of all clauses.

Please observe that standard subsumption appears in exactly two different
places and exactly two different roles in this procedure: First, we test if the
given clause g is subsumed by any clause in P . In other words, we want to
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know if a single clause is subsumed by any clause from a set. This is usually
called forward subsumption.

If the given clause is not redundant, we next want to find all clauses in P
that are subsumed by g. Again, we have an operation between a single clause
and a whole set, in this case called backward subsumption.

It is obvious that we can implement forward and backward subsumption
naively by sequentially testing each clause from P against g. This implemen-
tation is e.g. used in early versions of SPASS [19], and was used in E up to
version 0.71. However, this does not make use of the fact that we are inter-
ested in subsumption relations between individual clauses and usually only
slowly changing clause sets. The idea behind clause indexing is to preprocess
the clause set so that subsumption queries can be answered more efficiently
than by sequential search.

4 Feature Vector Indexing

Indexing for subsumption is used by a number of provers. Most existing
implementations [17,18,7] use a variant of discrimination tree indexing on
terms to build a index for forward subsumption, often for non-perfect indexing.
Indexing for backward subsumption is less frequent, and usually based on
a variant of path indexing. We will now present a new and much simpler
technique suitable for both forward and backward subsumption.

Our technique is based on the compilation of necessary conditions on nu-
meric clause features. Essentially, a clause is represented by a vector of feature
values, and subsumption candidates are identified by comparisons of feature
vectors. Feature vectors for clause sets are compiled into a trie data structure
to quickly identify candidate sets.

4.1 Subsumption-Compatible Clause Features

A (numeric) clause feature function (or just feature) is a function mapping
clauses to natural numbers, f : Clauses(F ,V )→ N. We call f compatible with
subsumption if f(C) ≤ f(C ′) whenever C subsumes C ′. In other words, if f
is a subsumption-compatible clause feature, then f(C) ≤ f(C ′) is a necessary
condition for the subsumption of C ′ by C. Unless we specify a particular
subsumption variant, we assume standard multiset subsumption.

We will define a number of clause features now, all of which are compatible
with multiset subsumption, and many of which are compatible with other
subsumption variants.

Let C be a clause. We denote the sub-multiset of positive literals in C by
C+, and similarly the sub-multiset of negative literals by C−. Please note that
both C+ and C− are clauses as well. |C| is the number of literals in C. |C|f is
the number of occurrences of the symbol f in C, e.g. |p(a, b)∨f(a, a) 6'a|a = 4.

Let t be a term, and let f |n be a function symbol. We define df (t) as

7



Schulz

follows:

df (t) =


0 if f does not occur in t

max{1, df (t1) + 1, . . . , df (tn) + 1} if t ≡ f(t1, . . . , tn)

max{df (t1) + 1, . . . , df (tm) + 1} if t ≡ g(t1, . . . , tm), g|m 6= f

Intuitively, df (t) is the depth of the deepest occurrence of f in t (or 0). The
function is continued to atoms, literals and clauses as follows:

df (s' t) = max{df (s), df (t)}
df (s'̇t) = df (s' t)

df (l1 ∨ . . . ∨ lk) = max{df (l1), . . . , df (lk)}
The feature functions defined by the following expressions are compatible with
standard subsumption, subsumption modulo AC, and equality subsumption:
|C+|, |C−|, |C+|f (for all f), |C−|f (for all f). The argument is essentially
always the same: instantiation can only add new symbols, and a superset
(super-multiset) or superstructure always contains at least as many symbols
as the subset or substructure.

The feature functions defined by the following expressions are compati-
ble with standard subsumption, set subsumption, and equality subsumption:
df (C

+) (for all f), df (C
−) (for all f). The argument is similar: Instantiation

can only introduce function symbols at new positions, never take them away
at an existing depth.

If any two feature functions f1, f2 are compatible with a certain sub-
sumption type, then any linear combination of the two with non-negative
coefficients is also compatible with that subsumption type. That is, f(C) =
af1(C) + bf2(C) with a, b ≥ 0 is also a compatible feature function.

Many provers already use the criterion that a subsuming clause cannot
have more function symbols that the subsumed one. In our notation, this can
be described by the requirement that

∑
f∈F |C|f ≤

∑
f∈F |C ′|f . This will, on

average, already decide about half of all subsumption attempts. However, by
looking at and combining more fine-grained criteria, we can do a lot better.

4.2 Clause Feature Vectors and Candidate Sets

Let πi
n be the projection function for the ith element of a vector with n ele-

ments. A clause feature vector function is a function F : Clauses(F ,V )→ Nn.
We call F subsumption-compatible (for a given subsumption type) if πi

n ◦ F
is a subsumption compatible feature for each i ∈ {1, . . . , n}. In other words,
a subsumption compatible feature vector function combines a number of sub-
sumption compatible feature functions. We will now assume that F is a
subsumption-compatible feature function. If F (C) = v, we call v the fea-
ture vector of C.

We define a partial ordering ≤s on vectors by v ≤s v′ iff πi
n(v) ≤ πi

n(v′)
for all i ∈ {1, . . . , n}. By definition of the feature vector, if C subsumes C ′,

8



Schulz

then F (C) ≤s F (C ′). This allows us to succinctly identify the candidate sets
of clauses for forward- and backward subsumption. Let C be a clause and P
be a clause set. Then

candFSF (P, C) = {c ∈ P |F (c) ≤s F (C)}

is a superset of all clauses in P that subsume C and

candBSF (P, C) = {c ∈ P | F (C) ≤s F (c)}

is a superset of all clauses in P that are subsumed by C. As our experiments
show, if a reasonable number of clause features are used in the clause feature
vector, these supersets are usually fairly small. Restricting subsumption at-
tempts to members of a suitable candidate set reduces the number of attempts
often by several orders of magnitude.

4.3 Index Data Structure

Whereas it is possible to store complete feature vectors with every clause in a
set, this approach is rather inefficient in terms of memory consumption, and
still requires the full comparison of all feature vectors. If, on the other hand,
we compile feature vectors into a trie-like data structure, with all clauses
sharing a vector stored at the corresponding leaf, large parts of the vectors
are shared, and candidate sets can be computed much more efficiently.

Assume a (finite) set P of clauses with associated feature vectors F (P ) of
length n. A clause feature vector index for P and F is a tree of uniform depth
n (i.e., each path from the root to a leaf has length n). It can be recursively
constructed as follows: If n is equal to 0, the tree consists of just a leaf node,
which we associate with all clauses in P . Otherwise, let D = {π1

n(F (C)) |
C ∈ P}, let Pi = {C | π1

n(F (C)) = i | i ∈ D} (the set of all clause for which
the first feature has a given value i, and let F ′ = 〈π2

n, . . . , π
n
n〉 ◦ F (shortening

the original feature vectors by the first element). Then the index consist of
a root node with successors Ti, such that each Ti is an index for Pi and F ′.
Inserting and deleting is linear in the number of features and independent of
the number of elements in the index.

As an example, consider F defined by F (C) = 〈|C+|a, |C+|f , |C−|b|〉, the
clauses C1 = p(a) ∨ p(f(a)), C2 = p(a) ∨ ¬p(b), C3 = ¬p(a) ∨ p(b), C4 =
p(X)∨ p(f(f(b)))}, and the set of clauses P = {C1, C2, C3, C4}. The feature
vectors are as follows: F (C1) = 〈2, 1, 0〉, F (C2) = 〈1, 0, 1〉, F (C3) = 〈0, 0, 0〉,
F (C4) = 〈0, 2, 0〉. Figure 2 shows the resulting index.

4.4 Forward Subsumption

For forward subsumption, we do not need to compute the full candidate set
candFSF (P, C). Instead, we can just enumerate the elements and stop as soon
as a subsuming clause is found. Assume a clause set P , a feature function F
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{C2}

{C3}

0

1

{C1,C2,C3,C4}

0
{C3,C4}

0
0

{C4}{C4}

2

1

{C2}
0

{C2}

2

{C1}
1

{C1} {C1}
0

{C3}

Fig. 2. Example of Clause Feature Vector Index

with feature vector length n, and an index I. We denote by I[v] the subtree of
I associated with value v. The clause to be subsumed is C. Figure 3a) shows
the algorithm for indexed subsumption.

Note that it is trivial to return the subsuming clause (if any), instead of
just a boolean value. We traverse the subtrees in order of increasing feature
values, so that (statistically) smaller clauses with a higher chance of subsuming
get tested first.

The subsumption test in the leaves of the tree is implemented by sequen-
tial search. In particular, finding the candidate sets and applying the actual
subsumption test are clearly separated, i.e., it is trivially possible to use any
subsumption concept as long as F is compatible with it.

4.5 Backward Subsumption

The algorithm for backward subsumption is quite similar, except that we tra-
verse nodes with feature values greater than or equal to that of the subsuming
clause, and that we cannot terminate the search early, since we have to find
(and return) all subsumed clauses. We use the same conventions as above.
Additionally, mv(I) is the largest feature value associated with any subtree in
I. Figure 3b) shows the algorithm.

4.6 Optimizing the Index Data Structure

Each leaf in the feature vector index corresponds to a given feature vector. If
we ignore the internal structure of the trie, and the order of features in the
vector, we can associate each leaf with an unordered set of tuples (f, f(C)) of
individual feature functions and corresponding feature value. It is easy to see
that any order of features in the feature vector will generate the same number
of leaves, and that each leaf is either compatible with a given set of feature
function/feature value tuples, or not. Thus, at least for a complete search
as in the backward subsumption algorithm, we always have to visit the same
number of leaves.

However, we can certainly minimize the internal number of nodes in the
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(a) Forward subsumption

function search subsuming(I, d, C)
if I is a leaf node then

if a clause in I subsumes C
return true

else
return false

else
for i ∈ {0, . . . , πd

n(F (C))}
if search subsuming(I[i], d + 1, C)

return true
return false

function is subsumed(I, C) // Return true if clause in I subsumes C
return search subsuming(I, 1, C)

(b) Backward subsumption

function search subsumed(I, d, C)
if I is a leaf node then

return {C ′ ∈ I | C ′ subsumed by C}
else

res = {}
for i ∈ {πd

n(F (C)), . . . ,mv(I)}
res = res ∪ search subsumed(I[i], d + 1, C)

return res

function find subsumed(I, C) // Return clauses in I subsumed by C
return search subsumed(I, 1, C)

Fig. 3. Forward and backward subsumption with feature vector indexing

trie, and thus the total number of nodes. Consider for a simple example
feature vectors with two features f1, f2, where f1 yields the same value for all
clauses from a set P , whereas f2 perfectly separates the set into n individual
clauses. If we test f1 first, our tree has just one internal node (plus the root).
Traversing all leaves touches n + 2 nodes (counting the root). If on the other
hand we evaluate the more informative f2 first, we will immediately split the
tree into n internal nodes, each of which has just one leaf as the successor.
Thus, to traverse all leaves we would touch 2n + 1 nodes, or, for a reasonably
sized n, nearly twice as many nodes.

This example easily generalizes to longer vectors. In general, we want the
least informative features first in a feature vector, so that as many initial paths
as possible can be shared. This is somewhat surprising, since for most exclu-
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sion tests it is desirable to have the most informative features first, so that
impossible candidates are excluded early. Of course, if we have totally unin-
formative features, we can just as well drop them completely, thus shrinking
the tree depth.

Unfortunately, we have to determine the feature vector function before
we start building the index, i.e., in practice before the proof search starts.
We can only estimate the informativeness of a given feature by looking at
the distribution of its values in the initial clause set, and assume that this is
typical for the later clauses.

For best results, we could view application of a feature function to a clause
as a probability experiment and the results on the initial clause set as a sam-
ple. We could then sort features by increasing estimated entropy 3 [15] or
even conditional entropy. However, we decided to use a much simpler esti-
mator first, namely the range of the feature value over the initial clause set.
We have implemented three different mappings: Direct mapping, where the
place of a feature in the vector is determined by the internal representation of
function symbols used by the system, permuted, where features are sorted by
feature value range, and optimized permuted, where additionally features with
no estimated usefulness (i.e., features which evaluate to the same value for all
initial clauses) are dropped off.

Our experimental results show that both permuted and optimized per-
muted feature vectors perform much better than direct mapped ones, with
optimized permuted ones being best if we allow only a few features, whereas
plain permuted ones gain if we allow more features. Generally, we can decrease
the number of nodes in an index by about 50% using permuted feature vec-
tors. We explain this behaviour by noting that the degree of informativeness
is generally estimated correctly, but the prediction whether a feature will be
useful at all is less precise. We have especially observed the situation that only
a single negative literal occurs in the initial clause set (e.g. all unit-equational
proof problems with a single goal), and hence all features restricted to neg-
ative literals have an initial range of zero, although a large and varied set of
negative literals is generated during the proof search.

5 Implementation Notes

We have implemented clause feature vector indexing in our prover E, using es-
sentially simple versions of standard trie algorithms for inserting and deleting
feature vectors (and hence clauses), and the algorithms described in section 4.4
and 4.5 for forward and backward subsumption. We are using subsumption
only between the set of processed clauses P and the given clause g and vice

3 The entropy of a probability experiment is the expected information gain from it, or, in
other words, the expected cost of predicting the outcome. In our case, a feature with higher
entropy splits the clause set into more (or more evenly distributed) parts. See e.g. [11] or,
for a more comprehensive view, [4].
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versa, but we have also implemented contextual literal cutting using the in-
dex. It can be optionally applied either to the newly generated clauses during
simplification (using clauses from P for cutting) or between g and P , in both
directions.

Feature vector indexing is used for forward and backward non-unit mul-
tiset subsumption, all versions of contextual literal cutting, (unit) equality
backward subsumption, and backward simplify-reflect (equational unit cut-
ting, see [12]) inferences. Forward equality subsumption and forward simplify-
reflect have been implemented using discrimination tree indexing (on maximal
terms in the unit clause used) since early versions of E.

Our standard multiset subsumption code, used both for conventional sub-
sumption and to check indexed candidates for actual subsumption, already
is fairly optimized. It uses a number of simple criteria to quickly determine
unsuitable candidates, including tests based on literal- and symbol count, and
individual literal matching. Only if all these tests succeed do we start the
recursive permutation of terms and literals to find a common match.

The feature vector index is implemented in a fairly straightforward way,
using a recursive data structure. Note that all our features in practice yield
small integers. Hence we have implemented the mapping from a feature value
to the subtree as a (dynamic) array. The only special case we support is the
case that a node has exactly one successor. In this case we do not use an
array, but just store the feature value and a pointer to the successor, to avoid
the memory overhead of the array.

Clauses in a leaf node are stored in a simple set data structure (which is
implemented throughout E as a splay tree [16] using pointers as keys). Empty
subtrees are deleted eagerly.

It may be interesting to note that the first (and working) version of the
indexing scheme took only about three (part-time) days to implement and
integrate from scratch. It took approximately 7 more days to arrive at the
current (production-quality) version that allows for a large number of different
clause feature vector functions to be used and applies the index to many
different operations. Compared to other indexing techniques, feature vector
indexing seems to be easy to implement and easy to integrate into existing
systems.

6 Experimental Results

We used all 5180 clause normal form problems from TPTP 2.5.1, without
equality axioms, but otherwise unchanged. All test runs were performed on a
cluster of 300MHz SUN Ultra-60 workstations with a time limit of 300 seconds
(or equivalent configurations). The memory limit was 192 MB.

The indexed version of the prover uses a maximum feature vector length
of 75. Features used in the vector are |C+|, |C−|, |C+|f and |C−|f (for some
function symbols f). The vector might be shorter than 75 elements if only a
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few symbols occur in the input formula. The results here were obtained with
(plain) permuted feature vectors; features are ordered by increasing value
range in the input clause set.

You can download detailed results of these and additional test runs at
http://www.eprover.org/feature_vector_indexing.html.

6.1 Results with Aggressive Contextual Literal Cutting

Most of the strongest search strategies we found so far apply contextual unit
cutting only to the given clause. To measure the effect of indexing for the
worst-case scenario, we ran the system with a strong standard strategy, but
with contextual literal cutting applied even to passive clauses, so that sub-
sumption attempts are maximized. In this case, the version without feature
vector indexing was able to solve 2671 problems within the time limit, whereas
the prover with indexing solved 2717 problems (a strict superset). On the
common subset, the indexed version needed 19857 s, whereas the plain sys-
tem used 32140 s, for a speed-up of nearly 40% for the whole prover. For
several harder examples, the indexed version ran as much as 5 times faster
than the conventional prover.

Figure 4 shows the scatter plot of times for the conventional over the
indexed version of the prover. Very few examples perform worse with indexing,
and the drop is usually not very significant. A number of examples cluster
around equal performance, and the majority shows moderate to large speed-
ups.

We manually reran some of the few cases where the indexed version of
the system was significantly slower than the non-indexed version on differ-
ent hardware (Generic Intel Pentium-III/Pentium-4 PCs with GNU/Linux
and a PowerPC G4 notebook with MacOS-X). In no case could we repro-
duce the slow-down (although it is reproducible on SUN hardware). Thus,
we currently believe that it is caused by some unfortunate interplay between
features of the SPARC architecture and our straight-forward recursive imple-
mentation. In particular, we suspect the large register window spills caused
by deep recursions on SPARC.

Figure 5 shows how many direct clause-clause subsumption calls have been
used by the conventional and the indexed version for the problems solved by
both. Note the double logarithmic scale necessary to adequately display the
large variation in numbers. The conventional version needs, over all problems,
about 30 times more calls than the indexed version. For individual problems,
the improvement factor varies from 1 (for some trivial problems) to approxi-
mately 7500 (for the problem SYN738-1, where the number of calls dropped
from 22 552 to 3). The largest number of subsumption calls was observed for
SYN711-1 with 444 793 509. For this problem, indexing reduced the number
of calls by a factor of nearly 200 to 2 229 754, and the run time from 235s to
79s.
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6.2 Results for the Automatic Mode

Most users use E in automatic mode, where the prover analyses the problem,
and then configures itself to use a strategy that has performed well on similar
problems. In this mode, contextual literal cutting is usually only applied to
the given clause, and thus the overall cost of subsumption-related techniques
is lower to begin with. We have performed various experiments to measure the
effect of feature vector indexing for this scenario as well. Figure 6 compares the
run times of E with and without feature vector indexing using the automatic
mode included with E 0.8. The conventional version solves 3405 problems,
whereas the version using feature vector indexing proves a superset of 3438
problems. On the subset solved by both systems, the indexed version uses
34438 s, whereas the conventional one uses 40238 s, for a speed-up of about
15%.
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Fig. 6. Run times of indexed versus conventional implementation for E 0.8 auto-
matic mode

The plot is similar to Figure 4, with many problems, especially for lower
run times, showing similar performance for both versions, and another group
showing significant improvement. Of course, since overall subsumption cost is
lower for the automatic mode, the gains are not as pronounced as for the case
with aggressive contextual literal cutting.
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7 Future Work

While we are very satisfied with the performance of our current implementa-
tion, there are a number of research problems we are actively working on.

First, with increased speed of hardware, it has become very hard to actually
quantify the time spent in different parts of a high-performance prover using
standard UNIX profiling tools (which only resolve to the 1/100th second level).
Thus, in this paper we only compare overall performance of the system with
and without feature vector indexing. We are in discussions with some of the
authors of the COMPIT framework [8] to extend it to cover (unit and non-
unit) subsumption, so that more detailed measurements and a comparison of
different indexing techniques become easier.

Secondly, up to now, we have only experimented with some simple and
obvious features. In particular, all of the features used with our currently
best parameter settings are AC compatible, and hence will not differentiate
between clauses that are equal modulo AC theories. Whereas this is desir-
able if subsumption modulo AC is used, it is a disadvantage for our calculus,
which only allows us to use some limited AC redundancy elimination. We will
investigate the effect of more complex features in these cases.

Finally, we are trying to develop similar simple, but effective algorithms
for other operations in the system, in particular for backward simplification
(where it might be possible to use a slightly modified version of feature vector
indexing) and paramodulation.

8 Conclusion

Feature vector indexing has proved to be a simple, but effective answer to
the subsumption problem for saturating first-order theorem provers. In our
experiments, it is able to reduce the number of subsumption tests by, on
average, about 97% compared to a naive sequential implementation, and thus
reduces cost for subsumption in our prover to a level that makes it hard to
measure using standard UNIX profiling tools.

In addition to the direct benefit, this gain in efficiency has enabled us
to implement otherwise relatively expensive subsumption-based simplification
techniques (like contextual literal cutting), further improving overall perfor-
mance of our prover.
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