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Abstract

Eager maintenance of invariants is often the first approach to implement high-perfor-
mance data structures. We present a number of examples from the evolving implementation
of the theorem prover E to demonstrate that a more relaxed, lazy implementation can
have advantages for simplicity, performance, or both. Existing examples include shared
rewriting, term cell garbage collection, and orphan removal, additional optimisations are
identified for term index maintenance and clause selection.

1 Introduction

Most high-performance automated theorem provers are large, complex programs, utilizing ef-
ficient data structures and tight programming. In our experience, many implementations use
eager techniques, i.e. the programmer tries to immediately resolve all implications of an action
and restore the strongest possible invariants on the affected data structures. Examples from
the history of E [5, 8] are eager shared rewriting, eager term cell garbage collection, and eager
orphan removal. Over time, we have found that a more relaxed, lazy approach can result in
simpler, easier to maintain, less brittle, and often even more efficient code. In this paper, we
discuss the basic principle, the examples mentioned above, and possible future applications of
the same lazy paradigm within E.

E is a saturating theorem prover for first-order logic with equality1. It is based on the su-
perposition calculus with rewriting (also known as demodulation) and subsumption. The most
challenging part is the implementation of the actual given-clause loop, which saturates a set of
clauses. E implements the DISCOUNT version of the loop. This is based on a strict separa-
tion of clauses into a set of processed clauses (between which both generating and simplifying
inferences have been performed), and a set of unprocessed clauses, which may be partially sim-
plified, but have not yet been used for generating inferences. The algorithm heuristically picks
an unprocessed clause, normalises it with respect to the processed clauses, back-simplifies the
processed clauses with this given clause, and then performs generating inferences between the
given clause and the processed clauses. The resulting new clauses are simplified with respect

1The latest versions also support higher-order logic, but this is not a significant difference for our discussion.
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to the processed clauses, and are added to the set of unprocessed clauses. The given clause
is added to the set of processed clauses. The process terminates when the system runs out of
unprocessed clauses, or when it generates the empty clause as the explicit witness of a proof by
contradiction.

Some of the critical aspects of the implementation are listed below:

• The set of clauses and in particular of terms in these clauses grows very fast. Historically,
running out of memory was a major problem. Modern provers often use shared terms to
reduce the memory burden - depending on the problem type, this can reduce the number
of term cells stored by a factor ranging from 5 (for typical unit-equational problems) to
beyond 50000 (for some large non-Horn problems).

• The most important simplification techniques are rewriting by unit equations and sub-
sumption. In both cases, we need to efficiently find clauses that can simplify a particular
clause, or can be simplified by it. Most high-performance provers use one or more indexing
techniques for this [4, 10].

• The set of unprocessed clauses will quickly grow very large, and typically dominates
memory usage. The prover still needs to pick heuristically promising clauses from it,
usually based on more than one criterion.

In the following we will look at some of these aspects and how lazy programming can lead
to simpler, clearer and even more efficient implementations.

2 Tales from the Great War

First, we discuss situations in which the change from an eager to a lazy solution has already
helped us to produce simpler, cleaner code.

2.1 Shared Rewriting

E was originally developed with the idea of not only shared terms, but also shared rewriting.
A rewrite performed once would affect all occurrences of that particular subterm in all clauses.
This was achieved by term cells carrying pointers not only to subterms, but also to super-terms
(and to occurrences in clauses). Changes were propagated through the shared term structure.
Implementation of this scheme was, to say the least, painful in the extreme. But of course, we
expected a big payoff. However, when we compare E’s shared rewriting to Waldmeister’s [1]
plain rewriting, we found not only that Waldmeister was about 5 times faster (which we ex-
pected, due to tighter coding of the more specialised system), but also that this advantage was
more or less constant and independent of the effective sharing factor in E [2]. Analysis showed
that management of the superterm pointers incurs about the same amount of extra effort (in
the Big-Θ sense) than repeated rewriting.

We then (for release 0.71, released in late 2002) moved to shared terms with cached rewriting.
Instead of eagerly pushing changes to super-terms and clauses, we just add a rewrite link to the
affected subterm. Only when a term or clause is due to be simplified anyways do we check if
we can use such a previously established link instead of searching for suitable rewrite rules ab
initio. While we did not collect any comparative performance data back then, we can say that
this system is so much simpler to implement, maintain, and modify, that it is unquestionably
a much superior choice. It also enabled a number of subsequent simplifications of the code
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base. As an example, maximal terms in maximal positive literals can only be rewritten under
particular conditions. Thus, in the eager paradigm, we needed to separate them from other
terms. In the lazy paradigm, we don’t need to special-case these terms in the term bank, as
they are now only accessed via the clause objects, where their role is implicitly clear.

2.2 Garbage Collection

At the same time we moved from eager to cached shared rewriting, we also changed to a new kind
of garbage collection for the shared terms in E. Shared terms are organised in a term bank. The
original implementation used reference counting garbage collection, and would eagerly delete
terms with a reference count of zero (and then propagate this change to subterms). While
sound in principle, this required the system to explicitly free the reference whenever a clause
was changed or deleted - a task that quickly became tedious. It also required us to maintain a
reference counter in each term cell.

Our new implementation uses a mark-and-sweep garbage collector. Not only is this much
simpler, it also frees developers from explicitly freeing references. Moreover, if terms are recre-
ated during the proof search, there is a good chance that the old copy, including the cached
rewrite links, are still in the term bank and can be reused. All this makes handling terms much
easier, and has allowed us to maintain a zero-leak policy with respect to memory management.

In fact, working within the new paradigm was so convenient that we also re-implemented full
first-order formulas as terms (using pre-defined function symbols to represent logical operators).
This unification of terms and formulas was the basis of the successful extension of E to higher-
order logic [12, 13].

2.3 Orphan Removal

Orphans are unprocessed clauses that have been generated from parent clauses of which at
least one was later shown to be redundant. In the DISCOUNT loop, that automatically makes
the orphan redundant, too. Removing such redundant clauses significantly reduces the search
space and significantly speeds up the search process. In the first implementation of orphan
removal in E, every clause maintained a list of its children, and every child maintained pointers
to its parent clauses. When a (processed) clause was back-simplified or otherwise shown to
be redundant, it actively culled its dependent children (which, in turn, would inform potential
other parents of their early demise). The system worked reasonably well, but maintaining all
relations between parents and children became quite cumbersome.

When we started to record internal proof objects with E 1.8 [7, 9], all clauses which had
produced offspring had to be archived forever, anyways. Since the parent clauses never vanished,
we could move to a lazy orphan removal scheme: Only when an unprocessed clause was selected
for processing did we check the status of the parents. When one of them was marked as back-
simplified, we could discard the child and select the next unprocessed clause. For this, we
only need to link from the child to each parent - a link that is needed for proof reconstruction
anyways. But we could get rid of the links from parents to children, and the complex notification
system. Again, this resulted in a significant simplification in the complexity of the code.

3 Science Fiction

In this section we suggest some as yet unused opportunities we see to improve the system using
lazy patterns.
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3.1 Index Optimisation

The most central and first implemented index used by E is a perfect discrimination tree index [3]
used for forward rewriting. The tree indexes (potential) rewrite rules (i.e. equational unit
clauses) via their potential left hand sides (maximal terms). The query is a single term, the
index returns those of these left hand sides that match this query, and, of course, the associated
clauses. If a found unit clause is or can be oriented, it can be used to simplify the query term.
A discrimination tree basically represents a set of terms as a trie of its flat string representation,
i.e. it is a branching tree, where each subsequent function or variable symbol selects one subtree.
A full term is represented by the path from the root to a leaf node.

This is one of the standard index data structures for this purpose. However, E uses two
refinements: Size and age constraints. The first is based on the fact that instantiation can only
increase the (symbol counting) size of a term. In other words, a term can never be matched
by a bigger term. Thus, if we know the maximal size of any term at the leaves of a subtree,
and this size is greater than that of the query term, none of the indexed terms can match
(indeed, since we use perfect discrimination trees and perform variable bindings during the
query execution, we can even compute somewhat stronger dynamic constraints). In order to
use this feature, we must store the maximal size of all indexed subterms at the root of each
subtree. Currently, we use an eager algorithm that always maintains this value. When a new
term is inserted into a subtree, we check if that term’s size is bigger than the currently stored
value. If so, we update that value. When a term is deleted from the index, we check if its size
is the maximal size of terms in that subtree, and if so, we aggressively recompute the new value
from all the remaining terms (or branches in inner nodes). While this is easy, it also comes
at a certain cost. We believe that a lazy algorithm can make things simpler. We simply add
an invalid marker (e.g. -1) to the set of possible size values. When only dealing with valid
values, insertion works as before. When encountering an invalid node, we simply don’t update
the value. When deleting a maximal weight term from a subtree with a valid weight, we simply
replace the local weight by the invalid marker. Only when we encounter an invalid value during
a query do we recompute and set the correct value. The advantage is, of course, that we do
not recompute values not needed, in particular not if multiple deletions follow each other (or
are only interleaved with queries that do not touch invalid weight branches).

While we have explained the approach with perfect discrimination trees and size constraints,
it also translates to fingerprint indices [6] for back-simplification, and to other constraint types
(e.g. age constraints - a term in normal form with respect to the rewrite system at time t cannot
be rewritten by any older clause).

3.2 Clause Selection

Our last example is the selection of the next given clause - the central choice point of the
given-clause saturation procedure. For this, clauses are evaluated, and organised in a priority
queue. Clauses are processed in order of increasing heuristic weight. This should be a perfect
application for a min-heap. Insertion, the most frequent operation, is Θ(1). Moreover, empir-
ically new clauses skew heavy, so even the constants are small. Removing the smallest clause,
the less frequent operation, is still Θ(log n).

However, most provers support more than one of these queues, and pick from different ones
following a certain scheme. Indeed, E supports an arbitrary number of queues, from which
clauses are picked in weighted round-robin fashion. Removing an entry from an arbitrary posi-
tion in a min-heap is neither easy nor elegant, and naive implementations are Θ(n). Therefore,
the current implementation, which eagerly removes picked clauses from all queues, uses splay
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trees [11]. Splay trees are amortised Θ(log n) for insertion and deletion, thus making insertion
more expensive. They also have more memory overhead, since each evaluation needs two child
pointers, while heaps can be embedded in arrays without this overhead.

Here, we can once again use the lazy pattern - when we remove the best clause from any
queue, we simply mark the entry as obsolete. If we get an obsolete entry from a queue, we
discard it (thus lazily removing it from this queue, too), and request the next one. This enables
us to use the optimal performance of heaps with a simple and elegant algorithm, without ever
needing to actively remove a clause from an arbitrary position in the heap.

4 Conclusion

We have shown a number of actual and potential programming situations in the implementation
of automated theorem provers were moving from an eager to a lazy implementation can signif-
icantly reduce code complexity, and in several cases also lead to more efficient solutions. We
hope these ideas inspire other developers to keep the lazy implementation paradigm in mind.
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