
Implementation of First-Order Theorem Provers

Summer School 2009: Verification Technology, Systems & Applications

Stephan Schulz

schulz@eprover.org

First-Order Theorem Proving

Given: A set axioms and a hypothesis in first-order logic

A = {A1, . . . , An}, H

Question: Do the axioms logically imply the hypothesis?

A
?

|= H

An automated theorem prover tries to solve this question!

Stephan Schulz 2

First-Order Logic with Equality

I First order logic deals with

– Elements
– Relations between elements
– Functions over elements
– . . . and their combination

I Allows general statements using quantified variables

– There exists an X so that property P holds (9X : P (X))
– For all possible values of X property P holds (8X : P (X))

I Function and predicate symbols are uninterpreted

– No implicit background theory
– All properties have to be specified explicitely
– Exception: Equality is interpreted (as a congruence relation)

Stephan Schulz 3

Why First-Order Logic?

I Expressive:

– Can encode any computable problem
– Most tasks can be specified reasonably naturally
– Many other logics can be reasonably translated to first-order logic

I Automatizable:

– Sound and complete calculi for proof search exist
– Search procedures are reasonably e�cient

I Stable:

– Logic is well-known and well-understood
– Semantics are clear (and somewhat intuitive)

First-order logic is a good compromise between
expressiveness and automatizability

Stephan Schulz 4

Mainstream Milestones

– Herbrand-Universe Enumeration+SAT [DP60]
– Resolution [Rob65]
– Model Elimination [Lov68]
– Paramodulation [RW69]
– Completion [KB70]
– Otter 1.0 (1989, McCune)
– Unfailing completion [BDP89, HR87]
– Superposition [BG90, NR92, BG94]
– SETHEO [LSBB92]
– Vampire [Vor95] (but kept hidden for years)
– First CASC competition at Rutgers, FLOC’96 (Sutcli↵e, Suttner)
– Waldmeister [BH96]
– SPASS [WGR96]
– E [Sch99]

Stephan Schulz 5

Explicit Embedded

Abstract Machine

Implementation
Styles

Stephan Schulz 6

Explicit Embedded

Abstract Machine

E
SPASS
Waldmeister
Otter
Prover-9

Vampire

PTTP
Barcelona/Dedam

Gandalf

leanCOP

SETHEO (3.2)

S-SETHEO

SNARK

Stephan Schulz 7

Declarative
Functional

Explicit Embedded

Abstract Machine

E
SPASS
Waldmeister
Otter
Prover-9

Vampire

PTTP
Barcelona/Dedam

Gandalf

leanCOP

SETHEO (3.2)

S-SETHEO

SNARK

Imperative
OO

Stephan Schulz 8

Implementation Style (References)

Barcelona/Dedam [NRV97] E [Sch02, Sch04b]
Gandalf [Tam97] Otter [MW97]
PTTP [Sti92, Sti89] Prover-9 [McC08]
S-SETHEO [LS01b] SETHEO [LSBB92, MIL+97]
SPASS [Wei01, WSH+07] Snark [E.S08]
Vampire [RV02] Waldmeister [LH02, GHLS03]
leanCOP [OB03, Ott08]

Stephan Schulz 9

Formulae

I Formulas are recursively defined:

– Literals (elementary statements) are formulae
– If F is a formula, 8X : F and 9X : F are formulae
– Boolean combinations of formulae are formulae
– Parentheses are applied wherever necessary

I Example:

– 8X : (8Y : ((odd(X) ^ odd(Y))! X 6' add(Y, 1)))

Stephan Schulz 10

Clauses

I Clauses are multisets written and interpreted as disjunctions of literals

– All variables implicitly universally quantified

I Example:

X 6' add(Y, 1) _ odd(X) _ odd(Y)

I Alternative views: Implicational

X ' add(Y, 1) =) (odd(X) _ odd(Y))
or

(X ' add(Y, 1) ^ ¬odd(X)) =) odd(Y))
or

(X ' add(Y, 1) ^ ¬odd(Y)) =) odd(X))
or (weirdly)

(¬odd(Y) ^ ¬odd(X)) =) X 6' add(Y, 1)

Stephan Schulz 11

Literals

I X 6' add(Y, 1) _ odd(X) _ odd(Y)

I – X 6' add(Y, 1) is a negative equational literal
– odd(X) and odd(X) are positive non-equational literals

I Conventions:

– s 6' t is a more convenient way of writing ¬s ' t
– We write s '̇ t to denote an equational literal that may be either positive or

negative
– s ' t is a more convenient way of writing ' (s, t)

Stephan Schulz 12

Literals

I X 6' add(Y, 1) _ odd(X) _ odd(Y)

I – X 6' add(Y, 1) is a negative equational literal
– odd(X) and odd(X) are positive non-equational literals

I Convention:

– s 6' t is a more convenient way of writing ¬s ' t
– We write s '̇ t to denote an equational literal that may be either positive or

negative
– Heresy: s ' t is a more conventient way of writing ' (s, t)
– Truth: odd(X) is a more convenient way of writing odd(X) ' >

Stephan Schulz 13

Equational Encoding Snag

I Problem:

– {X ' a),¬p(a)} is satisfiable
– What about {X ' a), p(a) 6' >}?

I Solution:

– Two sorts: Individuals and Bools
– Variables range over individuals only
– Predicate terms are sort Bool

I Implemented that way in E

Stephan Schulz 14

Terms

I X 6' add(Y , 1) _ odd(X) _ odd(Y)

I – X, add(Y , 1), 1, and Y are terms
– X and Y are variables
– 1 is a constant term
– add(Y , 1) is a composite term with proper subterms 1 and Y

Stephan Schulz 15

Concrete Syntax

I Historically: Large variety of syntaxes

– Prolog-inspired, e.g. LOP (SETHEO, E)
– By committee, e.g. DFG-Syntax (SPASS)
– LISP-inspired (SNARK)
– Home-grown (Otter, Prover-9)
– TPTP-1/2 syntax (with TPTP2X converter)

I Recently: Quasi-standardizaton on TPTP-3 syntax [SSCG06, Sut09]

– Annotated clauses/formulas
– Can represent problems and proofs
– Support in Vampire, SPASS, E, E-SETHEO, iProver,

Stephan Schulz 16

A First-Order Prover - Bird’s Eye Perspective

FOF
Problem

CNF
Problem

Result/Proof

Prover

Stephan Schulz 17

A First-Order Prover - Bird’s X-Ray Perspective

Clausification

CNF

refutation

FOF
Problem

CNF
Problem

CNF
Problem

Result/Proof

Stephan Schulz 18

Clausification

A
?

|= H =) Clausifier =) {C1, C2, . . . , C3}

...such that
{C1, C2, . . . , C3} is unsatisfiable

i↵
A |= H holds

Stephan Schulz 19

Clausification

A
?

|= H =) Magic =) {C1, C2, . . . , C3}

...such that
{C1, C2, . . . , C3} is unsatisfiable

i↵
A |= H holds

Stephan Schulz 20

Clausification

A
?

|= H =) Magic =) {C1, C2, . . . , C3}

White Magic: Standard conjunctive normal form with Skolemization [Lov78] [NW01]
(read once)

I Straightforward
I CNF can explode (and does, occasionally)

Black Magic: Miniscoping and definitions [NW01] (Read twice)

I Smaller CNF, exponential growths can be controlled
I Better (smaller) terms, less arity in Skolem functions
I Implemented in E

Forbidden Magic: Advanced Skolemization [NW01](Read five times)

I Implemented in FLOTTER
I Theoretically superior, but advantage in practice unclear

Stephan Schulz 21

Why FOF at all?

% All aircraft are either in lower or in upper airspace
fof(low_up_is_exhaustive, axiom,

(![X]:(lowairspace(X)|uppairspace(X)))).

fof(filter_equiv, conjecture, (
% Naive version: Display aircraft in the Abu Dhabi Approach area in
% lower airspace, display aircraft in the Dubai Approach area in lower
% airspace, display all aircraft in upper airspace, except for
% aircraft in military training region if they are actual military
% aircraft.

(![X]:(((a_d_app(X) & lowairspace(X))|(dub_app(X) & lowairspace(X))
|uppairspace(X))&
(~milregion(X)|~military(X))))
<=>

% Optimized version: Display all aircraft in either Approach, display
% aircraft in upper airspace, except military aircraft in the military
% training region

(![X]:((uppairspace(X) | dub_app(X) | a_d_app(X)) &
(~military(X) | ~milregion(X)))))).

Stephan Schulz 22

Why FOF at all?

cnf(i_0_1,plain,(lowairspace(X1)|uppairspace(X1))).
cnf(i_0_12,negated_conjecture,(milregion(esk1_0)|milregion(esk2_0)|~uppairspace(esk1_0)|~uppairspace(esk2_0))).
cnf(i_0_8,negated_conjecture,(milregion(esk1_0)|milregion(esk2_0)|~uppairspace(esk1_0)|~a_d_app(esk2_0))).
cnf(i_0_10,negated_conjecture,(milregion(esk1_0)|milregion(esk2_0)|~uppairspace(esk1_0)|~dub_app(esk2_0))).
cnf(i_0_13,negated_conjecture,(milregion(esk1_0)|military(esk2_0)|~uppairspace(esk1_0)|~uppairspace(esk2_0))).
cnf(i_0_9,negated_conjecture,(milregion(esk1_0)|military(esk2_0)|~uppairspace(esk1_0)|~a_d_app(esk2_0))).
cnf(i_0_11,negated_conjecture,(milregion(esk1_0)|military(esk2_0)|~uppairspace(esk1_0)|~dub_app(esk2_0))).
cnf(i_0_6,negated_conjecture,(milregion(esk2_0)|military(esk1_0)|~uppairspace(esk1_0)|~uppairspace(esk2_0))).
cnf(i_0_2,negated_conjecture,(milregion(esk2_0)|military(esk1_0)|~uppairspace(esk1_0)|~a_d_app(esk2_0))).
cnf(i_0_4,negated_conjecture,(milregion(esk2_0)|military(esk1_0)|~uppairspace(esk1_0)|~dub_app(esk2_0))).
cnf(i_0_7,negated_conjecture,(military(esk1_0)|military(esk2_0)|~uppairspace(esk1_0)|~uppairspace(esk2_0))).
cnf(i_0_3,negated_conjecture,(military(esk1_0)|military(esk2_0)|~uppairspace(esk1_0)|~a_d_app(esk2_0))).
cnf(i_0_5,negated_conjecture,(military(esk1_0)|military(esk2_0)|~uppairspace(esk1_0)|~dub_app(esk2_0))).
cnf(i_0_36,negated_conjecture,(milregion(esk1_0)|milregion(esk2_0)|~lowairspace(esk1_0)|~uppairspace(esk2_0)|

~a_d_app(esk1_0))).
cnf(i_0_24,negated_conjecture,(milregion(esk1_0)|milregion(esk2_0)|~lowairspace(esk1_0)|~uppairspace(esk2_0)|

~dub_app(esk1_0))).
cnf(i_0_32,negated_conjecture,(milregion(esk1_0)|milregion(esk2_0)|~lowairspace(esk1_0)|~a_d_app(esk1_0)|

~a_d_app(esk2_0))).
cnf(i_0_34,negated_conjecture,(milregion(esk1_0)|milregion(esk2_0)|~lowairspace(esk1_0)|~a_d_app(esk1_0)|

~dub_app(esk2_0))).
cnf(i_0_20,negated_conjecture,(milregion(esk1_0)|milregion(esk2_0)|~lowairspace(esk1_0)|~a_d_app(esk2_0)|

~dub_app(esk1_0))).
cnf(i_0_22,negated_conjecture,(milregion(esk1_0)|milregion(esk2_0)|~lowairspace(esk1_0)|~dub_app(esk1_0)|

~dub_app(esk2_0))).
cnf(i_0_37,negated_conjecture,(milregion(esk1_0)|military(esk2_0)|~lowairspace(esk1_0)|~uppairspace(esk2_0)|

~a_d_app(esk1_0))).
cnf(i_0_25,negated_conjecture,(milregion(esk1_0)|military(esk2_0)|~lowairspace(esk1_0)|~uppairspace(esk2_0)|

~dub_app(esk1_0))).
cnf(i_0_33,negated_conjecture,(milregion(esk1_0)|military(esk2_0)|~lowairspace(esk1_0)|~a_d_app(esk1_0)|

~a_d_app(esk2_0))).

Stephan Schulz 23

cnf(i_0_35,negated_conjecture,(milregion(esk1_0)|military(esk2_0)|~lowairspace(esk1_0)|~a_d_app(esk1_0)|
~dub_app(esk2_0))).

cnf(i_0_21,negated_conjecture,(milregion(esk1_0)|military(esk2_0)|~lowairspace(esk1_0)|~a_d_app(esk2_0)|
~dub_app(esk1_0))).

cnf(i_0_23,negated_conjecture,(milregion(esk1_0)|military(esk2_0)|~lowairspace(esk1_0)|~dub_app(esk1_0)|
~dub_app(esk2_0))).

cnf(i_0_30,negated_conjecture,(milregion(esk2_0)|military(esk1_0)|~lowairspace(esk1_0)|~uppairspace(esk2_0)|
~a_d_app(esk1_0))).

cnf(i_0_18,negated_conjecture,(milregion(esk2_0)|military(esk1_0)|~lowairspace(esk1_0)|~uppairspace(esk2_0)|
~dub_app(esk1_0))).

cnf(i_0_26,negated_conjecture,(milregion(esk2_0)|military(esk1_0)|~lowairspace(esk1_0)|~a_d_app(esk1_0)|
~a_d_app(esk2_0))).

cnf(i_0_28,negated_conjecture,(milregion(esk2_0)|military(esk1_0)|~lowairspace(esk1_0)|~a_d_app(esk1_0)|
~dub_app(esk2_0))).

cnf(i_0_14,negated_conjecture,(milregion(esk2_0)|military(esk1_0)|~lowairspace(esk1_0)|~a_d_app(esk2_0)|
~dub_app(esk1_0))).

cnf(i_0_16,negated_conjecture,(milregion(esk2_0)|military(esk1_0)|~lowairspace(esk1_0)|~dub_app(esk1_0)|
~dub_app(esk2_0))).

cnf(i_0_31,negated_conjecture,(military(esk1_0)|military(esk2_0)|~lowairspace(esk1_0)|~uppairspace(esk2_0)|
~a_d_app(esk1_0))).

cnf(i_0_19,negated_conjecture,(military(esk1_0)|military(esk2_0)|~lowairspace(esk1_0)|~uppairspace(esk2_0)|
~dub_app(esk1_0))).

cnf(i_0_27,negated_conjecture,(military(esk1_0)|military(esk2_0)|~lowairspace(esk1_0)|~a_d_app(esk1_0)|
~a_d_app(esk2_0))).

cnf(i_0_29,negated_conjecture,(military(esk1_0)|military(esk2_0)|~lowairspace(esk1_0)|~a_d_app(esk1_0)|
~dub_app(esk2_0))).

cnf(i_0_15,negated_conjecture,(military(esk1_0)|military(esk2_0)|~lowairspace(esk1_0)|~a_d_app(esk2_0)|
~dub_app(esk1_0))).

cnf(i_0_17,negated_conjecture,(military(esk1_0)|military(esk2_0)|~lowairspace(esk1_0)|~dub_app(esk1_0)|
~dub_app(esk2_0))).

cnf(i_0_44,negated_conjecture,(lowairspace(X2)|uppairspace(X2)|uppairspace(X1)|a_d_app(X1)|
dub_app(X1))).

cnf(i_0_39,negated_conjecture,(lowairspace(X2)|uppairspace(X2)|~milregion(X1)|~military(X1))).
cnf(i_0_46,negated_conjecture,(lowairspace(X2)|uppairspace(X2)|uppairspace(X1)|a_d_app(X2)|a_d_app(X1)|

Stephan Schulz 24

dub_app(X1))).
cnf(i_0_45,negated_conjecture,(lowairspace(X2)|uppairspace(X2)|uppairspace(X1)|a_d_app(X1)|

dub_app(X2)|dub_app(X1))).
cnf(i_0_47,negated_conjecture,(uppairspace(X2)|uppairspace(X1)|a_d_app(X2)|a_d_app(X1)|dub_app(X2)|

dub_app(X1))).
cnf(i_0_41,negated_conjecture,(lowairspace(X2)|uppairspace(X2)|a_d_app(X2)|~milregion(X1)|~military(X1))).
cnf(i_0_40,negated_conjecture,(lowairspace(X2)|uppairspace(X2)|dub_app(X2)|~milregion(X1)|~military(X1))).
cnf(i_0_42,negated_conjecture,(uppairspace(X2)|a_d_app(X2)|dub_app(X2)|~milregion(X1)|~military(X1))).
cnf(i_0_43,negated_conjecture,(uppairspace(X1)|a_d_app(X1)|dub_app(X1)|~milregion(X2)|~military(X2))).
cnf(i_0_38,negated_conjecture,(~milregion(X2)|~milregion(X1)|~military(X2)|~military(X1))).

Stephan Schulz 25

Lazy Developer’s Clausification

A
?

|= H =)
E

FLOTTER
Vampire

=) {C1, C2, . . . , C3}

I iProver (uses E, Vampire)

I E-SETHEO (uses E, FLOTTER)

I Fampire (uses FLOTTER)

Stephan Schulz 26

A First-Order Prover - Bird’s X-Ray Perspective

Clausification

CNF

refutation

FOF
Problem

CNF
Problem

CNF
Problem

Result/Proof

Stephan Schulz 27

CNF Saturation

I Basic idea: Proof state is a set of clauses S

– Goal: Show unsatisfiability of S
– Method: Derive empty clause via deduction
– Problem: Proof state explosion

I Generation: Deduce new clauses

– Logical core of the calculus
– Necessary for completeness
– Lead to explosion is proof state size

=) Restrict as much as possible

I Simplification: Remove or simplify clauses from S

– Critical for acceptable performance
– Burns most CPU cycles

=) E�cient implementation necessary

Stephan Schulz 28

Rewriting

I Ordered application of equations

– Replace equals with equals. . .
– . . . if this decreases term size with respect to given ordering >

s ' t u '̇ v _R

s ' t u[p �(t)] '̇ v _R

I Conditions:

– u|p = �(s)
– �(s) > �(t)
– Some restrictions on rewriting >-maximal terms in a clause apply

I Note: If s > t, we call s ' t a rewrite rule

– Implies �(s) > �(t), no ordering check necessary

Stephan Schulz 29

Paramodulation/Superposition

I Superposition: “Lazy conditional speculative rewriting”

– Conditional: Uses non-unit clauses
⇤ One positive literal is seen as potential rewrite rule
⇤ All other literals are seen as (positive and negative) conditions

– Lazy: Conditions are not solved, but appended to result
– Speculative:
⇤ Replaces potentially larger terms
⇤ Applies to instances of clauses (generated by unification)
⇤ Original clauses remain (generating inference)

s ' t _ S u '̇ v _R

�(u[p t] '̇ v _ S _R)

I Conditions:

– � = mgu(u|p, s) and u|p is not a variable
– �(s) 6< �(t) and �(u) 6< �(v)
– �(s ' t) is >-maximal in �(s ' t _ S) (and no negative literal is selected)
– �(u '̇ v) is maximal (and no negative literal is selected) or selected

Stephan Schulz 30

Subsumption

I Idea: Only keep the most general clauses

– If one clause is subsumed by another, discard it

C �(C) _R

C

I Examples:

– p(X) subsumes p(a) _ q(f(X), a) (� = {X a})
– p(X) _ p(Y) does not multi-set-subsume p(a) _ q(f(X), a)
– q(X, Y) _ q(X, a) subsumes q(a, a) _ q(a, b)

I Subsumption is hard (NP-complete)

– n! permutations in non-equational clause with n literals
– n!2n permutations in equational clause with n literals

Stephan Schulz 31

Term Orderings

I Superposition is instantiated with a ground-completable simplification ordering
> on terms

– > is Noetherian
– > is compatible with term structure: t1 > t2 implies s[t1]p > s[t2]p
– > is compatible with substitutions: t1 > t2 implies �(t1) > �(t2)
– > has the subterm-property: s > s|p
– In practice: LPO, KBO, RPO

I Ordering evaluation is one of the major costs in superposition-based theorem
proving

I E�cient implementation of orderings: [Löc06, L0̈6]

Stephan Schulz 32

Generalized Redundancy Elimination

I A clause is redundant in S, if all its ground instances are implied by > smaller
ground instances of other clauses in S

– May require addition of smaller implied clauses!

I Examples:

– Rewriting (rewritten clause added!)
– Tautology deletion (implied by empty clause)
– Redundant literal elimination: l _ l _R replaced by l _R
– False literal elimination: s 6' s _R replaced by R

I Literature:

– Theoretical results: [BG94, BG98, NR01]
– Some important refinements used in E: [Sch02, Sch04b, RV01, Sch09]

Stephan Schulz 33

The Basic Given-Clause Algorithm

I Completeness requires consideration of all possible persistent clause combinations
for generating inferences

– For superposition: All 2-clause combinations
– Other inferences: Typically a single clause

I Given-clause algorithm replaces complex bookkeeping with simple invariant:

– Proofstate S = P [U , P initially empty
– All inferences between clauses in P have been performed

I The algorithm:

while U 6= {}
g = delete best(U)
if g == ⇤

SUCCESS, Proof found
P = P [{g}
U = U[generate(g, P)

SUCCESS, original U is satisfiable

Stephan Schulz 34

DISCOUNT Loop

I Aim: Integrate simplification into given clause algorithm

I The algorithm (as implemented in E):

while U 6= {}
g = delete best(U)
g = simplify(g,P)
if g == ⇤

SUCCESS, Proof found
if g is not redundant w.r.t. P

T = {c 2 P |c redundant or simplifiable w.r.t. g}
P = (P\T) [{g}
T = T[generate(g, P)
foreach c 2 T

c =cheap simplify(c, P)
if c is not trivial

U = U [{c}
SUCCESS, original U is satisfiable

Stephan Schulz 35

What is so hard about this?

Stephan Schulz 36

What is so hard about this?

I Data from simple TPTP example NUM030-1+rm eq rstfp.lop
(solved by E in 30 seconds on ancient Apple Powerbook):

– Initial clauses: 160
– Processed clauses: 16,322
– Generated clauses: 204,436
– Paramodulations: 204,395
– Current number of processed clauses: 1,885
– Current number of unprocessed clauses: 94,442
– Number of terms: 5,628,929

I Hard problems run for days!

– Millions of clauses generated (and stored)
– Many millions of terms stored and rewritten
– Each rewrite attempt must consider many (>> 10000) rules
– Subsumption must test many (>> 10000) candidates for each subsumption

attempt
– Heuristic must find best clause out of millions

Stephan Schulz 37

Proof State Development

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 20000 40000 60000 80000 100000 120000

P
ro

o
f

s
ta

te
 s

iz
e

Main loop iterations

All clauses

Proof state behavior for ring theory example RNG043-2 (Default Mode)

Stephan Schulz 38

Proof State Development

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 20000 40000 60000 80000 100000 120000

P
ro

o
f

s
ta

te
 s

iz
e

Main loop iterations

All clauses
Quadratic growth

Proof state behavior for ring theory example RNG043-2 (Default Mode)

I Growth is roughly quadratic in the number of processed clauses

Stephan Schulz 39

Literature on Proof Procedures

I New Waldmeister Loop: [GHLS03]

I Comparisons: [RV03]

I Best discussion of E Loop: [Sch02]

Stephan Schulz 40

Exercise: Installing and Running E

I Goto http://www.eprover.org

I Find the download section

I Find and read the README

I Download the source tarball

I Following the README, build the system in a local user directory

I Run the prover on one of the included examples to demonstrates that it works.

Stephan Schulz 41

http://www.eprover.org

Layered Architecture

Operating System (Posix)

Language API/Libraries

Generic data types

Logical data types

Clausifier
Index-

ing
Heu-
ristics

Control

Infer-
ences

Stephan Schulz 42

Layered Architecture

Operating System (Posix)

Language API/Libraries

Generic data types

Logical data types

Clausifier
Index-

ing
Heu-
ristics

Control

Infer-
ences

Stephan Schulz 43

Operating System

I Pick a UNIX variant

– Widely used
– Free
– Stable
– Much better support for remote tests and automation
– Everybody else uses it ;-)

I Aim for portability

– Theorem provers have minimal requirements
– Text input/output
– POSIX is su�cient

Stephan Schulz 44

Layered Architecture

Operating System (Posix)

Language API/Libraries

Generic data types

Logical data types

Clausifier
Index-

ing
Heu-
ristics

Control

Infer-
ences

Stephan Schulz 45

Language API/Libraries

I Pick your language

I High-level/funtional or declarative languages come with rich datatypes and
libraries

– Can cover ”Generic data types”
– Can even cover 90% of ”Logical data types”

I C o↵ers nearly full control

– Much better for low-level performance
– . . . if you can make it happen!

Stephan Schulz 46

Memory Consumption

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 20 40 60 80 100 120 140 160

P
ro

o
f

s
ta

te
 s

iz
e

Time (seconds)

Clauses
Bytes/430

I Proof state behavior for number theory example NUM030-1 (880 MHz SunFire)

Stephan Schulz 47

Memory Consumption

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 20 40 60 80 100 120 140 160

P
ro

o
f

s
ta

te
 s

iz
e

Time (seconds)

Clauses
Bytes/430

Linear

I Proof state behavior for number theory example NUM030-1 (880 MHz SunFire)

Stephan Schulz 48

Memory Management

I Nearly all memory in a saturating prover is taken up by very few data types

– Terms
– Literals
– Clauses
– Clause evaluations
– (Indices)

I These data types are frequently created and destroyed

– Prime target for freelist based memory management
– Backed directly by system malloc()
– Allocating and chopping up large blocks does not pay o↵!

I Result:

– Allocating temporary data structures is O(1)
– Overhead is very small
– Speedup 20%-50% depending on OS/processor/libC version

Stephan Schulz 49

Memory Management illustrated

4

8

12

16

20

4(n-1)

4n

...

Anchors Free lists

Libc
malloc
arena

Stephan Schulz 50

Memory Management illustrated

4

8

12

16

20

4(n-1)

4n

...

Anchors Free lists

Libc
malloc
arena

Request: 16 Bytes

Stephan Schulz 51

Memory Management illustrated

4

8

12

16

20

4(n-1)

4n

...

Anchors Free lists

Libc
malloc
arena

Request: 16 Bytes

Stephan Schulz 52

Memory Management illustrated

4

8

12

16

20

4(n-1)

4n

...

Anchors Free lists

Libc
malloc
arena

Request: 16 Bytes

Stephan Schulz 53

Memory Management illustrated

4

8

12

16

20

4(n-1)

4n

...

Anchors Free lists

Libc
malloc
arena

Request: 16 Bytes

Stephan Schulz 54

Memory Management illustrated

4

8

12

16

20

4(n-1)

4n

...

Anchors Free lists

Libc
malloc
arena

Free: 12 Bytes

Stephan Schulz 55

Memory Management illustrated

4

8

12

16

20

4(n-1)

4n

...

Anchors Free lists

Libc
malloc
arena

Stephan Schulz 56

Memory Management illustrated

4

8

12

16

20

4(n-1)

4n

...

Anchors Free lists

Libc
malloc
arena

Free: 4n+m Bytes

Stephan Schulz 57

Memory Management illustrated

4

8

12

16

20

4(n-1)

4n

...

Anchors Free lists

Libc
malloc
arena

Stephan Schulz 58

Exercise: Influence of Memory Management

I E can be build with 2 di↵erent workin memory management schemes

– Vanilla libC malloc()
⇤ Add compiler option -DUSE_SYSTEM_MEM in E/Makefile.vars

– Freelists backed by malloc() (see above)
⇤ Default version

I Compare the performance yourself:

– Run default E a couple of times with output disabled
– eprover -s --resources-info LUSK6ext.lop
– Take note of the reported times
– Enable use of system malloc(), then make rebuild
– Rerun the tests and compare the times

Stephan Schulz 59

Makefile.vars

...
BUILDFLAGS = -DPRINT_SOMEERRORS_STDOUT \

-DMEMORY_RESERVE_PARANOID \
-DPRINT_TSTP_STATUS \

-DSTACK_SIZE=32768 \
-DUSE_SYSTEM_MEM \
-DFULL_MEM_STATS\
-DPRINT_RW_STATE # -DMEASURE_EXPENSIVE

...

Stephan Schulz 60

Layered Architecture

Operating System (Posix)

Language API/Libraries

Generic data types

Logical data types

Clausifier
Index-

ing
Heu-
ristics

Control

Infer-
ences

Stephan Schulz 61

Generic Data types

I (Dynamic) Stacks

I (Dynamic) Arrays

I Hashes

I Singly linked lists

I Doubly linked lists

I Tries

I Splay trees [ST85]

I Skip lists [Pug90]

Stephan Schulz 62

Layered Architecture

Operating System (Posix)

Language API/Libraries

Generic data types

Logical data types

Clausifier
Index-

ing
Heu-
ristics

Control

Infer-
ences

Stephan Schulz 63

First-Order Terms

I Terms are words over the alphabet F [V [{0(0,0)0,0 ,0 }, where. . .

I Variables: V = {X, Y, Z,X1, . . .}

I Function symbols: F = {f/2, g/1, a/0, b/0, . . .}

I Definition of terms:

– X 2 V is a term
– f/n 2 F, t1, . . . , tn are terms f(t1, . . . , tn) is a term
– Nothing else is a term

Terms are by far the most frequent objects in a typical proof state!
 Term representation is critical!

Stephan Schulz 64

Representing Function Symbols and Variables

I Naive: Representing function symbols as strings: "f", "g", "add"

– May be ok for f , g, add
– Users write unordered pair, universal class, . . .

I Solution: Signature table

– Map each function symbol to unique small positive integer
– Represent function symbol by this integer
– Maintain table with meta-information for function symbols indexed by assigned

code

I Handling variables:

– Rename variables to {X1, X2, . . .}
– Represent Xi by �i
– Disjoint from function symbol codes!

From now on, assume this always done!

Stephan Schulz 65

Representing Terms

I Naive: Represent terms as strings "f(g(X), f(g(X),a))"

I More compact: "fgXfgXa"

– Seems to be very memory-e�cient!
– But: Inconvenient for manipulation!

I Terms as ordered trees

– Nodes are labeled with function symbols or variables
– Successor nodes are subterms
– Leaf nodes correspond to variables or constants
– Obvious approach, used in many systems!

Stephan Schulz 66

Abstract Term Trees

I Example term: f(g(X), f(g(X), a))

a

f

g

X

f

g

X

Stephan Schulz 67

LISP-Style Term Trees

a

f

g

X

f

g

X

g

I Argument lists are represented as linked lists

I Implemented e.g. in PCL tools for DISCOUNT and Waldmeister

Stephan Schulz 68

C/ASM Style Term Trees

0

f 2

g 1

X

f 2

g 1

X

a

I Argument lists are represented by arrays with length

I Implemented e.g. in DISCOUNT (as an evil hack)

Stephan Schulz 69

C/ASM Style Term Trees

X

f 2

f 2

a 0

g 1

X g 1

I In this version: Isomorphic subterms have isomorphic representation!

Stephan Schulz 70

Exercise: Term Datatype in E

I E’s basic term data type is defined in E/TERMS/cte_termtypes.h

– Which term representation does E use?

Stephan Schulz 71

Shared Terms (E)

01g

X Y Z

f 2

f 2

a

I Idea: Consider terms not as trees, but as DAGs

– Reuse identical parts
– Shared variable banks (trivial)
– Shared term banks maintained bottom-up

Stephan Schulz 72

Shared Terms

I Disadvantages:

– More complex
– Overhead for maintaining term bank
– Destructive changes must be avoided

I Direct Benefits:

– Saves between 80% and 99.99% of term nodes
– Consequence: We can a↵ord to store precomputed values
⇤ Term weight
⇤ Rewrite status (see below)
⇤ Groundness flag
⇤ . . .

– Term identity: One pointer comparison!

Stephan Schulz 73

Literal Datatype

I See E/CLAUSES/ccl_eqn.h

I Equations are basically pairs of terms with some properties

/* Basic data structure for rules, equations, literals. Terms are
always assumed to be shared and need to be manipulated while taking
care about references! */

typedef struct eqncell
{

EqnProperties properties;/* Positive, maximal, equational */
Term_p lterm;
Term_p rterm;
int pos;
TB_p bank; /* Terms are from this bank */
struct eqncell *next; /* For lists of equations */

}EqnCell, *Eqn_p, **EqnRef;

Stephan Schulz 74

Clause Datatype

I See E/CLAUSES/ccl_clause.h

I Clauses are containers with Meta-information and literal lists

typedef struct clause_cell
{

long ident; /* Hopefully unique ident for
all clauses created during
proof run */
SysDate date; /* ...at which this clause

became a demodulator */
Eqn_p literals; /* List of literals */
short neg_lit_no; /* Negative literals */
short pos_lit_no; /* Positive literals */
long weight; /* ClauseStandardWeight()

precomputed at some points in
the program */
Eval_p evaluations; /* List of evauations */

Stephan Schulz 75

ClauseProperties properties; /* Anything we want to note at
the clause? */
...

struct clausesetcell* set; /* Is the clause in a set? */
struct clause_cell* pred; /* For clause sets = doubly */
struct clause_cell* succ; /* linked lists */

}ClauseCell, *Clause_p;

Stephan Schulz 76

Summary Day 1

I First-order logic with equality

I Superposition calculus

– Generating inferences (”Superposition rule”)
– Rewriting
– Subsumption

I Proof procedure

– Basic given-clause algorithm
– DISCOUNT Loop

I Software architecture

– Low-level components
– Logical datetypes

Stephan Schulz 77

Literature Online

I My papers are at http://www4.informatik.tu-muenchen.de/~schulz/
bibliography.html

I The Workshop versions of Bernd Löchners LPO/KBO papers [Löc06, L0̈6] are
published in the ”Empricially Successful” series of Workshops. Proceedings are
at http://www.eprover.org/EVENTS/es_series.html

– ”Things to know when implementing LPO”: Proceedings of Empirically
Successful First Order Reasoning (2004)

– ”Things to know when implementing KPO”: Proceedings of Empirically
Successful Classical Automated Reasoning (2005)

I Technical Report version of [BG94]:

– http://domino.mpi-inf.mpg.de/internet/reports.nsf/
c125634c000710d4c12560410043ec01/
c2de67aa270295ddc12560400038fcc3!OpenDocument

– . . . or Google ”Bachmair Ganzinger 91-208”

Stephan Schulz 78

http://www4.informatik.tu-muenchen.de/~schulz/bibliography.html
http://www4.informatik.tu-muenchen.de/~schulz/bibliography.html
http://www.eprover.org/EVENTS/es_series.html
http://domino.mpi-inf.mpg.de/internet/reports.nsf/
c125634c000710d4c12560410043ec01/
c2de67aa270295ddc12560400038fcc3!OpenDocument

”LUSK6” Example
Problem: In a ring, if x*x*x = x for all x
in the ring, then
x*y = y*x for all x,y in the ring.
#
Functions: f : Multiplikation *
J : Addition +
g : Inverses
e : Neutrales Element
a,b : Konstanten

j (0,X) = X. # 0 ist a left identity for sum
j (X,0) = X. # 0 ist a right identity for sum
j (g (X),X) = 0. # there exists a left inverse for sum
j (X,g (X)) = 0. # there exists a right inverse for sum
j (j (X,Y),Z) = j (X,j (Y,Z)). # associativity of addition
j (X,Y) = j(Y,X). # commutativity of addition
f (f (X,Y),Z) = f (X,f (Y,Z)). # associativity of multiplication
f (X,j (Y,Z)) = j (f (X,Y),f (X,Z)). # distributivity axioms
f (j (X,Y),Z) = j (f (X,Z),f (Y,Z)). #
f (f(X,X),X) = X. # special hypothese: x*x*x = x

f (a,b) != f (b,a). # (Skolemized) theorem

Stephan Schulz 79

LUSK6 in TPTP-3 syntax

cnf(j_neutral_left, axiom, j(0,X) = X).
cnf(j_neutral_right, axiom, j(X,0) = X).
cnf(j_inverse_left, axiom, j(g(X),X) = 0).
cnf(j_inverse_right, axiom, j(X,g(X)) = 0).
cnf(j_commutes, axiom, j(X,Y) = j(Y,X)).
cnf(j_associates, axiom, j(j(X,Y),Z) = j(X,j(Y,Z))).
cnf(f_associates, axiom, f(f(X,Y),Z) = f(X,f(Y,Z))).
cnf(f_distributes_left, axiom, f(X,j(Y,Z)) = j(f(X,Y),f(X,Z))).
cnf(f_distributes_right, axiom, f(j(X,Y),Z) = j(f(X,Z),f(Y,Z))).
cnf(x_cubedequals_x, axiom, f(f(X,X),X) = X).

fof(mult_commutes,conjecture,![X,Y]:(f(X,Y) = f(Y,X))).

Stephan Schulz 80

Layered Architecture

Operating System (Posix)

Language API/Libraries

Generic data types

Logical data types

Clausifier
Index-

ing
Heu-
ristics

Control

Infer-
ences

Stephan Schulz 81

E�cient Rewriting

I Problem:

– Given term t, equations E = {l1 ' r1 . . . ln ' rn}
– Find normal form of t w.r.t. E

I Bottlenecks:

– Find applicable equations
– Check ordering constraint (�(l) > �(r))

I Solutions in E:

– Cached rewriting (normal form date, pointer)
– Perfect discrimination tree indexing with age/size constraints

Stephan Schulz 82

Shared Terms and Cached Rewriting

I Shared terms can be long-term persistent!

I Shared terms can a↵ord to store more information per term node!

I Hence: Store rewrite information

– Pointer to resulting term
– Age of youngest equation with respect to which term is in normal form

I Terms are at most rewritten once!

I Search for matching rewrite rule can exclude old equations!

Stephan Schulz 83

Indexing

I Quickly find inference partners in large search states

– Replace linear search with index access
– Especially valuable for simplifying inferences

I More concretely (or more abstractly?):

– Given a set of terms or clauses S
– and a query term or query clause
– and a retrieval relation R
– Build a data structure to e�ciently find (all) terms or clauses t from S such

that R(t, S) (the retrieval relation holds)

Stephan Schulz 84

Introductory Example: Text Indexing

I Problem: Given a set D of text documents, find all documents that contain a
certain word w

I Obviously correct implementation:

result = {}
for doc in D

for word in doc
if w == word

result = result [{ doc }
break;

return result

I Now think of Google. . .

– Obvious approach (linear scan through documents) breaks down for large D
– Instead: Precompiled Index I : words! documents
– Requirement: I e�ciently computable for large number of words!

Stephan Schulz 85

The Trie Data Structure

I Definition: Let ⌃ be a finite alphabet and ⌃⇤ the set of all words over ⌃

– We write |w| for the length of w
– If u, v 2 ⌃⇤, w = uv is the word with prefix u

I A trie is a finite tree whose edges are labelled with letters from ⌃

– A node represents a set of words with a common prefix (defined by the labels
on the path from the root to the node)

– A leaf represents a single word
– The whole trie represents the set of words at its leaves
– Dually, for each set of words S (such that no word is the prefix of another),

there is a unique trie T

I Fact: Finding the leaf representing w in T (if any) can be done in O(|w|)

– This is independent of the size of S!
– Inserting and deleting of elements is just as fast

Stephan Schulz 86

Trie Example

I Consider ⌃ = {a, b, ..., z} and S = {car, cab, bus, boat}

I The trie for S is:

b

r

ac

b

o
a t

u
s

I Tries can be built incrementally

I We can store extra infomation at nodes/leaves

– E.g. all documents in which boat occurs
– Retrieving this information is fast and simple

Stephan Schulz 87

Indexing Techniques for Theorem Provers

I Term Indexing standard technique for high performance theorem provers

– Preprocess term sets into index
– Return terms in a certain relation to a query term
⇤ Matches query term (find generalizations)
⇤ Matched by query term (find specializations)

I Perfect indexing:

– Returns exactly the desired set of terms
– May even return substitution

I Non-perfect indexing:

– Returns candidates (superset of desired terms)
– Separate test if candiate is solution

Stephan Schulz 88

Frequent Operations

I Let S be a set of clauses

I Given term t, find an applicable rewrite rule in S

– Forward rewriting
– Reduced to: Given t, find l ' r 2 S such that l� = t for some �
– Find generalizations

I Given l! r, find all rewritable clauses in S

– Backward rewriting
– Reduced to: Given l, find t such that C|p� = l
– Find instances

I Given C, find a subsuming clause in S

– Forward subsumption
– Not easily reduced. . .
– Backward subsumption analoguous

Stephan Schulz 89

Classification of Indexing Techniques

I Perfect indexing

– The index returns exactly the elements that fullfil the retrieval condition
– Examples:
⇤ Perfect discrimination trees
⇤ Substitution trees
⇤ Context trees

I Non-perfect indexing:

– The index returns a superset of the elements that fullfil the retrieval condition
– Retrieval condition has to be verified
– Examples:
⇤ (Non-perfect) discrimination trees
⇤ (Non-perfect) Path indexing
⇤ Top-symbol hashing
⇤ Feature vector-indexing

Stephan Schulz 90

The Given Clause Algorithm

U : Unprocessed (passive) clauses (initially Specification)
P : Processed (active) clauses (initially: empty)

while U 6= {}
g = delete best(U)
g = simplify(g,P)
if g == ⇤

SUCCESS, Proof found
if g is not redundant w.r.t. P

T = {c 2 P |c redundant or simplifiable w.r.t. g}
P = (P\T) [{g}
T = T[generate(g, P)
foreach c 2 T

c =cheap simplify(c, P)
if c is not trivial

U = U [{c}
SUCCESS, original U is satisfiable

Typically, |U | ⇠ |P |2 and |U | ⇡
P

|T |

Stephan Schulz 91

The Given Clause Algorithm

U : Unprocessed (passive) clauses (initially Specification)
P : Processed (active) clauses (initially: empty)

while U 6= {}
g = delete best(U)
g = simplify(g,P)
if g == ⇤

SUCCESS, Proof found
if g is not redundant w.r.t. P

T = {c 2 P |c redundant or simplifiable w.r.t. g}
P = (P\T) [{g}
T = T[generate(g, P)
foreach c 2 T

c =cheap simplify(c, P)
if c is not trivial

U = U [{c}
SUCCESS, original U is satisfiable

Simplification of new clauses is bottleneck

Stephan Schulz 92

Sequential Search for Forward Rewriting

I Given t, find l ' r 2 S such that l� = t for some �

I Naive implementation (e.g. DISCOUNT):

function find matching rule(t, S)
for l ' r 2 S

� = match(l, t)
if � and l� > r�

return (�, l ' r)

I Remark: We assume that for unorientable l ' r, both l ' r and r ' l are in S

Stephan Schulz 93

Conventional Matching
match(s,t)

return match list([s], [t], {})
match list(ls, lt, �)

while ls 6= []
s = head(ls)
t = head(lt)
if s == X 2 V

if X t0 2 �
if t 6= t0 return FAIL

else
� = � [{X t}

else if t == X 2 V return FAIL
else

let s = f(s1, . . . , sn)
let t = g(t1, . . . , tm)
if f 6= g return FAIL /* Otherwise n = m! */

ls = append(tail(ls), [s1, . . . sn]
lt = append(tail(lt), [t1, . . . tm])

return �

Stephan Schulz 94

The Size of the Problem

I Example LUSK6:

– Run time with E on 1GHz Powerbook: 1.7 seconds
– Final size of P : 265 clauses (processed: 1542)
– Final size of U : 26154 clauses
– Approximately 150,000 successful rewrite steps
– Naive implementation: ⇡ 50-150 times more match attempts!
– ⇡ 100 machine instructions/match attempt

I Hard examples:

– Several hours on 3+GHz machines
– Billions of rewrite attempts

I Naive implementations don’t cut it!

Stephan Schulz 95

Top Symbol Hashing

I Simple, non-perfect indexing method for (forward-) rewriting

I Idea: If t = f(t1, . . . , tn) (n � 0), then any s that matches t has to start with f

– top(t) = f is called the top symbol of t

I Implementation:

– Organize S = [Sf with Sf = {l ' r 2 S|top(l) = f}
– For non-variable query term t, test only rewrite rules from S

top(t)

I E�ciency depends on problem composition

– Few function symbols: Little improvement
– Large signatures: Huge gain
– Typically: Speed-up factor 5-15 for matching

Stephan Schulz 96

String Terms and Flat Terms

I Terms are (conceptually) ordered trees

– Recursive data structure
– But: Conventional matching always does left-right traversal
– Many other operations do likewise

I Alternative representation: String terms

– f(X, g(a, b)) already is a string. . .
– If arity of function symbols is fixed, we can drop braces: fXgab
– Left-right iteration is much faster (and simpler) for string terms

I Flat terms: Like string terms, but with term end pointers

bf X g a

– Allows fast jumping over subterms for matching

Stephan Schulz 97

Perfect discrimination tree indexing

I Generalization of top symbol hashing

I Idea: Share common prefixes of terms in string representation

– Represent terms as strings
– Store string terms (left hand sides of rules) in trie (perfect discrimination tree)
– Recursively traverse trie to find matching terms for a query:
⇤ At each node, follow all compatible vertices in turn
⇤ If following a variable branch, add binding for variable
⇤ If no valid possibility, backtrack to last open choice point
⇤ If leaf is reached, report match

I Currently most frequently used indexing technique

– E (rewriting, unit subsumption)
– Vampire (rewriting, unit- and non-unit subsumption (as code trees))
– Waldmeister (rewriting, unit subsumption, paramodulation)
– Gandalf (rewriting, subsumption)
– . . .

Stephan Schulz 98

Example

I Consider S = {(1)f(a,X) ' a, (2)f(b, X) ' X,
(3)g(f(X, X)) ' f(Y, X), (4)g(f(X, Y)) ' g(X)}

– String representation of left hand sides: faX, fbX, gfXX, gfXY

– Corresponding trie:

b

(1)

(2)

X

f X

g
X

(4)

(3)

Y

X

f

a

Find matching rule for g(f(a, g(b)))

Stephan Schulz 99

Example Continued

b

(1)

(2)

X

f X

g
X

(4)

(3)

Y

X

f

a

I Start with g(f(a, g(b))), root node, � = {}

g(f(a, g(b))) Follow g vertex
g(f(a, g(b))) Follow f vertex
g(f(a, g(b))) Follow X vertex, � = {X a}, jump over a
g(f(a, g(b)))

– Follow X vertex - Conflict! X already bound to a
– Follow Y , � = {X a, Y g(b)}, jump over g(b) Rule 4 matches

Stephan Schulz 100

Subsumption Indexing

I Subsumption: Important simplification technique for first-order reasoning

– Drop less general (redundant) clauses
– Keep more general clause

I Problem: E�ciently detecting subsumed clauses

– Individual clause-clause subsumption is in NP
– Large number of subsumption relations must be tested

I Major Approach: Indexing

– Use precompiled data structures to e�ciently select
⇤ subsuming clauses (forward subsumption)
⇤ subsumes clause (backward subsumption)
from large (and fairly static) clause sets

I Usual: Di↵erent and complex indexing approaches for forward- and backward
subsumption

Stephan Schulz 101

Subsumption

I Idea: Only keep the most general clauses

– If one clause is subsumed by another, discard it

I Formally: A clause C subsumes C 0 if:

– There exists a substitution � such that C� ✓ C 0

– Note: In that case C |= C 0

– ✓ usually is the multi-subset relation

I Examples:

– p(X) subsumes p(a) _ q(f(X), a) (� = {X a})
– p(X) _ p(Y) does not multi-set-subsume p(a) _ q(f(X), a)
– q(X, Y) _ q(X, a) subsumes q(a, a) _ q(a, b)

I Subsumption is hard (NP-complete)

– n! permutations in non-equational clause with n literals
– n!2n permutations in equational clause with n literals

Stephan Schulz 102

Forward- and Backward Subsumption

I Assume a set of clauses P and a given clause p

I Forward subsumption: Is there any clause in P that subsumes g?

I Backward subsumption: Find/remove all clauses in P subsumed by g

I Notice that these are clause–clause set operations

I Naive implementation: Sequence of clause-clause operations

– Good implementation can speed up (average case) individual subsumption
– Number of attempts still very high

I Smarter: Avoid many of the subsumption calls up front

– Use indexing techniques to reduce number of candidates

Stephan Schulz 103

Feature Vector Indexing

I New clause indexing technique

– Not lifted from term indexing

I Advantages:

– Small index (memory footprint)
– Same index for forward- and backward subsumption
– Very simple
– E�cient in practice
– Variants for di↵erent subsumption relations

I Disadvantages:

– Non-perfect
– Requires fixed signature for optimal performance

How does it work?

Stephan Schulz 104

Properties of the Subsumption Relation

Definitions:

– Let C and C 0 be clauses
– C+ is the (multi-)set (a clause) of positive literals in C
– C� is the (multi-)set of negative literals in C
– |C|f is the number of occurences of (function or predicate) symbol f in C

Facts: If C subsumes C 0, then

– |C+| |C 0+|
– |C�| |C 0�|
– |C+|f |C 0+|f for all f
– |C�|f |C 0�|f for all f
– (Similar results exist for term depths)
– The same holds for all linear combination of these features

Remark: Composite critera are often used to detect subsumption failure early

– |C| |C 0| (C cannot have more literals than C 0)
–

P
f2F |C|f

P
f2F |C 0| (C cannot have more symbols than C 0)

Stephan Schulz 105

Feature Vectors

Definitions:

– A feature function f is a function from the set of clauses to N
– f is subsumption-compatible, if C subsumes C 0 implies f(C) f(C 0)
– A (subsumption-compatible) feature vector function F is a function from

the set of clauses to Nn such that ⇧i
n � F (the projection of F to the ith

component) is a subsumption-compatible feature function
– If v1 and v2 are feature vectors, we write v1 s v2, if v1[i] v2[i] for all i.

Fact:

– Assume F is a (subsumption-compatible) feature vector function
– Assume C subsumes C 0

– By construction, F (C) s F (C 0)

Basic Principle of Feature Vector Indexing:

– For forward-subsumption: candFSF (P, g) = {c 2 P |F (c) s F (g)}
– For backward-subsumption: candBSF (P, g) = {c 2 P |F (g) s F (c)}

Stephan Schulz 106

Feature Vector Indexing

I Aim: E�ciently compute candFSF (P, g) and candBSF (P, g)

I Solution: Frequency vectors for P are compiled into a trie, clauses are stored in
leaves

– Tree of depth n (number of features in vector)
– Nodes at depth d split according to feature F (C)[d] (one successor per value)
– All vectors with value F (C)[d] = k associated with corresponding subtree
– Construction continues recursively

I Example: Assume F (C) := h|C+|a, |C+|f , |C�|b|i

– Clause set P = {1,2,3,4 } with
1. F (p(a) _ p(f(a))) = h2, 1, 0i
2. F (p(a) _ ¬p(b)) = h1, 0, 1i
3. F (¬p(a) _ p(b)) = h0, 0, 0i
4. F (p(X) _ p(f(f(b)))) = h0, 2, 0i

– Query g = p(f(a))
⇤ F (g) = h1, 1, 0i

Stephan Schulz 107

Example Index

1. F (p(a) _ p(f(a))) = h2, 1, 0i
2. F (p(a) _ ¬p(b)) = h1, 0, 1i
3. F (¬p(a) _ p(b)) = h0, 0, 0i
4. F (p(X) _ p(f(f(b)))) = h0, 2, 0i

0

{3}

{1,2,3,4}

{3,4}

{2}

{1}

{2} {2}

{1} {1}

{4} {4}
0

1

2

0

2

1

0

0

0

1

{3}

Stephan Schulz 108

Example: Backward Subsumption

I Algorithm: At each node, only follow branches with larger or equal feature values

{2}

{3}

{1,2,3,4}

{3,4}

{2}

{4} {4}
0

1

0

2

0

0

1

2

1 0
{1} {1} {1}

1 1 0Query:

{2}
0

{3}

I Result: Just one subsumption candidate for p(f(a))

Stephan Schulz 109

Performance 1

I Tested on 5180 examples from TPTP 2.5.1

– Subsumption-heavy search strategy (contextual literal cutting)
– Max. 75 features, 300MHz SUN Ultra 60, 300s time limit

I Speedup ca. 40%, overhead usually insignificant, 2717 vs. 2671 solutions found

Stephan Schulz 110

Performance 2

I Number of subsumption attempts (notice double log scale)

I Average reduction: 1 : 60, max: 1 : 8000(1 :1)

Stephan Schulz 111

Literature on Indexing

I Overview: [Gra95, SRV01]

I Classic paper: [McC92]

I Comparisons (for rewriting): [NHRV01]

I Feature vector indexing: [Sch04a]

Stephan Schulz 112

Excercise: Unification

I E’s unification code is SubstComputeMgu() in E/TERMS/cte_match_mgu_1-1.[hc]

– Read and understand the code
– Unification is broken down into subtassk
– Subtasks are stored in a particular order
– Why? Experiment with di↵erent orders!

Stephan Schulz 113

Layered Architecture

Operating System (Posix)

Language API/Libraries

Generic data types

Logical data types

Clausifier
Index-

ing
Heu-
ristics

Control

Infer-
ences

Stephan Schulz 114

Don’t-care-Nondeterminism ⌘ Chances for Heuristics

I Important choice points for E:

– Simplification ordering
– Clause selection
– Literal selection

I Other choice points:

– Choice of rewrite relation (usually strongest, don’t care which normal form)
– Application of rewrite relation to terms (leftmost-innermost, strongly suggested

by shared terms)

Stephan Schulz 115

Simplification Orderings

I Implemented: Knuth-Bendix-Orderings, Lexicographic Path Orderings

I Precedence: Fully user defined or simple algorithms

– Sorted by arity (higher arity ! larger)
– Sorted by arity, but unary first
– Sorted by inverse arity
– Sorted by frequency of appearance in axioms
– . . .

I Weights for KBO: Similar simple algorithms (constant weights (optionally weight
0 for maximal symbol), arity, position in precedence . . .)

I No good automatic selection of orderings yet – auto mode switches between two
simple KBO schemes

Stephan Schulz 116

Clause selection

I Most important choice point (?)

I Probably also hardest chocice (find best clause among millions)

I Implementation in E: Multiple priority queues sorted by heuristic evaluation and
strategy-defined priority

I Selection in weighted round-robin-scheme (generalizes pick-given ratio)

I Example: 8*Refinedweight(PreferGoals,1,2,2,3,0.8),
8*Refinedweight(PreferNonGoals,2,1,2,3,0.8),
1*Clauseweight(ConstPrio,1,1,0.7),
1*FIFOWeight(ByNegLitDist)

I Big win: Goal directed search

– Symbols in the goal have low (=good) weights
– Other symbols have increasingly large weight based on linking distance

Stephan Schulz 117

Literal Selection

I Problem: Which literals should be selected for inferences in a clause?

I Ideas:

– Select hard literals first (if we cannot solve this, the clause is useless)
– Select small literals (fewer possible overlaps)
– Select ground literals (no instantiation, most unit-overlaps eleminated by

rewriting)
– Propagate inference literals to children clauses (inheritance)

I Problem: Should we always select literals if possible?

– Only select if no unique maximal literal exists
– Do not select in conditional rewrite rules

I Surprisingly successful: Additional selection of maximal positive literals

I See E source code for large number of things we have tried. . .

Stephan Schulz 118

Literature on other Systems

I Real (saturating) provers: [LH02, RV02, Sch02, Wei01, WSH+07, Sti92, Sti89,
LS01b]

I Significant alternative approaches:

– DCTP [SL01, LS01a, LS02],
– Model elimination: SETHEO [LSBB92, MIL+97], leanCOP [OB03, Ott08]
– Instantiation-Based Reasoning: iProver: [Kor08, Kor09]
– Model Evolution: Darwin [BFT06]

Stephan Schulz 119

References

[BDP89] L. Bachmair, N. Dershowitz, and D.A. Plaisted. Completion Without
Failure. In H. Ait-Kaci and M. Nivat, editors,

, volume 2, pages 1–30. Academic Press, 1989.

[BFT06] Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli. Implementing
the Model Evolution Calculus.

, 15(1):21–52, 2006.

[BG90] L. Bachmair and H. Ganzinger. On Restrictions of Ordered
Paramodulation with Simplification. In M.E. Stickel, editor,

, volume 449 of , pages 427—441.
Springer, 1990.

[BG94] L. Bachmair and H. Ganzinger. Rewrite-Based Equational Theorem
Proving with Selection and Simplification.

, 3(4):217–247, 1994.

[BG98] L. Bachmair and H. Ganzinger. Equational Reasoning in Saturation-
Based Theorem Proving. In W. Bibel and P.H. Schmitt, editors,

Stephan Schulz 120

, volume 9 (1) of
, chapter 11, pages 353–397. Kluwer Academic Publishers,

1998.

[BH96] A. Buch and Th. Hillenbrand. Waldmeister: Development of a high
performance completion-based theorem prover. SEKI-Report SR-96-01,
Fachbereich Informatik, Universität Kaiserslautern, 1996. Available at
http://agent.informatik.uni-kl.de/waldmeister/.

[DP60] M. Davis and H. Putnam. A Computing Procedure for Quantification
Theory. , 7(1):215–215, 1960.

[E.S08] Mark E.Stickel. SNARK - SRI’s New Automated Reasoning Kit. http:
//www.ai.sri.com/~stickel/snark.html, 2008. (acccessed 2009-
10-04).

[GHLS03] J.M. Gaillourdet, Th. Hillenbrand, B. Löchner, and H. Spies. The New
Waldmeister Loop At Work. In F. Bader, editor,

, volume 2741 of , pages 317–321. Springer, 2003.

[Gra95] P. Graf. , volume 1053 of . Springer, 1995.

Stephan Schulz 121

http://agent.informatik.uni-kl.de/waldmeister/
http://www.ai.sri.com/~stickel/snark.html
http://www.ai.sri.com/~stickel/snark.html

[HR87] J. Hsiang and M. Rusinowitch. On Word Problems in Equational
Theories. In , volume 267 of ,
pages 54–71. Springer, 1987.

[KB70] D.E. Knuth and P.B. Bendix. Simple Word Problems in Universal
Algebras. In J. Leech, editor, , pages 263–297.
Pergamon Press, 1970.

[Kor08] Konstantin Korovin. iProver - An Instantiation-Based Theorem
Prover for First-Order Logic (System Description). In A. Armando,
P. Baumgartner, and G. Dowek, editors, ,
volume 5195 of , pages 292–298. Springer, 2008.

[Kor09] Konstantin Korovin. An Invitation to Instantiation-Based Reasoning:
From Theory to Practice. In ,
LNCS. Springer, 2009. (to appear).

[L0̈6] Bernd Löchner. Things to Know when Implementing KBO.
, 36(4):289–310, 2006.

Stephan Schulz 122

[LH02] B. Löchner and Th. Hillenbrand. A Phytography of Waldmeister.
, 15(2/3):127–133, 2002.

[Löc06] Bernd Löchner. Things to Know When Implementing LPO.
, 15(1):53–80, 2006.

[Lov68] D.W. Loveland. Mechanical Theorem Proving by Model Elimination.
, 15(2), 1968.

[Lov78] D.W. Loveland. . North
Holland, Amsterdam, 1978.

[LS01a] R. Letz and G. Stenz. Proof and Model Generation with Disconnection
Tableaux. In R. Nieuwenhuis and A. Voronkov, editors,

, volume 2250 of , pages 142–156. Springer, 2001.

[LS01b] Reinhold Letz and Gernot Stenz. Model Elimination and Connection
Tableau Procedures. In A. Robinson and A. Voronkov, editors,

, volume II, chapter 28, pages 2015–2112. Elsevier
Science and MIT Press, 2001.

Stephan Schulz 123

[LS02] Reinhold Letz and Gernot Stenz. Integration of Equality Reasoning
into the Disconnection Calculus. In Uwe Egly and Christian Fermüller,
editors, , LNAI, pages
176–190. Springer, 2002.

[LSBB92] R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A
High-Performance Theorem Prover. ,
1(8):183–212, 1992.

[McC92] W.W. McCune. Experiments with Discrimination-Tree Indexing and
Path Indexing for Term Retrieval. ,
9(2):147–167, 1992.

[McC08] William W. McCune. Prover9 and Mace4. http://www.cs.unm.edu/
~mccune/prover9/, 2008. (acccessed 2009-10-04).

[MIL+97] M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann, and
K. Mayr. SETHEO and E-SETHEO – The CADE-13 Systems.

, 18(2):237–246, 1997. Special Issue on the
CADE 13 ATP System Competition.

Stephan Schulz 124

http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/

[MW97] W.W. McCune and L. Wos. Otter: The CADE-13 Competition
Incarnations. , 18(2):211–220, 1997.
Special Issue on the CADE 13 ATP System Competition.

[NHRV01] R. Nieuwenhuis, Th. Hillenbrand, A. Riazanov, and A. Voronkov. On
the Evaluation of Indexing Techniques for Theorem Proving. In R. Goré,
A. Leitsch, and T. Nipkow, editors, , volume
2083 of , pages 257–271. Springer, 2001.

[NR92] R. Nieuwenhuis and A. Rubio. Theorem Proving with Ordering
Constrained Clauses. In D. Kapur, editor,

, volume 607 of , pages 477–491. Springer, 1992.

[NR01] R. Nieuwenhuis and A. Rubio. Paramodulation-Based Theorem Proving.
In A. Robinson and A. Voronkov, editors,

, volume I, chapter 7, pages 371–443. Elsevier Science and
MIT Press, 2001.

[NRV97] Robert Nieuwenhuis, José Miguel Rivero, and Miguel Ángel Vallejo.
Dedam: A Kernel of Data Structures and Algorithms for Automated

Stephan Schulz 125

Deduction with Equality Clauses. In W.W. McCune, editor,
, volume 1249 of , pages 49–52. Springer,

1997. Full version at http://http://www.lsi.upc.es/~roberto/
refs/cade1997.html.

[NW01] A. Nonnengart and C. Weidenbach. Computing Small Clause Normal
Forms. In A. Robinson and A. Voronkov, editors,

, volume I, chapter 5, pages 335–367. Elsevier Science and
MIT Press, 2001.

[OB03] Jens Otten and Wolfgang Bibel. leanCoP: Lean Connection-Based
Theorem Proving,. , 36:139–161, 2003.

[Ott08] Jens Otten. leanCoP 2.0 and ileanCoP 1.2: High Performance Lean
Theorem Proving in Classical and Intuitionistic Logic. In A. Armando,
P. Baumgartner, and G. Dowek, editors, ,
volume 5195 of , pages 283–291. Springer, 2008.

[Pug90] William Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees.
, 33(6):668–676, 1990. ftp://ftp.cs.

umd.edu/pub/skipLists/.

Stephan Schulz 126

http://http://www.lsi.upc.es/~roberto/refs/cade1997.html
http://http://www.lsi.upc.es/~roberto/refs/cade1997.html
ftp://ftp.cs.umd.edu/pub/skipLists/
ftp://ftp.cs.umd.edu/pub/skipLists/

[Rob65] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution
Principle. , 12(1):23–41, 1965.

[RV01] A. Riazanov and A. Voronkov. Splitting without Backtracking. In
B. Nebel, editor,

, volume 1, pages 611–617.
Morgan Kaufmann, 2001.

[RV02] A. Riazanov and A. Voronkov. The Design and Implementation of
VAMPIRE. , 15(2/3):91–110, 2002.

[RV03] A. Riazanov and A. Voronkov. Limited resource strategy in resolution
theorem proving. , 36(1–2):101–115,
2003.

[RW69] G. Robinson and L. Wos. Paramodulation and Theorem Proving in
First-Order Theories with Equality. In B. Meltzer and D. Michie,
editors, . Edinburgh University Press, 1969.

[Sch99] S. Schulz. System Abstract: E 0.3. In H. Ganzinger, editor,

Stephan Schulz 127

, volume 1632 of , pages 297–391. Springer,
1999.

[Sch02] S. Schulz. E – A Brainiac Theorem Prover.
, 15(2/3):111–126, 2002.

[Sch04a] S. Schulz. Simple and E�cient Clause Subsumption with Feature Vector
Indexing. In G. Sutcli↵e, S. Schulz, and T. Tammet, editors,

, 2004.

[Sch04b] S. Schulz. System Description: E 0.81. In D. Basin and M. Rusinowitch,
editors, , volume 3097 of ,
pages 223–228. Springer, 2004.

[Sch09] S. Schulz. . http:
//www.eprover.org, 2009. (available with the E source distribution).

[SL01] G. Stenz and R. Letz. DCTP – A Disconnection Calculus Theorem
Prover – System Abstract. In R. Goré, A. Leitsch, and T. Nipkow,

Stephan Schulz 128

http://www.eprover.org
http://www.eprover.org

editors, , volume 2083 of , pages
381–385. Springer, 2001.

[SRV01] R. Sekar, I.V. Ramakrishnan, and A. Voronkov. Term Indexing.
In A. Robinson and A. Voronkov, editors,

, volume II, chapter 26, pages 1853–1961. Elsevier Science
and MIT Press, 2001.

[SSCG06] Geo↵ Sutcli↵e, Stephan Schulz, Koen Claessen, and Allen Van
Gelder. Using the TPTP Language for Writing Derivations and Finite
Interpretations . In Ulrich Fuhrbach and Natarajan Shankar, editors,

, volume 4130 of , pages 67–81,
4130, 2006. Springer.

[ST85] D.D. Sleator and R.E. Tarjan. Self-Adjusting Binary Search Trees.
, 32(3):652–686, 1985.

[Sti89] Mark E. Stickel. A Prolog technology theorem prover: A new exposition
and implementation in Prolog. Technical Note 464, Artificial Intelligence
Center, SRI International, Menlo Park, California, June 1989.

Stephan Schulz 129

[Sti92] Mark E. Stickel. A Prolog technology theorem prover: A new
exposition and implementation in Prolog. ,
104(1):109–128, 1992.

[Sut09] G. Sutcli↵e. The TPTP Web Site. http://www.tptp.org, 2004–2009.
(acccessed 2009-09-28).

[Tam97] T. Tammet. Gandalf. , 18(2):199–204,
1997. Special Issue on the CADE 13 ATP System Competition.

[Vor95] A. Voronkov. The Anatomy of Vampire: Implementing Bottom-
Up Procedures with Code Trees. ,
15(2):238–265, 1995.

[Wei01] C. Weidenbach. SPASS: Combining Superposition, Sorts and Splitting.
In A. Robinson and A. Voronkov, editors,

, volume II, chapter 27, pages 1965–2013. Elsevier Science
and MIT Press, 2001.

[WGR96] C. Weidenbach, B. Gaede, and G. Rock. SPASS & FLOTTER Version
0.42. In M.A. McRobbie and J.K. Slaney, editors,

Stephan Schulz 130

http://www.tptp.org

, volume 1104 of , pages 141–145. Springer,
1996.

[WSH+07] Christoph Weidenbach, Renate Schmidt, Thomas Hillenbrand, Dalibor
Topić, and Rostislav Rusev. SPASS Version 3.0. In Frank Pfenning,
editor, , volume 4603 of , pages
514–520. Springer, 2007.

Stephan Schulz 131

