
International Summer School on Satisfiability, Satisfiability Modulo Theories, and Automated Reasoning

Implementation of Saturating Theorem Provers
Stephan Schulz
schulz@eprover.org

Proofs

¬m(s)h(s)

8X(¬h(X) _m(X))

Logic Stuff

Abstract

We will describe several aspects of the implementation of a saturating,
superposition-based theorem prover for first-order logic. We discuss the
basic architecture of a prover, and the organization of the actual proof
search via the given-clause algorithm. Simplification and redundancy
elimination are, in practice, critical, and we describe how these can be
integrated into the basic proof procedure.
Another topic is that of terms and clauses, the most basic data objects in
any prover, and how they can be implemented. We discuss bottlenecks of
naive implementations, as well as the principle and some examples of
indexing techniques to overcome these bottlenecks. The presentation
concludes with a look at the influence of search heuristics.

1

Contents

1 Introduction

2 Basic Data Types

3 Saturation Algorithm

4 Term and Clause Indexing

5 Search Control

6 Conclusion

2

Introduction

3

Black Box View

Clausification

Saturation

Axioms Conjecture

CNFCNF

Proof Extraction

Proof (?)

4

Black Box View (zoom)

Saturation

CNFSet of clauses S
(including conjecture clauses)

Empty clause (?)

⇤

5

Blue Box View

Saturation
• Basic datatypes (terms, clauses,…)
• Saturation algorithm
• Term- and clause indexing
• Search control

CNFSet of clauses S
(including conjecture clauses)

Empty clause (?)

⇤

6

Proving by Saturation

I Goal: Show unsatisfiability of a set of clauses S
I Approach:

I Systematically enrich S with clauses derived via inferences from
clauses in S (Saturation)

I Optionally: Remove/simplify redundant clauses

I Outcome:

I Derivation of the empty clause � (explicit witness of unsatisfiability)
I Successful saturation (up to redundancy): S is satisfiable
I . . . or infinite sequence of derivations

I Properties:

I Correctness: Only logical consequences are derived
I Completeness: Every unsatisfiable S will eventually lead to the

derivation of �

7

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

(Deletion of resolved literals)

s 6' s _R

R

1

8

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

(Deletion of resolved literals)

s 6' s _R

R

1

8

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

(Deletion of resolved literals)

s 6' s _R

R

1

Generating inference rules
• Necessary for completeness
• Increase size of proof state

Simplification rules
• Critical for performance
• Reduce size of proof state

8

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

(Deletion of resolved literals)

s 6' s _R

R

1

8

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

(Deletion of resolved literals)

s 6' s _R

R

1

8

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

(Deletion of resolved literals)

s 6' s _R

R

1

Local (single premise)
• Easy to keep track of
• Cheap to implement

Non-local (multiple premises)
• Harder to keep track of (pairs of clauses!)
• Expensive to implement (find partners)

8

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

(Deletion of resolved literals)

s 6' s _R

R

1

>99% of generated clauses >90% of cpu time

8

Basic Data Types

9

Running Example

I Clauses:

I C1 = X 6' 0 ∨ add(X , s(Y)) ' s(Y)
I C2 = add(s(X),Y) ' s(add(X ,Y))

I Properties:

I C1 is a non-unit Horn clause (at most one positive
I C2 is a positive unit-clause (one literal) literal)
I Both are purely equational

I I add is a function symbol of arity 2
I s is a function symbol of arity 1
I 0 is a constant (function symbol of arity 0)
I X ,Y are variables (implicitly universally quantified)
I ' represents the equality relation
I 6' represents the negated equality relation
I ∨ is the disjunctive operator (logical or)

10

Running Example

I Clauses:

I C1 = X 6' 0 ∨ add(X , s(Y)) ' s(Y)
I C2 = add(s(X),Y) ' s(add(X ,Y))

I Properties:

I C1 is a non-unit Horn clause (at most one positive
I C2 is a positive unit-clause (one literal) literal)
I Both are purely equational

I Basic components:

I add is a function symbol of arity 2
I s is a function symbol of arity 1
I 0 is a constant (function symbol of arity 0)
I X ,Y are variables (implicitly universally quantified)
I ' represents the equality relation
I 6' represents the negated equality relation
I ∨ is the disjunctive operator (logical or)

10

Running Example

I Clauses:

I C1 = X 6' 0 ∨ add(X , s(Y)) ' s(Y)
I C2 = add(s(X),Y) ' s(add(X ,Y))

I Properties:

I C1 is a non-unit Horn clause (at most one positive
I C2 is a positive unit-clause (one literal) literal)
I Both are purely equational

I Terms and literals:

I X ,Y , 0 are elementary terms
I s(X) is a (composite) term
I So are add(s(X),Y), s(add(X ,Y)), add(X , s(Y)), . . .
I add(s(X),Y) ' s(add(X ,Y)) is a positive literal
I add(X , s(Y)) ' s(Y) is a positive literal
I X 6' 0 is a negative literal

10

Signature: Encode symbols and represent properties

Enc. Name Arity Remarks

0 - - Unused
1 0 0
2 add 2
3 s 1
3 As needed

I Signature table

I Associates function symbol
with index (small integer)

I Can store additional
information

I Implement as array: Fast
look-up (O(1)) by index

I Add e.g. tree for fast
mapping name→index

Function symbols (and predicate symbols, if used) are usually
represented by small positive integers!

11

Real Code for Real Humans

typedef s t r u c t f u n c c e l l
{ /∗ f c o d e i s i m p l i c i t by p o s i t i o n i n t h e a r r a y ∗/

char ∗ name ;
i n t a r i t y ;
. . .
Type p t y p e ; /∗ Simple t y p e o f t h e symbol ∗/
F u n c t i o n P r o p e r t i e s p r o p e r t i e s ;

}Fun cCe l l , ∗Func p ;

typedef s t r u c t s i g c e l l
{

long s i z e ; /∗ S i z e o f t he a r r a y ∗/
FunCode f c o u n t ; /∗ L a r g e s t used f c o d e ∗/
Func p f i n f o ; /∗ The a r r a y ∗/
S t r T r e e p f i n d e x ; /∗ Back−a s s o c : symbol=>i n d e x ∗/
. . .
TypeTable p t y p e t a b l e ;
. . .

} S i g C e l l , ∗ S i g p ;

12

Variables

Function symbols (and predicate symbols, if used) are usually
represented by small positive integers!

I Variables have no persistent names

I Each clause is individually universally quantified
I Scope of a variable name is one clause

I Frequent encoding: Small negative integers

I −1 is the first variable in a clause
I −3 is the second variable in a clause
I −5 is the third variable in a clause
I . . .
I Temporary association index↔name for parsing

I This leaves even numbers for alternative variables

I When two clauses interact via unification, the usually need disjoint
variable sets!

13

Variables

Function symbols (and predicate symbols, if used) are usually
represented by small positive integers!

I Variables have no persistent names

I Each clause is individually universally quantified
I Scope of a variable name is one clause

I Frequent encoding: Small negative integers

I −1 is the first variable in a clause
I −3 is the second variable in a clause
I −5 is the third variable in a clause
I . . .
I Temporary association index↔name for parsing

I This leaves even numbers for alternative variables

I When two clauses interact via unification, the usually need disjoint
variable sets!

13

Variables

Function symbols (and predicate symbols, if used) are usually
represented by small positive integers!

I Variables have no persistent names

I Each clause is individually universally quantified
I Scope of a variable name is one clause

I Frequent encoding: Small negative integers

I −1 is the first variable in a clause
I −3 is the second variable in a clause
I −5 is the third variable in a clause
I . . .
I Temporary association index↔name for parsing

I This leaves even numbers for alternative variables

I When two clauses interact via unification, the usually need disjoint
variable sets!

13

Terms are Trees

I Terms are ordered trees

I Leaves are labeled constants or variables
I Internal nodes are labeled with non-constant

symbols
I Node with symbol of arity n has n children

add(s(Y),X) =⇒

add

s X

Y

14

Terms are Trees

I Terms are ordered trees

I Leaves are labeled constants or variables
I Internal nodes are labeled with non-constant

symbols
I Node with symbol of arity n has n children

Enc. Name Arity Remarks

0 - - Unused
1 0 0
2 add 2
3 s 1
3 As needed

Enc. Name

-1 X
-3 Y
-5 Z

add(s(Y),X) =⇒

add

s X

Y

=⇒

2

3 -1

-3

14

Term Representations

I Cool languages have s-expressions: Terms for free

I LISP/Scheme: add(s(Y),X) =⇒ (add (s Y) X)

I Python: add(s(Y),X) =⇒ [2 [3 -3] -1])

I Cooler languages have recursive data types

I ML/Caml/OCaml
I Haskell

I C has pointers

typedef s t r u c t t e r m c e l l
{

FunCode f c o d e ; /∗ Top symbol o f term ∗/
T e r m P r o p e r t i e s p r o p e r t i e s ; /∗ L i k e b a s i c , l h s , top ∗/
i n t a r i t y ; /∗ Redundant , but s a v e s hand ing

around t h e s i g n a t u r e a l l t he
t ime ∗/

s t r u c t t e r m c e l l ∗ ∗ a r g s ; /∗ P o i n t e r to a r r a y o f
. . . arguments ∗/

}TermCel l , ∗Term p , ∗∗TermRef ;

15

Term Representations

I Cool languages have s-expressions: Terms for free

I LISP/Scheme: add(s(Y),X) =⇒ (add (s Y) X)

I Python: add(s(Y),X) =⇒ [2 [3 -3] -1])

I Cooler languages have recursive data types

I ML/Caml/OCaml
I Haskell

I C has pointers

typedef s t r u c t t e r m c e l l
{

FunCode f c o d e ; /∗ Top symbol o f term ∗/
T e r m P r o p e r t i e s p r o p e r t i e s ; /∗ L i k e b a s i c , l h s , top ∗/
i n t a r i t y ; /∗ Redundant , but s a v e s hand ing

around t h e s i g n a t u r e a l l t he
t ime ∗/

s t r u c t t e r m c e l l ∗ ∗ a r g s ; /∗ P o i n t e r to a r r a y o f
. . . arguments ∗/

}TermCel l , ∗Term p , ∗∗TermRef ;

15

Equations/Inequations/Literals

I Meta-information plus two terms plus next pointer

I This reflects the pure equational paradigm of E
I Alternative: Atoms are terms (with a predicate symbol as the top

symbol)
I Literals have only one term pointer
I Equality is just a special predicate symbol

typedef s t r u c t e q n c e l l
{

E q n P r o p e r t i e s p r o p e r t i e s ; /∗ P o s i t i v e , maximal , eq . ∗/
Term p l t e r m ;
Term p r t e r m ;
. . .
s t r u c t e q n c e l l ∗ n e x t ; /∗ For l i s t s o f e q u a t i o n s ∗/

}EqnCel l , ∗Eqn p , ∗∗EqnRef ;

16

Clauses

I Meta-information plus list of literals

typedef s t r u c t c l a u s e c e l l
{

long i d e n t ; /∗ H o p e f u l l y u n i q u e i d e n t
f o r a l l c l a u s e s c r e a t e d
d u r i n g a p r o o f run ∗/

Eqn p l i t e r a l s ; /∗ L i s t o f l i t e r a l s ∗/
F o r m u l a P r o p e r t i e s p r o p e r t i e s ;
E v a l p e v a l u a t i o n s ; /∗ L i s t o f e v a l u a t i o n s ∗/
s t r u c t c l a u s e s e t c e l l ∗ s e t ; /∗ I s t he c l a u s e i n a s e t ? ∗/
s t r u c t c l a u s e c e l l ∗ pred ; /∗ For c l a u s e s e t s = d o u b l y ∗/
s t r u c t c l a u s e c e l l ∗ s u c c ; /∗ l i n k e d l i s t s ∗/
. . .

}

17

Clauses

C1 = X 6' 0 ∨ add(X , s(Y)) ' s(Y)

Id: C1
- +

X 0 add

X S

Y

S

Y

Eval: 8
...

18

Clauses

C1 = X 6' 0 ∨ add(X , s(Y)) ' s(Y)

- +

-1 1 2

-1 3

-3

3

-3

Id: C1
Eval: 8
...

18

Clauses

C1 = ???

Id: C1

...

18

Clauses

C1 = �

Id: C1
Eval: 0
...

18

Saturation Algorithm

19

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

(Deletion of resolved literals)

s 6' s _R

R

1

Generating inference rules
• Necessary for completeness
• Increase size of proof state

Simplification rules
• Critical for performance
• Reduce size of proof state

20

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

(Deletion of resolved literals)

s 6' s _R

R

1

Local (single premise)
• Easy to keep track of
• Cheap to implement

Non-local (multiple premises)
• Harder to keep track of (pairs of clauses!)
• Expensive to implement (find partners)

20

Requirements for a Saturation Procedure

I Apply all non-redundant generating inferences (in the limit)

I Necessary for completeness
I Requires some form of tracking or book-keeping

I Integrate simplification/redundancy elimination

I Reduces size of proof state and search space
I Critical for performance
I Ideal: No generating inferences involving redundant clauses

I Support search control

I No blind saturation
I Suitable choice point(s) for heuristics

I Low overhead

I Efficient in time
I Efficient in memory

21

The Given-Clause Algorithm

We start with a blank slate

22

The Given-Clause Algorithm

U
(unprocessed clauses)

P
(processed clauses)

We represent the proof state
S by two sets of clauses:

I P holds the processed
clauses (originally
empty)

I U holds the unprocessed
clauses (originally all
clauses in S)

22

The Given-Clause Algorithm

U
(unprocessed clauses)

g

P
(processed clauses)

I Aim: Move everything
from U to P

I Invariant: All generating
inferences with premises
from P have been
performed

I Invariant: P is
interreduced

I Clauses added to U are
simplified with respect
to P

22

The Given-Clause Algorithm

U
(unprocessed clauses)

g

P
(processed clauses)

g=☐
?

I Aim: Move everything
from U to P

I Invariant: All generating
inferences with premises
from P have been
performed

I Invariant: P is
interreduced

I Clauses added to U are
simplified with respect
to P

22

The Given-Clause Algorithm

U
(unprocessed clauses)

Gene-
rate

g

P
(processed clauses)

g=☐
?

I Aim: Move everything
from U to P

I Invariant: All generating
inferences with premises
from P have been
performed

I Invariant: P is
interreduced

I Clauses added to U are
simplified with respect
to P

22

The Given-Clause Algorithm

U
(unprocessed clauses)

Gene-
rate

Simplify

g

P
(processed clauses)

g=☐
?

Simpli-
fiable?

I Aim: Move everything
from U to P

I Invariant: All generating
inferences with premises
from P have been
performed

I Invariant: P is
interreduced

I Clauses added to U are
simplified with respect
to P

22

The Given-Clause Algorithm

U
(unprocessed clauses)

Gene-
rate

Cheap
Simplify

Simplify

g

P
(processed clauses)

g=☐
?

Simpli-
fiable?

I Aim: Move everything
from U to P

I Invariant: All generating
inferences with premises
from P have been
performed

I Invariant: P is
interreduced

I Clauses added to U are
simplified with respect
to P

22

The Given-Clause Loop in Fewer Words

while U 6= {}
g = delete best(U)
g = simplify(g ,P)
if g == �

SUCCESS, Proof found
if g is not subsumed by any clause in P (or otherwise redundant w.r.t. P)

P = P\{c ∈ P | c subsumed by (or otherwise redundant w.r.t.) g}
T = {c ∈ P | c can be simplified with g}
P = (P\T) ∪ {g}
T = T ∪ generate(g ,P)
foreach c ∈ T
c = cheap simplify(c ,P)
if c is not trivial
U = U ∪ {c}

SUCCESS, original U is satisfiable

23

Compare and Contrast

U
(unprocessed clauses)

Gene-
rate

Cheap
Simplify

Simplify

g

P
(processed clauses)

g=☐
?

Simpli-
fiable?

24

“You can’t handle the truth!”

Gene-
rate

Cheap
Simplify

Simplify

g

P
(processed clauses)

g =☐
?

Simpli-
fiable?

U
(unprocessed clauses)

25

Term and Clause Indexing

26

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

(Deletion of resolved literals)

s 6' s _R

R

1

>90% of cpu time

27

Rewriting

Idea: Replace terms by semantically equal but >-smaller terms

(Rewriting of negative literals)

s ' t u 6' v ∨ R

s ' t u[p ← σ(t)] 6' v ∨ R

if u|p = σ(s) and σ(s) >
σ(t)

(Rewriting of positive literals)

s ' t u ' v ∨ R

s ' t u[p ← σ(t)] ' v ∨ R

if u|p = σ(s) and σ(s) >
σ(t) and u ' v is not maxi-
mal in u ' v ∨R or u < v or
p 6= λ

28

Reminder: Rewriting in Action

U
(unprocessed clauses)

Gene-
rate

Cheap
Simplify

Simplify

g

P
(processed clauses)

g=☐
?

Simpli-
fiable?

I Maximally simplify g
with respect to all unit
equations in P

I Maximally simplify all
clauses inserted into U
with respect to all unit
equations in P

I Check for all clauses in
P if they can be
simplified with g

29

Simplification

Compute normal form of clause C with respect to P:

whi le C i s not i n normal form :
f o r a l l l i t e r a l s l i n C :

f o r a l l te rms t i n l :
f o r a l l subte rms s o f t :

f o r a l l u n i t c l a u s e s l=r i n P :
s igma = match (l , s)
i f s igma and o t h e r c o n d i t i o n s :

r e p l a c e s by s igma (r)
e l s e :

s igma = match (r , s)
i f s igma and o t h e r c o n d i t i o n s :

r e p l a c e s by s igma (l)

. . . and |P| is growing to ≈ 105 in 300 seconds!

30

Simplification

Compute normal form of clause C with respect to P:

whi le C i s not i n normal form :
f o r a l l l i t e r a l s l i n C :

f o r a l l te rms t i n l :
f o r a l l subte rms s o f t :

f o r a l l u n i t c l a u s e s l=r i n P :
s igma = match (l , s)
i f s igma and o t h e r c o n d i t i o n s :

r e p l a c e s by s igma (r)
e l s e :

s igma = match (r , s)
i f s igma and o t h e r c o n d i t i o n s :

r e p l a c e s by s igma (l)

. . . and |P| is growing to ≈ 105 in 300 seconds!

30

Term Indexing

A term index is a data structure supporting one or more of the following
operations:

I Given a term t, find all terms s from some set S such that
I s matches t (our current use case)

I t is the subterm to be rewritten
I Every s is a potential left hand side of a unit clause

I t matches s
I s and t can be unified

I Indexing can be. . .

I Perfect - all retrieved terms s are in the retrieval relation with the
query term t

I Non-perfect - index returns a (hopefully small) superset of candidates

31

Top Symbol Hashing

I Assume t ≡ f(t1, . . . , tn)
I Observation:

I σ(t) = s implies s ≡ f(s1, . . . , sn)
I t = σ(s) implies s ≡ f(s1, . . . , sn) or s ≡ x ∈ V
I σ(t) = σ(s) implies s ≡ f(s1, . . . , sn) or s ≡ x ∈ V

I . . . because σ never affects f

If we organize P by top symbol of potentially maximal sides of unit
clauses, we can avoid most matching attempts!

32

Top Symbol Hashing

I Assume t ≡ f(t1, . . . , tn)
I Observation:

I σ(t) = s implies s ≡ f(s1, . . . , sn)
I t = σ(s) implies s ≡ f(s1, . . . , sn) or s ≡ x ∈ V
I σ(t) = σ(s) implies s ≡ f(s1, . . . , sn) or s ≡ x ∈ V

I . . . because σ never affects f

If we organize P by top symbol of potentially maximal sides of unit
clauses, we can avoid most matching attempts!

32

Fingerprint/Discrimination Tree Indexing

I Core idea: Iterated top symbol hashing

I Traverse tern left-to-right
I Each function symbol potentially restricts candidates for

matching/unification

I Index data structure: Trie

I Convert terms to symbol strings: add(s(X),Y) =⇒ ’add s X Y ’
I Organize strings in a trie
I Leaf nodes carry original terms and associated date (e.g. originating

clause)

I Retrieval:

I Convert query term into symbols string
I Follow all compatible branches
I If a leaf is reached, try candidates stored there

I For perfect discrimination trees, only terms compatible with the
retrieval relation will be found

I For fingerprint indexing and non-perfect discrimination tree indexing:
Candidates must be checked

33

Impressionist Art

0

0

j

j

g

g

f

f

1 terms

j, A

A

j, 0

0

j, jj

j, g

g

j, f

f

j, A, A

A

j, A, 0

0 j, A, j

j

j, A, g
g

j, A, f

f

15 terms

1 terms

j, A, j, A

A

j, A, j, gg

j, A, j, f

f

j, A, j, A, A

A

j, A, j, A, j

j
j, A, j, A, g

g

j, A, j, A, f
f

10 terms

j, A, j, A, j, A
A

j, A, j, A, j, g
g

j, A, j, A, j, A, A

A
j, A, j, A, j, A, j

j

j, A, j, A, j, A, g
g

2 terms

j, A, j, A, j, A, j, A
A

j, A, j, A, j, A, j, g
g

j, A, j, A, j, A, j, A, g
g

j, A, j, A, j, A, j, A, g, A
A

1 terms

j, A, j, A, j, A, j, g, A
A

j, A, j, A, j, A, j, g, A, A
A

1 terms

j, A, j, A, j, A, g, A
A

2 terms

j, A, j, A, j, g, A
A

j, A, j, A, j, g, A, A
A

2 terms

j, A, j, A, g, A
A

3 terms

j, A, j, A, f, A
A

j, A, j, A, f, A, A
A

j, A, j, A, f, A, g
g

j, A, j, A, f, A, f

f

2 terms

j, A, j, A, f, A, g, A
A

1 terms

j, A, j, A, f, A, f, A
A

j, A, j, A, f, A, f, A, g
g

j, A, j, A, f, A, f, A, g, A
A

2 terms

j, A, j, g, AA

j, A, j, g, A, A
A

j, A, j, g, A, f
f

3 terms

j, A, j, g, A, f, A
A

j, A, j, g, A, f, A, f
f

j, A, j, g, A, f, A, f, A
A

j, A, j, g, A, f, A, f, A, A
A

1 terms

j, A, j, f, A
A

j, A, j, f, A, AA

j, A, j, f, A, g
g

j, A, j, f, A, f

f

j, A, j, f, A, A, A
A

2 terms

j, A, j, f, A, g, A
A

j, A, j, f, A, g, A, A
A

1 terms

j, A, j, f, A, f, A
A

j, A, j, f, A, f, A, g
g

j, A, j, f, A, f, A, g, A
A

j, A, j, f, A, f, A, g, A, A
A

2 terms
j, A, g, A

A
6 terms

j, A, f, A
A

j, A, f, j

j

j, A, f, A, A

A
j, A, f, A, jj

j, A, f, A, g
g

j, A, f, A, f

f

12 terms

j, A, f, A, j, A
A

j, A, f, A, j, A, A
A

2 terms

j, A, f, A, g, A
A

2 terms

j, A, f, A, f, A
A

j, A, f, A, f, A, A
A

j, A, f, A, f, A, g

g
4 terms

j, A, f, A, f, A, g, A
A

7 termsj, A, f, j, A

A

j, A, f, j, A, A
A

j, A, f, j, A, A, A

A

1 terms
j, 0, AA

1 terms

j, j, AA

j, j, A, AA

j, j, A, A, A
A

1 terms

j, g, A
A

j, g, A, A
A

j, g, A, j
j

j, g, A, g

g

j, g, A, f

f

3 terms

j, g, A, j, A
A

j, g, A, j, f
f

j, g, A, j, A, j
j

j, g, A, j, A, j, A
A

j, g, A, j, A, j, A, A
A

j, g, A, j, A, j, A, j
j

2 terms

j, g, A, j, A, j, A, j, A
A

j, g, A, j, A, j, A, j, A, A
A

2 terms

j, g, A, j, f, A
A

j, g, A, j, f, A, f
f

j, g, A, j, f, A, f, A
A

j, g, A, j, f, A, f, A, A
A

j, g, A, j, f, A, f, A, A, A
A

1 terms

j, g, A, g, A
A

1 terms

j, g, A, f, A
A

j, g, A, f, A, A
A

j, g, A, f, A, f

f

1 terms

j, g, A, f, A, f, A
A

j, g, A, f, A, f, A, A
A

6 terms

j, f, A
A

j, f, j

j

j, f, A, A

A

j, f, A, jj

j, f, A, g

g

j, f, A, f

f

j, f, A, A, A

A

j, f, A, A, jj

j, f, A, A, f

f

6 terms

j, f, A, A, j, A
A

j, f, A, A, j, f
f

j, f, A, A, j, A, j

j
j, f, A, A, j, A, f

f

j, f, A, A, j, A, j, A
A

j, f, A, A, j, A, j, f
f

j, f, A, A, j, A, j, A, f
f

j, f, A, A, j, A, j, A, f, A
A

j, f, A, A, j, A, j, A, f, A, g
g

j, f, A, A, j, A, j, A, f, A, g, A
A

1 terms

j, f, A, A, j, A, j, f, A
A

j, f, A, A, j, A, j, f, A, g
g

j, f, A, A, j, A, j, f, A, g, A
A

j, f, A, A, j, A, j, f, A, g, A, A
A

1 terms

j, f, A, A, j, A, f, A
A

j, f, A, A, j, A, f, A, A
A

2 terms

j, f, A, A, j, f, A
A

j, f, A, A, j, f, A, A
A

j, f, A, A, j, f, A, A, A
A

2 terms

j, f, A, A, f, A
A

j, f, A, A, f, A, A
A

j, f, A, A, f, A, g
g

j, f, A, A, f, A, f

f

4 terms

j, f, A, A, f, A, g, A
A

1 terms

j, f, A, A, f, A, f, A
A

j, f, A, A, f, A, f, A, A
A

1 terms

j, f, A, j, AA j, f, A, j, A, AA j, f, A, j, A, A, A
A

1 terms

j, f, A, g, A
A

j, f, A, g, A, AA

j, f, A, g, A, j

j

j, f, A, g, A, f

f

2 terms

j, f, A, g, A, j, A
A

j, f, A, g, A, j, A, j
j

j, f, A, g, A, j, A, j, A
A

j, f, A, g, A, j, A, j, f
f

j, f, A, g, A, j, A, j, A, f
f

j, f, A, g, A, j, A, j, A, f, A
A

j, f, A, g, A, j, A, j, A, f, A, A
A

1 terms

j, f, A, g, A, j, A, j, f, A
A

j, f, A, g, A, j, A, j, f, A, A
A

j, f, A, g, A, j, A, j, f, A, A, A
A

1 terms

j, f, A, g, A, f, A
A

j, f, A, g, A, f, A, A
A

1 termsj, f, A, f, A

A

j, f, A, f, A, A

A

j, f, A, f, A, g

g
j, f, A, f, A, A, A

A

j, f, A, f, A, A, f

f
3 terms

j, f, A, f, A, A, f, A
A

j, f, A, f, A, A, f, A, A
A

1 terms

j, f, A, f, A, g, A

A

j, f, A, f, A, g, A, A
A

2 terms

j, f, j, A

A

j, f, j, A, A

A

j, f, j, A, A, A

A

j, f, j, A, A, A, A

A

1 terms

g, A

A

g, 00

g, j
j

g, g

g

g, f

f

3 terms

1 terms

g, j, A
A

g, j, A, A
A

1 terms

g, g, A
A

1 terms

g, f, A
A

g, f, A, A
A

1 terms

f, A

A

f, 0
0

f, j

j

f, g

g

f, f

f

f, A, A

A f, A, 0

0

f, A, jj

f, A, g

g

f, A, f

f

12 terms

1 terms

f, A, j, A

A

f, A, j, gg

f, A, j, f

f

f, A, j, A, A

A f, A, j, A, j

j f, A, j, A, g

g

f, A, j, A, f
f

8 terms

f, A, j, A, j, A

A
f, A, j, A, j, gg

f, A, j, A, j, f
f

f, A, j, A, j, A, f
f

f, A, j, A, j, A, f, A
A

f, A, j, A, j, A, f, A, A
A

f, A, j, A, j, A, f, A, f
f

1 terms

f, A, j, A, j, A, f, A, f, A
A

f, A, j, A, j, A, f, A, f, A, g
g

f, A, j, A, j, A, f, A, f, A, g, A
A

2 terms

f, A, j, A, j, g, A
A

f, A, j, A, j, g, A, f
f

f, A, j, A, j, g, A, f, A
A

f, A, j, A, j, g, A, f, A, f
f

f, A, j, A, j, g, A, f, A, f, A
A

f, A, j, A, j, g, A, f, A, f, A, A
A

1 terms

f, A, j, A, j, f, A
A

f, A, j, A, j, f, A, A
A

f, A, j, A, j, f, A, f

f
f, A, j, A, j, f, A, A, A

A
1 terms

f, A, j, A, j, f, A, f, A
A

f, A, j, A, j, f, A, f, A, g
g

f, A, j, A, j, f, A, f, A, g, A
A

f, A, j, A, j, f, A, f, A, g, A, A
A

2 termsf, A, j, A, g, AA 1 terms

f, A, j, A, f, A
A

f, A, j, A, f, A, A
A

f, A, j, A, f, A, g
g

f, A, j, A, f, A, f

f

3 terms

f, A, j, A, f, A, g, A
A

1 terms

f, A, j, A, f, A, f, A
A

f, A, j, A, f, A, f, A, A
A

f, A, j, A, f, A, f, A, g

g
3 terms

f, A, j, A, f, A, f, A, g, A
A

3 terms

f, A, j, g, AA

f, A, j, g, A, A

A
f, A, j, g, A, jj

f, A, j, g, A, f

f

1 terms

f, A, j, g, A, j, f
f

f, A, j, g, A, j, f, A
A

f, A, j, g, A, j, f, A, f
f

f, A, j, g, A, j, f, A, f, A
A

f, A, j, g, A, j, f, A, f, A, A
A

f, A, j, g, A, j, f, A, f, A, A, A
A

1 terms

f, A, j, g, A, f, A
A

f, A, j, g, A, f, A, f
f

f, A, j, g, A, f, A, f, A
A

f, A, j, g, A, f, A, f, A, A
A

2 terms

f, A, j, f, A
A

f, A, j, f, A, A
A

f, A, j, f, A, g

g

f, A, j, f, A, f

f

f, A, j, f, A, A, A
A

2 terms

f, A, j, f, A, g, A
A

f, A, j, f, A, g, A, A
A

1 terms

f, A, j, f, A, f, A
A

f, A, j, f, A, f, A, A
A

f, A, j, f, A, f, A, A, A
A

3 terms

f, A, g, A

A

6 terms

f, A, f, A
A

f, A, f, j

j

f, A, f, A, A

A

f, A, f, A, jj

f, A, f, A, g

g

f, A, f, A, f

f

14 terms

f, A, f, A, j, A

A

f, A, f, A, j, gg

f, A, f, A, j, f

f

f, A, f, A, j, A, A

A
f, A, f, A, j, A, g

g

f, A, f, A, j, A, f
f

4 terms

f, A, f, A, j, A, g, A
A

1 terms

f, A, f, A, j, A, f, A
A

f, A, f, A, j, A, f, A, A
A

f, A, f, A, j, A, f, A, f
f

1 terms

f, A, f, A, j, A, f, A, f, A
A

f, A, f, A, j, A, f, A, f, A, g
g

f, A, f, A, j, A, f, A, f, A, g, A
A

2 terms

f, A, f, A, j, g, A
A

f, A, f, A, j, g, A, A
A

f, A, f, A, j, g, A, f

f
1 terms

f, A, f, A, j, g, A, f, A
A

f, A, f, A, j, g, A, f, A, f
f

f, A, f, A, j, g, A, f, A, f, A
A

f, A, f, A, j, g, A, f, A, f, A, A
A

2 termsf, A, f, A, j, f, A
A

f, A, f, A, j, f, A, A

A

f, A, f, A, j, f, A, A, A
A

1 termsf, A, f, A, g, A

A

8 terms

f, A, f, A, f, A
A

f, A, f, A, f, j

j

f, A, f, A, f, A, A

A

f, A, f, A, f, A, jj

f, A, f, A, f, A, g

g

f, A, f, A, f, A, f

f

8 terms

f, A, f, A, f, A, j, A
A

f, A, f, A, f, A, j, A, A
A

1 terms

f, A, f, A, f, A, g, A
A

2 terms

f, A, f, A, f, A, f, A
A

f, A, f, A, f, A, f, A, A
A

4 terms

f, A, f, A, f, j, A

A

f, A, f, A, f, j, A, A
A

f, A, f, A, f, j, A, A, A
A

1 terms

f, A, f, j, A
A

f, A, f, j, f

f

f, A, f, j, A, AA

f, A, f, j, A, f

f

f, A, f, j, A, A, A
A

2 terms

f, A, f, j, A, f, A
A

f, A, f, j, A, f, A, A
A

f, A, f, j, A, f, A, f

f
f, A, f, j, A, f, A, A, A

A
1 terms

f, A, f, j, A, f, A, f, A
A

f, A, f, j, A, f, A, f, A, g
g

f, A, f, j, A, f, A, f, A, g, A
A

f, A, f, j, A, f, A, f, A, g, A, A
A

2 termsf, A, f, j, f, A
A

f, A, f, j, f, A, A

A

f, A, f, j, f, A, A, A
A

f, A, f, j, f, A, A, A, A
A

1 terms

f, 0, A
A

1 terms

f, j, AA

f, j, g

g

f, j, f

f

f, j, A, A

A

f, j, A, gg

f, j, A, f

f

f, j, A, A, A

A
f, j, A, A, j

j

f, j, A, A, f
f

4 terms

f, j, A, A, j, A
A

f, j, A, A, j, g
g

f, j, A, A, j, A, f
f

f, j, A, A, j, A, f, A
A

f, j, A, A, j, A, f, A, f
f

f, j, A, A, j, A, f, A, f, A
A

f, j, A, A, j, A, f, A, f, A, g
g

f, j, A, A, j, A, f, A, f, A, g, A
A

2 terms

f, j, A, A, j, g, A
A

f, j, A, A, j, g, A, f
f

f, j, A, A, j, g, A, f, A
A

f, j, A, A, j, g, A, f, A, f
f

f, j, A, A, j, g, A, f, A, f, A
A

f, j, A, A, j, g, A, f, A, f, A, A
A

2 terms

f, j, A, A, f, A
A

f, j, A, A, f, A, A
A

1 terms

f, j, A, g, AA

f, j, A, g, A, A

A
f, j, A, g, A, gg

f, j, A, g, A, f

f

2 terms

f, j, A, g, A, g, A
A

3 terms

f, j, A, g, A, f, A
A

f, j, A, g, A, f, A, g
g

f, j, A, g, A, f, A, g, A
A

1 terms

f, j, A, f, A
A

f, j, A, f, A, A
A

f, j, A, f, A, f

f f, j, A, f, A, A, A
A

f, j, A, f, A, A, f

f
5 terms

f, j, A, f, A, A, f, A
A

f, j, A, f, A, A, f, A, A
A

1 terms

f, j, A, f, A, f, A

A

f, j, A, f, A, f, A, g
g

f, j, A, f, A, f, A, g, A
A

f, j, A, f, A, f, A, g, A, A
A

f, j, A, f, A, f, A, g, A, f

f
2 terms

f, j, A, f, A, f, A, g, A, f, A
A

f, j, A, f, A, f, A, g, A, f, A, A
A

4 terms

f, j, g, A

A

f, j, g, A, A
A

f, j, g, A, A, A

A

1 terms

f, j, f, A

A

f, j, f, A, A
A

f, j, f, A, A, A

A

f, j, f, A, A, A, A
A

f, j, f, A, A, A, f

f
2 terms

f, j, f, A, A, A, f, A
A

f, j, f, A, A, A, f, A, A
A

1 terms

f, g, A

A

f, g, A, A
A

1 terms

f, f, A

A

f, f, A, A
A

f, f, A, A, A

A

1 terms

I Non-perfect discrimination tree
I Clause set P from final state of

6th Lusk/Overbeck problem

I Unit-equational example
I A ring with x ∗ x ∗ x = x is

commutative
I Historically considered hard
I Now: 0.2 seconds on this

computer

34

Indexing - Summary

I Term indexing can convert the time needed to find inference
partners from roughly O(|P|) to O(log(|P|))

I Unification indices speed up paramodulation

I E.g. Fingerprint Indexing (Choice for E)
I E.g. Discrimination Tree Indexing (but ugly unification)

I Find-Matching indices speed up forward rewriting

I E.g. Discrimination Tree Indexing (Choice for E)
I E.h. Fingerprint Indexing

I Find-Matched indices speed up backwards-rewriting

I E.g. Fingerprint Indexing (Choice for E)

I Subsumption indices speed up subsumption

I Index clauses, not terms
I E.g. Feature Vector Indexing

35

Search Control

36

Search Heuristics

I Heuristics are crucial for first-order theorem provers

I Practical experience is clear
I Proof search happens in an infinite search space
I Proofs are rare

I Three major choice points

I Choice of the term ordering
I Choice of the literal selection strategy
I Choice of the next given clause

37

Search Heuristics

I Heuristics are crucial for first-order theorem provers

I Practical experience is clear
I Proof search happens in an infinite search space
I Proofs are rare

I Three major choice points

I Choice of the term ordering
I Choice of the literal selection strategy
I Choice of the next given clause

37

The Size of the Problem

Gene-
rate

Cheap
Simplify

Simplify

g

P
(processed clauses)

g =☐
?

Simpli-
fiable?

U
(unprocessed clauses)

I |U| ∼ |P|2
I |U| ≈ 3 · 107 after 300s

How do we make the best
choice among millions?

38

The Size of the Problem

Gene-
rate

Cheap
Simplify

Simplify

g

P
(processed clauses)

g =☐
?

Simpli-
fiable?

U
(unprocessed clauses)

Choice Point

I |U| ∼ |P|2
I |U| ≈ 3 · 107 after 300s

How do we make the best
choice among millions?

38

The Size of the Problem

Gene-
rate

Cheap
Simplify

Simplify

g

P
(processed clauses)

g =☐
?

Simpli-
fiable?

U
(unprocessed clauses)

Choice Point

I |U| ∼ |P|2
I |U| ≈ 3 · 107 after 300s

How do we make the best
choice among millions?

38

The Size of the Problem

Gene-
rate

Cheap
Simplify

Simplify

g

P
(processed clauses)

g =☐
?

Simpli-
fiable?

U
(unprocessed clauses)

Choice Point

I |U| ∼ |P|2
I |U| ≈ 3 · 107 after 300s

How do we make the best
choice among millions?

38

Basic Clause Selection Heuristics

I Basic idea: Clauses ordered by heuristic evaluation

I Heuristic assigns a numerical value to a clause
I Clauses with smaller (better) evaluations are processed first

I Example: Evaluation by symbol counting

I |{f (X) 6= a,P(a) 6= $true, g(Y) = f (a)}| = 10
I Motivation: Small clauses are general, � has 0 symbols
I Best-first search

I Example: FIFO evaluation

I Clause evaluation based on generation time (always prefer older
clauses)

I Motivation: Simulate breadth-first search, find shortest proofs

I Combine best-first/breadth-first search

I E.g. pick 4 out of every 5 clauses according to size, the last according
to age

39

Clause Selection Heuristics in E

I Many symbol-counting variants

I E.g. Assign different weights to symbol classes (predicates, functions,
variables)

I E.g. Goal directed: lower weight for symbols occurring in original
conjecture

I E.g. ordering-aware/calculus-aware: higher weight for symbols in
inference terms

I Arbitrary combinations of base evaluation functions

I E.g. 5 priority queues ordered by different evaluation functions,
weighted round-robin selection

E can simulate nearly all other approaches to clause selection!

40

Clause Selection Heuristics in E

I Many symbol-counting variants

I E.g. Assign different weights to symbol classes (predicates, functions,
variables)

I E.g. Goal directed: lower weight for symbols occurring in original
conjecture

I E.g. ordering-aware/calculus-aware: higher weight for symbols in
inference terms

I Arbitrary combinations of base evaluation functions

I E.g. 5 priority queues ordered by different evaluation functions,
weighted round-robin selection

E can simulate nearly all other approaches to clause selection!

40

Folklore on Clause Selection/Evaluation

I FIFO is obviously fair, but awful – Everybody

I Preferring small clauses is good – Everybody
I Interleaving best-first (small) and breadth-first (FIFO) is better

I “The optimal pick-given ratio is 5” – Otter

I Processing all initial clauses early is good – Waldmeister

I Preferring clauses with orientable equation is good – DISCOUNT

I Goal-direction is good – E

Can we confirm or refute these claims?

41

Folklore on Clause Selection/Evaluation

I FIFO is obviously fair, but awful – Everybody

I Preferring small clauses is good – Everybody
I Interleaving best-first (small) and breadth-first (FIFO) is better

I “The optimal pick-given ratio is 5” – Otter

I Processing all initial clauses early is good – Waldmeister

I Preferring clauses with orientable equation is good – DISCOUNT

I Goal-direction is good – E

Can we confirm or refute these claims?

41

Experimental setup

I Prover: E 1.9.1-pre
I 14 different heuristics

I 13 selected to test folklore claims (interleave 1 or 2
evaluations)

I Plus modern evolved heuristic (interleaves 5 evaluations)

I TPTP release 6.3.0

I Only (assumed) provable first-order problems
I 13774 problems: 7082 FOF and 6692 CNF

I Compute environment

I StarExec cluster: single threaded run on Xeon E5-2609
(2.4 GHz)

I 300 second time limit, no memory limit (≥64 GB/core
physical)

42

Meet the Heuristics

Heuristic Rank Successes Successes within 1s
total unique absolute of column 3

FIFO 14 4930 (35.8%) 17 3941 79.9%
SC12 13 4972 (36.1%) 5 4155 83.6%
SC11 9 5340 (38.8%) 0 4285 80.2%
SC21 10 5326 (38.7%) 17 4194 78.7%
RW212 11 5254 (38.1%) 13 5764 79.8%
2SC11/FIFO 7 7220 (52.4%) 24 5846 79.7%
5SC11/FIFO 5 7331 (53.2%) 3 5781 78.3%
10SC11/FIFO 3 7385 (53.6%) 1 5656 77.6%
15SC11/FIFO 6 7287 (52.9%) 6 5006 82.5%
GD 12 4998 (36.3%) 12 5856 78.4%
5GD/FIFO 4 7379 (53.6%) 62 4213 80.2%
SC11-PI 8 6071 (44.1%) 13 4313 86.3%
10SC11/FIFO-PI 2 7467 (54.2%) 31 5934 80.4%
Evolved 1 8423 (61.2%) 593 6406 76.1%

43

Folklore put to the Test

I FIFO is awful, preferring small clauses is good – mostly confirmed

I In general, only modest advantage for symbol counting (36% FIFO
vs. 39% for best SC)

I Exception: UEQ (32% vs. 63%)

I Interleaving best-first/breadth-first is better – confirmed

I 54% for interleaving vs. 39% for best SC
I Influence of different pick-given ratios is surprisingly small
I UEQ is again an outlier (60% for 2:1 vs. 70% for 15:1)
I The optimal pick-given ratio is 10 (for E)

I Processing all initial clauses early is good – confirmed

I Effect is less pronounced for interleaved heuristics

I Preferring clauses with orientable equation is good – not confirmed

I There is no evidence in our data, not even for UEQ

I Goal-direction is good – partially confirmed

I GD on its own performs similar to SC
I GD shines in combination with FIFO

44

Folklore put to the Test

I FIFO is awful, preferring small clauses is good – mostly confirmed

I In general, only modest advantage for symbol counting (36% FIFO
vs. 39% for best SC)

I Exception: UEQ (32% vs. 63%)

I Interleaving best-first/breadth-first is better – confirmed

I 54% for interleaving vs. 39% for best SC
I Influence of different pick-given ratios is surprisingly small
I UEQ is again an outlier (60% for 2:1 vs. 70% for 15:1)
I The optimal pick-given ratio is 10 (for E)

I Processing all initial clauses early is good – confirmed

I Effect is less pronounced for interleaved heuristics

I Preferring clauses with orientable equation is good – not confirmed

I There is no evidence in our data, not even for UEQ

I Goal-direction is good – partially confirmed

I GD on its own performs similar to SC
I GD shines in combination with FIFO

44

Folklore put to the Test

I FIFO is awful, preferring small clauses is good – mostly confirmed

I In general, only modest advantage for symbol counting (36% FIFO
vs. 39% for best SC)

I Exception: UEQ (32% vs. 63%)

I Interleaving best-first/breadth-first is better – confirmed

I 54% for interleaving vs. 39% for best SC
I Influence of different pick-given ratios is surprisingly small
I UEQ is again an outlier (60% for 2:1 vs. 70% for 15:1)
I The optimal pick-given ratio is 10 (for E)

I Processing all initial clauses early is good – confirmed

I Effect is less pronounced for interleaved heuristics

I Preferring clauses with orientable equation is good – not confirmed

I There is no evidence in our data, not even for UEQ

I Goal-direction is good – partially confirmed

I GD on its own performs similar to SC
I GD shines in combination with FIFO

44

Folklore put to the Test

I FIFO is awful, preferring small clauses is good – mostly confirmed

I In general, only modest advantage for symbol counting (36% FIFO
vs. 39% for best SC)

I Exception: UEQ (32% vs. 63%)

I Interleaving best-first/breadth-first is better – confirmed

I 54% for interleaving vs. 39% for best SC
I Influence of different pick-given ratios is surprisingly small
I UEQ is again an outlier (60% for 2:1 vs. 70% for 15:1)
I The optimal pick-given ratio is 10 (for E)

I Processing all initial clauses early is good – confirmed

I Effect is less pronounced for interleaved heuristics

I Preferring clauses with orientable equation is good – not confirmed

I There is no evidence in our data, not even for UEQ

I Goal-direction is good – partially confirmed

I GD on its own performs similar to SC
I GD shines in combination with FIFO

44

Folklore put to the Test

I FIFO is awful, preferring small clauses is good – mostly confirmed

I In general, only modest advantage for symbol counting (36% FIFO
vs. 39% for best SC)

I Exception: UEQ (32% vs. 63%)

I Interleaving best-first/breadth-first is better – confirmed

I 54% for interleaving vs. 39% for best SC
I Influence of different pick-given ratios is surprisingly small
I UEQ is again an outlier (60% for 2:1 vs. 70% for 15:1)
I The optimal pick-given ratio is 10 (for E)

I Processing all initial clauses early is good – confirmed

I Effect is less pronounced for interleaved heuristics

I Preferring clauses with orientable equation is good – not confirmed

I There is no evidence in our data, not even for UEQ

I Goal-direction is good – partially confirmed

I GD on its own performs similar to SC
I GD shines in combination with FIFO

44

Selected Results

I Good heuristics do make a difference

I 71% more solutions with Evolved vs. FIFO
I 58% more solutions with Evolved vs. best SC

I Success comes early

I ≈ 80% of all proofs found in less than 1s
I . . . with little variation between strategies (spread: 76%–84%)

I Cooperation beats portfolio/strategy scheduling

I SC11 solves 5340 problems
I FIFO solves 4930 problems
I Union of the previous two contains 6329 problems
I . . . but 10SC11/FIFO solves 7385

I Evolving Evolved paid off

I Significantly better than best “naive” heuristic
I 10× more unique solutions than second-best

45

Selected Results

I Good heuristics do make a difference

I 71% more solutions with Evolved vs. FIFO
I 58% more solutions with Evolved vs. best SC

I Success comes early

I ≈ 80% of all proofs found in less than 1s
I . . . with little variation between strategies (spread: 76%–84%)

I Cooperation beats portfolio/strategy scheduling

I SC11 solves 5340 problems
I FIFO solves 4930 problems
I Union of the previous two contains 6329 problems
I . . . but 10SC11/FIFO solves 7385

I Evolving Evolved paid off

I Significantly better than best “naive” heuristic
I 10× more unique solutions than second-best

45

Selected Results

I Good heuristics do make a difference

I 71% more solutions with Evolved vs. FIFO
I 58% more solutions with Evolved vs. best SC

I Success comes early

I ≈ 80% of all proofs found in less than 1s
I . . . with little variation between strategies (spread: 76%–84%)

I Cooperation beats portfolio/strategy scheduling

I SC11 solves 5340 problems
I FIFO solves 4930 problems
I Union of the previous two contains 6329 problems
I . . . but 10SC11/FIFO solves 7385

I Evolving Evolved paid off

I Significantly better than best “naive” heuristic
I 10× more unique solutions than second-best

45

Selected Results

I Good heuristics do make a difference

I 71% more solutions with Evolved vs. FIFO
I 58% more solutions with Evolved vs. best SC

I Success comes early

I ≈ 80% of all proofs found in less than 1s
I . . . with little variation between strategies (spread: 76%–84%)

I Cooperation beats portfolio/strategy scheduling

I SC11 solves 5340 problems
I FIFO solves 4930 problems
I Union of the previous two contains 6329 problems
I . . . but 10SC11/FIFO solves 7385

I Evolving Evolved paid off

I Significantly better than best “naive” heuristic
I 10× more unique solutions than second-best

45

Bonus Material

46

Small things. . .

I Version control (git and beyond)

I Value of version control should be self-evident
I But: Have the system print a version number

I Automatically record the version number with experiments
I Loudly complain about bug reports without version number (and

command line and input file)

I Automatic input format
I E supports TPTP-3 (TFA/FOF/CNF), TPTP-2 and LOP

I Originally only selectable by option (e.g. --tptp3-in)
I Now automatic default based on first token

I Automatic format is a big win for convenience

47

90% of the Iceberg is Under Water

Operating System (POSIX)

Support
Tools

(Python,
bash,
gawk)

Language API/Libraries

Low level support code

Generic data types

Logical data types

Prepro-
cessor

Proof
extra-
ction

Control

Index-
ing

Heuris-
tics

Infer-
ences

48

Alternative Term Implementations

I Shared terms (e.g. in E)

I Structure as for normal terms
I Only one copy of structurally identical terms (f (a, a) has two nodes)
I Can safe 80% to 99.9% of term nodes
I Can be used to cache values/results
I Can use garbage collection (even in C) - saves a lot of time and

headaches!

I Flat terms (e.g. in Waldmeister, Twee)

I Term is flat string of symbol encoding
I Very space-efficient
I Very fast traversal for matching
I Harder to manipulate

49

Implementing Term Orderings

I Lexicographic Path Ordering (LPO)

I Based on function symbol precedence
I Top symbols and symbol bags decide
I Lexicographic decomposition for identical top symbols
I LPO has theoretical advantages

I Can orient equations towards sides with more variable occurrences
I Can orient distributively the right way with × > +:

X × (Y + Z)→ (X × Y) + (X × Z)

I Knuth-Bendix-Ordering (KBO)

I Based on symbols weights and precedence
I Weight, top symbol, decomposition, variable condition
I KBO has practical advantages

I Orients towards syntactically small terms (keeps terms smaller)
I More efficient to evaluate

I For efficient algorithms: Löchner’s Things to Know When
Implementing [KL]PO [5, 6]

50

Conclusion

51

Conclusion

I Building a basic saturating prover is not hard

I Binary resolution+factoring
I Unification
I (Subsumption)

I Building a superposition prover is harder

I Term orderings
I Rewriting/Simplification

I Being competitive is harder still

I Indexing
I Search heuristics
I Experimental infrastructure

The knowledge needed to write a decent prover is now mostly
publicly available!

52

Conclusion

I Building a basic saturating prover is not hard

I Binary resolution+factoring
I Unification
I (Subsumption)

I Building a superposition prover is harder

I Term orderings
I Rewriting/Simplification

I Being competitive is harder still

I Indexing
I Search heuristics
I Experimental infrastructure

The knowledge needed to write a decent prover is now mostly
publicly available!

52

Conclusion II

I Maintenance and evolution are hardest!

I Users want new features
I Conference/competition deadline always loom
I Result: Code clutter
I Unexpected dependencies and side effects

I . . . so keep it clean!

I Have a plan
I Code clean and general building blocks
I Take the time to refactor/cleanup (yeah, right!)
I . . . or throw it away and start over

I Remember: 90% of the iceberg. . .

Most Important: Have Fun!

53

Conclusion II

I Maintenance and evolution are hardest!

I Users want new features
I Conference/competition deadline always loom
I Result: Code clutter
I Unexpected dependencies and side effects

I . . . so keep it clean!

I Have a plan
I Code clean and general building blocks
I Take the time to refactor/cleanup (yeah, right!)
I . . . or throw it away and start over

I Remember: 90% of the iceberg. . .

Most Important: Have Fun!

53

References

54

References I

Leo Bachmair and Harald Ganzinger.

On Restrictions of Ordered Paramodulation with Simplification.
In M.E. Stickel, editor, Proc. of the 10th CADE, Kaiserslautern, volume 449 of LNAI, pages 427—441. Springer, 1990.

Leo Bachmair and Harald Ganzinger.

Rewrite-Based Equational Theorem Proving with Selection and Simplification.
Journal of Logic and Computation, 3(4):217–247, 1994.

J. Christian.

Flat Terms, Discrimination Nets and Fast Term Rewriting.
Journal of Automated Reasoning, 10(1):95–113, 1993.

Laura Kovács and Andrei Voronkov.

First-order theorem proving and Vampire.
In Natasha Sharygina and Helmut Veith, editors, Proc. of the 25th CAV, volume 8044 of LNCS, pages 1–35. Springer,
2013.

Bernd Löchner.

Things to Know when Implementing KBO.
Journal of Automated Reasoning, 36(4):289–310, 2006.

Bernd Löchner.

Things to Know When Implementing LPO.
International Journal on Artificial Intelligence Tools, 15(1):53–80, 2006.

E.L. Lusk and R.A. Overbeek.

A Short Problem Set for Testing Systems that Include Equality Reasoning.
Technical report, Argonne National Laboratory, Illinois, 1982.

55

References II

R. Nieuwenhuis and A. Rubio.

Paramodulation-Based Theorem Proving.
In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 7, pages 371–443.
Elsevier Science and MIT Press, 2001.

A. Nonnengart and C. Weidenbach.

Computing Small Clause Normal Forms.
In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 5, pages 335–367.
Elsevier Science and MIT Press, 2001.

Stephan Schulz.

E – A Brainiac Theorem Prover.
Journal of AI Communications, 15(2/3):111–126, 2002.

Stephan Schulz.

Fingerprint Indexing for Paramodulation and Rewriting.
In Bernhard Gramlich, Ulrike Sattler, and Dale Miller, editors, Proc. of the 6th IJCAR, Manchester, volume 7364 of
LNAI, pages 477–483. Springer, 2012.

Stephan Schulz.

Simple and Efficient Clause Subsumption with Feature Vector Indexing.
In Maria Paola Bonacina and Mark E. Stickel, editors, Automated Reasoning and Mathematics: Essays in Memory of
William W. McCune, volume 7788 of LNAI, pages 45–67. Springer, 2013.

Stephan Schulz.

System Description: E 1.8.
In Ken McMillan, Aart Middeldorp, and Andrei Voronkov, editors, Proc. of the 19th LPAR, Stellenbosch, volume 8312
of LNCS, pages 735–743. Springer, 2013.

56

References III

Stephan Schulz.

E 2.0 user manual.
EasyChair Preprint no. 8, 2018.

Stephan Schulz and Martin Möhrmann.

Performance of clause selection heuristics for saturation-based theorem proving.
In Nicola Olivetti and Ashish Tiwari, editors, Proc. of the 8th IJCAR, Coimbra, volume 9706 of LNAI, pages 330–345.
Springer, 2016.

R. Sekar, I.V. Ramakrishnan, and A. Voronkov.

Term Indexing.
In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, volume II, chapter 26, pages
1853–1961. Elsevier Science and MIT Press, 2001.

Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin Suda, and Patrick Wischnewski.

SPASS Version 3.5.
In Renate Schmidt, editor, Proc. of the 22nd CADE, Montreal, Canada, volume 5663 of LNAI, pages 140–145.
Springer, 2009.

57

Image Sources

I Public domain via the Wikimedia Commons

I Albert Bonsack’s Cigarette Rolling Machine https:

//commons.wikimedia.org/wiki/File:Bonsack_machine.png

I Clipart: http://openclipart.org

I Others: Painstakingly drawn by the author

58

https://commons.wikimedia.org/wiki/File:Bonsack_machine.png
https://commons.wikimedia.org/wiki/File:Bonsack_machine.png
http://openclipart.org

	Introduction
	Basic Data Types
	Saturation Algorithm
	Term and Clause Indexing
	Search Control
	Conclusion

