
Automated Reasoning
Core Algorithms and Data
Structures
Stephan Schulz
schulz@eprover.org

Abstract

We will look at some core concepts shared by nearly all modern
automated theorem provers and related systems – terms, substitutions,
unification, matching, as well as their applications, including
paramodulation/superposition, rewriting, and subsumption. I will present
actual code examples from PyRes and E, and discuss some
implementation details.
We will then also attempt to develop a new, unification-based clause
selection heuristic for E, and evaluate if it is a useful contribution to the
portfolio of strategies.
Participants are encouraged to bring a laptop with a UNIX/Linux style C
development system, and/or a recent Python-3 installation for the
practical work.

1

Contents

1 Introduction

2 Basics

3 Implementing unification (Python)

4 Unification in C

5 Use case: Clause evaluation heuristics

6 References and Image credits

2

Introduction

3

Refutational Theorem Proving in First-Order Logic

FOF-classification

Pruning

Clausification

Preprocessing

Presimplification

CNF-Classification

 Saturation

Proof extraction

U
(unprocessed clauses)

Gene-
rate

Simpli-
fiable?

Cheap
Simplify

Simplify

g

P
(processed clauses)

g=☐
?

▶ High-level algorithm:

▶ Do a lot of parsing and preprocessing
▶ Result: A set of first-order clauses that is

unsatisfiable if your conjecture holds

▶ Saturate said clause set, trying to produce the
empty clause as a witness of unsatisfiability

1 Probably result: Timeout
2 Possible result: Out of memory
3 Occasional result: Incompleteness because you

deleted critical clauses to avoid the previous
case

4 Rare result: Saturated clause set without empty
clause (your conjecture does not hold!)

5 Desired result: Empty clause

▶ Do a lot of post-processing

▶ Result: Proof object

4

Refutational Theorem Proving in First-Order Logic

FOF-classification

Pruning

Clausification

Preprocessing

Presimplification

CNF-Classification

 Saturation

Proof extraction

U
(unprocessed clauses)

Gene-
rate

Simpli-
fiable?

Cheap
Simplify

Simplify

g

P
(processed clauses)

g=☐
?

▶ High-level algorithm:
▶ Do a lot of parsing and preprocessing

▶ Result: A set of first-order clauses that is
unsatisfiable if your conjecture holds

▶ Saturate said clause set, trying to produce the
empty clause as a witness of unsatisfiability

1 Probably result: Timeout
2 Possible result: Out of memory
3 Occasional result: Incompleteness because you

deleted critical clauses to avoid the previous
case

4 Rare result: Saturated clause set without empty
clause (your conjecture does not hold!)

5 Desired result: Empty clause

▶ Do a lot of post-processing

▶ Result: Proof object

4

Refutational Theorem Proving in First-Order Logic

FOF-classification

Pruning

Clausification

Preprocessing

Presimplification

CNF-Classification

 Saturation

Proof extraction

U
(unprocessed clauses)

Gene-
rate

Simpli-
fiable?

Cheap
Simplify

Simplify

g

P
(processed clauses)

g=☐
?

▶ High-level algorithm:
▶ Do a lot of parsing and preprocessing

▶ Result: A set of first-order clauses that is
unsatisfiable if your conjecture holds

▶ Saturate said clause set, trying to produce the
empty clause as a witness of unsatisfiability

1 Probably result: Timeout
2 Possible result: Out of memory
3 Occasional result: Incompleteness because you

deleted critical clauses to avoid the previous
case

4 Rare result: Saturated clause set without empty
clause (your conjecture does not hold!)

5 Desired result: Empty clause

▶ Do a lot of post-processing

▶ Result: Proof object

4

Refutational Theorem Proving in First-Order Logic

FOF-classification

Pruning

Clausification

Preprocessing

Presimplification

CNF-Classification

 Saturation

Proof extraction

U
(unprocessed clauses)

Gene-
rate

Simpli-
fiable?

Cheap
Simplify

Simplify

g

P
(processed clauses)

g=☐
?

▶ High-level algorithm:
▶ Do a lot of parsing and preprocessing

▶ Result: A set of first-order clauses that is
unsatisfiable if your conjecture holds

▶ Saturate said clause set, trying to produce the
empty clause as a witness of unsatisfiability

1 Probably result: Timeout

2 Possible result: Out of memory
3 Occasional result: Incompleteness because you

deleted critical clauses to avoid the previous
case

4 Rare result: Saturated clause set without empty
clause (your conjecture does not hold!)

5 Desired result: Empty clause

▶ Do a lot of post-processing

▶ Result: Proof object

4

Refutational Theorem Proving in First-Order Logic

FOF-classification

Pruning

Clausification

Preprocessing

Presimplification

CNF-Classification

 Saturation

Proof extraction

U
(unprocessed clauses)

Gene-
rate

Simpli-
fiable?

Cheap
Simplify

Simplify

g

P
(processed clauses)

g=☐
?

▶ High-level algorithm:
▶ Do a lot of parsing and preprocessing

▶ Result: A set of first-order clauses that is
unsatisfiable if your conjecture holds

▶ Saturate said clause set, trying to produce the
empty clause as a witness of unsatisfiability

1 Probably result: Timeout
2 Possible result: Out of memory

3 Occasional result: Incompleteness because you
deleted critical clauses to avoid the previous
case

4 Rare result: Saturated clause set without empty
clause (your conjecture does not hold!)

5 Desired result: Empty clause

▶ Do a lot of post-processing

▶ Result: Proof object

4

Refutational Theorem Proving in First-Order Logic

FOF-classification

Pruning

Clausification

Preprocessing

Presimplification

CNF-Classification

 Saturation

Proof extraction

U
(unprocessed clauses)

Gene-
rate

Simpli-
fiable?

Cheap
Simplify

Simplify

g

P
(processed clauses)

g=☐
?

▶ High-level algorithm:
▶ Do a lot of parsing and preprocessing

▶ Result: A set of first-order clauses that is
unsatisfiable if your conjecture holds

▶ Saturate said clause set, trying to produce the
empty clause as a witness of unsatisfiability

1 Probably result: Timeout
2 Possible result: Out of memory
3 Occasional result: Incompleteness because you

deleted critical clauses to avoid the previous
case

4 Rare result: Saturated clause set without empty
clause (your conjecture does not hold!)

5 Desired result: Empty clause

▶ Do a lot of post-processing

▶ Result: Proof object

4

Refutational Theorem Proving in First-Order Logic

FOF-classification

Pruning

Clausification

Preprocessing

Presimplification

CNF-Classification

 Saturation

Proof extraction

U
(unprocessed clauses)

Gene-
rate

Simpli-
fiable?

Cheap
Simplify

Simplify

g

P
(processed clauses)

g=☐
?

▶ High-level algorithm:
▶ Do a lot of parsing and preprocessing

▶ Result: A set of first-order clauses that is
unsatisfiable if your conjecture holds

▶ Saturate said clause set, trying to produce the
empty clause as a witness of unsatisfiability

1 Probably result: Timeout
2 Possible result: Out of memory
3 Occasional result: Incompleteness because you

deleted critical clauses to avoid the previous
case

4 Rare result: Saturated clause set without empty
clause (your conjecture does not hold!)

5 Desired result: Empty clause

▶ Do a lot of post-processing

▶ Result: Proof object

4

Refutational Theorem Proving in First-Order Logic

FOF-classification

Pruning

Clausification

Preprocessing

Presimplification

CNF-Classification

 Saturation

Proof extraction

U
(unprocessed clauses)

Gene-
rate

Simpli-
fiable?

Cheap
Simplify

Simplify

g

P
(processed clauses)

g=☐
?

▶ High-level algorithm:
▶ Do a lot of parsing and preprocessing

▶ Result: A set of first-order clauses that is
unsatisfiable if your conjecture holds

▶ Saturate said clause set, trying to produce the
empty clause as a witness of unsatisfiability

1 Probably result: Timeout
2 Possible result: Out of memory
3 Occasional result: Incompleteness because you

deleted critical clauses to avoid the previous
case

4 Rare result: Saturated clause set without empty
clause (your conjecture does not hold!)

5 Desired result: Empty clause

▶ Do a lot of post-processing

▶ Result: Proof object

4

Refutational Theorem Proving in First-Order Logic

FOF-classification

Pruning

Clausification

Preprocessing

Presimplification

CNF-Classification

 Saturation

Proof extraction

U
(unprocessed clauses)

Gene-
rate

Simpli-
fiable?

Cheap
Simplify

Simplify

g

P
(processed clauses)

g=☐
?

▶ High-level algorithm:
▶ Do a lot of parsing and preprocessing

▶ Result: A set of first-order clauses that is
unsatisfiable if your conjecture holds

▶ Saturate said clause set, trying to produce the
empty clause as a witness of unsatisfiability

1 Probably result: Timeout
2 Possible result: Out of memory
3 Occasional result: Incompleteness because you

deleted critical clauses to avoid the previous
case

4 Rare result: Saturated clause set without empty
clause (your conjecture does not hold!)

5 Desired result: Empty clause

▶ Do a lot of post-processing

▶ Result: Proof object

4

Saturation

▶ Assume a set of clauses C
▶ While the set is not saturated do. . .

▶ Pick matching premises and an inference rule
▶ Apply the inference rule to the premises and add the result to C
▶ Perform simplification to remove redundant clauses from C

5

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

(Deletion of resolved literals)

s 6' s _R

R

1

6

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

(Deletion of resolved literals)

s 6' s _R

R

1

6

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

(Deletion of resolved literals)

s 6' s _R

R

1

Generating inference rules
• Necessary for completeness
• Increase size of proof state

Simplification rules
• Critical for performance
• Reduce size of proof state

6

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

(Deletion of resolved literals)

s 6' s _R

R

1

6

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

(Deletion of resolved literals)

s 6' s _R

R

1

6

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

(Deletion of resolved literals)

s 6' s _R

R

1

Local (single premise)
• Easy to keep track of
• Cheap to implement

Non-local (multiple premises)
• Harder to keep track of (pairs of clauses!)
• Expensive to implement (find partners)

6

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

(Deletion of resolved literals)

s 6' s _R

R

1

>99% of generated clauses >90% of cpu time

6

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

(Deletion of resolved literals)

s 6' s _R

R

1

6

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

(Deletion of resolved literals)

s 6' s _R

R

1

6

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

1

(Equality Resolution)

u 6' v _R

�(R)
if � = mgu(u, v),
. . .

(Superposition into negative literals)

s ' t _ S u 6' v _R

�(u[p t] 6' v _ S _R)

if � = mgu(u|p, s),
�(s) 6< �(t), . . .

(Rewriting of negative literals)

s ' t u 6' v _R

s ' t u[p �(t)] 6' v _R

if u|p = �(s) and
�(s) > �(t)

(Deletion of resolved literals)

s 6' s _R

R

1

6

Basics

7

First-Order Terms

Definition (First-order terms)

We assume a set F of function symbols with associated arities (e.g.
{f /2, g/1, a/0, b/9}) and a set of first-order variables
V = {X ,Y ,Z , . . .}. The set T (F ,V) of terms is defined as follows:

▶ V ⊆ T (F ,V) (any variable is a term)

▶ If t1, . . . , tn are in T (F ,V) and f /n ∈ F , then
f (t1, . . . , tn) ∈ T (F ,V) (an n-ary function symbol with n argument
terms is a term)

▶ T (V ,F) is the smallest set fulfilling these conditions

▶ Examples (over the F ,V given above):

▶ f (X , g(Y))
▶ a() (usually written as a without parentheses - a is a constant)
▶ g(g(g(f (Y , b))))

8

First-Order Terms

Definition (First-order terms)

We assume a set F of function symbols with associated arities (e.g.
{f /2, g/1, a/0, b/9}) and a set of first-order variables
V = {X ,Y ,Z , . . .}. The set T (F ,V) of terms is defined as follows:

▶ V ⊆ T (F ,V) (any variable is a term)

▶ If t1, . . . , tn are in T (F ,V) and f /n ∈ F , then
f (t1, . . . , tn) ∈ T (F ,V) (an n-ary function symbol with n argument
terms is a term)

▶ T (V ,F) is the smallest set fulfilling these conditions

▶ Examples (over the F ,V given above):

▶ f (X , g(Y))
▶ a() (usually written as a without parentheses - a is a constant)
▶ g(g(g(f (Y , b))))

8

Substitutions

Definition (Substitution)

▶ A substitution is a function σ : V → T (F ,V) mapping variables to
terms with dom(σ) = {X ∈ V | |σ(X) ̸= x} is finite.

▶ If C ∈ dom(σ), we say ”X is bound (to σ(X)) by σ”.

▶ We extend substitutions in the obvious way to functions we can
apply to terms, atoms, literals and clauses.

▶ We write e.g. σ = {X 7→ a,Y 7→ f (a,X),Z 7→ g(g(b))}

Substitutions allow us to systematically replace variables by terms:
▶ Example: Consider σ = {X 7→ a,Y 7→ f (X , b)}

▶ σ(X) = a
▶ σ(σ(g(Y))) = σ(g(f (X , b))) = g(f (a, b))
▶ σ(X ≃ Y ∨ g(Y) ̸≃ a) = a ≃ f (X , b) ∨ g(f (X , b)) ̸≃ a

9

Substitutions

Definition (Substitution)

▶ A substitution is a function σ : V → T (F ,V) mapping variables to
terms with dom(σ) = {X ∈ V | |σ(X) ̸= x} is finite.

▶ If C ∈ dom(σ), we say ”X is bound (to σ(X)) by σ”.

▶ We extend substitutions in the obvious way to functions we can
apply to terms, atoms, literals and clauses.

▶ We write e.g. σ = {X 7→ a,Y 7→ f (a,X),Z 7→ g(g(b))}

Substitutions allow us to systematically replace variables by terms:

▶ Example: Consider σ = {X 7→ a,Y 7→ f (X , b)}
▶ σ(X) = a
▶ σ(σ(g(Y))) = σ(g(f (X , b))) = g(f (a, b))
▶ σ(X ≃ Y ∨ g(Y) ̸≃ a) = a ≃ f (X , b) ∨ g(f (X , b)) ̸≃ a

9

Substitutions

Definition (Substitution)

▶ A substitution is a function σ : V → T (F ,V) mapping variables to
terms with dom(σ) = {X ∈ V | |σ(X) ̸= x} is finite.

▶ If C ∈ dom(σ), we say ”X is bound (to σ(X)) by σ”.

▶ We extend substitutions in the obvious way to functions we can
apply to terms, atoms, literals and clauses.

▶ We write e.g. σ = {X 7→ a,Y 7→ f (a,X),Z 7→ g(g(b))}

Substitutions allow us to systematically replace variables by terms:
▶ Example: Consider σ = {X 7→ a,Y 7→ f (X , b)}

▶ σ(X) =

a
▶ σ(σ(g(Y))) = σ(g(f (X , b))) = g(f (a, b))
▶ σ(X ≃ Y ∨ g(Y) ̸≃ a) = a ≃ f (X , b) ∨ g(f (X , b)) ̸≃ a

9

Substitutions

Definition (Substitution)

▶ A substitution is a function σ : V → T (F ,V) mapping variables to
terms with dom(σ) = {X ∈ V | |σ(X) ̸= x} is finite.

▶ If C ∈ dom(σ), we say ”X is bound (to σ(X)) by σ”.

▶ We extend substitutions in the obvious way to functions we can
apply to terms, atoms, literals and clauses.

▶ We write e.g. σ = {X 7→ a,Y 7→ f (a,X),Z 7→ g(g(b))}

Substitutions allow us to systematically replace variables by terms:
▶ Example: Consider σ = {X 7→ a,Y 7→ f (X , b)}

▶ σ(X) = a

▶ σ(σ(g(Y))) = σ(g(f (X , b))) = g(f (a, b))
▶ σ(X ≃ Y ∨ g(Y) ̸≃ a) = a ≃ f (X , b) ∨ g(f (X , b)) ̸≃ a

9

Substitutions

Definition (Substitution)

▶ A substitution is a function σ : V → T (F ,V) mapping variables to
terms with dom(σ) = {X ∈ V | |σ(X) ̸= x} is finite.

▶ If C ∈ dom(σ), we say ”X is bound (to σ(X)) by σ”.

▶ We extend substitutions in the obvious way to functions we can
apply to terms, atoms, literals and clauses.

▶ We write e.g. σ = {X 7→ a,Y 7→ f (a,X),Z 7→ g(g(b))}

Substitutions allow us to systematically replace variables by terms:
▶ Example: Consider σ = {X 7→ a,Y 7→ f (X , b)}

▶ σ(X) = a
▶ σ(σ(g(Y))) =

σ(g(f (X , b))) = g(f (a, b))
▶ σ(X ≃ Y ∨ g(Y) ̸≃ a) = a ≃ f (X , b) ∨ g(f (X , b)) ̸≃ a

9

Substitutions

Definition (Substitution)

▶ A substitution is a function σ : V → T (F ,V) mapping variables to
terms with dom(σ) = {X ∈ V | |σ(X) ̸= x} is finite.

▶ If C ∈ dom(σ), we say ”X is bound (to σ(X)) by σ”.

▶ We extend substitutions in the obvious way to functions we can
apply to terms, atoms, literals and clauses.

▶ We write e.g. σ = {X 7→ a,Y 7→ f (a,X),Z 7→ g(g(b))}

Substitutions allow us to systematically replace variables by terms:
▶ Example: Consider σ = {X 7→ a,Y 7→ f (X , b)}

▶ σ(X) = a
▶ σ(σ(g(Y))) = σ(g(f (X , b)))

= g(f (a, b))
▶ σ(X ≃ Y ∨ g(Y) ̸≃ a) = a ≃ f (X , b) ∨ g(f (X , b)) ̸≃ a

9

Substitutions

Definition (Substitution)

▶ A substitution is a function σ : V → T (F ,V) mapping variables to
terms with dom(σ) = {X ∈ V | |σ(X) ̸= x} is finite.

▶ If C ∈ dom(σ), we say ”X is bound (to σ(X)) by σ”.

▶ We extend substitutions in the obvious way to functions we can
apply to terms, atoms, literals and clauses.

▶ We write e.g. σ = {X 7→ a,Y 7→ f (a,X),Z 7→ g(g(b))}

Substitutions allow us to systematically replace variables by terms:
▶ Example: Consider σ = {X 7→ a,Y 7→ f (X , b)}

▶ σ(X) = a
▶ σ(σ(g(Y))) = σ(g(f (X , b))) = g(f (a, b))

▶ σ(X ≃ Y ∨ g(Y) ̸≃ a) = a ≃ f (X , b) ∨ g(f (X , b)) ̸≃ a

9

Substitutions

Definition (Substitution)

▶ A substitution is a function σ : V → T (F ,V) mapping variables to
terms with dom(σ) = {X ∈ V | |σ(X) ̸= x} is finite.

▶ If C ∈ dom(σ), we say ”X is bound (to σ(X)) by σ”.

▶ We extend substitutions in the obvious way to functions we can
apply to terms, atoms, literals and clauses.

▶ We write e.g. σ = {X 7→ a,Y 7→ f (a,X),Z 7→ g(g(b))}

Substitutions allow us to systematically replace variables by terms:
▶ Example: Consider σ = {X 7→ a,Y 7→ f (X , b)}

▶ σ(X) = a
▶ σ(σ(g(Y))) = σ(g(f (X , b))) = g(f (a, b))
▶ σ(X ≃ Y ∨ g(Y) ̸≃ a) =

a ≃ f (X , b) ∨ g(f (X , b)) ̸≃ a

9

Substitutions

Definition (Substitution)

▶ A substitution is a function σ : V → T (F ,V) mapping variables to
terms with dom(σ) = {X ∈ V | |σ(X) ̸= x} is finite.

▶ If C ∈ dom(σ), we say ”X is bound (to σ(X)) by σ”.

▶ We extend substitutions in the obvious way to functions we can
apply to terms, atoms, literals and clauses.

▶ We write e.g. σ = {X 7→ a,Y 7→ f (a,X),Z 7→ g(g(b))}

Substitutions allow us to systematically replace variables by terms:
▶ Example: Consider σ = {X 7→ a,Y 7→ f (X , b)}

▶ σ(X) = a
▶ σ(σ(g(Y))) = σ(g(f (X , b))) = g(f (a, b))
▶ σ(X ≃ Y ∨ g(Y) ̸≃ a) = a ≃ f (X , b) ∨ g(f (X , b)) ̸≃ a

9

Composition of substitution

Definition (Composition of substitutions)

Let σ, τ be two substitutions

▶ τ ◦ σ is a substitution with σ ◦ τ(t) = σ(τ(t)) for all terms t

Substitutions are functions, functions can be composed.

We can compute τ ◦ σ explicitly:

τ ◦ σ = {X 7→ τ(σ(X)) | X is bound by σ}
∪ {X 7→ τ(X) | X is not bound by σ}

Special case: τ is of the form {X 7→ t} and X is not bound by σ:

τ ◦ σ = {X 7→ τ(σ(X)) | X is bound by σ} ∪ τ

10

Composition of substitution

Definition (Composition of substitutions)

Let σ, τ be two substitutions

▶ τ ◦ σ is a substitution with σ ◦ τ(t) = σ(τ(t)) for all terms t

Substitutions are functions, functions can be composed.

We can compute τ ◦ σ explicitly:

τ ◦ σ = {X 7→ τ(σ(X)) | X is bound by σ}
∪ {X 7→ τ(X) | X is not bound by σ}

Special case: τ is of the form {X 7→ t} and X is not bound by σ:

τ ◦ σ = {X 7→ τ(σ(X)) | X is bound by σ} ∪ τ

10

Composition of substitution

Definition (Composition of substitutions)

Let σ, τ be two substitutions

▶ τ ◦ σ is a substitution with σ ◦ τ(t) = σ(τ(t)) for all terms t

Substitutions are functions, functions can be composed.

We can compute τ ◦ σ explicitly:

τ ◦ σ = {X 7→ τ(σ(X)) | X is bound by σ}
∪ {X 7→ τ(X) | X is not bound by σ}

Special case: τ is of the form {X 7→ t} and X is not bound by σ:

τ ◦ σ = {X 7→ τ(σ(X)) | X is bound by σ} ∪ τ

10

Unifiers

Definition (Unifier, most general unifier)

Let s, t be two terms.
A unifier for s, t. . .

▶ is a substitution σ

▶ such that σ(s) = σ(t).

A unifier σ for s, t is called a most general unifier . . .

▶ if every other unifier σ′ of s, t can be written as τ ◦ σ for some
substitution τ

▶ Fact: If any unifier exists, then there is a (except for variable
renaming) unique most general unifier

▶ We therefore write σ = mgu(s, t) and call it the MGU.

▶ Fact: MGUs can be found systematically

11

Unifiers

Definition (Unifier, most general unifier)

Let s, t be two terms.
A unifier for s, t. . .

▶ is a substitution σ

▶ such that σ(s) = σ(t).

A unifier σ for s, t is called a most general unifier . . .

▶ if every other unifier σ′ of s, t can be written as τ ◦ σ for some
substitution τ

▶ Fact: If any unifier exists, then there is a (except for variable
renaming) unique most general unifier

▶ We therefore write σ = mgu(s, t) and call it the MGU.

▶ Fact: MGUs can be found systematically

11

Unifiers

Definition (Unifier, most general unifier)

Let s, t be two terms.
A unifier for s, t. . .

▶ is a substitution σ

▶ such that σ(s) = σ(t).

A unifier σ for s, t is called a most general unifier . . .

▶ if every other unifier σ′ of s, t can be written as τ ◦ σ for some
substitution τ

▶ Fact: If any unifier exists, then there is a (except for variable
renaming) unique most general unifier

▶ We therefore write σ = mgu(s, t) and call it the MGU.

▶ Fact: MGUs can be found systematically

11

Why is unification interesting?

▶ The calculus says I need unifiers!

▶ But why?

▶ Terms represent sets of objects
▶ Atomic formulas are statements about sets of objects
▶ . . . and so are clauses

▶ To usefully combine different knowledge fragments, they need to
talk about a common set of objects

▶ Unification determines if such a set exists. . .
▶ . . . and in the success case gives us a description of this common set

Unification finds common instances of terms/atoms/clauses, i.e. the
intersection of the domains they make useful statements about!

12

Why is unification interesting?

▶ The calculus says I need unifiers!
▶ But why?

▶ Terms represent sets of objects
▶ Atomic formulas are statements about sets of objects
▶ . . . and so are clauses

▶ To usefully combine different knowledge fragments, they need to
talk about a common set of objects

▶ Unification determines if such a set exists. . .
▶ . . . and in the success case gives us a description of this common set

Unification finds common instances of terms/atoms/clauses, i.e. the
intersection of the domains they make useful statements about!

12

Observations on unification

1 abs(X), dir(X) can never be unified

▶ The first symbol is always different

2 X , sqrt(X) can never be unified

▶ No matter what is used for X, a sqrt always
remains

▶ “Occurs-Check”

3 X , sqrt(a) unifies with σ = {X 7→ sqrt(a)}
▶ A variable paired with most terms is fine

4 add(X , a), add(b,Y) unifies with
σ = {X 7→ b,Y 7→ a}
▶ The unifier can be composed from those

necessary to unify particular subterms

13

Unification as parallel equation solving

Fact: The unification problem becomes simpler when you consider it
for sets of pairs of terms!

▶ Given: C = {s1 = t1, s2 = t2, . . . , sn = tn}
▶ Search common mgu σ with

▶ σ(s1) = σ(t1)
▶ σ(s2) = σ(t2)
▶ . . .
▶ σ(sn) = σ(tn)

▶ Use a transformation system ([LMM88])
▶ State: C , σ

▶ C : Set of equations to be solved
▶ σ: Candidate unifier

▶ Initial state for finding mgu(s, t): {s = t}, {}
▶ Termination: {}, σ

14

Unification: Transformation system

Deletion:
{t = t} ∪ C , σ

C , σ

Bind:
{X = t} ∪ C , σ

{X 7→ t}(C), {X 7→ t} ◦ σ
if X /∈ Vars(t)

Orient:
{t = X} ∪ C , σ

{X = t} ∪ C , σ
if t is not a variable

Decompose:
{f (s1, . . . , sn) = f (t1, . . . , tn)} ∪ C , σ

{s1 = t1, . . . , sn = tn} ∪ C , σ

Occurs:
{X = t} ∪ C , σ

FAIL
if X ∈ Vars(t), t ̸= X

Conflict:
{f (s1, . . . , sn) = g(t1, . . . , tm)} ∪ C , σ

FAIL
if f ̸= g

15

Unification algorithm (sketch)

d e f mgu(s , t) :
C={s=t }
s igma = {}
whi le C != {} :

remove a r b i t r a r y s=t from C
a p p l y t he matching r u l e to s=t , C , s igma

(m o d i f y i n g s igma and C as a p p r o p r i a t e)
i f r e s u l t==FAIL :

return FAIL
return s igma

16

Example

C σ Rule

{f (f (X , g(g(Y))),X) = f (f (Z ,Z),U)} {} Decompose

{f (X , g(g(Y))) = f (Z ,Z),X = U} {} Bind (X)

{f (U, g(g(Y))) = f (Z ,Z)} {X 7→ U} Decompose

{U = Z , g(g(Y))) = Z} {X 7→ U} Bind (U)

{g(g(Y)) = Z} {X 7→ Z ,
U 7→ Z} Orient

{Z = g(g(Y))} {X 7→ Z ,
U 7→ Z} Bind (Z)

{} {X 7→ g(g(Y)),
U 7→ g(g(Y)),
Z 7→ g(g(Y))}

17

Pretty Code

18

Python: Terms

▶ Terms are implemented as Python lists (equivalent to LISP
s-expressions)

▶ Variables are plain strings: ”X”, ”Y”, . . .
▶ Function symbols are plain strings: ”f”, ”g”, ”sqrt”, . . .
▶ Composite terms: [f, t1, . . . , tn]

▶ f is the function symbol
▶ The ti represent the subterms

▶ Example: f (f (X , a), g(a))

▶ Python representation: [”f”, [”f”, ”X”, [”a”]], [”g” [”a”]]]

▶ Functions include:

▶ termIsVar(t) - return true if t is a variable
▶ termIsCompound(t) - return true if t is not a variable
▶ termFunc(t) - return the function symbol of compound term t

▶ termArgs(t) - return the argument list of compound term t

19

Python substitutions (basics)

c l a s s S u b s t i t u t i o n (ob ject) :
def i n i t (s e l f , i n i t = []) :

s e l f . s ub s t = {}
f o r i i n i n i t :

s e l f . s ub s t [i [0]]= i [1]

def v a l u e (s e l f , v a r) :
i f va r i n s e l f . s ub s t :

re tu rn s e l f . s ub s t [va r]
e l s e :

re tu rn va r

def apply (s e l f , term) :
i f t e rm I sVa r (term) :

re tu rn s e l f . v a l u e (term)
e l s e :

r e s = [termFunc (t)]
a r g s = [s e l f . apply (x) f o r x i n termArgs (term)]
r e s . ex tend (a r g s)
re tu rn r e s

20

Python substitutions (extension)

def i sBound (s e l f , v a r) :
re tu rn va r i n s e l f . s ub s t

def mod i f yB ind ing (s e l f , b i n d i n g) :
var , term = b i nd i n g
i f s e l f . i sBound (va r) :

r e s = s e l f . v a l u e (va r)
e l s e :

r e s = None
i f term == None :

i f s e l f . i sBound (va r) :
de l s e l f . s ub s t [va r]

e l s e :
s e l f . s ub s t [va r] = term

re tu rn r e s

21

Python substitutions (limited composition)

def composeBinding (s e l f , b i n d i n g) :
tmpsubst = S u b s t i t u t i o n ([b i n d i n g])
var , term = b i nd i n g
var s = s e l f . s ub s t . key s ()
f o r x i n va r s :

bound = s e l f . s ub s t [x]
s e l f . s ub s t [x] = tmpsubst . apply (bound)

i f not va r i n s e l f . s ub s t :
s e l f . s ub s t [va r] = term

22

Python: Occurs check

def o c c ur s Ch e ck (x , t) :
”””

 Perform an o c c u r s −check , i . e . d e t e r m i n e i f t he v a r i a b l e
 x o c c u r s i n t he term t . I f t h a t i s t he c a s e (and
 t != x) , t he two can n e v e r be u n i f i e d .
 ”””

i f termIsCompound (t) :
f o r i i n termArgs (t) :

i f o c cu r sC h ec k (x , i) :
return True

return F a l s e
e l s e :

return x == t

▶ Simple recursive descent

23

Python Unification

def mguTermList (l1 , l2 , s ub s t) :
whi le (l en (l 1) !=0) :

t1 = l 1 . pop (0)
t2 = l 2 . pop (0)
i f t e rm I sVa r (t1) :

i f t1==t2 :
cont inue

i f occursCheck (t1 , t2) :
re tu rn None

new b ind ing = Su b s t i t u t i o n ([(t1 , t2)])
l 1 = [new b ind ing (t) f o r t i n l 1]
l 2 = [new b ind ing (t) f o r t i n l 2]
s ub s t . composeBinding ((t1 , t2))

e l i f t e rm I sVa r (t2) :
[symmetr ic ca s e e l i d e d]

e l s e :
i f termFunc (t1) != termFunc (t2) :

re tu rn None
l 1 . ex tend (termArgs (t1))
l 2 . ex tend (termArgs (t2))

re tu rn s ub s t 24

Hacking Time

25

Beyond unification

▶ For heuristic evaluation, we want to go beyond unification
success/failure

▶ We want a measure of ”how close” two terms are to being unifiable
▶ Idea: Compute a unification distance

▶ For unifiable term pairs the distance is 0
▶ Otherwise, collect all unsolved equations

▶ Compute numerical score from these unsolved equations
▶ . . . e.g. summing up the size of all terms involved

▶ Example: Trying to unify f (g(a), f (X , a)) and f (g(b), f (g(X),Y))

▶ Repeated decomposition yields a = b,X = g(X), a = Y
▶ The green equation is solvable, the red ones yield a unification

distance of (1+1)+(1+2)=5

26

Exercise: Implement unification distance

▶ Implement unification distance in PyRes
▶ Suggestions:

▶ Use the file unification.py

▶ Steal what you can (we have limited time)
▶ Integrate test code into the unit tests at the end of the file
▶ To run the unit tests, just run the file (./unification.py)
▶ What is the unification distance of p(a, b, c ,X ,Y) and

p(b, c, d , f (a), f (Y))?

▶ Reminder: git clone

https://github.com/eprover/PyRes.git

▶ To run an example:

▶ cd PyRes

▶ ./pyres-fof.py -tifbp -HPickGiven5 -nlargest

EXAMPLES/PUZ001+1.p

27

A note on matching

▶ Matching is the task of finding a substitution σ with σ(s) = t

▶ Substitution is only applied to one term (the matching term)

▶ Differences:

▶ No occurs-check necessary
▶ A binding once made is invariant
▶ In particular: No composition of bindings
▶ X = X cannot be discarded, but must be bound

▶ Result: Matching is in Θ(n)

▶ One linear pass is enough
▶ Check matching.py for details in PyRes

28

Performance Code

29

PyRes vs. Performance

▶ PyRes is written with the aim of clarity

▶ Performance is a secondary consideration
▶ Python is not a high-performance language

▶ Can we do better?

▶ Algorithmically?
▶ Data-structure-wise?
▶ Choosing a different language?

Yes, yes, and yes!

30

PyRes vs. Performance

▶ PyRes is written with the aim of clarity

▶ Performance is a secondary consideration
▶ Python is not a high-performance language

▶ Can we do better?

▶ Algorithmically?
▶ Data-structure-wise?
▶ Choosing a different language?

Yes, yes, and yes!

30

Observations

▶ In practice, nearly all unification attempts fail!

▶ No paramodulation into/resolution on first-order variables
▶ 10 different function symbols ⇒≈ 90% conflict on the first symbol

▶ Efficient unification: Detect failures early

▶ Prefer equations matching Decompose and Conflict
▶ Delay equations matching Orient, Bind, Occurs
▶ Deletion is only needed for equations of the form X = X (Why?)

31

Data types in C

From E/cte termtypes.h:

typedef s t r u c t t e rm c e l l
{

FunCode f c o d e ; /∗ Top symbol o f term ∗/
TermPrope r t i e s p r o p e r t i e s ; /∗ Boolean f l a g s ∗/
i n t a r i t y ;
s t r u c t t e rm c e l l ∗ b i nd i n g ; /∗ For v a r i a b l e b i nd i ng s ,

p o t e n t i a l l y f o r temporary
r e w r i t e s ∗/

[. . . a l o t o f members e l i d e d . . .]
s t r u c t t e rm c e l l ∗ a r g s [] ; /∗ F l e x i b l e a r r a y member c o n t a i n i n g

the arguments ∗/
}TermCel l , ∗Term p , ∗∗TermRef ;

▶ Function symbol/variable encoded as FunCode (i.e. long)

▶ Arguments as flexible array member

▶ Variable binding directly in the term cell

32

Data types in C

From E/cte termtypes.h:

typedef s t r u c t t e rm c e l l
{

FunCode f c o d e ; /∗ Top symbol o f term ∗/
TermPrope r t i e s p r o p e r t i e s ; /∗ Boolean f l a g s ∗/
i n t a r i t y ;
s t r u c t t e rm c e l l ∗ b i nd i n g ; /∗ For v a r i a b l e b i nd i ng s ,

p o t e n t i a l l y f o r temporary
r e w r i t e s ∗/

[. . . a l o t o f members e l i d e d . . .]
s t r u c t t e rm c e l l ∗ a r g s [] ; /∗ F l e x i b l e a r r a y member c o n t a i n i n g

the arguments ∗/
}TermCel l , ∗Term p , ∗∗TermRef ;

▶ Function symbol/variable encoded as FunCode (i.e. long)

▶ Arguments as flexible array member

▶ Variable binding directly in the term cell

32

Shared terms and shared variable bindings

▶ E aggressively shares terms [Sch25]

▶ Every long-lived term is represented only once
▶ Variables are even more aggressively shared - every variable

corresponds to exactly one term cell (even in unshared terms)
▶ Originally inspired by DeDam [NRV97], although the relationship is

hard to recognise now. . .

▶ What does that mean?

▶ If we bind a variable anywhere, we bind a variable everywhere
▶ Some application of substitutions to complex structures can be done

locally (if we have the variables in hand)

33

Substitutions in E

typedef PStack p S u b s t p ;

▶ A substitution is just a stack (of term cell pointers)

▶ When a variable is bound, the binding is recorded in the term cell
▶ The fact that this binding is part of a substitution is recorded by

pushing the variable onto the substitution
▶ In other words, a single binding is the pair (v, v->binding)

▶ Each bound variable (representing the binding) is on the stack

▶ Allows for fast backtracking

▶ Since variables are shared, adding a binding is the same as
composing a new binding with the substitution!

▶ Big performance gain

▶ Intermediate results are represented implicitly
▶ Deleting them is nearly free

34

Substitutions in E

typedef PStack p S u b s t p ;

▶ A substitution is just a stack (of term cell pointers)

▶ When a variable is bound, the binding is recorded in the term cell
▶ The fact that this binding is part of a substitution is recorded by

pushing the variable onto the substitution
▶ In other words, a single binding is the pair (v, v->binding)

▶ Each bound variable (representing the binding) is on the stack

▶ Allows for fast backtracking

▶ Since variables are shared, adding a binding is the same as
composing a new binding with the substitution!

▶ Big performance gain

▶ Intermediate results are represented implicitly
▶ Deleting them is nearly free

34

Backtracking substitutions

PStackPo in te r SubstAddBind ing (Subs t p subst , Term p var ,
Term p b ind)

{
PStackPo in te r r e t = PStackGetSP (sub s t) ;
var−>b i n d i n g = b ind ;
PStackPushP (subst , va r) ;
re tu rn r e t ;

}

boo l Sub s tBack t r a c kS i n g l e (Subs t p sub s t)
{

Term p hand l e ;
i f (PStackEmpty (s ub s t))
{

re tu rn f a l s e ;
}
hand l e = PStackPopP (sub s t) ;
handle−>b i nd i n g = NULL ;
re tu rn t r u e ;

}
35

Substitution code

i n t SubstBacktrackToPos (Subs t p subst , PStackPo in te r pos)
{

i n t r e t = 0 ;
whi le (PStackGetSP (sub s t) > pos)
{

Sub s tBack t r a c kS i n g l e (s ub s t) ;
r e t++;

}
re tu rn r e t ;

}

i n t Subs tBackt rack (Subs t p sub s t)
{

i n t r e t = 0 ;
whi le (Sub s tBack t r a c kS i n g l e (s ub s t))
{

r e t++;
}
re tu rn r e t ;

}
36

Unification code in E - Prologue

boo l SubstComputeMgu (Term p t1 , Term p t2 , Subs t p sub s t)
{

i f ((TermCel lQueryProp (t1 , TPPredPos) && TermIsFreeVar (t2)) | |
(TermCel lQueryProp (t2 , TPPredPos) && TermIsFreeVar (t1)))

{
re tu rn f a l s e ;

}
PStackPo in te r back t r a ck = PStackGetSP (sub s t) ; /∗ For b a c k t r a c k i n g ∗/

boo l r e s = t r u e ;
PQueue p j o b s = PQueueAl loc () ;

PQueueStoreP (jobs , t1) ;
PQueueStoreP (jobs , t2) ;

37

Unification code in E - Orient, Bind

whi le (! PQueueEmpty (j o b s))
{

t2 = TermDerefAlways (PQueueGetLastP (j o b s)) ;
t1 = TermDerefAlways (PQueueGetLastP (j o b s)) ;
i f (TermIsFreeVar (t2))
{

SWAP(t1 , t2) ;
}
i f (TermIsFreeVar (t1))
{

i f (t1 != t2)
{

i f ((t1−>type != t2−>t ype) | | OccurCheck (t2 , t1))
{

r e s = f a l s e ;
break ;

}
e l s e
{

SubstAddBind ing (subs t , t1 , t2) ;
} } } 38

Unification code in E - Conflict

e l s e
{

i f (t1−>f c o d e != t2−>f c o d e)
{

r e s = f a l s e ;
break ;

}
e l s e
{

39

Unification code in E - Decompose

f o r (i n t i=t1−>a r i t y −1; i >=0; i −−)
{

/∗ Delay v a r i a b l e b i n d i n g s ∗/
i f (TermIsFreeVar (t1−>a r g s [i]) | |

TermIsFreeVar (t2−>a r g s [i]))
{

PQueueBuryP (jobs , t2−>a r g s [i]) ;
PQueueBuryP (jobs , t1−>a r g s [i]) ;

}
e l s e
{

PQueueStoreP (jobs , t1−>a r g s [i]) ;
PQueueStoreP (jobs , t2−>a r g s [i]) ;

}
}

}
}

}

40

Unification code in E - Epilogue

PQueueFree (j o b s) ;

i f (! r e s)
{

SubstBacktrackToPos (subs t , ba ck t r a ck) ;
}
re tu rn r e s ;

}

(see E/TERMS/cte match mgu 1-1.[ch])

41

Using Unification Distance

42

Given Clause Loop

U
(unprocessed clauses)

Gene-
rate

Simpli-
fiable?

Cheap
Simplify

Simplify

g

P
(processed clauses)

g=☐
?

▶ While there are unprocessed
clauses . . .

▶ . . . heuristically pick given
clause from U

▶ . . . and process it

▶ Goal: Generate empty
clause

▶ Choice point: Pick the next
given clause

▶ Based on heuristic weight
(small is beautiful)

43

Unification distance in clause evaluation

▶ We are in an equational context:

▶ Literals are equations or disequations
▶ Goal: Empty clause (get rid of all literals)

▶ Consider a ̸≃ X ∨ f (X , a) ≃ a

▶ Implicational form: a ≃ X → f (X , a) ≃ a
▶ So: If we can solve the first literal, the second becomes available for

rewriting
▶ So: Negative literals that can be resolved (by unification) are desirable
▶ Maybe: Negative literals that can be nearly resolved are too?

▶ Idea: Base literal evaluation on unification distance

▶ Sum them up (cleverly) for clauses
▶ Cleverly: What do we do for positive literals?

44

Hacking session 2

▶ Reminder: E lives at https://www.eprover.org
▶ . . . or at https://github.com/eprover/eprover

▶ . . . which also displays the installation information

▶ Option 1:

▶ Improve the PyRes unification algorithm
▶ Steal ideas from the C version

▶ Option 2:

▶ Implement unification distance in E
▶ Use it to implement a new clause evaluation heuristic

45

https://www.eprover.org
https://github.com/eprover/eprover

Clause evaluation in E

▶ All relevant code is in E/HEURISTICS/

▶ Each clause evaluation function needs 3 C functions:

▶ WFCB p MyEvalParse((Scanner p in, OCB p ocb,

ProofState p state)

▶ WFCB p MyEvalInit(ClausePrioFun prio fun, ...) (which will
only be called from MyEvalParse()

▶
▶ double MyEvalCompute(void* data, Clause p clause) (which

will be called for each clause)

▶ You need to register your new function in che wfcbadmin.c

▶ External name goes into WeightFunParseFunNames[]

▶ Parse function goes into WeightFunParseFun[] (at the
corresponding index)

▶ Check e.g. TPTPTypeWeight* in HEURISTICS/che varweights.h

for a simple example

46

Conclusion

▶ First steps into some data structures

▶ Terms
▶ Substitutions

▶ Unification as equation solving . . .

▶ . . . not as a theoretical approach, but as a practical implementation

▶ Some hacking experience with real ATPs gained(?!?)

I hope you had fun!

47

Conclusion

▶ First steps into some data structures

▶ Terms
▶ Substitutions

▶ Unification as equation solving . . .

▶ . . . not as a theoretical approach, but as a practical implementation

▶ Some hacking experience with real ATPs gained(?!?)

I hope you had fun!

47

Ceterum Censeo. . .

▶ Bug reports for E should include:

▶ The exact command line leading to the bug
▶ All input files needed to reproduce the bug
▶ A description of what seems to be wrong
▶ The output of eprover --version

48

References

49

References I

Leo Bachmair and Harald Ganzinger.

On Restrictions of Ordered Paramodulation with Simplification.
In M.E. Stickel, editor, Proc. of the 10th CADE, Kaiserslautern, volume 449 of LNAI, pages 427—441. Springer, 1990.

Leo Bachmair and Harald Ganzinger.

Rewrite-Based Equational Theorem Proving with Selection and Simplification.
Journal of Logic and Computation, 3(4):217–247, 1994.

Laura Kovács and Andrei Voronkov.

First-order theorem proving and Vampire.
In Natasha Sharygina and Helmut Veith, editors, Proc. of the 25th CAV, volume 8044 of LNCS, pages 1–35. Springer,
2013.

J. L. Lassez, Michael J. Maher, and Kim Marriott.

Unification revisited.
In Mauro Boscarol, Luigia Carlucci Aiello, and Giorgio Levi, editors, Foundations of Logic and Functional
Programming, Trento, Italy, December 15–19, 1986, pages 67–113. Springer, 1988.

E.L. Lusk and R.A. Overbeek.

A Short Problem Set for Testing Systems that Include Equality Reasoning.
Technical report, Argonne National Laboratory, Illinois, 1982.

R. Nieuwenhuis and A. Rubio.

Paramodulation-Based Theorem Proving.
In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 7, pages 371–443.
Elsevier Science and MIT Press, 2001.

50

References II

Robert Nieuwenhuis, José Miguel Rivero, and Miguel Ángel Vallejo.

Dedam: A Kernel of Data Structures and Algorithms for Automated Deduction with Equality Clauses.
In W.W. McCune, editor, Proc. of the 14th CADE, Townsville, volume 1249 of LNAI, pages 49–52. Springer, 1997.
Full version at http://http://www.lsi.upc.es/~roberto/refs/cade1997.html.

Stephan Schulz.

E – A Brainiac Theorem Prover.
Journal of AI Communications, 15(2/3):111–126, 2002.

Stephan Schulz.

Fingerprint Indexing for Paramodulation and Rewriting.
In Bernhard Gramlich, Ulrike Sattler, and Dale Miller, editors, Proc. of the 6th IJCAR, Manchester, volume 7364 of
LNAI, pages 477–483. Springer, 2012.

Stephan Schulz.

Simple and Efficient Clause Subsumption with Feature Vector Indexing.
In Maria Paola Bonacina and Mark E. Stickel, editors, Automated Reasoning and Mathematics: Essays in Memory of
William W. McCune, volume 7788 of LNAI, pages 45–67. Springer, 2013.

Stephan Schulz.

System Description: E 1.8.
In Ken McMillan, Aart Middeldorp, and Andrei Voronkov, editors, Proc. of the 19th LPAR, Stellenbosch, volume 8312
of LNCS, pages 735–743. Springer, 2013.

Stephan Schulz.

E 2.4 User Manual.
EasyChair preprint no. 2272, 2019.

51

http://http://www.lsi.upc.es/~roberto/refs/cade1997.html

References III

Stephan Schulz.

Lazy and eager patterns in high-performance automated theorem proving.
In Laura Kovács and Michael Rawson, editors, Proceedings of the 7th and 8th Vampire Workshop, volume 99 of EPiC
Series in Computing, pages 7–12. EasyChair, 2024.

Stephan Schulz.

Shared terms and cached rewriting.
In Konstantin Korovin, Stephan Schulz, and Michael Rawson, editors, Proceedings of the 14th and 15th International
Workshops on the Implementation of Logics, volume 21 of Kalpa Publications in Computing, pages 18–33. EasyChair,
2025.

Stephan Schulz and Martin Möhrmann.

Performance of clause selection heuristics for saturation-based theorem proving.
In Nicola Olivetti and Ashish Tiwari, editors, Proc. of the 8th IJCAR, Coimbra, volume 9706 of LNAI, pages 330–345.
Springer, 2016.

R. Sekar, I.V. Ramakrishnan, and A. Voronkov.

Term Indexing.
In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, volume II, chapter 26, pages
1853–1961. Elsevier Science and MIT Press, 2001.

Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin Suda, and Patrick Wischnewski.

SPASS Version 3.5.
In Renate Schmidt, editor, Proc. of the 22nd CADE, Montreal, Canada, volume 5663 of LNAI, pages 140–145.
Springer, 2009.

52

Image Sources

▶ Public domain via the Wikimedia Commons

▶ Tour Eiffel under construction
https://en.wikipedia.org/wiki/File:

Construction_tour_eiffel4.JPG

▶ Others: Painstakingly drawn by the author

53

https://en.wikipedia.org/wiki/File:Construction_tour_eiffel4.JPG
https://en.wikipedia.org/wiki/File:Construction_tour_eiffel4.JPG

	Abstract
	Introduction
	Basics
	Implementing unification (Python)
	Unification in C
	Use case: Clause evaluation heuristics
	References and Image credits

