
Automated Reasoning  
Core Algorithms and Data 
Structures 
Stephan Schulz 
schulz@eprover.org



Abstract

We will look at some core concepts shared by nearly all modern
automated theorem provers and related systems – terms, substitutions,
unification, matching, as well as their applications, including
paramodulation/superposition, rewriting, and subsumption. I will present
actual code examples from PyRes and E, and discuss some
implementation details.
We will then also attempt to develop a new, unification-based clause
selection heuristic for E, and evaluate if it is a useful contribution to the
portfolio of strategies.
Participants are encouraged to bring a laptop with a UNIX/Linux style C
development system, and/or a recent Python-3 installation for the
practical work.
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▶ High-level algorithm:

▶ Do a lot of parsing and preprocessing
▶ Result: A set of first-order clauses that is

unsatisfiable if your conjecture holds

▶ Saturate said clause set, trying to produce the
empty clause as a witness of unsatisfiability

1 Probably result: Timeout
2 Possible result: Out of memory
3 Occasional result: Incompleteness because you

deleted critical clauses to avoid the previous
case

4 Rare result: Saturated clause set without empty
clause (your conjecture does not hold!)

5 Desired result: Empty clause

▶ Do a lot of post-processing

▶ Result: Proof object
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Saturation

▶ Assume a set of clauses C
▶ While the set is not saturated do. . .

▶ Pick matching premises and an inference rule
▶ Apply the inference rule to the premises and add the result to C
▶ Perform simplification to remove redundant clauses from C

5



(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

(Deletion of resolved literals)

s 6' s _R

R

1

6



(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

(Deletion of resolved literals)

s 6' s _R

R

1

6



(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

(Deletion of resolved literals)

s 6' s _R

R

1

Generating inference rules 
• Necessary for completeness 
• Increase size of proof state

Simplification rules 
• Critical for performance 
• Reduce size of proof state
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Local (single premise) 
• Easy to keep track of 
• Cheap to implement

Non-local (multiple premises) 
• Harder to keep track of (pairs of clauses!) 
• Expensive to implement (find partners)
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>99% of generated clauses >90% of cpu time
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First-Order Terms

Definition (First-order terms)

We assume a set F of function symbols with associated arities (e.g.
{f /2, g/1, a/0, b/9}) and a set of first-order variables
V = {X ,Y ,Z , . . .}. The set T (F ,V ) of terms is defined as follows:

▶ V ⊆ T (F ,V ) (any variable is a term)

▶ If t1, . . . , tn are in T (F ,V ) and f /n ∈ F , then
f (t1, . . . , tn) ∈ T (F ,V ) (an n-ary function symbol with n argument
terms is a term)

▶ T (V ,F ) is the smallest set fulfilling these conditions

▶ Examples (over the F ,V given above):

▶ f (X , g(Y ))
▶ a() (usually written as a without parentheses - a is a constant)
▶ g(g(g(f (Y , b))))
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Substitutions

Definition (Substitution)

▶ A substitution is a function σ : V → T (F ,V ) mapping variables to
terms with dom(σ) = {X ∈ V | |σ(X ) ̸= x} is finite.

▶ If C ∈ dom(σ), we say ”X is bound (to σ(X )) by σ”.

▶ We extend substitutions in the obvious way to functions we can
apply to terms, atoms, literals and clauses.

▶ We write e.g. σ = {X 7→ a,Y 7→ f (a,X ),Z 7→ g(g(b))}

Substitutions allow us to systematically replace variables by terms:
▶ Example: Consider σ = {X 7→ a,Y 7→ f (X , b)}

▶ σ(X ) = a
▶ σ(σ(g(Y ))) = σ(g(f (X , b))) = g(f (a, b))
▶ σ(X ≃ Y ∨ g(Y ) ̸≃ a) = a ≃ f (X , b) ∨ g(f (X , b)) ̸≃ a
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Composition of substitution

Definition (Composition of substitutions)

Let σ, τ be two substitutions

▶ τ ◦ σ is a substitution with σ ◦ τ(t) = σ(τ(t)) for all terms t

Substitutions are functions, functions can be composed.

We can compute τ ◦ σ explicitly:

τ ◦ σ = {X 7→ τ(σ(X )) | X is bound by σ}
∪ {X 7→ τ(X ) | X is not bound by σ}

Special case: τ is of the form {X 7→ t} and X is not bound by σ:

τ ◦ σ = {X 7→ τ(σ(X )) | X is bound by σ} ∪ τ
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Unifiers

Definition (Unifier, most general unifier)

Let s, t be two terms.
A unifier for s, t. . .

▶ is a substitution σ

▶ such that σ(s) = σ(t).

A unifier σ for s, t is called a most general unifier . . .

▶ if every other unifier σ′ of s, t can be written as τ ◦ σ for some
substitution τ

▶ Fact: If any unifier exists, then there is a (except for variable
renaming) unique most general unifier

▶ We therefore write σ = mgu(s, t) and call it the MGU.

▶ Fact: MGUs can be found systematically
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Why is unification interesting?

▶ The calculus says I need unifiers!

▶ But why?

▶ Terms represent sets of objects
▶ Atomic formulas are statements about sets of objects
▶ . . . and so are clauses

▶ To usefully combine different knowledge fragments, they need to
talk about a common set of objects

▶ Unification determines if such a set exists. . .
▶ . . . and in the success case gives us a description of this common set

Unification finds common instances of terms/atoms/clauses, i.e. the
intersection of the domains they make useful statements about!
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Observations on unification

1 abs(X ), dir(X ) can never be unified

▶ The first symbol is always different

2 X , sqrt(X ) can never be unified

▶ No matter what is used for X, a sqrt always
remains

▶ “Occurs-Check”

3 X , sqrt(a) unifies with σ = {X 7→ sqrt(a)}
▶ A variable paired with most terms is fine

4 add(X , a), add(b,Y ) unifies with
σ = {X 7→ b,Y 7→ a}
▶ The unifier can be composed from those

necessary to unify particular subterms
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Unification as parallel equation solving

Fact: The unification problem becomes simpler when you consider it
for sets of pairs of terms!

▶ Given: C = {s1 = t1, s2 = t2, . . . , sn = tn}
▶ Search common mgu σ with

▶ σ(s1) = σ(t1)
▶ σ(s2) = σ(t2)
▶ . . .
▶ σ(sn) = σ(tn)

▶ Use a transformation system ([LMM88])
▶ State: C , σ

▶ C : Set of equations to be solved
▶ σ: Candidate unifier

▶ Initial state for finding mgu(s, t): {s = t}, {}
▶ Termination: {}, σ

14



Unification: Transformation system

Deletion:
{t = t} ∪ C , σ

C , σ

Bind:
{X = t} ∪ C , σ

{X 7→ t}(C ), {X 7→ t} ◦ σ
if X /∈ Vars(t)

Orient:
{t = X} ∪ C , σ

{X = t} ∪ C , σ
if t is not a variable

Decompose:
{f (s1, . . . , sn) = f (t1, . . . , tn)} ∪ C , σ

{s1 = t1, . . . , sn = tn} ∪ C , σ

Occurs:
{X = t} ∪ C , σ

FAIL
if X ∈ Vars(t), t ̸= X

Conflict:
{f (s1, . . . , sn) = g(t1, . . . , tm)} ∪ C , σ

FAIL
if f ̸= g

15



Unification algorithm (sketch)

d e f mgu( s , t ) :
C={s=t }
s igma = {}
whi le C != {} :

remove a r b i t r a r y s=t from C
a p p l y t he matching r u l e to s=t , C , s igma

( m o d i f y i n g s igma and C as a p p r o p r i a t e )
i f r e s u l t==FAIL :

return FAIL
return s igma

16



Example

C σ Rule

{f (f (X , g(g(Y ))),X ) = f (f (Z ,Z ),U)} {} Decompose

{f (X , g(g(Y ))) = f (Z ,Z ),X = U} {} Bind (X )

{f (U, g(g(Y ))) = f (Z ,Z )} {X 7→ U} Decompose

{U = Z , g(g(Y ))) = Z} {X 7→ U} Bind (U)

{g(g(Y )) = Z} {X 7→ Z ,
U 7→ Z} Orient

{Z = g(g(Y ))} {X 7→ Z ,
U 7→ Z} Bind (Z )

{} {X 7→ g(g(Y )),
U 7→ g(g(Y )),
Z 7→ g(g(Y ))}

17



Pretty Code
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Python: Terms

▶ Terms are implemented as Python lists (equivalent to LISP
s-expressions)

▶ Variables are plain strings: ”X”, ”Y”, . . .
▶ Function symbols are plain strings: ”f”, ”g”, ”sqrt”, . . .
▶ Composite terms: [f, t1, . . . , tn]

▶ f is the function symbol
▶ The ti represent the subterms

▶ Example: f (f (X , a), g(a))

▶ Python representation: [”f”, [”f”, ”X”, [”a”]], [”g” [”a”]]]

▶ Functions include:

▶ termIsVar(t) - return true if t is a variable
▶ termIsCompound(t) - return true if t is not a variable
▶ termFunc(t) - return the function symbol of compound term t

▶ termArgs(t) - return the argument list of compound term t

19



Python substitutions (basics)

c l a s s S u b s t i t u t i o n ( ob ject ) :
def i n i t ( s e l f , i n i t = [ ] ) :

s e l f . s ub s t = {}
f o r i i n i n i t :

s e l f . s ub s t [ i [ 0 ] ]= i [ 1 ]

def v a l u e ( s e l f , v a r ) :
i f va r i n s e l f . s ub s t :

re tu rn s e l f . s ub s t [ va r ]
e l s e :

re tu rn va r

def apply ( s e l f , term ) :
i f t e rm I sVa r ( term ) :

re tu rn s e l f . v a l u e ( term )
e l s e :

r e s = [ termFunc ( t ) ]
a r g s = [ s e l f . apply ( x ) f o r x i n termArgs ( term ) ]
r e s . ex tend ( a r g s )
re tu rn r e s

20



Python substitutions (extension)

def i sBound ( s e l f , v a r ) :
re tu rn va r i n s e l f . s ub s t

def mod i f yB ind ing ( s e l f , b i n d i n g ) :
var , term = b i nd i n g
i f s e l f . i sBound ( va r ) :

r e s = s e l f . v a l u e ( va r )
e l s e :

r e s = None
i f term == None :

i f s e l f . i sBound ( va r ) :
de l s e l f . s ub s t [ va r ]

e l s e :
s e l f . s ub s t [ va r ] = term

re tu rn r e s
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Python substitutions (limited composition)

def composeBinding ( s e l f , b i n d i n g ) :
tmpsubst = S u b s t i t u t i o n ( [ b i n d i n g ] )
var , term = b i nd i n g
var s = s e l f . s ub s t . key s ( )
f o r x i n va r s :

bound = s e l f . s ub s t [ x ]
s e l f . s ub s t [ x ] = tmpsubst . apply ( bound )

i f not va r i n s e l f . s ub s t :
s e l f . s ub s t [ va r ] = term
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Python: Occurs check

def o c c ur s Ch e ck ( x , t ) :
”””

   Perform  an  o c c u r s −check ,  i . e .  d e t e r m i n e  i f  t he  v a r i a b l e
   x  o c c u r s  i n  t he  term  t .  I f  t h a t  i s  t he  c a s e  ( and
   t  !=  x ) ,  t he  two  can  n e v e r  be  u n i f i e d .
   ”””

i f termIsCompound ( t ) :
f o r i i n termArgs ( t ) :

i f o c cu r sC h ec k ( x , i ) :
return True

return F a l s e
e l s e :

return x == t

▶ Simple recursive descent

23



Python Unification

def mguTermList ( l1 , l2 , s ub s t ) :
whi le ( l en ( l 1 ) !=0) :

t1 = l 1 . pop (0 )
t2 = l 2 . pop (0 )
i f t e rm I sVa r ( t1 ) :

i f t1==t2 :
cont inue

i f occursCheck ( t1 , t2 ) :
re tu rn None

new b ind ing = Su b s t i t u t i o n ( [ ( t1 , t2 ) ] )
l 1 = [ new b ind ing ( t ) f o r t i n l 1 ]
l 2 = [ new b ind ing ( t ) f o r t i n l 2 ]
s ub s t . composeBinding ( ( t1 , t2 ) )

e l i f t e rm I sVa r ( t2 ) :
[ symmetr ic ca s e e l i d e d ]

e l s e :
i f termFunc ( t1 ) != termFunc ( t2 ) :

re tu rn None
l 1 . ex tend ( termArgs ( t1 ) )
l 2 . ex tend ( termArgs ( t2 ) )

re tu rn s ub s t 24



Hacking Time
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Beyond unification

▶ For heuristic evaluation, we want to go beyond unification
success/failure

▶ We want a measure of ”how close” two terms are to being unifiable
▶ Idea: Compute a unification distance

▶ For unifiable term pairs the distance is 0
▶ Otherwise, collect all unsolved equations

▶ Compute numerical score from these unsolved equations
▶ . . . e.g. summing up the size of all terms involved

▶ Example: Trying to unify f (g(a), f (X , a)) and f (g(b), f (g(X ),Y ))

▶ Repeated decomposition yields a = b,X = g(X ), a = Y
▶ The green equation is solvable, the red ones yield a unification

distance of (1+1)+(1+2)=5
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Exercise: Implement unification distance

▶ Implement unification distance in PyRes
▶ Suggestions:

▶ Use the file unification.py

▶ Steal what you can (we have limited time)
▶ Integrate test code into the unit tests at the end of the file
▶ To run the unit tests, just run the file (./unification.py)
▶ What is the unification distance of p(a, b, c ,X ,Y ) and

p(b, c, d , f (a), f (Y ))?

▶ Reminder: git clone

https://github.com/eprover/PyRes.git

▶ To run an example:

▶ cd PyRes

▶ ./pyres-fof.py -tifbp -HPickGiven5 -nlargest

EXAMPLES/PUZ001+1.p
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A note on matching

▶ Matching is the task of finding a substitution σ with σ(s) = t

▶ Substitution is only applied to one term (the matching term)

▶ Differences:

▶ No occurs-check necessary
▶ A binding once made is invariant
▶ In particular: No composition of bindings
▶ X = X cannot be discarded, but must be bound

▶ Result: Matching is in Θ(n)

▶ One linear pass is enough
▶ Check matching.py for details in PyRes
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Performance Code
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PyRes vs. Performance

▶ PyRes is written with the aim of clarity

▶ Performance is a secondary consideration
▶ Python is not a high-performance language

▶ Can we do better?

▶ Algorithmically?
▶ Data-structure-wise?
▶ Choosing a different language?

Yes, yes, and yes!
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Observations

▶ In practice, nearly all unification attempts fail!

▶ No paramodulation into/resolution on first-order variables
▶ 10 different function symbols ⇒≈ 90% conflict on the first symbol

▶ Efficient unification: Detect failures early

▶ Prefer equations matching Decompose and Conflict
▶ Delay equations matching Orient, Bind, Occurs
▶ Deletion is only needed for equations of the form X = X (Why?)
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Data types in C

From E/cte termtypes.h:

typedef s t r u c t t e rm c e l l
{

FunCode f c o d e ; /∗ Top symbol o f term ∗/
TermPrope r t i e s p r o p e r t i e s ; /∗ Boolean f l a g s ∗/
i n t a r i t y ;
s t r u c t t e rm c e l l ∗ b i nd i n g ; /∗ For v a r i a b l e b i nd i ng s ,

p o t e n t i a l l y f o r temporary
r e w r i t e s ∗/

[ . . . a l o t o f members e l i d e d . . . ]
s t r u c t t e rm c e l l ∗ a r g s [ ] ; /∗ F l e x i b l e a r r a y member c o n t a i n i n g

the arguments ∗/
}TermCel l , ∗Term p , ∗∗TermRef ;

▶ Function symbol/variable encoded as FunCode (i.e. long)

▶ Arguments as flexible array member

▶ Variable binding directly in the term cell
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Shared terms and shared variable bindings

▶ E aggressively shares terms [Sch25]

▶ Every long-lived term is represented only once
▶ Variables are even more aggressively shared - every variable

corresponds to exactly one term cell (even in unshared terms)
▶ Originally inspired by DeDam [NRV97], although the relationship is

hard to recognise now. . .

▶ What does that mean?

▶ If we bind a variable anywhere, we bind a variable everywhere
▶ Some application of substitutions to complex structures can be done

locally (if we have the variables in hand)
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Substitutions in E

typedef PStack p S u b s t p ;

▶ A substitution is just a stack (of term cell pointers)

▶ When a variable is bound, the binding is recorded in the term cell
▶ The fact that this binding is part of a substitution is recorded by

pushing the variable onto the substitution
▶ In other words, a single binding is the pair (v, v->binding)

▶ Each bound variable (representing the binding) is on the stack

▶ Allows for fast backtracking

▶ Since variables are shared, adding a binding is the same as
composing a new binding with the substitution!

▶ Big performance gain

▶ Intermediate results are represented implicitly
▶ Deleting them is nearly free
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Backtracking substitutions

PStackPo in te r SubstAddBind ing ( Subs t p subst , Term p var ,
Term p b ind )

{
PStackPo in te r r e t = PStackGetSP ( sub s t ) ;
var−>b i n d i n g = b ind ;
PStackPushP ( subst , va r ) ;
re tu rn r e t ;

}

boo l Sub s tBack t r a c kS i n g l e ( Subs t p sub s t )
{

Term p hand l e ;
i f ( PStackEmpty ( s ub s t ) )
{

re tu rn f a l s e ;
}
hand l e = PStackPopP ( sub s t ) ;
handle−>b i nd i n g = NULL ;
re tu rn t r u e ;

}
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Substitution code

i n t SubstBacktrackToPos ( Subs t p subst , PStackPo in te r pos )
{

i n t r e t = 0 ;
whi le ( PStackGetSP ( sub s t ) > pos )
{

Sub s tBack t r a c kS i n g l e ( s ub s t ) ;
r e t++;

}
re tu rn r e t ;

}

i n t Subs tBackt rack ( Subs t p sub s t )
{

i n t r e t = 0 ;
whi le ( Sub s tBack t r a c kS i n g l e ( s ub s t ) )
{

r e t++;
}
re tu rn r e t ;

}
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Unification code in E - Prologue

boo l SubstComputeMgu (Term p t1 , Term p t2 , Subs t p sub s t )
{

i f ( ( TermCel lQueryProp ( t1 , TPPredPos ) && TermIsFreeVar ( t2 ) ) | |
( TermCel lQueryProp ( t2 , TPPredPos ) && TermIsFreeVar ( t1 ) ) )

{
re tu rn f a l s e ;

}
PStackPo in te r back t r a ck = PStackGetSP ( sub s t ) ; /∗ For b a c k t r a c k i n g ∗/

boo l r e s = t r u e ;
PQueue p j o b s = PQueueAl loc ( ) ;

PQueueStoreP ( jobs , t1 ) ;
PQueueStoreP ( jobs , t2 ) ;
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Unification code in E - Orient, Bind

whi le ( ! PQueueEmpty ( j o b s ) )
{

t2 = TermDerefAlways ( PQueueGetLastP ( j o b s ) ) ;
t1 = TermDerefAlways ( PQueueGetLastP ( j o b s ) ) ;
i f ( TermIsFreeVar ( t2 ) )
{

SWAP( t1 , t2 ) ;
}
i f ( TermIsFreeVar ( t1 ) )
{

i f ( t1 != t2 )
{

i f ( ( t1−>type != t2−>t ype ) | | OccurCheck ( t2 , t1 ) )
{

r e s = f a l s e ;
break ;

}
e l s e
{

SubstAddBind ing ( subs t , t1 , t2 ) ;
} } } 38



Unification code in E - Conflict

e l s e
{

i f ( t1−>f c o d e != t2−>f c o d e )
{

r e s = f a l s e ;
break ;

}
e l s e
{
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Unification code in E - Decompose

f o r ( i n t i=t1−>a r i t y −1; i >=0; i −−)
{

/∗ Delay v a r i a b l e b i n d i n g s ∗/
i f ( TermIsFreeVar ( t1−>a r g s [ i ] ) | |

TermIsFreeVar ( t2−>a r g s [ i ] ) )
{

PQueueBuryP ( jobs , t2−>a r g s [ i ] ) ;
PQueueBuryP ( jobs , t1−>a r g s [ i ] ) ;

}
e l s e
{

PQueueStoreP ( jobs , t1−>a r g s [ i ] ) ;
PQueueStoreP ( jobs , t2−>a r g s [ i ] ) ;

}
}

}
}

}
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Unification code in E - Epilogue

PQueueFree ( j o b s ) ;

i f ( ! r e s )
{

SubstBacktrackToPos ( subs t , ba ck t r a ck ) ;
}
re tu rn r e s ;

}

(see E/TERMS/cte match mgu 1-1.[ch])
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Using Unification Distance

42



Given Clause Loop

U 
(unprocessed clauses)

Gene-
rate

Simpli-
fiable?

Cheap 
Simplify

Simplify

g

P 
(processed clauses)

g=☐ 
?

▶ While there are unprocessed
clauses . . .

▶ . . . heuristically pick given
clause from U

▶ . . . and process it

▶ Goal: Generate empty
clause

▶ Choice point: Pick the next
given clause

▶ Based on heuristic weight
(small is beautiful)
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Unification distance in clause evaluation

▶ We are in an equational context:

▶ Literals are equations or disequations
▶ Goal: Empty clause (get rid of all literals)

▶ Consider a ̸≃ X ∨ f (X , a) ≃ a

▶ Implicational form: a ≃ X → f (X , a) ≃ a
▶ So: If we can solve the first literal, the second becomes available for

rewriting
▶ So: Negative literals that can be resolved (by unification) are desirable
▶ Maybe: Negative literals that can be nearly resolved are too?

▶ Idea: Base literal evaluation on unification distance

▶ Sum them up (cleverly) for clauses
▶ Cleverly: What do we do for positive literals?
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Hacking session 2

▶ Reminder: E lives at https://www.eprover.org
▶ . . . or at https://github.com/eprover/eprover

▶ . . . which also displays the installation information

▶ Option 1:

▶ Improve the PyRes unification algorithm
▶ Steal ideas from the C version

▶ Option 2:

▶ Implement unification distance in E
▶ Use it to implement a new clause evaluation heuristic
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Clause evaluation in E

▶ All relevant code is in E/HEURISTICS/

▶ Each clause evaluation function needs 3 C functions:

▶ WFCB p MyEvalParse((Scanner p in, OCB p ocb,

ProofState p state)

▶ WFCB p MyEvalInit(ClausePrioFun prio fun, ...) (which will
only be called from MyEvalParse()

▶
▶ double MyEvalCompute(void* data, Clause p clause) (which

will be called for each clause)

▶ You need to register your new function in che wfcbadmin.c

▶ External name goes into WeightFunParseFunNames[]

▶ Parse function goes into WeightFunParseFun[] (at the
corresponding index)

▶ Check e.g. TPTPTypeWeight* in HEURISTICS/che varweights.h

for a simple example
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Conclusion

▶ First steps into some data structures

▶ Terms
▶ Substitutions

▶ Unification as equation solving . . .

▶ . . . not as a theoretical approach, but as a practical implementation

▶ Some hacking experience with real ATPs gained(?!?)

I hope you had fun!
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Ceterum Censeo. . .

▶ Bug reports for E should include:

▶ The exact command line leading to the bug
▶ All input files needed to reproduce the bug
▶ A description of what seems to be wrong
▶ The output of eprover --version
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Image Sources

▶ Public domain via the Wikimedia Commons

▶ Tour Eiffel under construction
https://en.wikipedia.org/wiki/File:

Construction_tour_eiffel4.JPG

▶ Others: Painstakingly drawn by the author
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