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Prüfer der Dissertation:

1. Univ.-Prof. Dr. E. Jessen

2. Univ.-Prof. Dr. J. Avenhaus

Universität Kaiserslautern

Die Dissertation wurde am 11.11.1999 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 9.2.2000 angenommen.





Preface

Modern computer systems are very good at following exact rules correctly, without tiring,
and at amazing speed. However, there are problems for which this ability alone is not
sufficient. As an example, consider strategy games such as chess or checkers. While these
games are fully determined by the rules, novice players, even if they know these rules
perfectly, cannot expect to play an even adequate game. Only with the experience gained
from playing and studying different games does a player’s performance increase. The
same effect is visible with computer programs. Good chess programs do not rely on brute
force alone. Instead, the have large libraries of openings and endgames, and use complex
heuristic evaluation functions to guide the search for promising moves during midgame.
These libraries and heuristics encode the experience of chess players as well as those of the
programs’ developers.

Something very similar can be observed in the field of mathematics. Students learn
definitions and theorems. However, to apply this knowledge usefully, they also need to
study examples of mathematical reasoning, and need to practice this kind of reasoning
themselves. In fact, the non-formalized knowledge gained in this way is much more im-
portant than knowledge of the laws of any single mathematical structure. The equivalent
to a chess program in mathematics is an automated theorem prover. Theorem provers try
to show that a given formula is a logical consequence of a set of axioms. They are being
applied not only to purely mathematical problems, but also to more practical domains like
verification or linguistic analysis.

For most interesting logics, theorem provers have to search for a proof in an infinite
search space. This search is typically guided by a heuristic evaluation function that selects
the most promising of the different alternatives at every search state. The performance of
a prover critically dependends on the suitability of this guiding heuristics. Most existing
theorem provers implement a variety of different search heuristics. However, the selection
of a suitable heuristics, and even more the creation of new heuristics for a given domain,
is highly non-trivial, and typically requires significant work by an expert user. This is one
of the reasons why the practical applicability of theorem provers has been limited in the
past.

This thesis develops an approach to automate the task of creating suitable search
heuristics for different domains by learning from previous proof experiences. It covers all
aspects, from the generation of proof experiences and the suitable representation of search
control knowledge to the selection of suitable experiences and the learning of evaluations
for search decisions from these experiences. The implementation and evaluation of this
approach show the significant improvements that can be achieved in this way.

While the current work is primarily aimed at theorem proving in clausal logic with
equality, large parts of it can be similarly applied to other theorem provers and symbolic
reasoning systems, and some of the results are interesting for the general machine learning
community as well.

Munich, February 2000 Prof. Dr. Eike Jessen
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Abstract

Automated theorem provers for first order logic are increasingly being used in formal
mathematics or for verification tasks. For these applications, efficient treatment of the
equality relation is particularly important. Due to the special properties of the equality
relation, the proof search is particularly hard for problems containing equality, even if state
of the art calculi are used.

In this thesis we develop techniques to automatically learn good search heuristics to
control the proof search of a superposition-based theorem prover for clausal logic with
equality. We describe a variant of the superposition calculus and an efficient proof proce-
dure implementing this calculus. An analysis of the choice points of this algorithm shows
that the order in which new logical consequences are being processed by the prover is the
single most important decision during the proof search.

We develop methods to extract information about important good and bad search
decisions from existing proof searches. These search decisions are represented by signature-
independed annotated representative clause patterns, which represent all analogous search
decision by a single unique term. Annotations carry information about the role of the
seach decisions in different proof attempts.

To utilize the stored knowledge for a new proof attempt, experiences generated from
proof problems similar to the one at hand are extracted from the stored knowledge. The
selected proof experiences, represented by a set of patterns with associated evaluations,
are used as input for a new, hybrid learning algorithm which generates a term space map,
a structure that allows the evaluation of new potential search decisions.

We experimentally demonstrate the performance of different variants of the term space
mapping algorithm for artificial term classification problems as well as a siginificant gain
in performance for the learning theorem prover E/TSM compared to the variant using only
conventional search heuristics.
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Chapter 1

Introduction

Automated theorem proving (ATP) systems try to answer the question about the validity
of a given hypothesis under a set of axioms. For the most common case, both axioms and
hypothesis are expressed as formulae of (a subset of) first-order predicate logic, and the
answer to the question of semantic validity is searched for by syntactic manipulation of
these formulae.

The last few years have seen a steady increase in the use of automated theorem provers
in research and development. Theorem provers like Otter [McC94, MW97a], DISCOUNT
[ADF95, DKS97], SPASS [WGR96, WAB+99] and SETHEO [LSBB92, MIL+97] are even
beginning to make inroads into industrial use. They are being used for the verification
of protocols [Sch97] and the retrieval of mathematical theorems [DW97] or software com-
ponents [FS97] from libraries. Theorem provers are used to synthetize larger programs
from standard building blocks and to prove the correctness of the resulting program sys-
tems [SWL+94, LPP+94, BRLP98]. This development is reflected in the creation of inte-
grated interactive systems incorporating one or more automated theorem provers, a user
interface with facilities for theory and subproof management, and often proof verification
and representation components. Examples are the KIV system [Rei92, RSS95, Rei95], pri-
marily for verification tasks or ILF [DGHW97] and Ωmega [BCF+97], which have primarily
been developed for the support of mathematicians.

The most visible success of automatic theorem provers today is the celebrated proof of
the Robbins algebra problem by EQP [McC97]. Successes like this demonstrate the power
of current theorem proving technology.

However, despite the fact that ATP systems are able to perform basic operations at an
enormous rate and can solve most simple problems much faster than any human expert,
they still fail on many tasks routinely solved by mathematicians. Moreover, many of the
more impressive successes require an experienced human user who selects a suitable prover
configuration, often by trial and error.

The main reason for this is that a theorem prover has to search for a proof in a usually
infinite search space with a very high branching factor, i.e. a very high number of possible
choices at each choice point. Much previous work in theorem proving has been targeted at
the development of refined calculi that restrict the number of possible inferences. However,
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2 Introduction

the semi-decidability of the underlying problem for most interesting logics restricts the
potential for this approach, and even the most refined calculi typically are highly non-
deterministic.

Most current theorem provers therefore use a small set of highly parameterized heuristic
evaluation functions to guide the proof search. The selection of a proper function and set of
parameters for a given problem (or problem domain) is based on experience of the human
user, often supported by large and tedious sets of experiments.

The aim of this thesis is the development of techniques that on the one hand allow
the automatic adaption of the search control component of a theorem prover to a given
problem domain and on the other hand improve this component to increase the overall
performance of the proof system.

To reach this goal we develop machine learning techniques to learn heuristic evaluation
functions by extracting search control knowledge from examples of proof searches and apply
these techniques in an equational proof system for full clausal logic.

1.1 Equational Theorem Proving

A particularly important problem in automated theorem proving is the handling of the
equality relation. This relation plays an important role in modeling most mathematical or
verification problems. Equality occurs e.g. in 1942 of the 3275 clausal problems in version
2.1.0 of the TPTP reference library of theorem prover problems [SSY94, SS97b], despite
the fact that the TPTP is biased against equality encodings by the inclusion of large repos-
itories of older problems that avoid equality. Moreover, functional programming languages
like Haskell [Bir98, JHA+99, Tho99] are based on equational transformations. A program
in such a language can be seen as a specification of a particular equality relation, and
evaluation corresponds to the computation of a normal form with respect to this specifi-
cation1. Naturally, verification of programs in such languages requires efficient handling of
equality.

As the equality relation is a congruence relation, it is particularly hard to control.
Symmetry and transitivity of the relation immediately allow infinite derivations. If the
equality relation is modeled explicitly by including the necessary axioms, these axioms can
typically be applied extremely often during a proof search and thus lead to a very early
explosion in the search space.

Efficient handling of equality therefore requires special inference rules that directly im-
plement some features of the relation. The most important of these rules is the paramodula-
tion rule [RW69], which directly implements the replacing of terms by equal terms. Based
on this principle, refined superposition calculi [BG90, BG94, NR92] have been developed.
They combine techniques from conventional theorem proving, like resolution [Rob65] and
paramodulation, with ordering restrictions and rewriting originally introduced in the con-
text of completion [KB70, HR87, BDP89] for unit-equational theories.

1This relationship goes so far that the name of the Haskell-dialect Gofer is expanded as Good for
equational reasoning.



1.2 Learning Search Control Knowledge 3

Superposition calculi are saturating calculi with strong contraction rules. The most
elementary operation is the generation of new consequences from a set of axioms. The proof
search terminates if either a proof has been found or the set of consequences is saturated,
i.e. no relevant new facts can be added. Contraction allows the instant elimination of
certain of the consequences that can be shown to be redundant for the proof search. The
order of generating and contracting operations is only very weakly constrained by the
calculus. A good control of these operations is critical for the success of a proof search.

1.2 Learning Search Control Knowledge

An exact definition of learning is difficult to give, as the term is used quite differently for
humans and for computer programs. A human is said to have learned something if he or
she, by observation or by being taught, is able to perform some action or reproduce some
information he was previously unable to perform or produce. A definition of this broadness
applied to a machine would cover both being programmed for a certain task (as a special
case of being taught), and simple storage and retrieval of information as e.g. performed
by any data base program or even word processor. Both of these tasks are trivial for
modern computers, and require no serious reorganization or processing on behalf of the
learner. We will therefore use a more strict definition: Learning is the process of acquiring
knowledge by processing information and by structuring the accumulated data in a way
that adequately represents the (relevant) concepts contained in this data (see [Sch95] for
a discussion of other possible definitions).

The motivation for applying learning techniques to equational theorem proving is sim-
ple: Despite the strong restrictions on inferences in current superposition calculi, the
branching factor and hence the difficulty of the search problem is usually much bigger
in theorem proving with equality than in theorem proving without equality. Therefore,
good control of the proof search process is even more critical in the case of equational
theorem proving. However, finding good search control heuristics for theorem provers is a
very difficult and time-consuming feat for human experts.

There is a variety of choices to be made both before and during the proof search
for a superposition-based theorem prover. These include term ordering, literal selection
functions and rewriting strategy. However, the most important of these choice points is
the order in which generating inferences are performed. We attack this choice point by
introduction of a feedback cycle, and by thus improving the evaluation of the potential
search alternatives by using experiences from previous proof attempts.

As we are learning heuristic control knowledge, our method is orthogonal to any re-
finements at the calculus level, as e.g. techniques to further prune the search space with
additional constraints or techniques introducing stronger inference rules. Due to the very
small interface between learning component and inference engine, this approach is also
compatible with any improvements in the implementation of the inference rules.
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1.3 Conception of a Learning Theorem Prover

As stated above, we want to apply machine learning to improve the performance of a
theorem prover. The most important choice point for standard saturating theorem proving
procedures is the order in which new clauses are considered for generating inferences. The
decisions at this choice point can be represented by individual clauses and are typically
guided by a heuristic evaluation function. We want to improve the performance of a
prover by learning good evaluation functions from experiences with multiple previous proof
searches. In particular, we want to learn proof search intrinsic knowledge, i.e. knowledge
gained from the analysis of the inference process, as opposed to meta-knowledge as e.g. the
performance of a given strategy on a given proof problem. For this purpose we have to
embed different methods and algorithms into a framework including proof analysis, proof
generalization, proof example administration and selection, and knowledge application.

First, proof analysis techniques yield useful information about the importance, useful-
ness and cost of selecting different clauses in a given proof search. This allows us to assign
a measure of expected usefulness for each clause, and to select a relatively small number
of clauses for representing good and bad search decisions for a given proof search.

Secondly, we have developed representative patterns for clauses as a generalization to
the term patterns introduced in [Sch95, DS96a, DS98]. Representative clause patterns
allow us to abstract from irrelevant details of a clause and furthermore let us represent
equivalent but syntactically different clauses by a unique pattern. Thus it becomes possible
to efficiently apply knowledge about clauses in analogous situations in new proof attempts.

Thirdly, we use feature-based similarity criteria to extract a subset of all stored proof
experiences from a potentially large knowledge base. This subset is then used by a new
and fast term-based learning algorithm to construct a term space map that defines an
evaluation function for clauses. This function is then used to modify a standard search
heuristic to guide the proof search for new problems.

Many of the techniques we developed were first implemented prototypically in the
DISCOUNT system. However, in order to have a stronger and more general proof system as
a base, we have implemented the E equational theorem prover [Sch99b], a high performance
equational theorem prover based on superposition and rewriting. In this thesis, we will
only describe the generalized techniques tested in this new proof system and refer to pre-
published reports for details of the older system.

1.4 Overview of the Thesis

After the short introduction and overview given in this chapter, Chapter 2 introduces the
basic concepts for equational deduction. It serves both to establish our notation and to
describe the refined superposition calculus that we have developed for use for the base
inference engine of our prover. As we use fairly standard notation, readers familiar with
equational theorem proving should be able to skip most of this chapter except the beginning
of Section 2.7 (page 21), which details the calculus we based our system on.
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The third chapter describes the basic learning cycle for theorem provers. We split the
task of improving the performance of a theorem prover by learning into three different
phases and discuss the different solutions to the problems in each phase. We also describe
which choices we have made for our approach.

In the next chapter, we analyze the search problem for superposition-based theorem
proving. We suggest a search algorithm based on the given-clause principle and analyze
the choice points in this algorithm. As a result of this analysis, we identify the selection of
the given clause (the next clause to process) as the single most important choice point as
well as the choice point that is most likely to profit from learning proof-intrinsic knowledge.
We also discuss existing, non-learning approaches for dealing with this choice point.

Chapter 5 describes ways to represent various kind of knowledge useful for search con-
trol. It introduces numerical features and one of the central concepts of this thesis, clause
patterns . Clause patterns allow us to uniquely represent structurally similar clauses from
different proof problems and over different signatures. The chapter also describes our way
to represent search decision during a proof search as sets of annotated clauses.

The following chapter is the second central chapter. It introduces learning by term space
mapping, a class of fast hybrid learning algorithms for terms. Term space mapping is based
on partitioning the set of all terms into distinct classes and by extrapolating evaluations
for terms in these classes from evaluations of terms in a training set.

Chapter 7 describes how we have integrated all elements into a superposition based
prover that can learn good search control heuristics from its own experiences. The experi-
mental results in the next chapter show that this new theorem prover significantly improves
compared to the base system.

Finally, Chapter 9 discusses options for future work and the last chapter concludes the
thesis.



Chapter 2

Basic Concepts of Equational
Deduction

In this chapter, we will introduce the basic elements necessary to describe superposition-
based theorem proving in clausal logic with equality.

Full first-order logic (see e.g. [CL73]) offers a rich language with complex, hierarchical
formulae, a large set of operators, and the use of quantifiers. While this is desirable for
the specification of problems, more uniform and efficient proof procedures can be devel-
oped for simpler languages. We therefore restrict our discussion to clausal logic, a subset
of first-order predicate logic that eliminates quantifiers and allows only conjunctions of
clauses (which are disjunctions of elementary literals) as formulae. Clausal logic is pow-
erful enough to specify most proof problems directly, and various automatic procedures
for the transformation of problem specifications from full first-order logic into clausal form
exist [CL73, Boy92]. The fact that theorem provers applying such transformations have
dominated the first-order category of the yearly CASC theorem prover competition [SS97a]
since this category has been introduced in 1997 is ample evidence that this transformational
approach is adequate.

In clausal theorem proving, the problem of showing that the axioms imply the hypoth-
esis is usually reduced to show that a set of clauses (generated from the axioms and the
negated and Skolemized goal) is unsatisfiable, i.e. that there is no possible interpretation
which makes all clauses in the set true.

Well-known calculi for the proof search in clausal logic are e.g. resolution [Rob65]
and model elimination [Lov78]. Superposition calculi have historically been developed by
adding explicit replacing of equals with equals to resolution procedures while trying to
control the search space explosion by adding constraints to restrict the number of possible
or necessary inferences. Many of the techniques used have originally be developed in the
context of term rewriting and completion for unit-equational theories, and have later been
adapted to the general case.

6
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2.1 General Preliminaries

In this section, we will introduce some basic concepts and results used throughout this
work. In particular, we will cover binary relations, orderings and multi-sets.

Definition 2.1 (Binary relations)
A binary relation → over a set M is a subset of (M ×M). We usually write m → n for
(m,n) ∈→. Now assume a binary relation → over M :

• ← = {(n,m)|m→ n} is the inverse relation of →.

• ↔ is the symmetric closure of →, i.e. ↔ =← ∪ →.

• +→ is the transitive closure of →, and
∗→ is the transitive and reflexive closure of

→.

• Finally,
∗↔ is the transitive, reflexive and symmetric closure of→, i.e. the equivalence

relation spanned by →.

• Given two relations →1 and →2 over M , →1 ◦ →2 = {(a, c)| ∃b ∈ M with a →1

b, b→2 c} denotes the composition of the two relations.

• → is called terminating (Noetherian, well-founded), if there exist no infinite sequence
x1 → x2 → x3 → . . ..

J

Orderings are a particular class of binary relations.

Definition 2.2 (Partial ordering, Quasi-ordering)
Let M be a set.

• A partial ordering ≥ over M is a reflexive, anti-symmetric and transitive binary
relation over M . The strict part of ≥ is given by > = ≥ \{(x, x)|x ∈M}.

• A quasi-ordering % over M is a reflexive and transitive binary relation over M . The
strict part of % is given by � = % \ -, the equivalence part of % is given by
≈ = % ∩ -.

J

Note that each partial ordering is a quasi-ordering and that the strict part of each
quasi-ordering is a partial ordering.

Definition 2.3 (Total orderings)
Let ≥1 and %2 be a partial ordering and a quasi-ordering over a set M , respectively.

• >1 is called total , if x >1 y or y >1 x or x = y for all x, y ∈M .
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• %2 is called total up to ≈2, if x >2 y or y >2 x or x ≈2 y for all x, y ∈M .

J

There are many ways to extend orderings from a set of simple objects to composite
objects. A particular class of such extended orderings are lexicographic orderings.

Definition 2.4 (Lexicographic orderings)
Let M be a set and let % be a quasi-ordering over M . We extend % to orderings �lex and
�llex over M∗, i.e. over the set of finite tuples with elements from M . Let A = (a1, . . . , an)
and B = (b1, . . . , bm) be finite tuples over M .

• A is bigger than b in the lexicographic extension of %, written as A �lex B, if and only
if there exist an i ≤ min(n,m) such that for all j < i aj ≈ bj and either i = m, i < n
or ai � bi.

• Similarly, A is bigger than b in the length-lexicographic extension of %, written as
A �llex B, if and only if n > m or n = m and A �lex B.

J

Sets are collections of unique objects. However, in theorem proving we often have to
deal with situations where identical objects can occur multiple times. Multi-sets represent
finite collections of arbitrary objects (which may occur more than once in a multi-set).
Formally, multi-sets are defined as functions from a base set into the set N of natural
numbers (with 0).

Definition 2.5 (Multi-sets)
Let M be a set.

• A multi-set over M is a function A : M → N where {x|A(x) > 0} is finite. We
usually describe a multi-set by enumerating its elements in a set-like notation. We
write Mult(M) to denote the system of multi-sets over M .

• Most set operations are generalized to multi-sets. Let A,B be two multi-sets over
M :

– We write x ∈ A if A(x) > 0.

– The empty multi-set is written as ∅ or {}.
– The cardinality of a multi-set A is |A| =

∑
x∈M A(x).

– A ⊆ B if A(x) ≤ B(x) for all x ∈M .

– (A ∪B)(x) = A(x) +B(x) for all x ∈M .

– (A ∩B)(x) = min(A(x), B(x)) for all x ∈M .

– (A\B)(x) = max(A(x)−B(x), 0) for all x ∈M .
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– (A\\B)(x) =

{
0 if B(x) > 0

A(x) otherwise
for all x ∈M .

– (f(A))(x) =
∑

z∈{y∈M |f(y)=x}A(z) for all x ∈ M . f(A) is called the image of A
under f .

• If A is a multi-set, set(A) = {x|A(x) > 0} is the set of all elements of A.

J

The definition of the image of a multi-set warrants an example:

Example: Let A = {0, 1, 1, 2, 2, 2} be a multi-set over N. We consider two functions,
f1 : N→ N and f2 : N→ N, defined by f1(x) = bx

2
cand f2(x) = 0 for all x.

• f1(0) = 0, f1(1) = 0, f1(2) = 1, hence f1(A) = {0, 0, 0, 1, 1, 1}.
• f2(A) = {0, 0, 0, 0, 0, 0}, and therefore

– (f2(A))(0) = 6

– (f2(A))(x) = 0 for all x ∈ N, x 6= 0

If a set M underlying a multi-set is ordered, we can extend this ordering to the set of
multi-sets over M [DM79]:

Definition 2.6 (Multi-set orderings)
Let M be a set. The relation >> on Mult(M) for a partial ordering > on M is defined as
follows. Assume A,B ∈ Mult(M).
A >> B if and only if there exist X, Y ∈ Mult(M) with X 6= ∅, X ⊆

A,B = (A\X)∪Y , and for all y ∈ Y exists an x ∈ X with
x > y.

J

Example: Let M = {a, b, c, d} be a set with a > b > c > d. Assume two multi-
sets A and B, A = {a, b, c}, B = {b, b, b, b, b, c, c, d, d, d}. Then A >> B because
B = (A\{a}) ∪ {b, b, b, b, c, d, d, d} and a > b, a > c, a > d.

As the authors of [DM79] show, multi-set orderings inherit several interesting properties
from the base ordering:

Theorem 2.1 (Properties of >>)
Assume M , >, >> as in Definition 2.6.

• >> is a partial ordering.

• >> is terminating if > is terminating.

• >> is total if > is total.
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2.2 Graphs and Trees

Most objects appearing in theorem proving, including terms, proofs, and even complete
proof search protocols, can be represented as labeled graphs or trees. We also use graph
and tree representations in learning algorithms, both for the representation of terms and
for building hypotheses. Graphs consist of a set of nodes connected by edges.

Definition 2.7 (Graphs)
• Let K be an arbitrary set (of nodes) and let E ⊆ (K ×K) a binary relation over K.

Then the tuple G = (K,E) is a (directed) graph. The elements of E are called edges.

• Let G = (K,E) and G′ = (K ′, E ′) be two graphs. G′ is a subgraph of G, if K ′ ⊆ K
and E ′ ⊆ E.

• Let G = (K,E) be a graph, and let a ∈ K be a node in G.

– The set of direct successors of a is succ(a) = {b ∈ K|(a, b) ∈ E}.
– The set of all successors of a is

succ∗(a) = succ(a) ∪
⋃

b∈succ(a)

succ∗(b)

– Analogously, the set of direct predecessors of a is
pred(a) = {b ∈ K|(b, a) ∈ E}.

– Finally, the set of all predecessors of a is

pred∗(a) = pred(a) ∪
⋃

b∈pred(a)

pred∗(b)

J

We usually use graphs to represent various objects from the proof process. For this
purpose, it may be necessary to associate objects with graph nodes. Similarly, we will
later represent the search space of a proof problem as a graph. In this case, different edges
correspond to different search operations, and need different amount of effort to traverse.
We model this by associating weights with the edges.

Definition 2.8 (Labeled and weighted graphs)
• Let L be a set (of labels) and let G = (K,E) be a graph. A labeled graph is a tuple

(G, l), where l : K → L is called a label function.

• Let G = (K,E) be a graph, and let w : E → R be a function assigning weights to
the edges of G. Then (G,w) is a weighted graph.

• We treat an unweighted graph G = (K,E) as a weighted graph (G,w1) with w1 :
E → R, w1(e) = 1 for all e ∈ E.
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• If a graph G is both labeled and weighted, we write (G, l, w).
J

Definition 2.9 (Paths, Distance)
Let G = (K,E) be a graph.

• A finite path in G is a sequence P = k1, . . . , kn of nodes with

1. ki ∈ K, 1 ≤ i ≤ n, and

2. (ki, ki + 1) ∈ E, 1 ≤ i ≤ (n− 1)

We say P is a path from k1 to kn and denote the set of all paths from k1 to kn in G
by PG(k1, kn).

• If P = k0, . . . , kn ∈ PG is a path, we say that the nodes k0, . . . , kn are on the path P,
and the edges (k0, k1), . . . , (kn−1, kn) are parts of the path.

• If P = k1, . . . , kn ∈ PG is a path and (k0, k1) ∈ E is an edge, we also write k0.P =
k0, k1, . . . , kn for the composite path from k0 to kn, i.e. we use ’.’ as a path constructor.

• Let (G,w) be a weighted graph. The length of a path, len : PG → R, is the sum of
the weights of the edges connecting the elements of P = k0, . . . , kn:

len(P ) =
n−1∑
i=1

w((ki, ki+1))

Note that for unweighted graphs the length of a path P is equal to the number of
edges connecting the nodes in P .

• Let ((K,E), w) be a weighted graph. The distance of two nodes a, b ∈ K, dist :
K ×K → R ∪ {∞} is the length of the shortest path from a to b:

dist(a, b) =

{
min({len(P )|P ∈ PG(a, b))} if PG(a, b)) 6= ∅
∞ otherwise

J

We do not usually need arbitrary graphs, but can restrict ourselves to a class of graphs
needed to model the theorem proving process. These graphs typically share a number of
properties.

Definition 2.10 (Properties of graphs)
Let G = (K,E) be a graph.

• G is finite if |K| ∈ N.



12 Basic Concepts of Equational Deduction

• Let E∗ be the reflexive, transitive and symmetric closure of E. G is called connected
if E∗ = (K ×K).

• G is called acyclic, if there exists no non-trivial path from a node to itself, i.e.
P = a, . . . , a implies len(P ) = 0 for all P in PG.

• G is called ordered , if there is a total ordering on the direct successors of each node,
i.e. the set of successors can be written as a sequence succ(a) = k1, k2, . . . for all
a ∈ K. We usually denote the ordering by giving the sequence of successors.

J

Definition 2.11 (Trees, Forests)
• A tree T = (K,E) is a connected directed acyclic graph with

– pred(a) = ∅ for an a ∈ K (the root of T).

– |pred(a)| = 1 for all b ∈ K, b 6= a.

• A forest is a (not necessarily connected) directed acyclic graph whose connected
subgraphs are trees.

We can easily transform a forest T = (K,E) into a tree T ′ = (K ∪ {r}, E ∪ {(r, a)|a ∈
K, pred(a) = ∅)} with r /∈ K. Therefore we will sometimes treat forests as trees without
further remark. J

Trees inherit properties from graphs, i.e. if we speak of a finite or ordered tree, we mean
a finite or ordered graph that is also a tree.

2.3 Terms

The most important building blocks of formulae are first-order terms. In a first-order
specification, terms typically represent objects from the domain the we want to reason
about. However, all structures handled by a typical automated theorem prover (literals,
clauses, formulae) can easily and naturally be encoded as terms as well. Terms therefore
are central for both the inference process and the learning algorithms introduced later.

Terms are build from a set of functions symbols, described by a signature, and a set
of variables. In general, a signature can define terms with different sorts. However, we
restrict our discussion to terms with a single sort only. For a more in-depth discussion of
most of the topics of this and the following sections consult e.g. [BN98] and [Ave95], from
which we borrow much of the notation.

Definition 2.12 (Signatures)
• A signature is a tuple sig = (F, ar), where F is an enumerable set of function

symbols (or operators) and ar : F → N is a function describing the arity of the
function symbols. Function symbols with the arity 0 are called constants . We write
sig = {f1/ar(f1 ), . . . , fn/ar(fn)} as shorthand for sig = ({f1, . . . , fn}, ar).
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• Two signatures sig1 = (F1, ar1 ) and sig2 = (F2, ar2 ) are compatible if ar1 ∪ ar2 is
a function, that is, if ar1 and ar2 agree on the function symbols occurring in both
signatures.

• If sig1 = (F1, ar1 ) and sig2 = (F2, ar2 ) are compatible, we write sig1 ∪ sig2 to
denote the signature (F1 ∪F2, ar1 ∪ ar2 ). Similarly, sig1 ∩ sig2 = (F1 ∩F2, ar1 ∩ ar2 )
and sig1\sig2 = (F1\F2, ar1\ar2 ). We write sig1 ] sig2 to make clear that the two
signatures being united do not share any function symbols.

J

Definition 2.13 (Terms)
Let sig = (F, ar) be a signature, and let V be an infinite enumerable set of variable symbols
disjoint from F . ar is extended to a function ar : F ∪ V :→ N by ar(x) = 0 for all x ∈ V .

• The set Term(F ) of ground terms over F is defined inductively: Let f ∈ F be
a function symbol with ar(f) = n (n ≥ 0) and let t1, . . . , tn ∈ Term(F ). Then
f(t1, . . . , tn) ∈ Term(F ).

• The set Term(F, V ) of terms over F and V is defined by Term(F, V ) = Term(F∪V ).

• Given a term t, Var(t) is the set of variables occurring in t. We extend this to sets
and multi-sets of terms in the obvious way, i.e. Var(M) = ∪t∈MVar(t) for a set or
multi-set M .

• Given a term t, Head(t) is the topmost symbol of t, i.e.

– Head(x) = x if x ∈ V
– Head(f(t1, . . . , tn)) = f otherwise

In the following, we use the lower case letters x, y and z to denote variables. We use a, b,
c, and d to denote constant symbols, and we omit braces from terms consisting of a single
constant. Signatures are often given implicitly by the function symbols occurring in the
terms. Unless otherwise mentioned, we will assume that F is a set of function symbols from
some signature sig , and that V is a set of variables. We always demand that F contains
at least one constant, so that Term(F ) 6= ∅. J

With this definition, terms are recursive structures build from components that are
themselves terms. We use positions (sequences of numbers) to describe these subterms.

Definition 2.14 (Positions, Subterms, Variable normalized)
Let t ∈ Term(F, V ) be a term and let λ be the empty sequence.

• The set O(t) of positions in t is defined as follows:

– If t ≡ x ∈ V , then O(t) = {λ}.
– Otherwise t ≡ f(t1, . . . , tn). In this case
O(t) = {λ} ∪ {i.p|1 ≤ i ≤ n, p ∈ O(ti)}.
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• For two positions p, p′ ∈ O(t), we say p′ is below p if there exists a sequence q with
p′ = pq. In this case, we say p′ is strictly below p, if q 6= λ.

• Now let p ∈ O(t) be a position in t.

– If p = λ then t|p ≡ t.

– Otherwise p ≡ i.q and t ≡ f(t1, . . . , tn). Then t|p ≡ ti|q.

We say t′ ∈ Term(F, V ) is a subterm of t if t′ = t|p for a p ∈ O(t). We say t′ is a
proper subterm of t if t′ = t|p for a p ∈ O(t) with p 6= λ.

• Let V = {x0, x1, . . .} be a set of variables enumerated in the obvious way. A term t is
called variable normalized if variables in t are picked in ascending order from V , i.e.
if Var(t) = {x0, . . . , xn} and for all i, j ∈ {0, . . . , n} p = min<lex

{q | t|q = xi}, p′ =
min<lex

{q | t|q = xj}, p <lex p
′ implies i < j.

J

One of the major operation in equational reasoning is the replacement of subterms by
rewriting or demodulation, i.e. by the application of equations (compare Section 2.5).

Definition 2.15 (Term Replacing)
Let s, t ∈ Term(F, V ) and let p ∈ O(t) be a position in t. t[p← s] is the term created by
replacing t|p with s in t:

• t[λ← s] ≡ s

• Otherwise p ≡ i.q and t ≡ f(t1, . . . , tn). In this case t[i.q ← s] = f(t1, . . . , fi[q ←
s], . . . , fn).

J

As terms contain variables, another frequent operation is the instantiation of variables,
i.e. the systematic substitution of variables with terms.

Definition 2.16 (Substitutions)
• A substitution is a function σ : V → Term(F, V ) with the property that {x|σ(x) 6= x}

is finite. Dom(σ) = {x|σ(x) 6= x} is called the domain of σ.

• A substitution σ is continued to a function σ : Term(F, V ) → Term(F, V ) by
σ(f(t1, . . . , fn)) = f(σ(t1), . . . , σ(tn)).

• A substitution σ with σ(Dom(σ)) ⊆ Term(F ) is called a ground substitution. A
substitution σ is called grounding for an expression t if σ(t) does not contain any
variables. We assume all ground substitution implicitly to be grounding for the
expressions they are applied to.
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• The composition of two substitutions σ and τ is given by σ ◦ τ(x) = σ(τ(x)) for all
x ∈ V .

• A substitution σ is more general than a substitution σ′, if τ ◦σ = σ′ for a substitution
τ . σ is strictly more general than σ′, if σ′ is not more general than σ.

• A bijective substitution σ with σ(x) = y, y ∈ V for all x is called a variable renaming
for V . We denote the set of all variable renamings for a set of variables V with
Σperm(V ).

J

Applying substitutions to terms can make previously different terms equal. Depending
on whether the substitution is applied to both terms or only one term, we speak of matching
and unification.

Definition 2.17 (Match, Unifier)
Let s, t ∈ Term(F, V ) be two terms.

• A substitution σ with σ(s) = t is called a match from s onto t. If such a substitution
exists, we say s is more general than t, and t is called an instance of s. If s is more
general than t, but not vice versa, we say s is strictly more general than t.

• A substitution σ with σ(s) = σ(t) is called a unifier for s and t.

• If σ is a unifier for s and t and there is no unifier that is strictly more general than
σ, we call σ a most general unifier for s and t. If a most general unifier for two
terms exists, it is computable and unique modulo variable renamings [Rob65]. We
therefore speak of the most general unifier for two terms and denote it by mgu(s, t).

J

Orderings on terms play an important role in equational theorem proving. They are
used to restrict possible applications of equations and other inference steps, and to guaran-
tee the completeness of proof procedures. Moreover, they are also necessary for the efficient
implementations of many store and retrieval information for both inference machines and
learning algorithms.

Three simple orderings on terms are given by the subterm relation, the relation ship
between terms and their instantiation, and the combination of these two relations.

Definition 2.18 (Subterm and Subsumption orderings)
Let s, t ∈ Term(F, V ) be two terms. We define the following orderings on terms:

• The subterm ordering ≥TT is given by s ≥TT t if and only if there exists a p ∈ O(s)
with s|p = t.

• The subsumption ordering ≥SS is given by s ≥SS t if and only if there exists a
substitution σ with s = σ(t).
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J

The subterm ordering is a partial ordering, subsumption defines a quasi-ordering.
A particularly important class of orderings for equational theorem proving is formed by

so-called reduction orderings. Reduction orderings are compatible with the term structure
and with instantiation. They can be used to restrict the application of equations during
the proof process in a consistent way.

Definition 2.19 (Rewrite ordering, Reduction ordering)
• A rewrite ordering > on Term(F, V ) is a partial ordering that is compatible with the

term structure and stable under substitutions:

1. t > t′ implies s[p← t] > s[p← t′] for all s, t, t′ ∈ Term(F, V ), p ∈ O(s).

2. s > t implies σ(s) > σ(t) for all s, t ∈ Term(F, V ) and all substitutions σ.

• A terminating rewrite ordering is called a reduction ordering .

• A simplification ordering is a reduction ordering > that contains the subterm order-
ing, i.e. >TT⊆>.

• A ground reduction ordering is a reduction ordering that is total on ground terms.
Note that a ground reduction ordering is necessarily a simplification ordering on
ground terms.

J

2.4 Equations and rewrite systems

An equality relation allows the replacing of equals with equals. Equality relations over
terms allow the replacing of subterms with equivalent ones. They are typically described
by sets of equations.

Definition 2.20 (Equation, Congruence, E-equality)
• An equation is a pair of terms (s, t) ∈ (Term(F, V ) × Term(F, V )). We write an

equation as ' (s, t) or, more frequently, as s' t for the reserved predicate symbol ',
and implicitly consider equations to be symmetric, i.e. s' t and t's are equivalent.

• A negated equation or inequation is a pair of terms (s, t) as well. We write a negated
equation as 6' (s, t) or as s 6' t. As with equations, we consider negated equations to
be symmetric.

• A congruence relation ∼ on terms is an equivalence relation which is compatible with
the term structure and substitutions:

– t ∼ t′ implies s[p← t] ∼ s[p← t′] for all s, t, t′ ∈ Term(F, V ), p ∈ O(s).
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– s ∼ t implies σ(s) ∼ σ(t) for all s, t ∈ Term(F, V ) and all substitutions σ.

• A set of equations E over Term(F, V ) defines the relation =E (E-equality) as the
smallest congruence that includes E.

J

Equations are symmetrical and can be applied in two different directions. If we restrict
this property by applying a reduction ordering, computation within the structure defined
by a set of equations becomes much simpler.

Definition 2.21 (Rewrite relation)
Let > be a reduction ordering and let E be a set of equations.

• A rewrite relation =⇒ is a binary relation on terms with the property that s =⇒ t
implies u[p← σ(s)] =⇒ u[p← σ(t)].

• A rewrite relation =⇒ is compatible with > if =⇒⊆>.

• E is called a rewrite system (with respect to >), if s > t or t > s for all s' t ∈ E.
In this case we also call the elements in E rewrite rules .

• E and > define a rewrite relation =⇒E: s[p ← σ(l)] =⇒E s[p ← σ(r)] iff l' r ∈ E
and σ(l) > σ(r).

J

We distinguish between terms that can be rewritten with a certain rewrite relation and
terms that cannot be modified:

Definition 2.22 (Reducible, Normal form)
Let =⇒ be a rewrite relation on Term(F, V ).

• A term t with t =⇒ s for some s is called reducible (with respect to =⇒). A term
that is not reducible is called irreducible or in normal form.

• If s
∗

=⇒ t and t is irreducible, then t is called a normal form of s.

J

If we are dealing with a rewrite relation that is induced by a set of rules or equations
and a reduction ordering, it is interesting to know exactly where in the term a rule or
equation can be applied.

Definition 2.23 (Top-reducible)
Let > be a reduction ordering and let E be a set of rewrite rules or equations.

• A term s is called top-reducible at position p (with respect to E and >), if there exists
(l, r) ∈ E such that t|p = σ(l) and σ(l) > σ(r).
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• A term is called just top-reducible (with respect to E and >) if it is top-reducible at
position λ. A term that is not top-reducible is called top-irreducible.

J

E-equality is, in general, undecidable. However, it is decidable if we can compute
unique normal forms for all terms.

Definition 2.24 (Confluence, Church-Rosser property)
• A relation =⇒ is called confluent, if all divergences can be joined again: (

∗⇐= ◦ ∗
=⇒

) ⊆ (
∗

=⇒ ◦ ∗⇐=).

• A relation =⇒ is called locally confluent, if all local (one-step) divergences can be

joined: (⇐= ◦ =⇒) ⊆ (
∗

=⇒ ◦ ∗⇐=).

• A relation =⇒ has the Church-Rosser property , if
∗⇐⇒⊆ (

∗
=⇒ ◦ ∗⇐=).

J

The above properties are related, in fact, for terminating relations they are all equiva-
lent:

Theorem 2.2 (Confluence properties)
• A relation is confluent if and only if it has the Church-Rosser property.

• A terminating relation is confluent if and only if it is locally confluent.

Definition 2.25 (Convergence)
A relation that is both terminating and Church-Rosser is called convergent .

J

2.5 Clauses and Formulae

Terms are used to model domain objects and functions over them, with each term rep-
resenting a class of objects and each ground term a single object. We now define atoms
and literals to represent relations over objects. Literals are combined in clauses and allow
us to state propositions over these relations, and (multi-)sets of clauses (formulae) finally
correspond to specification and query of a proof problem. As we are interested in applying
equational reasoning techniques, non-equational relations are encoded as equations.

Definition 2.26 (Atoms, Literals)
Let S = F ] P be the union of two finite sets of symbols (function symbols and predicate
symbols, respectively) with F ∩ P = ∅ and a special symbol > ∈ P . Let sig = (S, ar) be a
signature (with ar(>) = 0) and let V be a set of variables disjoint from S.

• A (non-equational) atom (over sig and V ) is a term P(t1, . . . , tn) ∈ Term(S, V )
with P ∈ P and ti ∈ Term(F, V ), 1 ≤ i ≤ n. The equational representation of a
non-equational atom A is the equation A'>.
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• A (equational) literal L (over sig and V ) is either an equation s' t (a positive literal)
or a negated equation s 6' t (a negative literal) with s, t ∈ Term(S, V ). We will
in practice restrict ourselves to literals where symbols from P only occur as head
symbols of terms of the equational representation of a non-equational atom.

• We write Literal(F, P, V ) to describe the set of all literals for given sets of symbols
F , P and V .

We will usually assume the set V of variables to be implicitly given.
J

Clauses (disjunctions of literals) allow us to make conditional statements or specify
alternatives for the relations represented by predicate symbols. Formally, clauses are multi-
sets of literals.

Definition 2.27 (Clauses)
Assume V and sig with F and P as in Definition 2.26.

• A (equational) clause C over sig and V is a multi-set of literals. We implicitly
assume C to be a disjunction of literals, and write C = L1 ∨ L2 ∨ . . . ∨ Ln for
C = {L1,L2, . . . ,Ln}. We write C = L ∨ C ′ with C ′ = C\L if L ∈ C. The set of all
clauses over a signature is denoted by Clause(F, P, V ).

• The empty clause {} is written as �.

• If C is a clause, we write C+ to denote the positive literals in C and C− to denote the
negative literals.

• A clause that contains only positive literals is called a positive clause.

• Similarly, a clause that contains only negative literals is a negative clause.

• A clause that contains at most one positive literal is called Horn.

• A clause that contains a single literal is called a unit clause. We will sometimes speak
of a positive unit clause as a rewrite rule (if the two terms are comparable in some
reduction ordering) or an equation, i.e. we will treat the clause as its single literal.

• If σ(C) = C ′ for a variable renaming σ, we call C) and C ′ variants (of each other).
We will usually identify variants unless mentioned otherwise.

J

While clauses represent individual propositions and hypotheses over a modeled struc-
ture, formulae describe a complete proof problem over these structure.

Definition 2.28 (Formulae)
Assume V and sig with F and P as before.
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• A formula F (in clause normal form) over sig and V is a set of clauses. The clauses
of a formula are implicitly considered to be conjunctively connected. We write F =
C1, C2, . . . , Cn to represent the clause F = {C1, C2, . . . , Cn}.

• We say a formula is a unit-formula, if all clauses in the formula are unit.

• Similarly, as formula is called Horn, if all clauses in the formula are Horn.

• A formula is called a general formula, if it is not Horn, i.e. if it contains at least one
non-Horn clause.

J

Formulae in (refutational) automated theorem proving typically consist of two separate
classes of clauses: Clauses describing the theory in which we want to reason (the axioms ,
forming the specification of an algebraic structure), and the query or goal , a set of clauses
generated by negating the hypothesis. As formulae correspond to proof problems, we will
sometimes use the terms interchangably, and speak e.g. of a Horn problem as shorthand
for a proof problem formalized as a Horn formula.

2.6 Semantics

Formulae (in particular specifications) are used to describe algebraic structures, with each
formula potentially describing an infinite number of structures. For theorem proving pur-
poses, we are only interested in a particular class of these structures, with elements that
are build from the symbols used in the specification.

Definition 2.29 (Interpretation, Model)
Assume a signature sig = (S, ar) with at least one constant function symbol.

• A (Herbrand equality) interpretation is a congruence relation ∼I over Term(S).

• An interpretation ∼I satisfies a ground clause C over sig if either s' t ∈∼I for a
positive literal s' t ∈ C or s 6' t 6∈∼I for a negative literal s 6' t ∈ C.

• An interpretation satisfies a non-ground clause C if it satisfies all ground instances
of C.

• An interpretation ∼I satisfies a formula F if it satisfies all clauses in F . In this case,
∼I is called a (Herbrand equality) model of F and F is satisfiable.

• A formula that does not have a model is called unsatisfiable.

J

This definitions immediately imply properties of the empty clause and the empty for-
mula:
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Corollary: The empty clause is not satisfied by any interpretation, the empty formula is
satisfied by all interpretations.

The main mechanism in deduction is to infer new clauses from existing ones. In order
for a new clause to be a logical consequence of an existing formula, it has to be satisfied
by all structures that satisfy the original formula.

Definition 2.30 (Logical consequence)
Assume clauses C1, . . . , Cn, C over a signature sig . If each interpretation ∼I that satisfies
{C1, . . . , Cn} also satisfies C, we say that C is a logical consequence of {C1, . . . , Cn} and write
C1, . . . , Cn |= C. J

2.7 Superposition-Based Theorem Proving

We will now present the calculus SP. It is a variant of the superposition calculi decribed
in [BG90, BG94]. Superposition calculi allows us to refute any unsatisfiable set of clauses
by deriving the empty clause, i.e. by making the unsatisfiability obvious and explicit. In
these calculi, a clause is essentially viewed as a set of conditional equations, were each
positive literal in turn is seen as a potential rewrite rule and the remaining literals play the
role of positive and negative conditions. The basic operation is the replacing of equals with
equals, where term orderings are used to constrain this application of equality. Moreover,
term orderings are extended to orderings on literals to determine in which order equations
will be applied or conditions solved, and to orderings on clauses, which are used to introduce
a strong approximation to the concept of redundancy .

Our version of the superposition calculus differs from the system E given in [BG94] only
in some details. First, we sometimes use weaker restrictions on generating inferences, as
our experiments with an actual implementation showed that the marginal improvements in
search space reduction do not warrant the increased cost of checking the original stronger
restrictions. Secondly, we have integrated explicit contraction rules into the calculus and
in two cases allow stronger simplifications than suggested in [BG94]. Thirdly, we use an
extended notion of selection functions and eligible literals that again allow redundant, but
in practice often useful inferences.

We have implemented SP in the equational theorem prover E, the system we developed
in the course of this work. Experimental results described in [Sch99b] as well as the
performance of the prover in the CASC theorem prover competition show that the calculus
is suitable for a high-performance theorem prover.

Definition 2.31 (Literal ordering, Clause ordering)
Let > be a reduction ordering on Term(F ] P, V ).

• The multi-set representation of an equation s' t is M(s' t) = {{s}, {t}}. Similarly,
the multi-set representation of an inequation s 6' t is M(s 6' t) = {{s, t}}. The multi-
set representation of a clause C = L1 ∨ . . . ∨ Ln is M(C) = {M(L1), . . . ,M(L2)}.
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• We extended > to an ordering >L on literals as follows: Assume two literals L1,L2 ∈
Literal(F, P, V ). L1 >L L2 iff M(L1) >> M(L2).

• Finally, we define >C on clauses by C1 >C C2 iff M(C1) >L>L M(C2) for C1, C2 ∈
Clause(F, P, V ).

J

By construction, the clause ordering shares stability properties with the simplification
ordering:

Theorem 2.3 (Properties of >L and >C)
• >L is stable with respect to substitutions and total on ground literals.

• >C is stable with respect to substitutions and total on ground clauses.

As witten above, a clause can be seen as a set of conditional equations. Each of these
equations can only contribute to the final proof if all its conditions are met. We can
therefore restrict processing of a clause with at least one negative literal to trying to solve
some of the negative literals. This restriction is described by means of a selection function,
which maps a clause to a (multi-)subset of itself:

Definition 2.32 (Selection functions)
sel : Clauses(F ,P ,V ) → Clauses(F ,P ,V ) is a selection function, if it has the following
properties for all clauses C:

• sel(C) ⊆ C.

• If sel(C) ∩ C− = ∅, then sel(C) = ∅.

We say that a literal L is selected (with respect to a given selection function) in a clause
C if L ∈ sel(C). J

We will use two kinds of restrictions on deducing new clauses: One induced by ordering
constraints and the other by selection functions. We combine these in the notion of eligible
literals.

Definition 2.33 (Eligible literals)
Let C = L ∨R be a clause, let σ be a substitution and let sel be a selection function.

• We say σ(L) is eligible for resolution if either

– sel(C) = ∅ and σ(L) is >L-maximal in σ(C) or

– sel(C) 6= ∅ and σ(L) is >L-maximal in σ(sel(C) ∩ C−) or

– sel(C) 6= ∅ and σ(L) is >L-maximal in σ(sel(C) ∩ C+).

• σ(L) is eligible for paramodulation if L is positive, sel(C) = ∅ and σ(L) is strictly
>L-maximal in σ(C).
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J

We will describe the superposition calculus as a set of inference rules, describing tran-
sitions between (multi-)sets of clauses, and a fairness condition which ensures that the
derivation process will eventually generate the empty clause from an unsatisfiable clause
set. There are two distinct kinds of inference rules, generating rules and contracting rules.
Generating rules allow us to deduce new clauses from existing ones. They are necessary to
guarantee the completeness of the calculus, i.e. to ensure that we can find a proof if there
exists one. Contracting rules eliminate or simplify existing clauses, thereby pruning the
search space.

Definition 2.34 (Inference system)
• A generating inference rule is a deduction scheme of the form

<precondition>

<conclusion>
if <condition>,

where <precondition> describes a set of clauses and <conclusion> a single clause.
It allows us to add the clause from the conclusion to a clause set already containing
clauses of the precondition if the condition is met.

• A contracting inference rule is a deduction scheme of the form

<precondition>

<conclusions>
if <condition>,

where both <precondition> and <conclusions> describe sets of clauses. It allows
us to replace the clauses of the precondition in a clause set with the clauses from the
conclusion if the condition is met.

• We implicitly assume all clauses in the precondition of an inference rule to be variable
disjoint. In practice, this can be easily achieved by variable renaming.

• An inference rule is correct if the clauses in the conclusion are logically implied by
the clauses in the precondition.

• An inference system I is a set of inference rules. It is correct if all its rules are correct.

• An inference (in I) is an application of an inference rule. An instance of an inference
with premises C1, . . . , Cn and conclusion C ′1, . . . , C ′n is a corresponding inference with
premises σ(C1), . . . , σ(Cn) and conclusion σ(C ′1), . . . , σ(C ′n).

• If a set S of clauses can be transformed into a set S ′ by an inference in I, we write
S `I S ′. A (finite or countably infinite) sequence S0 `I S1 `I . . . is called an
I-derivation.

J

The following definition defines the deductions possible in the SP calculus:
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Definition 2.35 (The inference system SP)
Let > be a total simplification ordering (extended to orderings >L and >C on literals
and clauses) and let sel be a selection function. The inference system SP consists of the
following inference rules:

• Equality Resolution:

(ER)
u 6'v ∨R
σ(R)

if σ = mgu(u, v) and σ(u 6'v) is eligi-
ble for resolution.

• Superposition into negative literals :

(SN)
s' t ∨ S u 6'v ∨R

σ(u[p← t] 6'v ∨ S ∨R)

if σ = mgu(u|p, s), σ(s) 6< σ(t),
σ(u) 6< σ(v), σ(s ' t) is eligible for
paramodulation, σ(u 6' v) is eligible
for resolution, and u|p /∈ V .

• Superposition into positive literals :

(SP)
s' t ∨ S u'v ∨R

σ(u[p← t]'v ∨ S ∨R)

if σ = mgu(u|p, s), σ(s) 6< σ(t),
σ(u) 6< σ(v), σ(s ' t) is eligible for
paramodulation, σ(u 6' v) is eligible
for resolution, and u|p /∈ V .

• Equality factoring :

(EF)
s' t ∨ u'v ∨R

σ(t 6'v ∨ u'v ∨R)

if σ = mgu(s, u), σ(s) 6> σ(t) and
σ(s' t) eligible for paramodulation.

• Rewriting of negative literals :

(RN)
s' t u 6'v ∨R

s' t u[p← σ(t)] 6'v ∨R
if u|p = σ(s) and σ(s) > σ(t).

• Rewriting of positive literals1:

1A stronger version of (RP) is proven to maintain completeness for Unit and Horn problems and is
generally believed to maintain completeness for the general case as well [Bac98]. However, the proof of
completeness for the general case seems to be rather involved, as it requires a very different clause ordering
than the one introduced in Definition 2.31, and we are not aware of any existing proof in the literature.
The variant rule allows rewriting of maximal terms of maximal literals under certain circumstances:

(RP’)
s' t u'v ∨R

s' t u[p← σ(t)]'v ∨R

if u|p = σ(s), σ(s) > σ(t) and if u'v is not
eligible for resolution or u 6> v or p 6= λ or σ
is not a variable renaming.

This stronger rule is implemented successfully by both E and SPASS [Wei99].
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(RP)
s' t u'v ∨R

s' t u[p← σ(t)]'v ∨R

if u|p = σ(s), σ(s) > σ(t), and if u'v
is not eligible for resolution or u 6> v
or p 6= λ.

• Clause subsumption:

(CS)
T R ∨ S

T

if σ(S) = T for a substitution σ or
∀s' t ∈ σ(S) : s' t ∈ T for a sub-
stitution σ that is not a variable re-
naming.

• Equality subsumption:

(ES)
s' t u[p← σ(s)]'u[p← σ(t)] ∨R

s' t

• Simplify-reflect2:

(SR)
s' t u[p← σ(s)] 6'u[p← σ(t)] ∨R

s' t, R

• Tautology deletion:

(TD)
C

if C is a tautology3.

• Deletion of duplicate literals :

(DD)
s' t ∨ s' t ∨R

s' t ∨R

• Deletion of resolved literals :

(DR)
s 6's ∨R

R

2In practice, this rule is only applied if σ(s) and σ(t) are >-incomparable – in all other cases this rule
is subsumed by (RN) and the deletion of resolved literals (DR).

3This rule can only be implemented approximately, as the problem of recognizing tautologies is only
semi-decidable in equational logic. The latest versions of E try to detect tautologies by checking if the
ground-completed negative literals imply at least one of the positive literals, as suggested in [NN93].
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We write SP(N) to denote the set of all clauses that can be generated with one generating
inference from I on a set of clauses N , DSP to denote the set of all SP-derivations, and
DSP to denote the set of all finite SP-derivations.

J

The inference system SP is easily shown to be correct, i.e. to add only logical conse-
quences to a set of clauses:

Theorem 2.4 (Correctness of SP)
If N `SP N ′, then N |= S for all clauses S ∈ N ′.

Showing that SP is refutationally complete, i.e. that it is able to derive the empty clause
from any unsatisfiable set of clauses, is more difficult. We will base our proof heavily on
the one presented in [BG94] and only discuss some points where our calculus extends the
one discussed in this paper.

The justification for contracting rules is that they only remove clauses that are su-
perfluous or redundant in the sense that they are not necessary to describe the essential
properties of a saturated system of clauses. It is not generally possible to identify all such
clauses, however, the concept of compositeness gives us a very strong approximation of
such redundancy.

Definition 2.36 (Composite clauses)
Let N be a set of clauses and let C be a ground clause.

• The clause C is called composite with respect to N , if there exist ground instances
σ1(C1), . . . , σn(Cn) of clauses in N such that

1. {σ1(C1), . . . , σn(Cn)} |= C and

2. C <C σi(Ci) for all i ∈ {1, . . . , n}.

• A non-ground clause is called composite with respect to N if all its ground instances
are.

J

If a clause is composite with respect to the set of clauses at one state during the proof
process, it keeps this property if we add new clauses or remove clauses which are themselves
composite:

Theorem 2.5 (Stability of compositeness I)
Let N be a set of clauses and let C be a clause that is composite with respect to N .

1. Let M be a set of clauses. Then C is composite with respect to M ∪N .

2. Let C ′ ∈ N be composite with respect to N . Then C is composite with respect to
N ′ = N\{C ′}.
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Proof:

1. Obvious from Definition 2.36.

2. C is composite with respect to N . The clause ordering >C is well-founded
and total on ground clause. Hence, for each ground instance of C, there exists a
>C>C-minimal set P of ground instances of clauses from N that implies C. This
set does not contain a composite ground instance (otherwise we could replace
it by smaller ground instances, which contradicts the minimality assumption).
As C ′ is composite in N , all of its ground instances are composite as well. Ergo
P does not contain a ground instance of C ′ and C is composite with respect to
N\C ′ = N ′ (See [BG94] for an alternative but basically equivalent proof).

�

Compositeness gives us a criterion to eliminate certain clauses. We will now extend
this concept to inferences.

Definition 2.37 (Composite inference)
A generating ground inference is called composite with respect to a set N of clause if

1. one of its premises is composite with respect to N or

2. the conclusion is implied by instances of clauses from N that are smaller than the
maximal premise of the inference (keep in mind that >C is total on ground clauses)
or

3. it is a superposition inference into a selected positive literal.

A general inference is composite if all its ground instances are. J

As with compositeness for clauses, compositeness of inferences is stable against addition
of clauses and deletion of composite clauses:

Theorem 2.6 (Stability of compositeness II)
Let N be a set of clauses.

1. Let M be a set of clauses. An inference that is composite with respect to N is also
composite with respect to M ∪N .

2. Let C ′ ∈ N be composite with respect to N ′ = N\{C ′}. An inference Π that is
composite with respect to N is composite with respect to N ′.

Proof:
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1. Obvious from definitions 2.36 and 2.37.

2. If the inference is composite with respect to N , one of the three conditions in
Definition 2.37 holds. We proceed by corresponding case analysis:

Case 1: Let C be the clause in the precondition that is composite with respect to
N . By Theorem 2.5, it also is composite with respect to N ′. Hence, Π is
composite with respect to N ′.

Case 2: As in the proof to Theorem 2.5, the ground instances of C ′ used in the proof
of compositeness are implied by non-composite clauses in N .

Case 3: Obvious.

�

The notion of composite inferences now allows us to define sets of clauses that are closed
under a certain set of inferences:

Definition 2.38 (Saturated clause sets)
• A set of clauses N is called saturated with respect to SP, if SP(N) ⊆ N .

• A set of clauses N is called saturated up to compositeness with respect to SP, if all
generating inferences with rules from SP are composite with respect to N .

J

For saturated clause sets, satisfiability is decidable.

Theorem 2.7 (Satisfiability of saturated clause sets)
Let N be a set of clauses that is saturated (up to compositeness). N is unsatisfiable if and
only if it contains the empty clause.

Proof: A clause set N that is saturated up to compositeness and does not contain the
empty clause defines an equality interpretation that is a model of N . For details
see [BG94] and consider that all generating inferences in E are also inferences in SP.
For fully saturated clause sets, consider that a clause set that is saturated is also
saturated up to compositeness.

�

Of course, formulae occurring in theorem proving rarely start as saturated clause sets.
A theorem proving derivation tries to generate a saturated system. If certain criteria are
satisfied, it can be guaranteed that such a derivation generates a saturated system at least
in the limit.

Definition 2.39 (Persistent clauses, Fair SP derivation)
Let N0 `SP N1 `SP N2 . . . be a SP-derivation.
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• The set of persistent clauses or the limit of the derivation is defined asN∞ = ∪j∈N∩i≥j
Ni, i.e. as the set of all clauses that are added to the set at some time, but never
removed.

• The SP-derivation is called fair , if every generating inference from N∞ is composite
with respect to ∪j∈N.

J

Theorem 2.8 (Completeness of N∞)
The limit of a fair SP derivation, N∞, is saturated up to compositeness, and all clauses in
∪i∈N\N∞ are composite with respect to N∞.

Proof: [BG94] gives a proof for the inference system E introduced in this paper. As
all non-composite generating SP-inferences are E-inferences, this proof carries over
without modification. However, the proof requires that all contracting inferences can
be modeled as simplification steps, i.e. by (optionally) adding some clauses implied
by the precondition, followed by deletion of composite clauses. [BG94] shows this
property for cases equivalent to the rules (CS), (TD), (DD), (DR) and (RP) in SP.
It remains to be shown for (RN)4, (ES), and (SR). In all cases we will show that
the (instantiated) clauses from the conclusion are smaller than and imply the deleted
clauses from the precondition.

Now consider the relevant inference rules from Definition 2.35:

(RN): The rewritten clause, u[p ← σ(t)] 6' v ∨ R, is obviously smaller than u 6' v ∨ R
(as σ(s) > σ(t)). Moreover, u[p ← σ(t)] 6' v ∨ R and s' t imply the original
clause. It is therefore sufficient to show that σ(s' t) is smaller than u 6' v ∨ R
(which implies that it is smaller for all ground instances of the affected clauses).

If p 6= λ, σ(s) is a true subterm of u. Because > is a simplification ordering,
this implies that σ(s) < u. By transitivity of <, σ(t) < u holds as well. Hence
σ(s' t) <L u 6'v.

If p = λ, u ≡ σ(s). Therefore {{σ(s)}{σ(t)}} << {{u[p ← σ(s)], v}} and ergo
σ(s' t) <L u[p← σ(s)] 6'v.

In both cases, u 6'v ∨R >C σ(s' t).
(ES): For the case p = λ, (ES) is a special case of (CS) covered in [BG94]. For p 6= λ,

u[p← σ(s)] >TT σ(s) and u[p← σ(t)] >TT σ(t). Again, as > is a simplification
ordering, >TT⊆> and hence u[p ← σ(s)] ' v[p ← σ(t)] >L σ(s ' t), which
implies u[p← σ(s)]'u[p← σ(t)] ∨R >C σ(s, t')

(SR): The case p 6= λ is strictly analogous to the previous case. So let us assume
p = λ. Then u[p ← σ(s)] 6' v[p ← σ(t)] ≡ σ(s 6' t). But σ(s 6' t >L σ(s' t)
(as {{σ(s), σ(t)}} >> {{σ(s)}, {σ(t)}}) and therefore u[p ← σ(s)] 6' v[p ←
σ(t)] ∨R >C σ(s' t).

4[BG94] discusses rewriting of arbitrary literals, but does not allow rewriting at the top position at all.
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�

Given this theorem, we can now establish the refutational completeness of SP, i.e. we
can guarantee that a unsatisfiable formula can be proven to be unsatisfiable after at most
a finite number of inferences.

Theorem 2.9 (Refutational completeness of SP)
Let N0 ` N1 ` . . . be a fair SP-derivation. The formula N0 is unsatisfiable exactly if there
exists a a i with � ∈ Ni.

Proof: If � ∈ Ni for some i, Ni is unsatisfiable. As SP is correct, � is implied by N0 as
well. Hence, N0 is unsatisfiable. On the other hand, if there exists no i with � ∈ Ni,
then N∞ does not contain the empty clause either. By Theorem 2.8, it is saturated
up to compositeness, and hence by Theorem 2.7 satisfiable.

�

2.8 Summary

In this chapter we have introduced the foundations for the rest of the thesis. We have
established our notation for standard mathematical and theorem proving concepts used
throughout the thesis and described the basic concepts of equational deduction. Finally,
we introduced the superposition calculus SP as an extension to previously described su-
perposition calculi. This calculus adds more flexible criteria for literal selection and allows
stronger contractions as previous ones. We have established its correctness and refutational
completeness. SP will be used as the base for the proof procedure described in Chapter 4
and realized in our implemented theorem prover E.



Chapter 3

Learning Search Control Knowledge

In this chapter we will discuss the learning cycle of a theorem prover. Many traditional
machine learning algorithms have a well-defined input, use a simple learning algorithm
that generates a knowledge representation, and have an application phase in which this
knowledge is used. Abstraction and generalization are encapsulated into the learning al-
gorithm. Such algorithms are applied in domains where situations can be directly mapped
onto the input and the output is meaningful directly within the application domain.

For theorem provers and similar inference systems that try to learn from their own
experiences, this simple model of learning and application phases is insuficient. Knowledge
acquisition and application occur in different phases, and abstraction and generalization
can occur in most of the individual phases.

We will discuss the process of learning and using learned knowledge using a 3-phase
model.

• Experience generation and analysis

• Knowledge selection and preparation

• Knowledge application

The following sections will discuss these steps, citing existing approaches where relevant.
For a more detailed overview of the literature see [DFGS99].

3.1 Experience Generation and Analysis

The first phase for each learning proof system is the generation of experiences for the
system to learn from.

In theory, this experience can come from outside the proof system, either from another
proof system or from a human user. However, for high-performance theorem provers both
of these options are not practical. Due to the wide variety of existing theorem provers, the
different calculi used and the lack of a common language to exchange search experiences, it
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Figure 3.1: The learning cycle for theorem provers

is very hard to translate experiences from one theorem prover to another1. Human beings,
on the other hand, are not well equipped to deal with the calculi used by theorem provers,
and are quickly overwhelmed by the sheer amount of facts handled by a fully automatic
proof system. Therefore, learning theorem provers are mostly limited to learn from their
own experiences, i.e. the proof system itself acts as an experience generator. In this case,
we have the situation of a learning cycle as shown in Figure 3.1.

If we consider the possible proof experiences, we can distinguish between two types of
information. First, we can treat the inference machine as a black box and only consider the
input, success and resource usage as relevant experiences. In this case, the proof experiences
contain only meta-knowledge about the proof process. The second case is that we analyze
the individual inferences performed by the theorem prover to arrive at its output. We call
this kind of information proof search intrinsic.

Both kinds of information can be used for learning, and both approaches have advan-
tages and disadvantages. Meta-knowledge is typically easy to obtain from any existing the-
orem prover. As the system is considered as a black box, no modifications of the inference
engine are necessary. Moreover, meta-knowledge typically is very compact. Specifications
for clausal proof problems are usually small, and parameter sets, result status and resource
usage are even more compact. As a result, storage, analysis and processing of this knowl-
edge is relatively easy, and often can even be performed manually or semi-automatically.
The major disadvantage of these kind of experiences is the extremely strong abstraction

1This may, to some degree, change in the future, as there are approaches to describe proofs generated
by different provers and even different calculi in a common format, as e.g. the block calculus [DW94] used
in ILF.
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resulting from the black box approach. As only outside behaviour is observed, we can
only expect to learn knowledge about the relationship between proof problems and good
parameters for the theorem prover. We cannot expect to learn totally new proof strategies.

Meta-knowledge approaches are widely used for the automatic configuration of theorem
provers. Often, the proof problem is reduced to a set of numeric features, and feature based
distance measures are used to implement a case-based reasoning approach for the selection
of a strategy or set of strategies for the theorem prover. See Section 5.1 for a short survey
of this technique. Alternatively, similarity measures based on the structure of the axiom
set are used in a similar way (see e.g. [DFF97] or [HJL99]). In most cases, these techniques
involve manual analysis of the results, however, there also are some successful attempts to
automate this process ([Fuc97a],[Wol98b, Wol99b]).

Proof-intrinsic knowledge, on the other hand, is much harder to obtain. A potential
proof experience in this case is a sequence of inference steps, describing the complete proof
derivation. To obtain this sequence, most existing theorem provers have to be modified
significantly. Moreover, the amount of data we have to handle in this case is enormous.
A typical proof derivation for a non-trivial problem contains between several thousand
and several million inferences. However, the potential rewards also increase proportionally.
Since we can analyze the proof process at an inference level, we can hope to find completely
new proof strategies that can help the prover to solve problems that none of its existing
search strategies can successfully tackle.

In the case of proof-intrinsic knowledge, we typically have to reduce the amount of
data to a manageable amount. This is achieved by proof search analysis . Such an analysis
tries to reduce the total number of inferences (or the search decisions represented by these
inferences) down to a subset of particularly significant events. The degree of abstraction
at this stage varies widely:

• Of course the most general representation is to perform no abstraction at all. How-
ever, we do not consider this approach to be practicable, and we know of no recent
attempts to use it.

• The next degree of abstraction tries to reduce the amount of data by concentrating on
inferences that are part of the proof or close to the proof. We describe the necessary
techniques for saturating theorem provers in some detail in Section 5.3. Most theorem
provers that try to learn heuristic evaluation functions use these or similar, more ad-
hoc, techniques to generate training examples. SETHEO/NN ([Gol99a, Gol99b]) uses
tableaux representing proofs, and tableaux derivable from those in a few inferences,
as examples. Some of the learning approaches integrated into DISCOUNT ([Fuc96,
Fuc97b, FF98] and [DS98, Sch98] use processed facts (rules or equations) to represent
search decisions.

• Even more abstraction occurs if one considers only inferences or facts actually con-
tributing to the proof. This is used in analogy-based approaches like flexible reen-
actment [Fuc96, Fuc97b] and the algorithms based on derivational analogy that have
been applied in inductive theorem proving (see e.g. [MW96, MW97b]). We have used
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this approach for learning evaluation functions as well, see [DS96a, DS98, SB99], al-
though we annotate the selected facts with information about their role in the global
proof process.

• As a borderline case to the meta-knowledge approach, we can reduce the proof ex-
perience even further and just keep the subset of (potentially instantiated) original
axioms necessary to find the proof. This approach is taken by learning approaches
inspired by explanation-based generalization as e.g. described in [KW94], where this
kind of information is collected in a generalized proof catch.

In addition to the type of proof experiences, we have to discuss the selection of proof
experiences from the usually infinite space of all proof derivations. Predicate calculus can
be used to encode nearly arbitrary problems, and it is possible to construct formulae that
force very untypical proof derivations. A very natural way to restrict the set of training
examples therefore is to demand that the problem specification is taken from some domain
of interest to humans.

Similarly, there are typically a lot more unsuccessful than successful search derivations
for each given resource limit. Therefore it is reasonable to primarily use positive examples,
i.e. representations of successful proof searches.

Finally, it is possible to restrict the search experiences by resource limit, i.e. to only
use search derivations that can be derived within certain resource bounds.

3.2 Knowledge Selection and Preparation

The second phase of learning involves the selection of suitable knowledge from the set of all
experiences and the preparation of this knowledge in a way that aids the application. At the
core of this phase we typically find one or more traditional machine learning algorithms.
We give a more detailed discussions of these algorithms in Section 6.1 for term-based
algorithms and at the end of Section 5.1 for feature-based approaches.

Selection and preparation can in principle happen in arbitrary order. A theorem prover
can store pre-processed knowledge and select an appropriate part of this knowledge as it
becomes necessary, or it can select raw proof experiences and prepare them on demand.

Provers that store pre-processed knowledge typically use relatively slow learning algo-
rithms. Examples are different types of neural networks ([SE90, Gol94],[Gol99a, Gol99b])
or genetic algorithms [Fuc95a]. All known existing implementations leave the selection of
suitable knowledge to the user. The prover is optimized for use in a single domain, and no
automatic mechanism for switching to different classes of problems is provided.

Systems with fast learning algorithms typically select knowledge based on the problem
at hand. They usually perform some analysis of the new problem specification and then col-
lect information from experiences with similar problems, i.e. they use case-based learning
(see e.g. [Kol92]). Similarity is either based on numerical representations of the proof prob-
lem (see Section 5.3) or directly uses techniques to compare the structure of the problem
formula. In this case, either various versions of matching between parts of the new formula
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and existing proof experiences are used to determine similarity (see e.g. [DS96a, DS98]
and the approaches described for meta-knowledge in the previous section), or numerical
similarity measures are defined directly on the formulae [SB99].

Fast learning algorithms used in theorem proving often are very simple. Even plain
memorization of important facts can improve the performance of theorem provers, be-
cause generalization occurs in the analysis and in the application phases. In addition
to the memorization of facts (used e.g. in flexible reenactment [Fuc96, Fuc97b]) we have
memorization of generalized patterns [DS96a, DS98] with evaluations, and recursive term
evaluation trees [DS96a, DS98]. As an extension of term evaluation trees, we develop gen-
eral term space maps in this thesis. Some instances of these term space maps have already
been described in [SB99, Sch98].

A special case is that knowledge selection, knowledge preparation and knowledge appli-
cation are combined into a single step. This happens in the case of proof reuse, where the
selection involves (first- or second order) matching of the axioms, but where a successful
match immediately yields a complete proof for a (sub-) problem.

3.3 Knowledge Application

The final phase is the application of learned and prepared knowledge. For the special case
discussed above, this is trivial and typically only requires the substitution of the goal with
new instantiated subgoals. For the case of meta-knowledge, this is achieved by simply
starting the prover with appropriate parameter settings.

The most complex case is that the search decisions are dynamically influenced by the
learned knowledge. We have two sub-cases to consider: Analogical replay and heuristic
evaluation (with some approaches in between these two extremes).

In the case of analogical replay, the prover uses a source proof to guide the search. It
tries to match the current proof situation onto a situation in the source proof search and
selects the inference that led to a success. If no matching situation is found, the prover
needs to patch the proof search in some way, typically by performing a (blind or heuristic)
search.

In the case of heuristic evaluation, a learned evaluation function evaluates alternatives
in the proof search. The prover then performs the inference with the best evaluation.
Typically, learned knowledge is combined with a standard heuristic to allow for graceful
degradation in the case that the learned heuristic does not cover parts of the search space.

An in-between case is flexible reenactment (see above), which is inspired by derivational
analogy [Car86, CV88]. Instead of mapping situations in the target proof search onto the
source proof search, a global evaluation function is used. Search decisions are represented
as clauses to be processed, and clauses useful in the source problem are preferred in the
target proof search. Patching is provided by a conventional backup strategy and improved
by having clauses not recognized inherit part of the good evaluation of their ancestors.
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3.4 Our Approach

As we wrote in Chapter 1, our aim is to use learning techniques both to adapt the theorem
prover to a given domain and to improve its overall performance. To achieve this aim,
we develop a learning theorem prover that offers solutions for all of the above phases.
Our central learning algorithms use proof-intrinsic knowledge, meta-data is used for the
selection of suitable proof experiences.

Our approach is a continuation of the earlier work done by Fuchs [Fuc95a, Fuc96,
Fuc97b] and ourselves [Sch95, DS96a, DS98] for the unit-equational case. We represent
important search decisions as individual clauses and try to learn good heuristic evaluation
functions from example clauses taken from successful proof searches.

In the next chapter, we develop an efficient algorithm for superposition-based theorem
proving. We identify the different choice points and discuss the resulting search problem.

Our approach to the analysis phase is described in Chapter 5. We describe a proof
problem using numerical features (for experience selection) and sets of annotated clause
patterns from clauses close to the actual proof to represent search decisions.

These annotated clause patterns are used as the input for a class of new learning
algorithms described in Chapter 6. Term space mapping works by partitioning the set of
all terms into a finite number of subsets (either once or repeatedly) and by associating an
evaluation with each class. Both this partitioning and the evaluations are based on the
distribution of terms and evaluations in a training set. The term space maps constructed
by these algorithms define a heuristic evaluation function that is used to guide the proof
search.

Chapter 7 describes the overall system and the interaction of the different components.



Chapter 4

Search Control in
Superposition-Based Theorem
Proving

The unsatisfiability of a clausal formula is, in general, undecidable. All algorithms for
theorem proving therefore have to search for a proof in a usually infinite space. In this
chapter we will analyze the theorem proving process of a superposition-based theorem
prover from this point of view.

We first introduce an abstract model for discrete search problems of the kind occurring
in automated theorem proving. We show different ways to map standard theorem proving
algorithms onto this model and discuss which search decisions have to be made before and
during the proof search for a superposition-based theorem prover. We describe the given-
clause algorithm and develop a variant of it for the superposition calculus. With this
algorithm we eliminate certain choice points and explain the rationale underlying these
decisions. We also develop a sufficient condition for the completeness of theorem proving
derivations generated by this algorithm.

Then we discuss the remaining choice points, their influence in the proof process, and
how they are typically controlled in a conventional saturating theorem prover. We identify
the selection of the next clause to process as a critical choice point and as the most suitable
choice point to be controlled by search control knowledge gained from the analysis of other
proof searches. We conclude this chapter with a survey of conventional evaluation heuristics
for the control of this choice point.

4.1 The Search Problem

A general search problem is described by a set of search states and a transition relation
that describes which search states can be reached from any given other state:

Definition 4.1 (Search problem)
Let M be a set (of search states), let E be a binary transition relation on M and let

37
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w : E → R be a weight function. Then the weighted directed graph T = (M,E,w) is
called a search space. Let s ∈M be a start state and let G ⊆M be a set of goal states.

• P = (T, s,G) is called a (discrete) search problem.

• The set of search paths for P is S(P ) = {p ∈ PT |p = s.p′, p′ ∈ PT}.

• A search path s, s1, . . . , sn is called successful or a solution for the search problem if
sn ∈ G.

• The cost of a search path is cost(s0, . . . , sn) =
∑n−1

i=0 w((si, si+1)).

• If s ∈M is a search state, then |succ(s)| is called the branching factor of the search
space at this state.

J

A search path describes a single set of choices starting at an initial state and hopefully
reaching a goal state. However, during the search, we may need to deal with a multitude
of such paths.

Definition 4.2 (Search derivation)
Let p = s0, . . . , sn be a search path. We define three operations (with associated cost) on
p:

Extension: s0, . . . , sn E s0, . . . , sn, s for s ∈ succ(sn). The cost of an extension step is
cost(s0, . . . , sn E s0, . . . , sn, s) = w((sn, s)).

Backtrack: s0, . . . , sn B s0, . . . , sn−1 if n > 0. The cost of a backtrack step is 01.

Startover: s0, . . . , sn S s0. The cost of a startover step is 0.

The search derivation relation  is E ∪ B ∪ E.

• A search derivation D is a sequence of search paths p0  . . .  pn. The set of all
search derivations for a search problem P is DP .

• The cost of a search derivation is the cost of the extension steps performed during
the derivation:

cost(p0  . . .  pn) =
n−1∑
i=0

cost(pi  pi+1)

1In practice, cost for backtracking (not to be confused with the total cost spent in backtracked search
alternatives) is often negligible. Moreover, cost for backtracking can be easily included in the cost for the
corresponding extension step.
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• A search derivation p0  . . .  pn for a search problem P is successful within a
given cost bound b, if there exists an i ∈ {0, . . . , n} so that pi is a solution to P and
cost(p0  . . .  pi) ≤ b.

J

A search strategy is a function that generates a search derivation. It defines a successor
state for each finite search path and thus inductively a complete search derivation.

Definition 4.3 (Search strategy)
Let P be a search problem.

• A function S : DP → M ∪ {Backtrack , Startover} with the property that for all
derivations D = p0  . . .  pn where pn ≡ s0, . . . , sn, S(D) ∈ succ(sn) ∪ {Backtrack ,
Startover} is called a search strategy for P .

• It defines a search derivation D(S) in the obvious way.

• A search strategy is successful within a given cost bound if the corresponding search
derivation is.

• A search strategy is complete if it eventually finds a solution whenever a solution
exists.

J

This model of search processes is general enough to describe the search problem for
most theorem proving procedures.

Example: Consider the case of a proof procedure for a model-elimination prover [Lov68],
as e.g. SETHEO [LSBB92, MIL+97]. The proof problem for a set F of clauses is
given by P = ((M,E,w), s, G) as follows:

• M is the set of all connection tableaux for F

• E = ES ∪ ER ∪ EE with

– ES = {(O, C)|O is the empty tableau, C ∈ F}
– ER = {T, σ(T ))|σ(T ) is the result of a tableaux reduction step }
– EE = {(T, T ′)|T ′ is the result of a tableaux extension step with T and a

clause from F }
• There are of course many possible cost functions w. A possible example mea-

sures the number of unifications:

w((T, T ′)) =

{
0 if (T, T ′) ∈ ES

1 otherwise
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For the usually more interesting case of execution time we need to know the
details of a particular implementation down to the hardware. The cost of a
particular inference step will in this case include the cost for unification, changes
in the tableaux, and the local search for the next possible inference, and can
usually be approximated as a function of size and depth of the resulting tableaux
and the number of literals in clauses from F .

• G = {T |T is a closed tableaux}
• s = O

The typical iterative deepening search procedure enumerates all search paths (se-
quences of possible tableaux) up to a certain length, using extension and backtrack-
ing , and would then use a startover step and repeat the procedure with a larger
length limit.

If we want to map the search in superposition-based theorem proving to this framework,
we have the choice between various mappings. However, if we assume a given term ordering,
we get a very natural mapping for the most general case:

• A single search state corresponds to a a set of clauses. In other words, M =
2Clauses(F,P,V ).

• The transition relation is described by the inference system SP introduced in sec-
tion 2.7. More exactly, (s, s′) ∈ E iff s `SP s′.

• The most interesting cost measure is again the time a certain inference takes in
a given implementation. However, this depends on details that, due to the large
complexity, are not generally accessible to a theoretical analysis2. A very simple
approximation ignores the search for possible inferences and assigns a fixed weight to
each transition, i.e. w(s, s′) = 1 for all w. If we incorporate the cost for evaluating all
possible inferences, a lower bound for the cost is certainly given by n×n, as we need
to consider each pair of clauses (and in fact, need to consider much more than one
potential inference position within each clause). While indexing techniques (as e.g.
presented in [Gra95, GF98]) can reduce the number of candidates for an inference,
it can never reduce the number of possible inferences. In practice, this number even
seems to grow exponentially with the size of the clause set (compare the discussion
and experimental results is section 4.3).

• The set of goal states is G = {s ∈ 2Clauses(F,P,V )|� ∈ s}, i.e. the set of clause sets
containing the empty clause.

2As an example, the widespread use of term indexing techniques has reduced the cost for finding a
rewrite rule applicable at a given term position in a way that this cost is usually irrelevant compared to
other operations. For equational provers using linear search this operation is a major cost factor.
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• Finally, the start state is the initial set of clauses from the problem specification.

A sufficient condition for the completeness of a search strategy for the superposition
calculus is the fairness of the corresponding SP-derivation. However, as fairness only
requires that all generating inferences are composite in the limit, any finite SP-derivation
can be continued to a fair one. This leads to the following corollary:

Corollary: Backtracking steps and startover steps are not necessary for a complete search
strategy in the superposition calculus SP.

In practice, backtracking steps are extremely rare in saturating theorem provers, al-
though they can be useful if some analytical features are integrated into the prover. One
example is SPASS [WGR96, WAB+99], which extends the superposition calculus with a
splitting-rule for clauses. Clauses generated during a split possibly need to be retracted
later on.

Startover steps, on the other hand, have recently become quite popular for fully auto-
matic, self-configuring systems. The best example for a purely saturating theorem prover
employing startover is Gandalf [Tam97, Tam98]. Gandalf sequentially tries a number of
different search strategies up to a certain cost limit. Similar composite strategies are used
by the hybrid theorem prover p-SETHEO [Wol98b, WL99, Wol99a], which selects a given
schedule incorporating many different individual theorem proving strategies.

4.2 Proof Procedure and Choice Points

The very high degree of non-determinism allowed by the constraints of the inference system
and the fairness condition is very hard to manage. As an example, for the fairly conservative
estimate of 100,000 clauses with two maximal terms in eligible literals and an average of 10
term position in each term, we have to consider approximately 400,000,000,000 potential
paramodulations and about 5,000,000,000 potential subsumption steps even if using some
simple pruning techniques. Therefore, nearly all successful saturating theorem provers
restrict most of the choice points by using the given-clause algorithm first popularized
by Otter and used (with slight variation) in most current saturating theorem provers,
including e.g. DISCOUNT [DKS97], Gandalf [Tam97, Tam98] SPASS [WGR96, WAB+99],
Vampire [RV99] and Waldmeister [HBF96, HJL99]. We also use a variant of this algorithm
in our own theorem prover, E.

In the given-clause algorithm, the control over generating inferences is simplified by
splitting the set of all clauses into a subset of processed clauses and a subset of unprocessed
clauses. At each state on the proof process, all generating inferences between clauses in
the processed subset have already been performed. A given clause is moved from the set of
unprocessed clauses to the set of processed clauses by computing all generating inferences
which involve the given clause and clauses from the processed set. The second important
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feature responsible for the success of this algorithm is the preference of contracting infer-
ences over generating ones. Clauses are only used for generating inferences if they are not
redundant with respect to the processed clause set (or the newly selected clause), and if
they cannot be simplified further. Figure 4.1 shows a sketch of the algorithm.

Variables:

C Set of unprocessed clauses, contains initial clauses at start of algorithm
S Set of selected and processed clauses, initially empty
c The given clause, focus of all inferences for a given execution of the main loop

while C is not empty

{

pick c from C (in a fair manner);

perform all contracting inferences

with clauses from S on c;

if c is the empty clause then success, proof found;

if c is not trivial or subsumed

{

perform all contracting inferences with c

on clauses from S, moving affected clauses into C;

perform all generating inferences between c

and clauses from S, putting new clauses into C;

}

}

failure, no proof found;

Figure 4.1: The given-clause algorithm

The given-clause algorithm simplifies the control problem and reduces the problem of
inference selection in various ways:

• The invariant (all generating inferences between processed clauses have been per-
formed, the processed clause set is in a normal form with respect to the contracting
inferences) makes a more detailed administration of possible inferences unnecessary.

• Contracting inferences are primarily performed using a small subset of clauses. This
subset changes only relatively seldom and usually in a small way. Therefore it is
possible to compile this set for more efficient operations. Typically, some kind of
indexing is used to find potential inference partners more efficiently.
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• As all generating inferences with the given clause and the processed clause set are
performed at once, the time for searching potential inference position is shared for
all these inferences. It is not necessary to reconsider all potential inferences at each
stage in the search process.

• The branching factor at each stage of the search drops significantly, making the both
the decisions during the search and their implementation much easier. Instead of
selecting one of all possible inferences, the most difficult choice point now is the
selection of the given clause. For typical cases, this reduces the number of possible
decisions by multiple orders of magnitude3.

The general algorithm in Figure 4.1 can be refined for the superposition calculus SP,
fixing choices for further choice points in the algorithm. In particular, while the order in
which generating inferences are performed for each given clause is not important, the order
of contracting inferences can seriously influence the performance of the prover. Moreover,
for this more specific case, additional optimizations are possible. Figure 4.2 shows a re-
fined procedure for the superposition calculus, as implemented by E. The subroutines are
explained in Figure 4.3.

Again, we have removed or simplified a number of choice points using pragmatic rea-
soning. Current theorem proving technology makes rewriting (and recognizing rewritable
terms) relatively cheap, while testing for subsumption remains expensive for non-unit
clauses. Moreover, the chance for a successful subsumption is increased if all affected
clauses are in normal form with respect to the same system of unit-clauses. Therefore
rewriting and clause normalization, for which similar arguments hold, are performed be-
fore subsumption.

The remaining choice points have been encapsulated in the subroutines described in
Figure 4.3. We will now discuss these choice points and the strategies employed at these
choice points in some detail. Note that normalize(c,S) and max rw(S,c) do not contain
critical choice points. While there remains some non-determinism about how they perform
their respective operations, the result is fully determined by the input. Similarly, the order
in which generating inferences are performed in generate(c,S) is not critical, although
the question which inferences are performed is.

The remaining choices are the selection of a term ordering (which we have considered
fixed up to now), the rewriting strategy, the literal selection strategy and finally the clause
selection strategy that is encapsulated in the function select best(C).

As this last choice point controls the order of generating inferences, it is the only
choice point that influences the theoretical completeness of the theorem proving procedure.
The definition of fairness, Definition 2.39, requires that all generating inferences between

3An alternative view is to consider only the set of processed clauses as the proof state and to consider the
set of unprocessed clauses only as a preview of possible (generating) inferences. In this case the branching
factor is only reduced by the strict ordering of different inference types. However, the main cost of the
proof search is caused by inferences involving unprocessed clauses, and hence we consider our view to be
more helpful for this analysis.
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Variables:

C Set of unprocessed clauses, as in Fig 4.1
S Set of processed clauses
T Temporary store for newly generated clauses
c The given clause
c’ Temporary handle for clauses

while C 6= ∅
{

c := select best(C);

C := C \ {c};
c := normal form(c,S); (RN),(RP)

c := normalize(c,S); (SR),(DD),(DR)

if c = � then success; end

if c is not tautological then (TD)

{
if is not subsumed by S then (ES),(CS)

{
T := max rw(S,c);

S := S \ T;

S := S \ subsumed(c, S); (ES),(CS)

S := S ∪ {c};
S := interreduce(S); (RN)(RP)

T := T ∪ generate(c,S) (SN)(SP)(ER)(EF)

forall c’ ∈ T

{
c’ := normal form(c’, S); (RN),(RP)

c’ := normalize(c’, S); (SR),(DD),(DR)

if c’ is not tautological then C := C ∪ c’; (TD)

}
}

}
failure; no proof found;

The two-letter codes to the right refer to SP-inference rules, compare Definition 2.35.
For explanations of the subroutines see table 4.3, page 45.

Figure 4.2: A given-clause-derived algorithm for superposition
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select best(C) Return the best (with respect to some heuristic) clause from C.
normal form(c,S) Compute the normal form of c with respect to the positive unit

clauses in S.
normalize(c,S) Remove superfluous literals from the clause c, first by applying

simplify-reflect and then by removing duplicate and resolved
literals.

max rw(S, c) Return the clauses from S in which a maximal term in a eligible
literal can be rewritten with the clause c.

subsumed(c, S) Return the clauses from S which are subsumed by c.
interreduce(S) Interreduce the system of clauses S, i.e. reduce all clauses c in

S to a normal form with respect to S \ {c}.
generate(c,S Compute the set of all clauses that can be deduced with gener-

ating inferences (superposition, equality factoring and equality
resolution) where c is at least one of the clauses in the precondi-
tion and the remaining clauses in the precondition are elements
of S.

Figure 4.3: Subroutines for the given-clause procedure in Figure 4.2

persisting clauses are composite with respect to the set of all clauses occurring in the
derivation. Theorem 2.6 implies that a sufficient condition is that all generating inferences
are composite with respect to some intermediate clause set. We will now show a sufficient
condition for the clause selection function to ensure this.

Theorem 4.1 (Fairness of given-clause proof derivations)
The proof derivation generated by a given-clause algorithm is fair, if no clause remains in
the set C forever.

Proof: We have to show that all generating inferences between persisting clauses are
composite with respect to some intermediate clause set. We will show that if N `SP
N ′ with a generating inference, then this inference is composite with respect to N ′

(*). Given this result, assume that C and C ′ are two arbitrary persistent clauses. By
assumption, both are removed from C at some time, and put into S. But the invariant
of the given-clause algorithm is that all generating inferences between clauses in S

have been performed. Hence, all generating inferences between C and C ′ will be
performed at some time. As this holds for arbitrary clauses C and C ′, all generating
inferences between persisting clauses will be performed and by (*), the resulting
derivation is fair.

We now will show the claim (*). By definition, a generating inference is composite if
all its ground instances are composite. We show that an arbitrary ground inference
is composite with respect to its conclusion. To do this, we show that the conclusion
of any ground inference is >C-smaller than the maximal premise (compare Defini-
tion 2.37).
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• Consider the case of a ground (ER) inference4:

u 6'u ∨R
R

Clearly, u 6'u ∨R >C R.

• Now consider the case of a ground (SN) inference:

s' t ∨ S u 6'v ∨R
u[p← t] 6'v ∨ S ∨R

Since >, >L and >C are total on ground terms, literals and clauses, s is the
strictly maximal term in the first premise. Moreover, since s is a subterm of u
and > is a simplification ordering, u is larger than all other terms in the first
premise. Moreover, u > v and u > u[p← t]. Therefore the literal u 6'v is larger
than all any literal in S and larger than u[p ← t 6' v]. Ergo the conclusion is
smaller then the second premise.

• The case of a (SP) inference is strictly analogous.

• Finally, consider a (EF) inference:

s' t ∨ s'v ∨R
σ(t 6'v ∨ s'v ∨R)

The ordering constraints imply that s is a maximal term in the clause. Thus,
s' t >L t 6'v and hence the precondition is larger than the conclusion.

�

4.2.1 Term orderings

So far, we have assumed a fixed term ordering. However, the selection of a suitable term
ordering for the proof process is an additional choice point that can be vital for the success
of the search. Especially in the case of unit-equational problems this is probably one of
the most important decisions.

The superposition calculus assumes a single fixed term ordering for the complete proof
search. While it is possible to construct this ordering during the early stages of the
proof search, most fully automatic high-performance theorem provers either rely on a
user-specified term ordering or select an ordering at the very beginning.

The Waldmeister system has the most elaborate ordering selection system of all current
high-performance theorem provers [HJL99]. Waldmeister selects a suitable term ordering
based on an automatic detection of the domain of the proof problem, i.e. by matching the

4Keep in mind that in the ground case terms are unifiable exactly if they are identical, and no substi-
tutions are applied.
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axioms against an internal database of problems with associated orderings. The demon-
strated superiority of Waldmeister for unit-equality problems suggests that this approach
is very adequate.

Construction of such a database, either based on axiom matching or on feature-based
similarity measures, is a fairly straightforward application for case-based learning tech-
niques. We plan to incorporate such a system into future versions of our theorem prover E.
However, this approach calls for a meta-information based approach to learning: Instead
of analyzing individual proof searches in detail, it is necessary to analyze only the perfor-
mance of different proof searches for the same problem or a class of problems. Therefore,
we will deal with this problem in a separate work.

4.2.2 Rewriting strategy

The procedure normal form(c,S) encapsulates the rewriting part of the proof procedure.
A very general algorithm for this subroutine (for terms) is given in Figure 4.4 – for larger
structures like literals or clauses the same algorithm is iteratively applied to all terms in
the structure. There are two choices involved for each rewriting step:

• Selecting a position at which to rewrite

• Determining which of the matching unit clauses to apply

Any normal form procedure has to ensure that all subterms are irreducible. Exper-
imental results, on the other hand, show that most subterms generated during theorem
proving are top-irreducible. Therefore algorithms that try to select a rewrite position from
the set of all possible positions are at a serious disadvantage, as the overhead of collecting
all possible positions at each rewrite step is relatively high.

Thus, most existing theorem provers use a fixed term traversal strategy5 (with back-
tracking). While in principle arbitrary strategies are possible, the three most easily orga-
nized ones are innermost , outermost and breadth-first top-down. The innermost rewrite
strategy traverses the term in post-order, i.e. it rewrites subterms (either in left-to-right
or in right-to-left order) first, then the super-term. The outermost strategy implements
pre-order traversal, i.e. it checks the top term first and then descends to the arguments.
Finally, breadth-first top-down rewriting visits all nodes ordered by their depth in the path
(and with an arbitrary but fixed order within each level).

[BH96] contains a discussion and experimental evaluation of the three traversal strate-
gies for the unit-equational theorem prover Waldmeister. The authors conclude that no
traversal strategy is optimal in all cases, and the traversal strategy has to be tailored to
the data structure of the term representation. For Waldmeister, the conclusion reached in

5Recent versions of the Waldmeister theorem prover (which is based on unfailing completion and hence
has only a single unit-clause as the goal) do compute all normal forms of terms in a goal [HJL99]. This
is not feasible for a more general theorem prover, and and even in the Waldmeister case the number of
successors for the goal has to be artificially limited for some proof problems.
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Variables:

S Set of clauses describing the rewrite-relation
c A single clause
t Term to be rewritten
S’ Set of positive unit-clauses from S
p Position in t

procedure normal form(c,S)

{
S’ := {c ∈ S | c is a positive unit clause};
while t is S’-reducible

{
Select p so that t|p is S’-top-reducible;

Select c≡l=r from S’ so that σ(l)=t|p and σ(l)>σ(r);
Replace t|p with σ(r);

}
return t;

}

Figure 4.4: A generic normal form algorithm

the original report was that the outermost strategy corresponds best to the flat term repre-
sentation implemented in this system, however, later analysis uncovered some flaws in the
implementation used for the evaluation of the innermost strategy. The preliminary revised
results seem to show that the differences between innermost and outermost term traversal
show only in rare examples, in which case either strategy can have advantages [Löc99].

The selection of a rewrite strategy based either on the term to be rewritten or general
problem characteristics is a possible choice point where learning can be employed. However,
the influence of this choice point is probably restricted to problems where rewriting plays
a key role, and seems to have less overall influence than other choice points. We have
therefore decided to implement a fixed standard solution. As our own prover is build on
a shared-term rewrite engine, innermost is the most obvious choice (and the only one
that can be consistently implemented for all terms), as it allows maximal benefit from
shared rewriting and can be optimized using normal form dates on terms. Appendix A.1.1
discusses the advantages of this choice.
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The second choice is which rules or equations to try at each term position. There is
no detailed evaluation of this choice point which we are aware of. Typically, the search
for a reducible position and the search for an applicable unit clause are combined, i.e. all
rules or equations are tried at each term position. In this case, an obvious point (again
supported by experiments in [BH96]) is that rules (i.e. unit clauses in which one term
is larger than the other in the term ordering) should be tried first. Equations can only
be used for rewriting if the instantiated equation is orientable (in the desired direction).
Therefore, a relatively expensive ordering test has to be performed for each instantiation
of the clauses (which quite often fails). For rules, on the other hand, only a single test
is necessary when the rule is created. Apart from this optimization, most current provers
leave the choice of the rule up to the convenience of the implementation, i.e. they traverse
a linear list or a indexing tree structure and use the first applicable rule.

As the number of applicable rules at each term node typically is small (remember that
the set of rules and equations is interreduced), the impact of a particular solution is, in most
cases, quite minimal. In E, we have implemented both linear lists and perfect discrimination
trees ([Gra95, GF98], also compare Appendix A.1.2) with two different traversal strategies
(more general rules first or more special rules first), and have found only slight differences
between both tree-based versions. The version based on linear traversal of the clause list
is, of course, a lot slower, but otherwise behaves fairly similar as well. Table 4.1 shows the
relevant data for three typical unit problems we use for illustration (see Appendix B).

A final choice point related to rewriting is the order in which positive unit-clauses
are selected for being rewritten during interreduction. Again, successful rewriting during
interreduction is a fairly rare operation. Moreover, it will not influence maximal terms.
We take this as an indication that this choice-point is of little practical relevance and thus
have opted for the most convenient solution. That means that clauses are considered in the
natural order, i.e. the oldest clause in the set of processed positive unit clauses is considered
first.

As the total influence of the rewriting strategy seems to be limited, the application
of learning techniques to control is unlikely to result in drastic improvements. Moreover,
as for the case of term orderings discussed above, any single proof search generated by
a standard theorem prover only contains information about a single strategy. Learning,
thus, would again require the analysis of multiple proof attempts or significant changes to
the inference engine to enable the prover to explore different possibilities in parallel.

4.2.3 Clause Selection

The selection of the next clause to process (i.e. the selection of the next given clause) is the
most important choice point for given-clause based theorem provers. Even for hard proofs,
only a relatively small and easily manageable number of clauses actually participates in the
proof. Table 4.2 shows the numbers for our standard set of examples and a fixed strategy.

As the table shows, while the number of generated clauses range over more than three
orders of magnitude, and the number of processed clauses range over nearly three orders
of magnitude, the number of clauses in the proof actually range over only about one order
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Problem/Strategy Processed clauses Non-trivial Time

INVCOM
General fist (PDT) 15 14 0.05 s
Specific first (PDT) 15 14 0.04 s
Oldest first (linear list) 15 14 0.03 s
BOO007-2
General fist (PDT) 4454 3185 23.34 s
Specific first (PDT) 4489 3220 22.38 s
Oldest first (linear list) 4829 3560 103.63 s
LUSK6
General fist (PDT) 3673 3103 20.31 s
Specific first (PDT) 3672 3103 19.92 s
Oldest first (linear list) 4894 4270 76.85 s

Remarks: Shown are the number of clauses processed (i.e. selected as given clause), the
number of these clauses that were non-trivial after rewriting, and the time for the search
until a proof has been found. Times are measured on a SUN Ultra 10/300. Times for
INVCOM are of the same order of magnitude as the resolution of the timing command,
and differences there are not significant. Strategies marked with (PDT) use a perfect
discrimination trees. Term ordering was the standard KBO (see A.1.3), clause selection
was according to the Weight heuristic described in A.2.1.

Table 4.1: Selection of rewriting clause

Problem Generated clauses Processed clauses Proof clauses

INVCOM 129 21 11
BOO007-2 198372 10124 52
LUSK6 55196 3672 108
HEN011-3 341044 4813 130
PUZ031-1 120 107 48
SET103-6 91887 4544 15

Remarks: Results are given for the StandardWeight clause selection heuristic and the
default term ordering. In all clauses with at least one negative literal, the largest negative
literal was selected.

Table 4.2: Generated, selected and useful clauses

of magnitude. In fact, even if we check a much larger set of examples, there is rarely a
proof that needs more than 200 clauses. If we compare this to the total number of clauses
processed in the above table, it is obvious that the amount of work associated with this
number of clauses typically is very small by todays standards. If a prover picks the right
clauses, all proofs we have encountered so far can be reproduced in less than 10 seconds
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even for large proofs, and more typically in less than 3 seconds on standard hardware.
The selection of the next clause to process has a decisive influence for nearly all classes

of problems encountered. The proof search for unit problems, Horn problems, and general
problems depends critically on good clause selection. The choice point also is of equal
importance for problems with and without equality. For these reasons, we consider this
choice point to be most suitable for control through our our learning approach. As an added
benefit, this choice point is the only choice point where examples of good and bad search
decisions can be learned from a single proof search, as clauses can be clearly separated into
useful and superfluous clauses.

As this choice point is important for nearly all saturating theorem provers regardless
of the implemented calculus, it is also the choice point that most work has been done on.
We discuss the existing techniques in more detail in section 4.3, where we also include
some data on the performance of simple clause selection schemes. [DF98] contains a de-
tailed discussion and experimental comparison of this choice point for the theorem prover
DISCOUNT.

4.2.4 Literal selection

The procedure generate(c,S) encapsulates all applications of the generating inference
steps (ER), (SN), (SP) and (EF). The only relevant choice point is the selection of a
literal selection function for the new clause c. Literal selection allows us to restrict the
number of possible inferences very significantly. For problem specification that contain
Horn clauses only, selection of at least one negative literal in all non-unit clauses results in
unit-strategies , where at least one partner in each paramodulation inference is a positive
unit clause and hence the number of literals in generated clauses never becomes larger than
the number of literals in the longest premise clause. The benefit of selection also extends
to problems with general clauses, although in a lesser degree. In both cases, the use of
a good literal selection strategy can make a critical difference at least for current clause
selection functions. For problems that use only unit clauses selection does not affect the
inference process at all.

At the moment, most existing saturating theorem provers use only a simple fixed literal
selection strategy or do not use selection at all. As an example, SPASS [WAB+99, WGR96],
the best-known superposition-based prover, selects the largest (by number of symbols)
negative literal whenever a clause has more than one maximal literal [Wei99]. For E we
have implemented a large number of different selection strategies (see Appendix A.2).
However, at the moment a given selection scheme is chosen (either by the user or by a
heuristic based on clause set features, compare section 5.1) for all clauses generated during
the inference process. It is quite possible that a fully dynamic selection of literals can
further improve the performance of the prover.

Learning is definitely a possible way for improving literal selection. However, learning
for this choice point does require a fairly detailed analysis of the proof process – down to
the literal level. This analysis, in turn, requires a very detailed proof protocol, and implies
a high use of system resources and a fairly high amount of implementation work. Moreover,
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if we consider a proof search that already uses a standard literal selection function (most of
which select exactly one literal whenever this is possible), we again can only get examples
of positive search decisions from a single proof protocol. Only proof searches which use
weak or no literal selection can give us information about good and bad decisions.

Finally, a learning algorithm for literal selection needs to decide for each literal whether
to select it or not, while at the same time fulfilling the constraints of the calculus. If we
assume that a single clause is sufficient for an informed decision about literal selection,
we still need to give a judgment for each individual literal, significantly complicating the
problem. There are classes of problems in which literal selection significantly increases the
difficulty of finding a proof6. Thus, recovery from a single misclassification can be very
difficult.

While good literal selection can improve the performance of a theorem prover, the
influence of this choice point nevertheless is limited in scope. Even optimal literal selection
will at most decrease the branching factor at each choice point by a small factor. It will
not reduce the number of clauses necessary for a proof – in fact, it may well increase this
number. And particularly for proof problems where a large part of the search is dominated
by unit-equational clauses, literal selection has very limited influence.

Finally, we intend to employ the E system in a combined system, where E implements
the bottom-up part of the METOP calculus [Mos96]. METOP does not allow literal selec-
tion, and we expect unit inferences to play a particularly important role in the combined
proof process.

For these reasons, we have delegated this choice point to future work, and will concen-
trate on clause selection at the moment.

4.3 Clause Selection and Conventional Evaluation

Functions

If we assume all choice points except for the selection of the given clause to be fixed, we
can remap the proof search onto our general model of a search process:

• A single search state now corresponds to a pair of clause sets, i.e.M = (2Clauses(F,P,V )×
2Clauses(F,P,V )), where the first set contains the processed clauses and the second set
contains the unprocessed clauses.

• The transition relation changes as well. The possible transitions correspond to the
selection of a clause from the set of unprocessed clauses and the changes caused by
a single traversal of the main loop of the algorithm in Figure 4.2.

• As before, there is a large number of possible cost measures, and again the most rele-
vant one is the CPU cost of a certain transition in a given implementation. However,

6A very simple example is PLA002-2 from the TPTP 2.1.0, which is trivial without selection, but
becomes unsolvable (even for very large resource bounds) with nearly any literal selection scheme we have
implemented. This is quite typical for many problems in the PLA (planning) domain of TPTP.
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a fairly good estimation of the search effort is the number of new clauses generated
by a single choice.

• A goal state is a state where the empty clause is contained in the set of unprocessed
clauses7, i.e.
G = {(C,U) ∈ (2Clauses(F,P,V )×Clauses(F,P,V )|� ∈ U}.

• Finally, the start state is (∅, U0), where U0 contains the clauses of the original problem
specification.

The only open choice point now is the selection of the next clause to process. This
selection of the given clause is usually controlled by one or more heuristic evaluation func-
tions . A heuristic evaluation function usually maps a clause to a numerical evaluation.
However, many evaluation functions take the context of the proof process into account.
Therefore we use a more complex definition:

Definition 4.4 (Clause evaluation function)
Let (E,>E) be a totally ordered set and let DSP be the set of all finite SP derivations for
a given proof problem. A clause evaluation function is a function eval : Clauses(F, P, V )×
DSP → E.

J

In most existing theorem provers, the evaluation is an integer number or, more rarely, a
real number. Given such an evaluation function, the selection of the next clause to process
is typically implemented as shown in Fig 4.5.

The two most obviously fair search strategies for a saturating theorem prover are level
saturation and first-in first-out . In the case of level saturation, clauses are selected accord-
ing to a proof level. Clauses from the original problem specification are assigned level 0.
The level of a newly generated clause is the maximum level of its parents increased by one.
If contracting inferences are at all taken into account (practical uses of level saturation
predate most proof calculi with simplification rules), a clause modified by a contracting in-
ference inherits the level of the main premise. The level-saturation strategy selects clauses
with a lower level before clauses with a higher level. The effect is a breadth-first search of
the space of all derivable clauses.

Pure level-saturation is fairly hard to describe in terms of an evaluation function as
it needs exact information about the parents of a clause. The first-in first-out or FIFO
strategy behaves very similar to level-saturation, but is more specific. In the FIFO case,
new clauses are processed in the same order in which they are generated. In terms of an
evaluation function, we can describe this strategy as follows:

7This slightly simplified definition requires that select best() will always select the empty clause if
it is an element of U. Note that the empty clause can never be in the set of processed clauses, since the
empty clause will neither be inserted into the set nor derived by the interreduction procedure (which will
never change the maximal term in a clause and hence cannot eliminate all literals).
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Variables and Subroutines:

S Set of clauses
c The selected clause
H Encoding of the search derivation
eval(c,H) Clause evaluation function

procedure select best(S,H)

{
e := min>E

{eval(c,H) | c∈S};
select arbitrary c from {c∈S | eval(c)=e};
return c;

}

In practice, the clause weight is typically computed once (after the clause has been
created and normalized) and cached.

Figure 4.5: Selection of the given clause

Definition 4.5 (First-in first-out evaluation)
The function FIFOWeight : Clauses(F, P, V )×DSP → N∞ is defined by

FIFOWeight(C, N0 `SP . . . `SP Nn) =

{
min{i|C ∈ Ni} if min{i|C ∈ Ni} 6= ∅
∞ otherwise

J

Both level-saturation and first-in first are very weak search strategies. As only the
history, but not the structure of the clause are used for the search decision, very large
clauses can be selected very early. This leads to a very early explosion of the search space.
Table 4.3 compares the overall performance of E with FIFO and other clause selection
heuristics. Tables 4.4, 4.4 and 4.6 show the branching factor of the search space for some
examples as a function of time and processed clauses. It is obvious that pure FIFO performs
very badly. Most current saturating theorem provers use such history-based strategies only
to a very small degree. Instead, they select clauses mainly based on syntactic properties
of the clauses themselves.

The most frequently encountered search heuristic, and one of the most successful ones,
is based on counting symbols and preferring clauses with a small number of symbols, or a
small clause weight .
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Time limit 5s 10s 50s 100s 200s 300s

FIFO 861 900 948 965 990 1002
Weight1 (wf = 1, wv = 1) 1128 1175 1280 1322 1349 1373
Weight2 (wf = 2, wv = 1) 1155 1217 1307 1346 1363 1383
Weight3 (wf = 1, wv = 2) 1012 1054 1140 1159 1181 1199
RWeight 1169 1218 1307 1345 1382 1406
RWeight/FIFO 1294 1359 1480 1519 1540 1565

Remarks: Shown is the number of successes within the given time limit for all clause
normal form problems from TPTP 2.1.0 on a SUN Ultra-60/300. Weight entries use
pure clause weight with the given values of wf and wv. RWeight uses wf = 2, wv = 1
and multiplies the weight of maximal terms and the weight of maximal literals with the
additional factor fmax = 1.5. The last entry combines the same RWeight strategy and
FIFO with a pick-given ratio of 5 to 1. We used the standard term ordering and selection
of the largest negative literal.

Table 4.3: Comparative performance of search heuristics

Definition 4.6 (Term weight, Term depth, Clause weight)
• Consider t ∈ Term(F, V ). The weight of t with respect to wf , wv ∈ R is defined as

– Weight(wf , wv, x) = wv if x ∈ V
– Weight(wf , wv, f(t1, . . . , tn) = wf +

∑n
i=1 Weight(wf , wv, ti) otherwise

• The depth of a term t is defined as follows:

– Depth(x) = 1 if x ∈ V
– Depth(f(t1, . . . tn)) = 1 + maxDepth({t1, . . . , tn}) ∪ {0})

• The weight of a clause C = s1 ' t1 ∨ · · · ∨ sn ' tn (with respect to wf , wv ∈ R) is
defined by

CWeight(wf , wv, C) =
n∑

i=1

(Weight(si) + Weight(ti))

J

Most current saturating theorem provers use clause weight or variations of it as their
main search control heuristic. The most common way of tuning a theorem prover for
a given domain or problems involves selecting values wf and wv for the clause weight
heuristic. Typical values are wf = 1, wv = 1 or wf = 2, wv = 1. Table 4.3 shows
that clause weight heuristics perform much better than FIFO. It also shows the significant
differences between different instances of the clause weight heuristic. Tables 4.4 to 4.6
make this difference even more obvious, but also show that very similar strategies behave
very different on the different problems.

There are various reasons for the success of the very simple weight-based approach:
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Processed 10 20 50 100 500 1000 2000
clauses

INVCOM
FIFO 24 67 324 1298 - - -
Weight1 9 - - - - - -
Weight2 17 4 - - - - -
Weight3 9 - - - - - -
RWeight 8 - - - - - -
RWeight/FIFO 10 - - - - - -

BOO007-2
FIFO 7 80 913 3663 92090 N/A N/A
Weight1 7 34 60 104 126 2660 6922
Weight2 7 39 57 194 1120 2638 3467
Weight3 7 22 37 127 1231 6620 11284
RWeight 7 28 57 168 1934 2956 7606
RWeight/FIFO 8 22 117 350 6201 21202 27591

LUSK6
FIFO 12 134 825 2474 76749 N/A N/A
Weight1 13 21 72 108 2293 7219 16416
Weight2 13 21 106 87 2324 3267 8799
Weight3 13 21 72 108 2342 3597 5138
RWeight 13 21 73 163 1891 7033 12449
RWeight/FIFO 13 32 99 300 4140 12840 67759

Remarks: Shown is the number of remaining unprocessed clauses after a given number
of clauses has been processed. A dash implies that the proof has been found before that
number of clauses has been processed, a N/A entry that the number of clauses could
not be processed with a limit of 128 MB in less than 300 seconds. Note that our prover
automatically removes descendants of clauses recognized as composite, i.e. the number of
actually generated clauses typically is much higher than the number of unprocessed clauses.
Experimental setup and heuristics are as described in Figure 4.3.

Table 4.4: Branching of the search space over processed clauses

• Small clauses are typically more general than larger clauses, i.e. they represent knowl-
edge about more situations in a more compact form than larger clauses. In practice,
this means that they can very often be used in contracting inferences to simplify
other clauses or even to show there redundancy.

• Smaller clauses usually have fewer potential inference positions. Thus, processing
smaller clauses is more efficient. It is also likely to yield relatively few new clauses,
and to yield relatively small clauses, thus restricting the explosion in the search space.
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Processed 10 20 50 100 500 1000 2000
clauses

HEN011-3
FIFO 10 22 163 341 4920 39128 203109
Weight1 6 3 38 61 349 1212 2892
Weight2 6 3 38 66 377 1192 5005
Weight3 6 3 37 74 196 554 1477
RWeight 6 9 41 57 234 737 1197
RWeight/FIFO 6 3 56 133 767 3320 9908

PUZ031-1
FIFO 20 20 5 10 - - -
Weight1 18 13 5 10 - - -
Weight2 18 13 5 19 - - -
Weight3 18 13 5 10 - - -
RWeight 18 13 5 14 - - -
RWeight/FIFO 18 13 9 - - - -

SET103-6
FIFO 83 76 106 166 8282 36579 122038
Weight1 84 76 95 174 1069 3866 9471
Weight2 84 76 91 218 1673 3378 15033
Weight3 83 79 110 159 516 2806 5620
RWeight 84 76 103 179 1610 4175 38323
RWeight/FIFO 84 75 90 205 1990 12002 -

Remarks: See previous table.

Table 4.5: Branching of the search space over processed clauses (continued)

• Finally, it is the aim of saturating proof proof procedures to produce the empty
clause and hence to make the unsatisfiability of a clause set explicit. Clauses with
fewer literals, and hence of lower weight, are more likely to degenerate into the empty
clause by appropriate contracting inferences.

Pure symbol counting results in fairly powerful strategies. However, there is a variety
of modifications that can further improve this heuristic.

The first variation is to assign different base weights to different function symbols.
This is implemented in DISCOUNT. While this can dramatically improve the performance
of the prover for some problems, it is usually hard to select good weights. There are
some approaches to automate this task for a single domain using learning techniques, see
Section 6.1.

Another variation is to weight individual terms and literals in a clause in different ways.
One approach is to use the term ordering to determine which parts of a clause to select.
DISCOUNT implements the GTWeight strategy that only considers the maximal term(s)
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(with respect to the used reduction ordering) in each (unit) clause. It also implements
an (potentially incomplete) strategy that always prefers orientable unit clauses over un-
orientable. As generalizations of these early heuristics, E realizes a weight function that
allows arbitrary multipliers for the weight of maximal terms within each literal and maxi-
mal literals within each clause. E also allows different weight multipliers for positive and
negative literals. For further details see Appendix A.2.1.

Table 4.3 shows that the strategy that gives a relatively high weight to maximal terms
outperform all of the traditional clause weight approaches, although the evaluation process
is more expensive in terms of CPU time. There are two reasons for this success. First, in
the ordering-constraint calculi like completion and superposition, only maximal terms are
used for generating inferences. Therefore the number of possible inferences is determined
by maximal terms only. Non-maximal terms influence the size of newly generated clauses,
but (usually) not their number. Secondly, for the case of unit-clauses, orientable clauses,
i.e. clauses with exactly one literal, can always be used as rewrite rules. Unorientable
equations, on the other hand, require an expensive ordering comparison for each attempt,
and in many cases cannot be used for simplification at all. A disadvantage of ordering-based
heuristics, on the other hand, is the relatively high computing cost necessary determine
maximal terms and literals. Normally this is only necessary for the tiny percentage of
processed clauses.

A very different approach is taken by goal-directed search heuristics. As we described
in Section 2.5, a formula typically consists of two parts: The specification of an algebraic
structure (which is satisfiable, i.e. has at least one model) and a (negated) goal or query.
As the specification is satisfiable, all proofs for the problem have to involve the goal8.
Goal-directed heuristics make use of this feature and attempt to select clauses that are
likely to be applicable to reduce the goal to the empty clause.

Goal-directed heuristics are very hard to implement for the general case. Many theorem
provers only read an unstructured set of clauses. Even if the theorem prover does distin-
guish between specification clauses and goal clauses in the input, the set of goal clauses
(i.e. the set of all clauses derived using at least one goal or goal-derived clause) grows very
fast for most problems. Therefore, there is no small and fixed set of goals to use as a target
for the heuristic.

However, there is an important special case in which goal-directed heuristics can be
used more easily. Proof procedures for unit-equational problems that are based on Knuth-
Bendix-completion [KB70, HR87, BDP89] typically only have to deal with a single ground
goal. For this case, a couple of goal-directed heuristics have been realized in DISCOUNT.
These include heuristics that prefer unit clauses where one term can match or unify with
a subterm of the goal and heuristics that prefer clauses that are structurally similar to the
goal. For details see [DF94].

8This property is used by non-equational saturating theorem provers in the set-of-support strat-
egy [WRC65], and by analytic theorem provers to limit the set of start clauses [Lov68, Lov78]. Neither
strategy can easily be applied to equational reasoning.
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So far, goal-oriented heuristics are mostly useful in special domains or for some few
selected examples. However, they can be very useful in combination with other strategies
e.g. in the TEAMWORK approach (see below).

For modern high-performance theorem provers, a single clause selection heuristic is
insufficient. They typically combine two or more such heuristics. The first well-known
implementation of such an approach is the pick-given ratio in Otter (see [McC94]). Otter
allows the alternating selection of clauses according to a weight-based evaluation function
and according to the FIFO-strategy. The pick-given ratio describes how many clauses shall
be selected according to which criterion. Typically, Otter selects 4 out of every five clauses
according to weight and one according to age. This concept has been copied in various
other theorem provers. Waldmeister and Vampire are examples for very successful provers
that include such a strategy.

One of the advantage of the combination of weight and age based heuristics is that it
will usually find short proofs even if relatively large clauses are involved. It will also ensure
that all initial axioms are used relatively early. This is particularly effective if the goal
(or any other clause necessary for the proof) is large compared to the other input clauses.
Table 4.5 shows that for two of the three non-unit problems in our standard test set this
effect can reduce the number of clauses that need to be processed before a proof is found,
and the results in table 4.6 demonstrate the same effect if we consider proof times and not
number of processed clauses. Table 4.3 finally shows that a strategy interleaving clause
weight based heuristics (modified by an ordering) with FIFO is much stronger than any of
the individual heuristics, at least over the examples from the TPTP problem library.

A similar interleaving heuristic is used in DISCOUNT for the case that the goal contains
variables and hence narrowing has to be applied to the goal. In DISCOUNT, new goals
generated by narrowing are called critical goals, and the prover can be set to process critical
goals and critical pairs (ordinary unit clauses derived during completion) in an arbitrary
ratio.

E has extended these concepts and allows the combination of an arbitrary number of
heuristics, where each heuristic additionally can concentrate on a certain class of clauses
(goals, non-goals, ground clause, etc). The complete method of specifying composite search
heuristics is described in Appendix A.2.1.

The composite heuristics described above combine strategies in a relatively fine-grained
way. However, search strategies and heuristics can also be combined in a much more
coarse way. We have already described the startover strategy implemented in Gandalf and
p-SETHEO in Section 4.1. A more complex way to combine different strategies is TEAM-
WORK [Den93, AD93, ADF95, Den95, DK96, DKS97], a knowledge-based distribution
concept for certain search processes that has been implemented in DISCOUNT.

A system that uses the TEAMWORK method has four types of components: experts,
specialists, referees and a supervisor. Experts and specialists are the components actively
working on the solution of a given problem. In the case of DISCOUNT most of them are
(equational) theorem provers. They work independently for given periods of time, using
their own method or their own view on the problem. All experts employ the same basic
proving technique (unfailing completion). They only differ in the way they select facts for
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processing. Specialists, on the other hand, may employ any correct means to generate new
equations, and can also support the supervisor in administrative tasks.

After the experts and specialists have worked for a set period, a team meeting takes
place. In the first phase of a team meeting the work of all active experts and specialists is
judged by referees. A referee has two tasks: Measuring the overall progress of an expert or
specialist in the last period (resulting in a measure of success), and selecting outstanding
new results (unit clauses). The results of the referees (measures of success and outstanding
results) are collected by the supervisor. The supervisor determines the most successful
expert and uses its complete search state as a base for a new working period. It also
incorporates the outstanding results of the other experts and specialists into this state.
The supervisor then determines the composition of the team for the next working period
and broadcasts the new search state to all experts and specialists.

TEAMWORK has been fairly successful, but suffers from the fact that at least the
currently existing implementation requires a fairly homogeneous cluster of workstations,
and is very sensitive to small differences in the performance of these machines. Such
disturbances are hard to avoid in a multi-user environment, however, the negative impact
can be limited if using DISCOUNT’s goal-directed heuristics.

4.4 Summary

In this chapter we have developed a proof procedure for superposition-based theorem prov-
ing. We have discussed the search problem resulting from this algorithm and have identified
the relevant choice points. We also gave a sufficient criterion for the refutational complete-
ness of the proof procedure.

Using experimental data and pragmatic arguments, we have offered solutions for most
of these choice points. We have identified the selection of the next clause to process as the
most important class of decisions made during the proof search and have determined this
choice point to particularly suitable for the use of learning techniques.

We also identified literal selection and the selection of a good term ordering as potential
candidate sfor future work using both meta-knowledge and proof intrinsic knowledge for
literal selection and pure meta-knowledge for the selection of term orderings.

Finally, we conducted a survey on the conventional methods used for clause selection
in existing theorem provers.
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Runtime 1 5 10 20 50 100 200 300
in seconds

BOO007-2

FIFO 6380 17676 19165 37138 81746 145288 N/A N/A
Weight1 2447 5166 7466 20458 - - - -
Weight2 2812 6685 15164 3763 - - - -
Weight3 1668 6794 12266 13152 7801 24768 14645 71255
RWeight 3007 8475 - - - - - -
RW/FIFO 5899 16569 29229 - - - - -

LUSK6

FIFO 4889 11847 20416 33170 57314 98168 154478 199160
Weight1 5233 13572 5890 21987 - - - -
Weight2 4145 9460 7445 - - - - -
Weight3 3653 9221 14362 24352 - - - -
RWeight 1603 7907 - - - - - -
RW/FIFO 5172 11739 19599 30938 61894 110220 193770 N/A

HEN011-3

FIFO 3377 8256 14666 21302 50352 106322 180441 236153
Weight1 772 1681 2438 3674 - - - -
Weight2 600 2362 4378 7438 23097 - - -
Weight3 428 926 1424 2404 1677 - - -
RWeight 639 1760 4264 8676 29670 62232 - -
RW/FIFO 1944 4918 8989 13846 - - - -

SET103-6

FIFO 7486 22184 39034 67136 160079 N/A N/A N/A
Weight1 2409 4788 6772 - - - - -
Weight2 2564 6850 13450 30598 71523 - - -
Weight3 728 3532 4708 6637 13713 19023 26919 32745
RWeight 3468 10662 37988 61519 166534 264446 N/A N/A
RW/FIFO 5211 - - - - - - -

Remarks: Shown is the number of remaining unprocessed clauses after a given time
limit. A dash implies that the proof time is lower than the time limit, a N/A entry that
the number of clauses could not be processed with a limit of 128 MB. The occasional strong
reduction in the number of clauses seen e.g. for the LUSK6 example in the entries for 5
and 10 seconds with Weight1 is an example for the effect of descendent removal already
discussed for the previous table. Experimental setup and heuristics are again as described
in Table 4.3. The INVCOM and PUZ031-1 examples are proved in less than a second
regardless of heuristic and are omitted from the table.

Table 4.6: Branching of the search space over time



Chapter 5

Representing Search Control
Knowledge

In this chapter we introduce data structures for representing knowledge about proof prob-
lems and proof searches. We also describe how to extract a relatively compact represen-
tation of important search decisions during a proof search from actual protocols of the
inferences a prover performed during proof searches.

In automated theorem proving, the main objects we deal with on the inference level are
terms, clauses and sets of clauses. However, most existing learning algorithms, especially
those that are able to cope with approximate knowledge and contradictory data, work
on fixed-length vectors of numerical values. We introduce numerical features for (sets
of) terms, clauses, and related structures in Section 5.1. Numerical features can be used
to represent these objects in a form that allows traditional machine learning algorithms
to operate on them. In particular, there exist strong and efficiently computable distance
measures for feature vectors. These distance measures can be used to induce a notion of
similarity between clause sets, and hence between proof problems.

These advantages come at a price, however. Numerical features necessarily abstract
from most of the properties of recursive structures, and hence limit what kind of knowledge
can be expressed. We therefore will use numerical features only for representing proof
problems, and rely on learning algorithms that works directly on terms for learning clause
evaluations. In order to get a uniform interface for this algorithm, we encode more complex
structures, like equations and clauses, as terms. Furthermore, to abstract from arbitrary
choices made by the user, we generalize these terms into term patterns . Term and pattern
representations for clauses are described in Section 5.2.

Section 5.3 finally introduces a representation for search decisions made during a proof
search. We describe how to transform a protocol of a proof search into a (relatively small)
set of annotated term patterns that represent the relevant part of a proof search and the
search decisions taken.

62
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5.1 Numerical Features

One way to represent the typical data structures occurring in automated theorem proving
is by abstracting their properties into a finite set of numerical (or boolean) features.

Definition 5.1 (Term features)
• A function f : Term(F, V ) → R is called a term feature function or simply term

feature and the value f(t) for a term t ∈ Term(F, V ) is called a feature value of t.

• If f(Term(F, V )) = {0, 1}, we call f a Boolean feature.

• Let f1, . . . , fn be features. Then the function f : Term(F, V ) → Rn defined by
f(t) = (f1(t), . . . , fn(t)) is a feature vector function and f(t) = (r1, . . . , rn) ∈ Rn is
called a feature vector.

J

Typical term features used in theorem proving are e.g. the number of variable oc-
currences in a term, the number of different variables in a term, the term weight (see
Definition 4.6), or the depth of a term.

The concept of features can easily be extended to clauses and even sets of clauses:

Definition 5.2 (Clause features, Clause set features)
• A function f : Clause(F, P, V ) → R is called a simple clause feature function or

clause feature and the value f(C) for a clause C is called a (clause) feature value.

• A function f : 2Clause(F,P,V ) → R is called a clause set feature function or clause set
feature and the value f({C1, . . . , Cn}) is called a feature value for the set of clauses
f({C1, . . . , Cn}).

• As before, if a clause feature or clause set feature only maps onto the values 0 and
1, we call it a boolean feature.

Feature vectors for clauses and clause sets are defined analogous to feature vectors for
terms.

J

Typical features for clauses are e.g. the number of literals, the number of symbols, the
clause weight or the clause depth. Finite clause sets are typically described by features like
number of clauses in the set, number of function symbols of a given arity, average number
of literals, or average clause weight. Such features are usually selected in an ad-hoc manner
based on the experience of system developers, and are refined by experimental evaluation.
Table 5.1 shows a list of some term and clause features described in the literature, table 5.2
shows some clause set features.

As finite length feature vectors are very accessible to traditional AI approaches like sym-
bolic machine learning algorithms and neural networks, they have been used for controlling
search decisions in both learning and hand-optimized theorem provers.



64 Representing Search Control Knowledge

Feature Sources
Number of literals in a clause [CL73, SE90, SE91, Gol91, Gol94]
Number of negative literals in a clause [SE90, SE91, Gol91, Gol94]
Number of distinct predicate symbols [CL73, SE90, SE91, Gol91, Gol94]
Number of occurrences of constant
function symbols

[SE90, SE91, Gol91, Gol94, Fuc96, Fuc97b]

Number of distinct function symbols [SE90, SE91, Gol91, Gol94, Fuc96, Fuc97b]
Number of variable occurrences [SE90, SE91, Gol91, Gol94, Fuc96, Fuc97b]
Depth of a term or clause [CL73, Fuc96, Fuc97b]
Weight of a term or a clause [Fuc96, Fuc97b]

Table 5.1: Term and clause features

Feature Sources
Number of clauses [Fuc96, Fuc97b, SB99]
Are all clauses unit?
Are all clauses Horn?
Are there variables in negative clauses?
Are there non-constant function sym-
bols in any clauses?
Number of function symbols of a given
arity

[Fuc97a, SB99]

Average term depth of terms occurring
in the set

[SB99]

Remarks: Features without reference are implemented in locally used theorem provers
(SETHEO, E-SETHEO, p-SETHEO, E) and have not yet been described in publications.
We are aware from personal communications that many of them are used in other theorem
provers as well. These aspects, however, are rarely published.

Table 5.2: Clause set features

One of the first approaches to learning heuristic evaluation functions was least square
estimation (see [CL73], pp.154ff and [SF71]), applied to linear polynomials of the feature
vector components. This work, however, seems to have been of little influence.

In [SE90, SE91] and similarly in [Gol91, Gol94] the authors use numerical features
to describe connection tableaux (which can be seen as terms over an extended signature),
representing partial proof attempts of the theorem prover SETHEO. The resulting feature
vectors are used as input for a multi-layer perceptron (i.e. a neural network for supervised
learning) to learn heuristic evaluation functions.

[Fuc96, Fuc97b] describes another use of features for learning search control heuristics
for DISCOUNT. Each feature of a (unit-equational) clause is associated with a set of
permissible values determined by analyzing a successful proof attempt. New clauses are
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evaluated by summing the minimal distances (modified by a weight coefficient for each
feature) of their feature values with a permissible value for this feature.

A very common use of features is the definition of distance measures (or, dual to this, of
similarity measures). This allows the application of case-based reasoning (see e.g. [Kol92]
for an overview).

Definition 5.3 (Absolute distance measures)
Assume a, b ∈ Rn, a = (a1, . . . , an) and b = (b1, . . . , bn).

• distM(a, b) =
∑n

i=1 |ai − bi| is called the Manhattan distance between a and b.

• distE(a, b) =
√∑n

i=1(ai − bi)2 is called the Euclidean distance between a and b.

• Let w = (w1, . . . , wn) ∈ Rn be a vector or weights. The weighted Euclidean distance
between a and b (for the weight vector w) is distW (a, b) =

√∑n
i=1(wi(ai − bi))2.

J

Sometimes it is necessary to combine features with very different value ranges, where
each feature nevertheless has about the same importance. In order to still allow each
feature to contribute to the same degree, we need to normalize either the distances or the
features. Normalizing the feature values (by taking the average or the maximum value of
the feature over all occurring objects as a normalizing factor) has a serious disadvantage:
It requires a-priori knowledge of all feature values. In particular, if we add a new object
with new feature values, we need to recompute all normalized feature values. Moreover,
this may change the distance between two otherwise unaffected objects (and may even
change the differences in distance between to vectors).

Example: Consider the feature vectors a = (1, 1), b = (1, 0.5) and c = (0.6, 1). If
we normalize the feature values using the maximum feature values, a and b re-
main unchanged. The Manhattan distances between a and the two other vectors
are distM(a, b) = 0.5 and distM(a, c) = 0.4, i.e. c is closer to a as b. However, if
we consider a fourth vector, d = (1, 2), this changes. We get the normalized vec-
tors a′ = (1, 0.5), b′ = (1, 0.25) and c′ = (0.6, 0.5). Now distM(a′, b′) = 0.25 and
distM(a′, c′) = 0.4, and b′ is closer to a′ than c′.

Similar effects occur with other distance measures and other global normalization
schemes.

To avoid these undesirable effects, we now introduce relative distances for feature values
and distance functions based on them.

Definition 5.4 (Relative distance measures)
We define a relative difference function δ : R× R→ [0; 1] by

δ(a, b) =

{
0 if a = 0 and b = 0

a−b
2×max(|a|,|b|) otherwise
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Now assume a, b ∈ Rn, a = (a1, . . . , an) and b = (b1, . . . , bn) as in the previous definition

• rdistM(a, b) =
∑n

i=1 |δ(ai, bi)| is called the relative Manhattan distance between a and
b.

• rdistE(a, b) =
√∑n

i=1 δ(ai, bi)
2 is called the relative Euclidean distance between a

and b.

• Let w = (w1, . . . , wn) ∈ Rn be a vector of weights. The weighted relative Eu-
clidean distance between a and b (for the weight vector w) is given by rdistW (a, b) =√∑n

i=1(wi × δ(ai, bi))2.

• If rdist : Rn → R is a relative distance measure, we call rdist : Rn → [0; 1] defined by

rdist(a, b) = rdist(a,b)
n

for all a, b ∈ Rn the corresponding normalized relative distance
measure.

J

Feature-based distance functions are e.g. used in the approach described by [Fuc97a],
where a suitable search guiding function for a new proof is selected by comparing the
performance of the functions on the nearest neighbour (the problem with the smallest
distance for some distance measure) from a data base containing the feature vectors and
the performance of a finite set of strategies for a set of proof problems. This approach used
the simple Euclidean distance.

Many other theorem provers use features to select one of multiple strategies as well.
All recent sequential versions of SETHEO [MIL+97] use boolean features (e.g. presence
of non-Horn clauses or presence of true function symbols) to select the search strategy.
The 1998 version of p-SETHEO [Wol98a] used a large number of Boolean and numerical
features to select a set of search strategies to run in parallel. The (conventional) automatic
mode of our own prover, E [Sch99b], as used in the CASC-16 ATP competition, uses a
set of 8 Boolean and ternary features to select one of about 20 different proof strategies.
Similarly, the new, combined system E-SETHEO [SW99, WL99, Wol98b, Wol99b] uses a
vector of Boolean features to determine which of a list of strategy schedules to use on a
given problem.

We have based the selection of training examples for our learning system on clause set
features. A preliminary version of this selection mechanism, using the relative Manhattan
distance, was successfully implemented for the DISCOUNT/TSM system and has been
described in [SB99]. We have further generalized this approach for full clausal logic by
modifying the set of features used. For details see Section 7.2.

5.2 Term and Clause Patterns

The algebraic structure described by a given specification is independent of the actual set
of function and variable symbols used. Moreover, certain relevant properties of terms and
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clauses in a proof search may also be independent from the function symbols used. If
we want to transfer knowledge between different but similar problems, and if we want to
capture general, signature-independent syntactic features of terms and clauses, we need
to cope with this situation. There are a number of different approaches to deal with the
problem, many of which require the substitution of function symbols with different ones.

A function symbol renaming is a function that does exactly this:

Definition 5.5 (Function symbol renaming, Symbol renaming)
Let sig = (F, ar) be a signature and V be a set of variables. A function symbol renaming
τ is a (not necessarily injective) function τ : F → F with ar(τ(f)) = ar(f) for all f ∈ F .

It is extended to a function τ : Term(F ,V )→ Term(F ,V ) in the usual way, i.e.

• τ(x) = x for x ∈ V .

• τ(f(t1, . . . , tn)) = τ(f)(τ(t1), . . . , τ(tn))

We write τ = {f1 ← g1, . . . , fn ← gn} to denote a function symbol renaming τ with
τ(f1) = g1, . . . , τ(fn) = gn, and we denote the set of all function symbol renamings for a
signature sig with fsr(sig).

If µ = τ ◦ σ with τ ∈ fsr(sig) and σ ∈ Σperm(V ), we call µ a symbol renaming.
J

Function symbol renamings are a very general concept, and can be used to describe more
specific techniques used in learning for theorem proving. The most often used approach is
trying to map symbols from the signature of a given specification to the signature used in
the representation of certain piece of learned knowledge.

Definition 5.6 (Signature match)
Let sig1 = (F1, ar 1) and sig2 = (F2, ar 2) be two signatures. A signature match τ from sig1
to sig2 is a function symbol renaming τ ∈ fsr(sig1 ∪ sig2 ) with τ(f) ∈ F2 for all f ∈ F1

and τ(f) = f for all f ∈ F2.
J

Signature matching is used e.g. in DISCOUNT to detect applicable knowledge for
learning by pattern memorization [Sch95, DS96a, DS98], to select one of many proof
control plans [DK96] and to decide on the selection of focus factsfor flexible reenact-
ment [FF97, Fuc97b, Fuc96].

While signature matching has been used in learning, it does have some disadvantages.
In particular, signature matches are not unique, but the number of possible matches rises
combinatorially with the number of symbols of each arity. Even if we try to use function
symbol renamings to match term structures onto each other, matches are still not unique:

Example: Consider sig1 = {f/2, a/0, b/0} and sig2 = {g/2, c/0, d/0}. If we want to
map f(a, b) onto g(c, d), we can use four different function symbol renamings, two of
which are injective:
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τ1 = {f ← g, a← c, b← c}
τ2 = {f ← g, a← c, b← d}
τ3 = {f ← g, a← d, b← c}
τ4 = {f ← g, a← d, b← d}

This ambiguity leads to limited scalability even for systems using transformational anal-
ogy , i.e. systems like PLAGIATOR [KW94, KW96] (which often use even stronger versions
of second order matching), although these systems only have to find a single match to solve
the proof problem at hand. In our approach, where we attempt to extract knowledge from
a large number of source problems for a single new problem, and moreover want to evaluate
a large number of individual clauses efficiently, this approach is unacceptable.

Instead, we compute a unique representation for all terms (and later equations and
clauses) of a certain structure, at the cost of losing inter-clause relationships between
function symbols. That is, we rename some (user-defined) function symbols on a per-
clause basis in such a way that the resulting term-representation of each clause becomes
minimal in a total ordering on equivalent representations.

Definition 5.7 (Lexicographical term ordering)
Let F be a set of function symbols with associated arities, and let V be a set of variable
symbols. Let further % be a quasi-ordering total up to ≈ on F ∪ V . Let s = f(s1, . . . , sn)
and t = g(t1, . . . , tm) be two terms from Term(F, V ) (remember that variable symbols are
syntactically equivalent to constants here). Then the lexicographical extension of % to
terms is recursively defined as follows:

s %tlex t if f � g or
f ≈ g and (s1, . . . , sn) �tlexlex

g(t1, . . . , tm)
J

Theorem 5.1 (Totality of �tlex)
• The relation �tlex for a total precedence � on function symbols and variables is a

total ordering on terms.

• The relation %tlex for a given precedence ordering % total up to ≈ is a quasi-
ordering on terms. The equivalence part of %tlex is given by [f(t1, . . . , tn)]≈tlex

=
{g(t′1, . . . , t

′
n) | g ≈ f, t′i ∈ [t)i]≈tlex

for all i ∈ {1, . . . , n}}.

Proof: The ordering is equivalent to the normal lexicographical ordering on the flat word
representation of terms, for which the result is well known.

�

With this ordering, we can now define representative patterns for terms ([Sch95, DS96a,
DS98] define a slightly simpler form of representative patterns, [SB99] introduces patterns
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equivalent to the ones used here, but using a less general framework). The basic idea
is that we split the set of function symbols into two parts, a part Ff which we consider
to play a special, well-defined role in a term (usually function symbols introduced by our
encodings), and a set of (usually user-defined) function symbols Fg that we want to abstract
from. Function symbols from Fg are generalized (replaced by new symbols playing the role
of limited second order variables), function symbols from Ff remain fixed.

Definition 5.8 (Representative term patterns)
Let F = Ff ] Fg be a set of function symbols and (F, ar) be a signature. Let S =

⊎
i∈N Si

with Si = {fij|j ∈ N} be an enumerable set composed of (mutually disjoint) enumerable
sets of new symbols. We define arS : S → N by arS(fij) = i and sig = ((F, ar)∪ (S, arS)).
Finally, let V be a set of variable symbols and let � be a a total precedence on S ∪ F ∪ V
with the following properties:

1. fij � fi′j′ iff i > i′ or i = i′ and j > j′ for all fij, fi′j′ ∈ S

2. f � f ′ for all f ∈ S and f ′ ∈ F

3. f � x for all f ∈ S ∪ S and x ∈ V

Then we define the following terms:

• Term(S ∪ F, V ) is called the set of term patterns for Term(F, V ).

• The term s ∈ Term(F ∪ S, V ) is called a term pattern for t ∈ Term(F ∪ S, V ), if
there exists a pattern substitution µ = σ ◦ τ with µ(s) = t, where σ ∈ Σperm(V ) and
τ ∈ fsr(sig) with τ(f) = f for all f ∈ F .

• A term s is called more general than t if s is a term pattern for t, but not vice versa.
If s is a pattern for t and t is a pattern for s, s and t are called equivalent patterns .

• A term s ∈ Term(F ∪S, V ) is called most general pattern for a term t ∈ Term(F, V )
with respect to Ff , if there exists a pattern substitution µ with µ(f) = f for all
f ∈ Ff and there is no more general pattern with this property for t. We denote the
set of most general patterns with respect to Ff for t with mgpFf

(t). If we speak only
of the most general pattern for a term, we assume the case Ff = {}.

• The representative term pattern (with respect to Ff) for a term t is the term pattern
s = min�tlex

mgpFf
(t). As the following theorem states, the representative term

pattern for a term is unique, therefore we can write repgen(s, Ff ) to denote the
representative term patterns for s with respect to Ff . Again, if we omit Ff we
assume Ff = {}.

J

Theorem 5.2 (Uniqueness of the representative term pattern)
The representative term pattern for a term s with respect to set of function symbols Ff

and a given precedence � is unique.
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Proof: The precedence � is total, hence, by Theorem 5.1, �tlex is total. As the repre-
sentative term pattern is defined as the minimum of a set of patterns with respect to
this ordering, it is well-defined.

�

The representative pattern for a term can be computed very efficiently by traversing
the term once and substituting function symbols from Fg in their order of appearance with
suitable new symbols from S. To illustrate this point, we give some simple examples of
terms and their representative patterns.

Example: Assume sig = {f/2, g/1, h/1}.

• Consider the term t1 ≡ f(g(x2), g(x1)).

– We first substitute f with the new f21 ∈ S (the minimal new symbol with
arity 2).

– The next symbol encountered is g, which is substituted with f11.

– We then continue to normalize the variables. The resulting pattern is
repgen(t1, {}) = f21(f11(x1), f11(x2)).

– Similarly, repgen(t1, {f}) = f(f11(x1), f11(x2)).

• Consider the term t2 ≡ f(g(h(x2)), g(x1)).

– repgen(t2, {f, g, h}) = f(g(h(x1)), g(x2)).

– repgen(t2, {}) = f21(f11(f12(x1)), f11(x2)).

– repgen(t2, {g}) = f21(g(f11(x1)), g(x2)).

Literals and clauses can be easily encoded as terms. For equations and inequations,
there are few obvious variations. We choose to encode both in an equivalent way:

Definition 5.9 (Term encoding of equations and literals)
Let sig = (F, ar) be a signature. We extend sig by adding two new symbols: sig ′ =
sig ] {eq/2, neq/2}.

• Let s' t be an equation over Term(F, V ). Then the term eq(s, t) is a term encoding
of s' t. Keep in mind that we consider equations to be symmetric, i.e. there are two
term encodings for each (non-trivial) equation.

• Similarly, let s 6' t be a negated equation. Then the term neq(s, t) is a term encoding
of s 6' t.

• We denote the set of term encodings for a literal s' t by Tenc(s' t).

J
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For clauses, there are two obvious possibilities. On the one hand, we can consider a
clause with n literals as a term with n principal arguments, on the other hand, we can
treat a clause as a list of literals and encode it as such.

Definition 5.10 (Term encodings for clauses)
Let sig = (F, ar) be a signature and let C ≡ L1 ∨ . . . ∨ Ln be a clause.

• Let sig1 = sig ] {eq/2, neq/2, or 0/0, or 1/1, . . .} be an extension of sig . Then any
term orn(L′1, . . . , L

′
n) with L′i ∈ Tenc(Li) for all i ∈ {1, . . . , n} is a flat term encoding

of C. We denote the set of all flat term encodings for a clause C by Tflat(C).

• Let sig2 = sig ] {eq/2, neq/2, or/2, nil/0} be another extension of sig . Then the set
of recursive term encodings of C, Trec(C) is defined inductively:

– Trec(�) = nil .

– Trec(L ∨R) = {or(L,R) | L ∈ Tenc(L), R ∈ Trec(R)}.

J

Keep in mind that the order of literal encodings in the term encoding of a clause is
indeterminate, as the original clause is a (unsorted) multi-set of literals.

Example: Consider the clause C = g(g(x))'x ∨ f(g(x)) 6'g(f(x)).

• A flat clause encoding of C is the term

or2 (eq(g(g(x)), x), neq(f(g(x)), g(f(x))).

• An alternative flat clause encoding is the term

or2 (neq(g(f(x)), f(fg(x)), eq(g(g(x)), x)).

• A recursive clause encoding of the same clause is

or(neq(g(f(x)), f(fg(x)), or(eq(g(g(x)), x)), nil)).

Both term encodings for clauses have interesting properties with respect to term-based
learning algorithms:

• Flat term encoding immediately groups a clause with clauses of the same length.
The length of a clause is an important feature: Positive unit clauses are used as
rewrite rules, cutting back on the search space, and after all, we have found a proof
if we encounter a clause of length 0. Therefore, having this feature encoded in an
easily accessible way may help in the classification of clauses. Flat term encodings
also treat all literals as equivalent as far as many learning algorithms are concerned:
All literals of a clause are at the same depth level, and will usually have the same
influence for a given evaluation function.
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• On the other hand, the recursive term encoding may map initial parts of clauses of
different length together. This allows the generalization from clauses of a certain
length to those of bigger length. This is much more difficult with the flat term
encoding. Moreover, this representation better reflects the fact that a clause can
appear as a substructure of a larger clause.

We can require the representative pattern of a clause (encoded as a term) to be min-
imal with respect to �tlex as we did with ordinary terms. However, equations are sym-
metric and thus have two equivalent term representations. Similarly, clauses are defined
as multi-sets, and thus the number of equivalent term representations for a clause rises
super-exponentially with the number of literals: A clause with n equational literals has
n!2n different but equivalent syntactic representations. Thus, computing the representative
pattern for a clause would become very expensive at least for a straightforward implemen-
tation. We can avoid much of this cost (for the average case) if we pre-order terms and
literals with respect to some ordering that is stable under function symbol renaming, i.e.
an ordering that only compares the syntactic structure of two terms.

Definition 5.11 (Stable under symbol renaming)
Let % be a quasi-ordering on Term(F, V ). It is called stable under symbol renaming iff

1. s � t implies µ(s) � µ(t) for all s, t ∈ Term(F, V ) and all symbol renamings µ.

2. s ≈ t implies µ(s) ≈ µ(t) for all s, t ∈ Term(F, V ) and all symbol renamings µ.

J

Obviously, if a term is a pattern for another term, both are equivalent in the equivalence
part of any quasi-ordering that is stable under symbol renaming.

There is a variety of quasi-orderings that are stable under symbol renamings. Among
these are orderings induced by term weights (which are independent of the actual func-
tion symbols), orderings taking only topological features of the term into account, and
combinations of both.

As we want to use such an quasi-ordering to pre-order literals and clauses for pattern
computation, there are some points to consider.

• The quasi-ordering should be as strong as possible, i.e. the equivalence part should
be rather small and the strict part should be large. This minimizes backtracking due
to choices between equivalent possibilities.

• Large terms and literals should be selected early. As each renamed function symbol
limits the possible choices for later terms, this again serves to minimize backtracking
and search.

• Finally, the ordering should be efficient to compute.

We will now define some quasi-orderings that are stable under symbol renaming and
lead to a particular ordering that fulfills the above criteria.
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Definition 5.12 (Some stable quasi-orderings on terms)
Consider a set of terms Term(F, V ) over a signature (F, ar).

• Assume wf , wv ∈ R. Then %W (wf ,wv) is defined by

– s ≈W (wf ,wv) t if Weight(s, wf , wv) = Weight(t, wf , wv) for all s, t ∈ Term(F, V ).

– s �W (wf ,wv) t if Weight(s, wf , wv) > Weight(t, wf , wv) for all s, t ∈ Term(F, V ).

• Let %ar be the precedence on function symbols and variables defined by f ≈ar g if
ar(f) = ar(g) and f �ar g if ar(f) > ar(g) for all f, g ∈ F ∪ V . Then %ar tlex is a
quasi-ordering stable under symbol renaming.

• Finally, we define >preord. Consider two terms s ≡ f(s1, . . . , sn) and t ≡ g(t1, . . . , tm)
(where variables are once more treated as function symbols of arity 0).

s ≥preord t if s �W (−2,−1) t or
s ≈W (−2,−1) t and g �ar f or
s ≈W (−2,−1) t and f ≈ar g and
(s1, . . . , sn) ≥preordlex (t1, . . . , tn)

J

In the above definition of ≥preord, the first condition ensures that terms with a high
function symbol count are smaller than terms which only contain a few symbols. The
second condition, comparing the arities of function symbols, speeds up the comparison by
(sometimes) removing the need for recursive descent. The final condition adds strength
to the ordering by breaking ties, and ensures that if we compare terms that differ only in
the order of their arguments, terms which put arguments with a large number of function
symbols first are smaller than those ordered in any other way.

Using this ordering, we can finally define representative patterns for clauses.

Definition 5.13 (Representative clause patterns)
Let F = Ff]Fg be a set of function symbols, let sig = (F, ar) be a signature with >/0 ∈ Ff

and let V be a set of variables.

• Let sig1 = sig ] {eq/2, neq/2, or 0/0, or 1/1, . . .} be an extension of sig . Assume S
and � (on F ′ = F ∪ {eq , neq , or 0, or 1, . . .}) as in Definition 5.8. We define �cf

by s �cf t if s >preord t or s ≈preord t and s �tlex t for all s, t ∈ Term(F ′, V ).
Then the flat representative pattern (with respect to Ff) for a clause C is the term
min�cf

{repgen(c, F ′\Fg) | c ∈ Tflat(C)}.

• Let sig2 = sig ] {eq/2, neq/2, or/2, nil/0} be another extension of sig . Assume
S and � (on F ′′ = F ∪ {eq , neq , or , nil}) as in Definition 5.8. We define �cl by
s �cl t if s >preord t or s ≈preord t and s �tlex t for all s, t ∈ Term(F ′′, V ). Then
the recursive representative pattern (with respect to Ff) for a clause C is the term
min�cl

{repgen(c, F ′′\Fg) | c ∈ Trec(C)}.



74 Representing Search Control Knowledge

J

As with representative term patterns, representative patterns for clauses are unique:

Theorem 5.3 (Uniqueness of representative clause patterns)
The flat representative clause pattern and the recursive representative clause pattern for a
clause C and with respect to a set Ff of fixed symbols are unique. We write repclauseflat(C)
and repclauserec(C), respectively.

Proof: The same argument as for Theorem 5.2 holds.

�

To compute the representative clause pattern, we interleave the construction of the
term representation and the building of the symbol renaming. We start with an empty list
L of literals, an empty symbol renaming and a set M containing all literals of a clause. At
each stage, we compute the set of potentially >cf or >cl minimal term encodings for literals
in M . For each such alternative E, we have to explore a different possibility. We append
the term encoding to L, remove the corresponding literal from M , and continue the symbol
renaming to cover the symbols in E. The procedure is applied recursively until all literals
have been removed from M . The final lists L correspond to possible term patterns for the
clause, the representative clause pattern is the >cf or >cl minimal of these patterns.

Example: Again consider the clause C = g(g(x))'x∨ f(g(x)) 6'g(f(x)). Then any term
representation of the second literal is smaller in >preord than any term representation
of the first literal, as the second literal has a higher function symbol count than the
first one. Hence, any minimal clause pattern has to start with an encoding of the
first literal.

There are two different possibilities to encode this literal, neq(f(g(x)), g(f(x))) and
neq(g(f(x)), f(g(x))). Let us consider the first one. It leads to the function symbol
renaming {f ← f11, g ← f21}. For the second literal, the minimal encoding is obvious,
and we get the flat clause pattern

or2 (neq(f11(f12(x)), f12(f11(x))), eq(f21(f21(x)), x))

If we consider the second option, we get the function symbol renaming {g ← f11, f ←
f21}, and we get the pattern

or2 (neq(f11(f12(x)), f12(f11(x))), eq(f11(f11(x)), x))

This pattern is smaller than the first one (due to the lexicographical comparison of
f12 and f11 in the encoding of the second literal) and is in fact the representative flat
clause pattern for C.
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In practice, the different choices at each stage are explored using a standard back-
tracking algorithm. Due to the strong pre-ordering of terms and literals, the average case
behaviour of this algorithm is good enough for our application, although the worst case
behaviour is still exponential.

5.3 Proof Representation and Example Generation

We will now describe how to represent the important decisions during a successful proof
search by a relatively small number of annotated clauses . The core idea is to select clauses
that actually contribute to a proof and clauses that can be derived from those in at most
a few inference steps. To achieve this, we represent the proof derivation as a graph and
analyze the relationships encoded in this graph.

In Chapter 4 we represented a proof search as a sequence of paths in the graph whose
nodes correspond to derivable clause sets and whose edges correspond to inference steps.
For the analysis of a given proof search, it is more useful to represent this as a graph whose
nodes are labeled with the individual clauses appearing during the proof search and whose
edges describe the inferences used to generate each clause.

If we consider the inference system SP, we can distinguish between different kinds of
inference rules. The most important distinction is between generating and contracting
inferences. However, the second class of inferences can be partitioned into 2 subclasses:
Modifying inferences and deleting inferences.

Definition 5.14 (Inference types, Premise types)
Consider the inference system SP from page 24.

• The inference rules (ER), (SN), (SP) and (EF) are called generating inference rules
and inferences resulting from their application are called generating inferences.

• The inference rules (RN),(RP),(SR),(DD) and (DR) are called modifying inference
rules and inferences resulting from their application are called modifying inferences.
In these rules, we call the rightmost premise in the rule the main premise and the
other premises (if they exist) side premises. We call the rightmost clause in the
conclusion the main conclusion.

• Finally, the inference rules (CS), (ES) and (TD) are called deleting inference rules
(resulting in deleting inferences). We again call the rightmost premise the main
premise and the other premises (if they exist) side premises .

J

We can now define the proof derivation graph corresponding to a given proof derivation.
In the graph, we distinguish between different kinds of edges: Edges that represent the
transition from a clause to a modified clause (quoting edges), edges connect premises and
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conclusion of a generating inference, edges connect side premises with the main conclu-
sion in modifying inferences, and edges expressing the relationship between subsumed and
subsuming clauses.

Definition 5.15 (Proof derivation graph)
Let D = S0 ` S1 ` S2 ` . . . Sn be a finite proof derivation with S0 = {C1, . . . , Cm}. We
assume that all clauses occurring in D are distinct objects, even if they have the same
form.

• The graph representation of D is defined as the graph Gn = (Nn, Qn∪Gn∪Sn∪Mn)
resulting from the following recursive construction:

– G0 = ({C1, . . . , Cm}, ∅).
– Assume that Gi = (Ni, Qi ∪Gi ∪ Si ∪Mi).

∗ Assume that Si ` Si+1 with a generating inference with premises C ′1, . . . , C ′l
and conclusion C. Then Ni+1 = Ni ∪ {C}, Qi+1 = Qi, Gi+1 = Gi ∪
{(C ′1, C), . . . , (C ′l, C)}, Si+1 = Si, and Mi+1 = Mi.

∗ Assume that Si ` Si+1 with an application of (RN), (RP) or (SR), with main
premise C ′1, side premise C ′2 and main conclusion C. Then Ni+1 = Ni ∪ {C},
Qi+1 = Qi ∪ {(C ′1, C)}, Gi+1 = Gi, Si+1 = Si, and Mi+1 = Mi ∪ {(C ′2, C)}.
∗ Assume that Si ` Si+1 with an application of (DD) or (DR) with premise C ′

and conclusion C. Then Ni+1 = Ni∪{C}, Qi+1 = Qi∪{(C ′, C)}, Gi+1 = Gi,
Si+1 = Si, and Mi+1 = Mi.

∗ Assume that Si ` Si+1 with an application of (CS) or (ES) with main
premise C ′1 and side premise C ′2. Then Ni+1 = Ni, Qi+1 = Qi, Gi+1 = Gi,
Si+1 = Si ∪ {(C ′2, C ′1)}, and Mi+1 = Mi.

∗ Finally, if Si ` Si+1 with an application of (TD), then Gi+1 = Gi.

• Edges in Qn are called quote-edges , edges in Gn are called generating edges, edges in
Sn are called subsumption edges and edges in Mn are called modifying edges .

• A clause family in Gn is a set of clauses connected by quote-edges.

• A proof derivation graph is called successful, if it contains the empty clause �.

J

It is possible to extend this construction to infinite derivations. In practice, however,
any derivation will stop after a finite time, either due to finding a proof, i.e. deriving the
empty clause, due to saturating the clause set without finding a proof (and thus proving
it to be satisfiable), or due to lack of resources.

The concept of a clause family in the proof derivation graph corresponds to the per-
sistence of a clause in the theorem proving process, where a clause can be repeatedly
modified during processing, but is considered as the same object. That means, a clause
family contains all representations a single clause object takes during the proof process.
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Example: Consider the following partial inference protocol describing a proof for the
INVCOM problem. The first column shows a running number, the second column
describes the inference and the third column shows the (main) conclusion of the
inference. We use the running number to refer to the corresponding clause.

0 axiom f(X,0) = X.

1 axiom f(X,i(X)) = 0.

2 axiom f(f(X,Y),Z) = f(X,f(Y,Z)).

3 axiom f(a,i(a)) != f(i(a),a).

4 (RN) with 1 on 3 0 = f(i(a),a)

5 (SP) with 2 and 0 f(X,f(Y,0)) = f(X,Y).

6 (RP) with 0 on 5 f(X,Y) = f(X,Y).

7 (SP) with 2 and 0 f(X,f(0,Y)) = f(X,Y).

8 (SP) with 2 and 1 f(X,f(Y,i(f(X,Y)))) = 0.

9 (SP) with 2 and 1 f(X,f(i(X),Y)) = f(0,Y).

10 (SP) with 2 and 2 f(f(X,Y),f(Z,U)) = f(f(X,f(Y,Z)),U).

11 (RP) with 2 on 10 f(X,f(Y,f(Z,U))) = f(f(X,f(Y,Z)),U).

12 (RP) with 2 on 11 f(X,f(Y,f(Z,U))) = f(X,f(f(Y,Z),U)).

13 (RP) with 2 on 12 f(X,f(Y,f(Z,U))) = f(X,f(Y,f(Z,U))).

14 (TD) with 13

.

.

.

Figure 5.1 shows the resulting proof graph. Non-trivial clause families are {5, 6} and
{10, 11, 12, 13}.

If a proof derivation graph represents a successful proof search, it will contain the empty
clause, and we can denote a subgraph of it as a proof object. Moreover, we can classify
clauses and clause families according to their distance from the proof.

Definition 5.16 (Proof path, Proof object, Proof distance)
Let G = (N,E) be a successful proof derivation graph for some proof problem F .

• Any path of the form C, . . . ,� with C ∈ F is called a proof path.

• The subgraph G′ = (N ′, E ′) with N ′ = {n ∈ N |n is on a proof path } and E ′ =
{(k, k′) ∈ E|(k, k′)is part of a proof path}) is called a proof object or simply proof .

• The proof distance of a clause in G is defined as follows:

pd(C) =

{
0 if C is on a proof path

1 + max (pd(pred(C))) otherwise

• The proof distance of a clause family in G is the minimum proof distance of any
clause in the family.

J
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Remarks: Solid lines show generating edges, dashed lines show quote-edges, dotted lines
show modifying edges. There are no subsumption edges in the example.

Figure 5.1: Example proof derivation graph

5.3.1 Selecting representative clauses

Now let us assume that the proof derivation is generated by a given-clause algorithm as
depicted in Figure 2.35. We can distinguish two cases for a clause family: Either one of its
elements becomes the given clause, or none of its elements is ever selected for processing.
In the second case, the clauses in the family cannot participate in the proof process at
all. Therefore we cannot extract any knowledge about their potential value for the proof
search from them. This leads us to the following premise:

Premise: Only clauses from clause families that contain at least one selected
clause can be used to represent evaluated search decisions.

We can represent the positive search decisions as the families of clauses with a proof
distance of 0. Each of these families contains at least one clause that contributed to the
proof, and hence the decision to select one of the clauses was necessary for finding this
particular proof.

However, we may also want to represent negative search decisions, i.e. clause selections
that did not contribute to the proof. In general, there are a lot more such clause examples
– see table 4.2 for numbers. Using all clause families with a proof distance greater than 0
as negative examples therefore is impractical, as it would quickly overwhelm the ability of
any learning algorithm to sort through all examples.

Let us consider a hypothetical perfect search heuristic, i.e. a heuristic that will only
select clauses that contribute to a single proof for each proof problem.

There are two ways to achieve this: First, we can assign a very good evaluation to all
clauses that are necessary for the proof. However, alternatively we can describe the proof
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by rejecting all clauses not necessary for the proof, i.e. by assigning a very bad evaluation
to these clauses. In the case of a perfect heuristic, we only need to reject all clauses that
are directly (in one inference) derivable from the axioms and the contributing clauses to
force the theorem prover into a perfect proof derivation.

In practice, we cannot expect such a perfect heuristic. However, it obviously still makes
sense to select clauses close to the proof process as examples.

Premise: Search decisions during a proof search can be described by a set of
clause families with a low proof distance.

Finally, we need to decide how to represent a clause family. We can of course represent a
family by all of its members. This is likely to lead to a very good knowledge transfer even if
the proof search for a new problem is slightly different. However, it also leads to a relatively
large amount of data (and associated overhead), and leads to the problem of splitting the
evaluation of the clause family to the individual members. However, we do not need to use
all clauses in a clause family as examples of search decisions. As newly generated clauses
are typically evaluated exactly once, and modified clauses inherit the evaluation of their
main premise, we only need to pick the clauses from a clause family that where actually
evaluated during the proof search. While this may lead to a slightly more brittle system,
we can solve this problem by combining knowledge about many different proof searches.

Premise: The relevant clauses to describe a search process of the given-clause
algorithm are the clauses from clause families with a low proof distance that
were evaluated by the algorithm.

Our results presented in Chapter 8 indicate that this subset of clauses (with the an-
notations described below) contains sufficient information to reproduce proofs and even
allows us to generalize to new proof problems.

5.3.2 Assigning clause statistics

We have now selected a set of clauses to describe a proof process. However, the value of a
clause for the proof process depends on more information than just the proof distance.

• A clause that contributes to many proofs is more useful than a clause that contributes
to fewer or no proofs.

• A clause that simplifies or subsumes many other clauses helps to prune the search
space and is thus potentially useful.

• A clause that generates a lot of useless successors is very bad for the search process.

To take these features into account we assign an annotation to each clause selected for
representing a proof process. Note that the above features depend on the size of the proof
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search – in a proof search that e.g. only processes 20 clauses, a clause can at most subsume
19 other clauses. In a proof search with 20,000 processed clauses, this is very different. To
correct for this effect, we set the individual annotation values in relation to the potential
number of inferences of the relevant type.

The annotation of a clause consists of a vector of numbers with the following numbers:

• The proof distance pd of the clause family the clause was taken from

• The number mp of modifying inferences in the proof in which clauses from the clause’s
family were used in as side clauses, divided by the number of processed clauses

• The number mn of other modifying inferences in which clauses from the family were
used in as side clauses, divided by the number of generated clauses

• The number gp of successors contributing to the proof generated using clauses from
the family, divided by the number of processed clauses (note that only processed
clauses have a chance to contribute to the proof)

• The number gm of superfluous successors generated using clauses from the family,
divided by the number of generated clauses

• The number sc of clauses subsumed by clauses from the clause family, divided by the
number of processed clauses

All of these values can be easily computed by analysis of the edges of the proof derivation
graph.

Note that similar values are used in our previous approach [DS96a, DS98] and are also
one of the information sources used by the referees in TEAMWORK or TECHS [DF99] to
select potentially useful facts.

5.4 Summary

In this chapter we have first described the representation of terms, clauses and clause sets
by numerical features. We have also described how distance measures on feature vectors
can be used to induce a notion of similarity between clause sets. In particular, we have
introduced relative distance measures and normalized relative distance measures.

We have then discussed the problem of abstracting from a given signature and intro-
duced term patterns and clause patterns. Clause patterns allow us to represent clauses by
a unique term, and in a way that abstracts from an arbitrary subset of function symbols.

Finally, we have described a way to represent the important search decisions during a
successful proof search as a set of annotated clauses. Clauses are selected as representative
if they participated in the search process and are close to the final proof. Their role in
the proof process is described by a vector of numerical values computed by analyzing the
proof derivation graph.



Chapter 6

Term Space Maps

In the previous chapter we have represented search decisions as individual annotated
clauses. Our aim is to learn good evaluations of new clauses (representing search al-
ternatives) form this representation. To achieve this aim, we first transform clauses into
patterns (i.e. into first order terms over an extended signature), and compute an evaluation
from the annotations at a clause. We now want to transform this set of evaluated terms
into an operational form that allows us to use the collected information for the evaluation
of new clauses. This task is at the very core of the learning prover, and can be stated as
an independent machine learning problem.

Only relatively few machine learning algorithms can deal well with both recursive struc-
tures (like terms) and numerical evaluations. In this chapter we will first give a short
discussion and survey of term-based learning algorithms. We will then introduce learn-
ing by term space mapping , a class of new learning algorithms for term classification and
evaluation. Term space mapping represents knowledge by partitioning the set of training
examples based on a term abstraction, and by storing class and evaluation-relevant in-
formation with each partition. New terms are mapped onto the resulting structure and
evaluated in different ways according to the data stored in the matching partitions.

6.1 Term-Based Learning Algorithms

Term-based learning algorithms operate on terms and aim at learning either a classification
or an evaluation. In the general case, input to a term-based learning algorithm is a set of
terms associated with an desired evaluation (which can represent a classification)1. This
set of examples is called the training set . The output of the learning algorithm is a
knowledge representation that allows us to compute a likely evaluation for new terms. An
algorithm can be evaluated by testing its performance on a second set of terms with known
evaluations, the test set .

1Note that evaluation-based algorithms can be turned into classification algorithms by comparing the
evaluation to a limit, and that similarly classification algorithms can return (crude) evaluations by associ-
ating each class with a particular value.
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For our case, we can list a couple of desirable properties for the learning algorithm:

• We want to acquire heuristic search control knowledge, preferably in the form of
a numerical evaluation. The learning algorithm should be able to represent such
knowledge.

• There is only some vague lore about which properties of a term (or term-encoded
larger structure) are relevant for its evaluation. Therefore the algorithm should not
be strongly biased for or against certain properties (or at least have a known and
adjustable bias).

• It is well-known that different search strategies perform very different on different
problems and problem domains. We would therefore like to be able to train a search
strategy for a new problem on a limited set of experiences from similar problems.
This learning on demand requires fast learning algorithms. At the very least, the
time for learning should not be significantly longer than the expected proof search
time for hard problems. Given the usage of current theorem provers, this means that
learning times should be lower than about one minute.

• Even more important than efficiency during the learning phase is efficiency during
application of the knowledge. As (nearly) each clause generated during the proof
search will be evaluated against the learned knowledge, this evaluation should be not
more expensive in terms of CPU time as other frequent operations on clauses.

• Even among similar proofs and problems, we cannot expect a one-to-one correspon-
dence between terms or clauses useful for all problems. This has two consequences:
First, we have to be able to deal with contradictory and approximate information
during the learning phase. Clauses useful for one proof problem may be superfluous
in others. Secondly, the learned knowledge should be in a form that enables a prover
that uses it to recover from occasional miss-classifications or miss-evaluations during
the application phase.

Unfortunately, these goals conflict. In particular, stronger learning algorithms capable
of learning more complex concepts typically need more examples and/or more training
time than simpler methods. We therefore have to strive for a compromise.

Existing learning algorithms used for term evaluation or classification can be placed in a
spectrum from purely symbolic to purely numerical algorithms. Fig 6.1 shows this spectrum
and qualitatively places the learning algorithms that have been applied to theorem proving.

The most simple purely symbolic learning algorithm is the memorization (or stor-
ing) of terms of particular classes. Despite the simplicity of this approach, it has been
successfully applied to theorem proving (Flexible reenactment , [Fuc96, Fuc97b], relies
on the selection and application phases to introduce generalization to new proof ex-
amples). Other symbolic learning algorithms include explanation-based generalization
(EBG) [MKKC86, MCK+89, Wus92, Etz93] (or -learning) and inductive logic program-
ming [Mug92, MR94]. Explanation-based learning generates descriptions of classes by
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Figure 6.1: The symbolic-numeric spectrum for learning algorithms

justified generalization of derivations in a background theory. As it is based on logical
derivations and justified generalization, it necessarily derives valid hypotheses. However, it
is unable to derive knowledge not logically implied by training examples and background
theory, and merely finds in some way better (more operational) descriptions of the classes.
Inductive logic programming also makes use of a background theory, but allows the specu-
lation of hypotheses. Both approaches, however, are not very suitable for dealing with the
quantitative, approximate and partially inconsistent knowledge typical for search control
heuristics, especially as very little knowledge about the domain exists and hence usually
no background theory is available.

Most purely numerical learning algorithms on terms work on feature vectors and have
already been described in Section 5.1. In this case, the explicit background theory is
replaced by the implicit assumptions used in the numerical representation of the symbolic
structures. [Fuc95b] describes a slightly different approach: Parameters of a standard
weight function (in this case, weights assigned to individual function symbols) for terms
are optimized with a genetic algorithm until the resulting heuristic evaluation functions
leads to the desired evaluation of clauses.

While such numerical optimization procedures are well-suited for expressing approx-
imate and quantitative knowledge, the transformation of the original term classification
problem into a purely numerical problem introduces a very strong bias. Only a limited
number of term properties can be encoded naturally, and all other properties of the term
are ignored. An additional disadvantage is that most of the more expressive learning al-
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gorithms require a large number of training examples and are rather slow, i.e. they cannot
be used for learning on demand situations.

Hybrid learning algorithms try to avoid some of these disadvantages by combining
structure based processing and numerical operations. Primary examples for hybrid learn-
ing algorithms are learning by pattern memorization, learning with term evaluation trees
(both described in [Sch95, DS96a, DS98]) and folding architecture networks [GK96, Gol99a,
KG96, SKG97].

Learning by pattern memorization has been implemented to guide DISCOUNT, a
completion-based theorem prover for unit-equational proof problems. The algorithm works
by storing representative patterns of equations (which are a special case of representative
clause patterns as defined in Definition 5.13) with the desired evaluation. Despite the very
limited expressive power of this method, good results have been achieved. In particular,
using pattern memorization enabled the prover to prove a wide variety of problems with a
single strategy, whereas it previously required a wide range of strategies to achieve the same
number of successes. Generalization to new proof problems was also observed, although in
a lesser degree.

Term evaluation trees are an early predecessor of the recursive term space maps we
will introduce later in this chapter. They work by recursively partitioning a set of terms
according to the arity of the top function symbol, and associating an evaluation with each
node in the resulting tree. The original implementation lead to improved performance of
the DISCOUNT system and allowed the system to proof a number of previously unsolvable
problems. However, most successes required the selection of a relatively small set of suitable
training examples.

Finally, folding architecture networks are probably the most powerful of the existing
hybrid learning algorithms. They apply gradient-based training algorithms like back-
propagation through structure [GK96, KG96] to neural networks that are dynamically un-
folded to accommodated the recursive structure of terms. The generic architecture has
been proven to be a universal approximator for mappings from directed acyclic graphs
to real vector spaces [Ham96, HS97]. Folding architecture networks have been applied to
control the proof search of SETHEO [Gol99a, Gol99b] and we have conducted preliminary
experiments for applying them for saturating theorem provers [SKG97]. The main disad-
vantage of folding architecture networks are the long training times (which make learning
on demand impossible) and a requirement for large numbers of training examples to avoid
over-fitting.

Our approach, term space mapping , generalizes the concept of term evaluation trees.
It also is able to emulate to a certain degree algorithms that assign weights to function
symbols and, if applied to patterns, subsumes pattern memorization.

6.2 Term Space Partitioning

As stated above, term space mapping describes a class of hybrid learning algorithms. Term
space maps partition the set of all terms according to certain criteria and store evaluation-
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relevant data with each partition. The partition of the term set is based on one out of a
variety of abstractions of terms. While a lot of different abstractions are possible, we will
primarily use abstractions that represent a term by its initial part, i.e. by the part of the
term structure that is relatively close to the top position.

Terms can be represented in various ways as finite labeled ordered directed acyclic graphs
or FLODAGS . Some of these term representations closely reflect the actually implemented
data structure in most existing theorem provers. Moreover, they allow the easy definition
(and implementation) of useful term abstractions.

Definition 6.1 (Graph representation of terms)
Let t ∈ Term(F, V ) be a term and let M be an arbitrary set. A graph representation of t
is a labeled ordered graph ((K,E), l) with

• K = {node(p)|p ∈ O(t)} for a function node : O(t) → M with node(p) = node(q)
implies t|p ≡ t|q.

• E = {(node(p), node(i.p))|i.p ∈ O(t)}

• succ(node(p)) = node(p.1), . . . , node(p.n) with n = ar(head(t|p))

• l(node(p)) = head(t|p) for all p ∈ K.

The root node of a graph representation of a term is node(λ). J

The most natural representation of a term is a tree, with a one to one mapping of
tree nodes and term positions. More exactly, a tree representation of a term is a graph
representation with M = O(t) and node = id :

Definition 6.2 (Tree representation of terms)
Let t ∈ Term(F, V ) be a term. The tree representation of t is the ordered, labeled tree
((K,E), l) with

• K = O(t)

• E = {(p, i.p)|i.p ∈ O(t)}

• succ(p) = p.1, . . . , p.n with n = ar(head(t|p))

• l(p) = head(t|p) for all p ∈ K.

J

Example: Consider the term t = f(g(a), g(g(a))). Then the tree representation for t
is given by T = ((K,E), l) with K = {λ, 1, 1.1, 2, 2.1, 2.1.1} and E = {(λ, 1), (λ, 2),
(1, 1.1), (2, 2.1), (2.1, 2.1.1)}. The successor nodes are ordered according to the lex-
icographical extension of the ordering > on N, and the label function is given by
l(λ) = f , l(1) = l(2) = l(2.1) = g, l(1.1) = l(2.1.1) = a. Figure 6.2a shows the tree.
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Figure 6.2: Graph representations of f(g(a), g(g(a)))

Tree representations are naturally extended to sets of terms (which are mapped onto
forests).

As the example shows, the tree representation of a term contains a separate subtree for
each subterm, even if subterms appear more than once in the term. Especially for large
terms and term sets, it is much more economical to share common subterms.

Definition 6.3 (Maximally shared representation of terms)
Let t ∈ Term(F, V ) be a term. The maximally shared representation of t is the ordered,
labeled directed acyclic graph ((K,E), l) with

• K = {t|p|p ∈ O(t)}

• E = {(t|p, t|i.p)|i.p ∈ O(t)}

• succ(p) = t|p.1, . . . , t|p.n with n = ar(head(t|p))

• l(s) = head(s) for all s ∈ K.

J

Example: Consider t = f(g(a), g(g(a))) from the previous example. The resulting
maximally shared graph is shown in Figure 6.2b.

Using these term representations, we can now easily define top terms:

Definition 6.4 (Top terms)
Let t be a term.

• The top term of t at level i, top(t, i), is the term resulting if we replace every node
reachable from the root node by a path of length i in the tree representation of t
with a fresh variable.
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• The alternate top term of t at level i, top ′(t, i), is the term resulting if we replace
every distinct subterm at a node reachable from the root node by a path of length i
in the tree representation of t with a fresh variable.

• The compact shared top term of t at level i, cstop(t, i), is the term resulting if we
replace every node reachable from the root node by a path of length i in the maximally
shared graph representation of t with a fresh variable.

• The extended shared top term of t at level i, estop(t, i), is the term resulting if we
replace every node reachable from the root node by a path of length i, but not by any
shorter path, in the maximally shared graph representation of t with a fresh variable.

J

Example: Consider t ≡ f(g(a), g(g(a))) again.

• top(t, 0) = top ′(t, 0) = cstop(t, 0) = estop(t, 0) = x

• top(t, 2) = f(g(x), g(y))

• top ′(t, 2) = f(g(x), g(y))

• cstop(t, 2) = f(x, g(x))

• estop(t, 2) = f(g(x), g(g(x))))

• top(t, 3) = f(g(a), g(g(x))))

• top ′(t, 3) = f(g(a), g(g(x))))

• cstop(t, 3) = f(g(x), g(g(x))))

• estop(t, 3) = f(g(a), g(g(a))))

Now consider t′ ≡ h(a, b, a).

• top(t, 1) = h(x, y, z)

• top ′(t, 1) = cstop(t, 1) = estop(t, 1) = h(x, y, x)

Term tops are one example for term abstractions. In general, we allow any term ab-
straction generated by a function that fulfills rather weak criteria:

Definition 6.5 (Index Functions)
Let sig = (F, ar) be a signature and V be a set of variable symbols. Let M be an arbitrary
set (the index set).

• A function I : Term(F, V ) → M is called an index function, if I(s) = I(t) implies
ar(head(s)) = ar(head(t)) for all s, t ∈ Term(F, V ).
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• It I is an index function with index set M , ar I : M → N is defined by

ar I(m) =

{
ar(head(t)) if ∃t ∈ Term(F, V ), I(t) = m

0 otherwise

J

Index functions range from very simple functions with few possible index values to the
term identity function:

Theorem 6.1 (Some index functions)
Assume sig and V as in Definition 6.5. Then the following functions are index functions:

1. Iar : Term(F, V )→ N with Iar(t) = ar(head(t)) for all t ∈ Term(F, V )

2. Assume i ∈ N, i > 0.

• Itopi : Term(F, V )→ Term(F, V ), Itopi(t) = top(t, i).

• Itop′i : Term(F, V )→ Term(F, V ), Itop′i(t) = top ′(t, i).

• Icstopi : Term(F, V )→ Term(F, V ), Icstopi(t) = cstop(t, i).

• Iestopi : Term(F, V )→ Term(F, V ), Iestopi(t) = estop(t, i).

3. Isymb : Term(F, V )→ F ∪ V , Isymb(t) = head(t).

4. Iid : Term(F, V )→ Term(F, V ), Iid(t) = t (the identity function).

Proof:

1. By definition of Iar, each term is mapped to the arity of its top function symbol.

2. If two terms are mapped to the same index value by any of the functions, they
share the top function symbol.

3. Isymb is equivalent to Itop1 .

4. As for item 2.

�

Note that the term top functions for a depth 0 are not index functions, as they map all
terms, regardless of the top function symbol, onto the same new variable.

Under certain circumstances, we can create new index functions out of old ones.
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Definition 6.6 (Compatibility of index functions)
• Let I1 : Term(F, V ) → M1 and I2 : Term(F, V ) → M2 be two index functions. I1

and I2 are called compatible, if ar(head(s)) = ar(head(t)) for all s, t ∈ Term(F, V )
with I1(t) = I2(s).

• A set I = {I1, . . . , In} of index functions is compatible, if all pairs of index functions
in I are compatible.

J

Incompatible index functions can be easily made compatible by modifying their index
sets to be disjoint. If index functions are compatible, we can combine them.

Theorem 6.2 (Composite index functions)
Let I1 : Term(F, V )→ M1 and I2 : Term(F, V )→ M2 be two compatible index functions
and let P be an arbitrary predicate on Term(F, V ). Then I : Term(F, V ) → M1 ∪M2

defined by

I(t) =

{
I1(t) if P (t)

I2(t) otherwise

is an index function

Proof: Consider two terms s and t with I(s) = I(t). We have to show that ar(head(s)) =
ar(head(t)). If P (s) and P (t) is equivalent for s and t this follows from the fact that
I1 or I2 are index functions.

Now let us assume (without loss of generality) that P (s) holds and P (t) does not hold.
But then I1(s) = I2(t) and therefore ar(head(s)) = ar(head(t)) by the definition of
compatibility.

�

The last theorem allows us to construct a very large number of different index functions,
and to combine index functions representing e.g. specific prior knowledge about good term
space partitionings for a given task with more general ones.

6.3 Term Space Mapping with Static Index Functions

We will now describe term space maps build around a single predetermined index func-
tion. The most general structure used in term space mapping are basic term space maps.
The three different kinds of term space maps introduced below are instances of this basic
data structure. We define basic term space maps and term space alternatives by mutual
recursion:

Definition 6.7 (Basic term space map)
Let I : Term(F, V )→M be an index function.
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• A term space alternative (or TSA) for the index function I is a tuple (i, e, (tsm1, . . . ,
tsmarI (i))) with the following properties:

1. i ∈ I(Term(F, V )) is an index. We say that the term space alternative is indexed
by i.

2. e ∈ R is the evaluation of the term space alternative.

3. tsm1 . . . tsmarI (i) are basic term space maps (not necessarily for I).

• A basic term space map (or basic TSM ) for I is a finite set of term space alternatives
with the property that each index i ∈M indexes at most one alternative.

• The empty term space map is the empty set, written as {}.

• If I(t) is the index of a term space alternative tsa in a basic term space map, we say
that the TSM maps the term t, and that t is mapped onto tsa.

J

Learning with term space mapping is the construction of term space maps capturing
features of particular training sets, i.e. (multi-)sets of terms with an associated evaluation.
We call such term space maps representative for the training set and the index function.
Again, the most simple case is the case of a representative basic term space map.

Definition 6.8 (Representative basic term space map)
Let M be a multi-set of terms t with associated evaluations eval(t) and let I be an index
function. A representative basic term space map for I, eval and M is a term space map
{(i, e(i, I,M), (tsmi ,1 . . . tsm i,arI(i))|i ∈ I(M)}, where

e(i, I,M) =

∑
t∈{t′∈M |I(t′)=i} eval(t)

|{t′ ∈M |I(t′) = i}|

and where the tsm i,j are arbitrary basic term space maps.

J

Let us discuss this definition. First, the definition only restricts the top level term
space map. It does not require any special properties of the sub-TSM’s in the term space
alternatives. As such, it defines a whole class of term space maps for each training set
and index function. We will restrict this freedom in different ways below. Secondly, each
representative basic term space map will split the training set into alternatives, and it will
associate the average evaluation of all terms in one alternative with this evaluation. We
use this data to evaluate terms when we apply term space maps. In the most simple case
we only retrieve a single evaluation for each term.
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Definition 6.9 (Flat term evaluation)
Let t be a term, let tsm be a basic term space map for some index function I and assume a
constant value eu ∈ R (the evaluation of unmapped terms). The flat evaluation of t under
tsm is defined as follows:

fev(tsm, t, eu) =


e if there exists a TSA (i, e, (tsm1, . . . , tsmn)) with i = I(t)

in tsm

eu otherwise

J

If we use basic term space maps with flat term evaluation, we only make use of the top-
level term space alternatives of a TSM. Consequently, we can use a more simple structure,
the representative flat term space map.

Definition 6.10 (Representative flat term space maps)
Let again M be a multi-set of terms t with associated evaluations eval(t) and let I be an
index function. The representative flat term space map for I, eval and M is the represen-
tative basic term space map

rftsmI(M) = {(i, e(i, I,M), ({}, . . . , {})|i ∈ I(M)}

where

e(i, I,M) =

∑
t∈{t′∈M |I(t′)=i} eval(t)

|{t′ ∈M |I(t′) = i}|
as above.

J

Constructing a representative flat term space map for a training set is straightforward.
For an example see page 92.

Flat term space maps evaluate the complete term with respect to a single index function
only. Nevertheless, flat term space maps even for the simple index functions described in
Theorem 6.1 are sufficiently strong to subsume learning algorithms actually used in theorem
provers. In particular, flat term space maps can be used to model term memorization and,
if applied to representative term or clause patterns, pattern memorization. To model term
memorization, we have to recognize finite sets of terms. We can use a term space map for
classification instead of evaluation by comparing the evaluation to some suitably selected
limit:

Definition 6.11 (Term classification with term space maps)
Let M = M+ ]M− be a set of terms, let tsm be a basic term space map and let tev be a
TSM-based evaluation function (e.g. fev , see Definition 6.9). Let eu ∈ R be an evaluation
for unmapped term nodes and let l ∈ R be the classification limit.

We say that tsm recognizes a term t ∈ M with respect to eu and l if ev(tsm, t, eu) > l
iff t ∈M+. We say that tsm recognizes M+ (in M) if it recognizes all terms in M .

J
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Remarks: Solid circles correspond to term space maps, horizontal lines represent sub-TSM
sequences and open circles represent term space alternatives. Alternatives are labeled with
index; evaluation.

Figure 6.3: A representative flat term space map

Let us consider an example for flat term space maps and classification with flat term
space maps:

Example: Consider the set {f(g(a), b), f(b, b), g(g(a)), a}. Terms that contain the symbol
f are considered positive examples, i.e. the evaluations are given by eval(f(g(a), b)) =
eval(f(b, b)) = 1 and eval(g(g(a))) = eval(a) = −1. Figure 6.3 shows a graphic
representation of the representative flat term space map rftsmItop1

(M).

In this simple example, fev(rftsmItop1
(M), t, 0) = eval(t) for all t ∈M . Of course all

terms in the training set are classified correctly for the classification limit l = 0.

The most simple approach to model term memorization is to use the index function Iid,
to use exactly the set we have to memorize as the training set, to use a constant evaluation
for these terms, and to use an evaluation eu for unmapped terms that differs from this
value in the evaluation. However, we can recognize arbitrary finite sets even without using
a predetermined value eu by mapping a larger part of the term space:

Theorem 6.3 (Recognizing finite sets)
Let M+ ⊆ Term(F, V ) be a finite set of terms. Then there exists a training set M of
terms with evaluations and an index function I such that rftsmI(M) recognizes M+ from
Term(F, V ) with respect to 0 and 0.

Proof:

Assume a depth limit d ∈ N, d = max (Depth(M+)), and the training set M = {t ∈
Term(F, V )|Depth(t) ≤ (d+ 2)} with evaluations defined by

eval(t) =

{
1 if t ∈M+

−1 otherwise
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Let I be defined by I(t) = top(t, d+ 1). Then tsm := rftsmI(M) recognizes M+:

First note that all terms mapped to a certain alternative have the same evaluation.
Hence, the only occurring evaluations are 1 and −1. The limit l for the recognition
of terms is 0. Note also that any term t with a depth smaller than d + 1 has the
index t. Now assume an arbitrary term t ∈ Term(F, V ).

• Case 1: t ∈ M+. Then I(t) = t and hence fev(tsm, t, 0) = 1. Ergo t is
recognized.

• Case 2: t 6∈M+,Depth(t) ≤ d+ 1 Then again I(t) = t and thus fev(tsm, t, 0) =
−1. Ergo t is recognized.

• Case 3: t 6∈ M+,Depth(t) > d + 1. As M contains all terms of depth up
to Depth(t) + 2, there exists a term t′ ∈ M with I(t) = I(t′) and hence
fev(tsm, t′, 0) = fev(tsm, t, 0). Since Depth(t) > d, t′ 6∈M+ and fev(tsm, t′, 0) =
−1. Again t is recognized.

�

This theorem can be further strengthened. We can use flat representative term space
maps to learn all classes that can be described by finite conjunctions and disjunctions of
statements about function symbols or subterms at certain term positions, i.e. of statements
of the form t ∈M if p ∈ O(t) and tp = t′. The above proof carries over (using the sum of the
length of the longest position p plus the depth of the deepest term t in the class description
as a limit), but becomes rather lengthy and requires significant additional terminology. As
we are less interested in the theoretical power of term space maps and more in their value
to guide theorem proving, we omit it.

As flat term space maps with simple index functions only can take features of a finite
initial part of the term into account, they cannot recognize infinite term classes defined by
position-independent properties, e.g. the class {t ∈ Term(F, V ) | ∃p ∈ O(t), t|p ≡ a} (if the
signature contains at least {a/0, b/0, g/1}). If we allow additional index functions, such
classes can be learned. However, such index functions typically introduce a fairly strong
bias. As an extreme example, consider the index function I : Term(F, V ) → N × {0, 1}
defined by

I(t) =

{
(0, ar(head(t))) if a occurs in t

(1, ar(head(t))) otherwise

With this index function it is trivial to find a training set to learn a flat representative
term space map to recognize the above set. It is obviously of less value for more general
problems. Note, however, that such a construction can be used to integrate prior knowledge
into a term space map.

As we have seen in the proof for Theorem 6.3, flat term space maps may need very
large training sets to learn even simple concepts. The reason for this is that they do not
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generalize beyond the level defined by the index function. Recursive term space maps are
an attempt to alleviate this problem to some degree by considering different parts of the
term individually.

Definition 6.12 (Representative recursive term space maps)
Consider M , t, eval and I as in definition 6.10. We extend eval to the multi-set of
subterms of terms in M by associating eval(t) with all occurrences of subterms of t. The
representative recursive term space map for I, eval and M is the representative basic term
space map

rrtsmI(M) = {(i, e(i, I,M), (tsmi ,1 . . . tsm i,arI(i))|i ∈ I(M)}

where

e(i, I,M) =

∑
t∈{t′∈M |I(t′)=i} eval(t)

|{t′ ∈M |I(t′) = i}|
as for representative basic term space maps, and where

tsm i,j = rrtsmI({(t|j | t ∈M, I(t) = i})

for all i ∈ I(M), j ∈ {1, . . . , ar I(i)}.
J

A recursive term space map can be seen as a structure that reflects the way a term
can be constructed by selecting one of multiple alternatives at the root position and then
continuing this process for each of the subterms. It can be constructed by recursively
partitioning a multi-set of evaluated terms.

To make use of the recursive nature of the term space map, we also need to evaluate
terms recursively. Intuitively, the evaluation of a term under a recursive term space map is
the average evaluation of all its subterms under the corresponding basic term space maps.

Definition 6.13 (Recursive term evaluation)
Let t be a term, let tsm be a basic term space map for some index function I and assume
a constant value eu ∈ R (the evaluation of unmapped terms).

• The recursive evaluation weight of t under tsm is defined as follows:

revw(tsm, t, eu) =


e+

∑n
i=1 revw(tsm i, t|i, eu) if there exists a TSA

(i, e, (tsm1, . . . , tsmn))

with i = I(t) in tsm

eu +
∑n

i=1 revw({}, t|i, eu) otherwise

• The recursive evaluation of t under tsm is

rev(tsm, t, eu) =
revw(tsm, t, eu)

|O(t)|
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subterm a has the default evaluation.

Figure 6.4: A representative recursive term space map

J

Recursive term space maps for the index function Iar subsume term evaluation trees as
described in [Sch95, DS96a]. Let us again consider an example.

Example: Consider the set of terms from the example on page 92. Figure 6.4 shows a
graphic representation of rrtsmItop1

(M).

It is rev(rrtsmItop1
(M), f(a, b), 0) = 1+0+1

3
= 2

3
.

Both flat and recursive term space maps allow an evaluation or classification of infinite
sets of terms. However, the evaluation is only based on a finite initial part of the term.
Term nodes at positions deeper than any nodes in terms from the training set, for example,
never contribute to an evaluation except possibly with the unmapped evaluation value.
While such features as maximal term depth or absolute position of subterms can be easily
represented, position-independent features (e.g. occurrence of a certain subterm or function
symbol) can only be learned for finite classes of terms.

Recurrent term space maps overcome this restriction by using a single global partition-
ing for the evaluation of all terms and subterms.

Definition 6.14 (Representative recurrent term space maps)
Consider again M , t, eval and I as in definition 6.10.
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• The flattened term representation of a term t is the multi-set ftr(t) = {t|p | p ∈ O(t)}.
If the term t has an associated evaluation eval(t) we also associate this value with
all terms in ftr(t).

• The flattened term set representation of a set or multi-set of terms M is the multi-set
ftsr(M) = ∪t∈M ftr(t).

• The representative recurrent term space map for I, eval and M is the basic term
space map rctsmI(M) = rftsmI(ftsr(M)).

J

As with recursive term space maps, we need a new way to evaluate terms. We again
want to assign the average evaluation of all subterms to a term. However, we only use a
single term space map now and recurrently apply it to evaluate all subterms.

Definition 6.15 (Recurrent term evaluation)
Let t be a term, let tsm be a basic term space map for some index function I and assume
a constant value eu ∈ R (the evaluation of unmapped terms).

• The recurrent evaluation weight of t under tsm is defined as follows:

cevw(tsm, t, eu) =


e+

∑n
i=1 cevw(tsm, t|i, eu) if there exists a TSA

(i, e, (tsm1, . . . , tsmn))

with i = I(t) in tsm

eu +
∑n

i=1 cevw(tsm, t|i, eu) otherwise

• The recurrent evaluation of t under tsm is

cev(tsm, t, eu) =
cevw(tsm, t, eu)

|O(t)|

J

Let us again return to our previous example:

Example: Consider the set of terms from the example on page 92. It is
ftr(f(g(a), b)) = {f(g(a), b), g(a), a, b},
ftr(f(b, b)) = {f(b, b), b, b},
ftr(g(g(a))) = {g(g(a)), g(a), a} and
ftr(a) = {a}.
Figure 6.5 shows a graphic representation of rctsmItop1

(M). As an example, the
evaluation of the TSA indexed by a is computed as 1+−1+−1

3
= −1

3
for the three

occurrences of a in ftr(f(g(a), b)), ftr(g(g(a))) and ftr(a), respectively.

It is cev(rctsmItop1
(M), f(a, b), 0) =

1+− 1
3
+1

3
= 5

9
.
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Figure 6.5: A representative recurrent term space map

If we employ a recurrent term space map with the index function Itop1 , the term space
map basically maps each subterm to its top function symbol, and the evaluation of a term
t is the average evaluation of all function symbol occurrences in t. If we use the TSM-
evaluation to modify a basic term weight, this is very similar to the effect of learning
different weights for different function symbols as described in [Fuc95b].

6.4 Dynamic Selection of Index Functions

We have, up to now, only considered term space maps based on a predefined index function.
However, a suitable index function may be hard to recognize a priori if we are confronted
with a unknown learning problem. We will now use some concepts from information
theory ([SW49], see [RN95],pages 540–543 for a modern introduction or [SG95, Sch96]
for a more rigorous modern description) and apply them to the selection of of an index
function in a similar way as Quinlan used them for the selection of features tests in decision
trees [Qui92, Qui96].

The amount of information we can get from an event is related to the probability of
this event happening: If a predetermined event (with probability 1) happens, we have not
gained any new information. If, on the other hand, an event with probability 0.5 happens,
we have more information than before (in the particular case of p = 0.5, we have gained
exactly one bit of information). If an experiment can yield a number of (disjoint) results,
the expected amount of information we will gain from it is described by the entropy of the
probability distribution over the possible results. The following definitions formalize these
concepts:

Definition 6.16 (Information, Entropy)
Let A = {a1, . . . , an} be an experiment with the possible results or observations a1, . . . , an
and let P : A → R be a probability distribution on the results of A (i.e. P (ai) is the
probability of observing ai as the result of A).
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• The amount of information gained from the observation of an event (or the informa-
tion content of this event) is J(ai) = −log2(P (ai)).

• The entropy of A is the expected information gain of performing A,

H(A) =
n∑

i=1

P (ai)J(ai)

J

Different experiments may not be fully independent from each other. Consider e.g. the
two experiments “determine if a person is a soccer fan” and “determine the gender of a
person”. While the result of the first experiment does not fully determine the outcome
of the second one, it does lead to a different expectation about it. In general, whenever
we perform more than one experiment, we do potentially lower the information content
we can gain from all but the first experiment, i.e. we lower the remaining entropy of these
experiments. This is the principle behind testing certain features to determine the class
of an object: If the feature distribution is in some way related to the class distribution,
getting information about a feature also gets us some information useful for determining
the class.

Definition 6.17 (Conditional information, Conditional entropy)
Let A = {a1, . . . , an} and B = {b1, . . . , bm} be two experiments with probability distribu-
tions Pa and Pb.

• P (a|b) is the conditional probability of a under the condition b.

• The conditional information content of a result ai under the condition bj is J(ai|bj) =
−log2(P (ai|bj))

• The conditional entropy of A under the condition bj is

H(A|bj) =
n∑

i=1

P (ai|bj)J(ai|bj)

J

If we want to determine the value of B for getting information about the outcome of
A, we again need to average over the possible outcomes of B to determine the remaining
entropy of A. Our expected information gain from the experiment B then is exactly the
difference in the entropy of A and the remaining entropy of A after performing B:

Definition 6.18 (Remainder entropy, Information gain)
Let once more A = {a1, . . . , an} and B = {b1, . . . , bm} be two experiments with probability
distributions Pa and Pb, respectively.
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• The remainder entropy of A (after performing B) is

H(A|B) =
m∑
j=1

Pb(bj)H(A|bj)

• The information gain of performing B (to determine the result to A) is G(A|B) =
H(A)−H(A|B).

J

In our case, the experiment A is the classification of a term. The experiment B is the
result of applying an index function to the term. As we do not know the real probabilities of
the outcomes of either of the experiment, we use the relative frequencies of the outcomes
in the training set as estimates for the probabilities. This is similar to the work done
by Quinlan on top down induction of decision trees . Quinlan uses feature tests on finite
feature vectors as experiments and then proceeds to select the feature that yields the highest
information gain as the first feature to test. In Quinlan’s case, the different experiments
are at the same level of abstraction, and are at least conceptually independent.

In our case, where we want to select one among multiple index functions, this approach
has to be adapted. Our index functions are not even conceptually independent, and repre-
sent very different levels of abstraction. If we consider a finite set M of preclassified terms
(without noise), it is obvious that e.g. the index function Itopk (compare page 88) for a
value of k that is larger than the depth of the deepest term in M will split the set into
individual terms and will thus immediately yield all the information for a correct classifi-
cation. This partition of M will, however, allow no generalization to term outside of M .
Our aim is to find a balance between information gain and generality of the index function.
We therefore introduce the relative information gain. The relative information gain sets
the information gain towards the desired classification in relation to the expected amount
of additional information necessary to perform the test.

Definition 6.19 (Relative information gain)
We again assume A = {a1, . . . , an} and B = {b1, . . . , bm} with probability distributions
Pa and Pb, respectively. The relative information gain of performing B (to determine the
result to A) is

R(A|B) =
H(A)−H(A|B)

H(B)− (H(A)−H(A|B))

J

Term space maps are used primarily for evaluation, not for classification, and we there-
fore cannot expect the training sets to come preclassified. However, our aim for both
classification and evaluation is to differentiate between terms based on their evaluation.
Hence, we create two artificial classes of terms, those with a high evaluation and those with
a low evaluation. In the case of preclassified terms (were terms from one class have e.g.
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evaluation -1 and terms from the other class evaluation 1), the artificial classes we create
coincide with the given classes.

Definition 6.20 (Relative information gain for index functions)
Let M be a multi-set of terms t with evaluations eval(t) and let

l =

∑
t∈M eval(t)

|M |

be the average evaluation of terms in M . We partition the term set into two classes,
M = M+ ]M− with M+ = {t ∈ M |eval(t) > l} and M− = {t ∈ M |eval(t) ≤ l}. Let A
be the experiment of selecting a term from M with the two outcomes t ∈M+ and t ∈M−

with the associated relative frequencies

p+ =
|M+|
|M |

and p− =
|M+|
|M |

Now let I be an index function. It defines an experiment B with the possible outcomes
in I(M), where each result i has the associated probability

pi =
|{t ∈M |I(t) = i}|

|M |

Then the relative information gain induced by I on M is R(I,M) = R(A|B)
J

We can now use these definitions to build term space maps that select the index function
that gives them the best relative information gain.

Definition 6.21 (Information-optimal index functions)
Let M be a multi-set of terms t with evaluations eval(t) and let I = {I1, . . . , In} be a set
of index functions.

• An information-optimal index function from I for M is an index function I from I
with R(I,M) = max{R(I,M)|I ∈ I}.

• An information-optimal basic term space map (for a set I of index functions and a
training set M) is a basic term space map with respect to I and M where I is an
optimal index function from I.

J

Flat and recurrent term space maps use only a single index function. However, for
recursive term space maps, we can select an information-optimal index function for each
sub-TSM:

Definition 6.22 (Information-optimal term space maps)
Consider M , t, eval (extended to subterms) and I as in Definition 6.12. Let further
I = {I1, . . . , In} be a set of index functions.
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• An information-optimal flat term space map for M and I is any term space map
tsm ∈ {rftsmI(M) | I is information-optimal for M in I}.

• An information-optimal recursive term space map for M and I is an information-
optimal basic term space map tsm for I and M ,

tsm = {(i, e(i, I,M)(tsmi ,1 . . . tsm i,arI(i))|i ∈ I(M)}

where

e(i, I,M) =

∑
t∈{t′∈M |I(t′)=i} eval(t)

|{t′ ∈M |I(t′) = i}|
and where the tsm i,j are information-optimal recursive term space maps for {(t|j | t ∈
M, I(t) = i} and I for all i ∈ I(M), j ∈ ar I(i).

• An information-optimal recurrent term space map for M and I is any term space
map tsm ∈ {cftsmI(M) | I is information-optimal for ftsr(M) in I}.

J

Note that an information-optimal recursive term space map is not necessarily an rep-
resentative recursive term space map.

The experimental results in Chapter 8 show that the information-gain based selection
of the index function is indeed able to find very good index functions at least for flat and
recurrent term space maps.

6.5 Summary

In this chapter we have discussed the term-based learning algorithms that are central to
a theorem prover that tries to learn clause evaluations. After an overview of existing
approaches we have introduced term space mapping as a new class of fast, term-based
learning algorithms that are able to learn numerical evaluations for terms. Term space
mapping works by partitioning the space of all terms into partitions defined by an index
function. We described three different schemes to perform this partition: Flat term space
maps (subsuming memorization), recursive term space maps (subsuming term evaluation
trees) and recurrent term space maps. Finally, we introduced the concept of relative
information gain, based on the entropy of class distributions, to select the abstraction
(represented by an index function) with the best relationship between information gain
and generality.



Chapter 7

The E/TSM ATP System

We will now describe the learning theorem prover E/TSM that implements the concepts
introduced in the previous chapters. It stores proof experiences represented as sets of
annotated clause patterns in a knowledge base and uses these experiences to create a
heuristic clause evaluation function that is used to select the given clause in new proof
searches.

Figure 7.1 shows the overall architecture of the proof system. The prover is build
around five major components:

• The inference engine realizes the SP calculus described in Section 2.7. It is ca-
pable of writing an abbreviated protocol of these inferences. For details about the
conventional features of the inference engine see Appendix A.

• The abbreviated protocol is interpreted by an independent proof analysis program.
It is expanded and directly translated into a proof derivation graph as described
in Section 5.3. Based on this graph, the proof search is transformed into a set of
annotated clauses.

• The central repository of learned knowledge is the knowledge base. It contains prepro-
cessed and indexed annotated patterns organized for efficient selection of knowledge
from suitable proof examples. We describe the organization of the knowledge base
in Section 7.1 in this chapter.

• The selection of knowledge from the knowledge base is controlled by a selection
module. It analyzes new proof problems and requests search control knowledge about
similar proof problems from the knowledge base. Section 7.2 describes the details.

• Finally, this knowledge is compiled by the learning module into a term space map
and used to evaluate new clauses. We describe this process in sections 7.3 and 7.4.

102
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Figure 7.1: Architecture of E/TSM

7.1 The Knowledge Base

The knowledge base is at the core of the learning system. Data generated from proof
experiences is stored in a compact form and indexed for efficient access and processing. A
knowledge base consists of 4 distinct parts: The knowledge base description, the problem
index , the clause pattern store and the proof experience archive.

The knowledge base description determines how proof experiences are analyzed and
preprocessed. There are two parts of the knowledge base description: A partial signature
sig that describes a set of function symbols Ff and a set of parameters for the proof analysis
process. Relevant parameters in the current implementation are the proportion of positive
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and negative clause families selected from each proof experience, the number of examples
to extract from failed proof searches, and a flag that determines if all clauses of a clause
family are used to represent it or whether only the evaluated clauses are chosen. The set
Ff contains function symbols with known and fixed intended semantic from a domain of
interest. These symbols are not generalized in the clause pattern representation of the
proof experiences.

The problem indexproblem index associates each individual proof experience with a
unique identifier proof id and an experience descriptor, consisting of a description of the
signature and a vector of numerical features. For details see the next section.

The clause pattern store stores the representative clauses selected from the proof ex-
periences. It contains a recursive representative pattern (with respect to the symbols in
Ff described in the signature) for each clause selected from a proof experience. These
clauses are represented as a set of maximally shared representative patterns (compare
Definition 6.3 and Section A.1.1), and each clause pattern is associated with a set of anno-
tations describing the properties of the corresponding clauses in different proof searches.
A single annotation in the clause store is of the form proof id:(pd,mp,mn,gp,gn,sc), where
proof id is an identifier for the original proof experience as described above and the other
values represent the effect of the clause in the proof search as described in Section 5.3.2.

The proof experience archive, finally, stores the unprocessed proof experiences, repre-
sented by the original problem specification and the set of annotated, but not generalized,
clauses selected to represent the corresponding proof search. This archive is only used for
manual verification and analysis, or for the reuse of the proof experiences in new knowledge
bases. It is not actively used by the learning component.

Knowledge bases are managed by a set of programs for knowledge base creation, inser-
tion of new proof experiences, and deletion of existing proof experiences.

7.2 Proof Example Selection

We will now discuss the experience selection component of the theorem prover. Its task is to
select a subset of proof experiences that are similar to a new problem from the knowledge
base. To achieve this, we represent each proof problem by three vectors of numbers and
use distance functions to define a concept of similarity. A proof problem is represented by
a distribution of the number of function symbols of different arities, a similar distribution
for predicate symbols, and a vector of numerical features representing properties of the
problem specification.

Let us first consider the numerical signature representations and the distance measure
it induces on signatures:

Definition 7.1 (Arity frequency vector, Signature distance)
• Let sig = (F, ar) be a signature and assume n ∈ N. The arity frequency vector for sig

and n is the vector af (sig , n) = (|{f ∈ F | ar(f) = 0}|, . . . , |{f ∈ F | ar(f) = n}|).

• Let sig1 = (F1, ar 1) and sig2 = (F2, ar 2) be two signatures and assume n ∈ N,
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n = max(ar 1(F1) ∪ ar 2(F2)). The signature distance between sig1 and sig2 is
sd(sig1, sig2) = rdistE(af (sig1, n), af (sig2, n)).

J

In addition to the signature composition, we also use clause features to describe a
problem specification. Table 7.1 shows the 15 features used by E/TSM. Most of the
features used are variations or generalizations of features used successfully for similar tasks
in existing theorem provers. However, we have introduced the standard deviation of term
or clause features as a new useful feature for a clause set (see [SB99]).

Feature Description
f1 Number of unit clauses in the clause set
f2 Number of non-unit Horn clauses
f3 Number of non-Horn clauses
f4 Average term depth of terms in positive literals
f5 Standard deviation of the term depth of terms in positive literals
f6 Average term depth of terms in negative literals
f7 Standard deviation corresponding to f6 (see f4, f5)
f8 Average term weight of terms (with function symbol weight wf = 2,

variable weight wv = 1) in positive literals
f9 Standard deviation corresponding to f8
f10 Average term weight of terms in negative literals
f11 Standard deviation corresponding to f10
f12 Average number of positive literals in a clause
f13 Standard deviation corresponding to f12
f14 Average number of negative literals in a clause
f15 Standard deviation corresponding to f14

Table 7.1: Clause set features used for example selection

Definition 7.2 (Feature representation of formulae)
Let F be a formula in clause normal form. We call the vector frep(F ) = (f1, . . . , f15),
where the fi are computed as described in Table 7.1, the feature representation of F .

J

Given these definitions, we will now define a distance measure on proof problem spec-
ifications. While in principle a weighted distance measure is a more general approach to
measuring the distance between two vectors, we have opted for the simple relative Euclidean
distance instead. Adding weights for all features leads to an extremely large parameter
space that cannot be explored with reasonable resources. Moreover, the preliminary ex-
periments performed with DISCOUNT/TSM [Bra98, SB99] showed that at least for the
unit-equational case and the feature selection used by DISCOUNT, the best results were
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obtained with equal weighting of all features. We therefore currently restrict ourselves to
this simpler case.

Definition 7.3 (Proof problem distance)
Let F1 and F2 be two formulae in clause normal form, let sigP1 and sigP2 be two sig-
natures describing exactly the predicate symbols occurring in F1 and F2, respectively,
and let similarly sigF1 and sigF2 be two signatures describing exactly the function sym-
bols occurring in F1 and F2. The distance between the two formulae is specd(F1,F2) =
sd(sigP1, sigP2) + sd(sigF1, sigF2) + rdistE(frep(F1), frep(F2)).

J

The selection module of E/TSM computes the proof problem distance between a new
problem F and all problems corresponding to stored proof experiences. It then selects the
subset of problems with the smallest distance to F . The size of this set can be limited
by either giving a total number of problems to select, by giving a percentage of problems
to select, or by stating a limit on the distance (given in units of the average distance) for
problems to be selected. As stated above, proof problems are represented by pre-computed
arity frequency vectors and feature representations in the problem index. This speeds up
the selection process significantly and minimizes expensive I/O operations.

7.3 The Learning Module

The task of the learning module is to compile the selected knowledge into a term space
map for clause evaluation. To perform this task, we have to transform the annotated clause
patterns from the clause store into terms with an associated evaluation, and feed them into
the term space mapping algorithm. We therefore have to find an evaluation for each clause
pattern based on the annotation vectors it carries.

Input to the learning module is the complete clause store and a list of proof problem
identifiers corresponding to problems determined by the selection module. The learning
module then selects all clause patterns with at least one annotation from the set of selected
proof experiences and strips off all annotations from other experiences.

In the resulting set, each clause annotation corresponds to an occurrence of a clause in
a selected proof experience. However, we do of course want to avoid to actually create a
copy of the clause pattern for each annotation. Therefore, we first combine the individual
annotations, and then transform the result into a tuple (no,P , eval), where no is the
number of clause occurrences represented by the clause pattern P and eval is the resulting
evaluation.

Recall Section 5.3.2, where we discussed potentially important properties of the role
a clause played in the proof search. We have encoded the clause properties that can be
determined from a single proof search in the individual annotations. However, we have
not yet encoded the number of proofs to which clauses corresponding to a pattern have
contributed, as this feature can only be determined after we have selected a relevant set
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of proof experiences. We now combine all annotations for a clause patterns in a single
annotation.

Definition 7.4 (Combined clause pattern annotation)
Let a1, . . . , an be a set of annotations for a clause pattern, where each ai is of the form
proof id i : (pdi,mpi,mni, gpi, gni, sci). The combined clause pattern annotation for this
clause is the vector (s, pn, pd,mp,mn, gp, gn, sc), where s = n is the number of original
annotations, pn = |{ai | pdi = 0, i ∈ {1, . . . , n}}| is the number of proofs in which the
pattern participated, and the other values are the average values of the corresponding
entries in the original annotations.

J

The individual features in a combined annotation typically have widely varying ranges.
However, we want to be able to control both the influence of each of these parameters in
the final evaluation and the range of the final evaluation independently. We therefore first
normalize each value in the annotation vector to a value between 0 and 1. We then use
a linear combination of the values in a normalized annotation as the final evaluation for a
clause pattern, and again normalize this final evaluation over the set of evaluated clause
patterns.

Definition 7.5 (Experience-based clause pattern evaluation)
Let M = {(P1, a1), . . . , (Pn, an)} be a set of clause patterns with combined annotations,
where each combined annotation has the form
ai = (si, pni, pdi,mpi,mni, gpi, gni, sci).

• Assume

– p̂n = max{pni|i ∈ {1, . . . , n}}
– p̂d = max{pdi|i ∈ {1, . . . , n}}
– m̂p = max{mpi|i ∈ {1, . . . , n}}
– m̂n = max{mni|i ∈ {1, . . . , n}}
– ĝp = max{gpi|i ∈ {1, . . . , n}}
– ĝn = max{gni|i ∈ {1, . . . , n}}
– ŝc = max{sci|i ∈ {1, . . . , n}}

The normalized annotation corresponding to a combined annotation a = (s, pn, pd,
mp, mn, gp, gn, sc) in M is the vector

normM(a) = (n,
pn

p̂n
,
pd

p̂d
,
mp

m̂p
,
mn

m̂n
,
gp

ĝp
,
gn

ĝn
,
sc

ŝc
)

• Now assume a vector of weights w = (wpn, wpd, wmp, wmn, wgp, wgn, wsc).
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– The evaluation of (P , a) ∈M is

evalM((P , a), w) = wpn
pn

p̂n
+ wpd

pd

p̂d
+

wmp
mp

m̂p
+ wmn

mn

m̂n
+ wgp

gp

ĝp
+ wgn

gn

ĝn
+ wsc

sc

ŝc

– The normalized evaluation of (P , a) ∈M is

nevalM((P , a), w) =
evalM((P , a), w)−min evalM(M,w)

max evalM(M,w)−min evalM(M,w)

– The evaluated clause pattern corresponding to (P , a) ∈ M (where a is of the
form (s, pn, pd,mp,mn, gp, gn, sc)) is the 3-tuple

ecpM((P , a)) = (s,P , nevalM((P , a), w)

J

Note that as a consequence of this definition, the normalized clause evaluations have
the following property:

Corollary: The normalized evaluation of a clause pattern is always an element of the set
[0; 1].

We have implemented the term space mapping algorithms in a way that they internally
treat an evaluated clause pattern (s,P , e) as a multi-set containing s instances of P with
evaluation e. The overall task of the learning module hence is realized by transforming the
annotated clause patterns into evaluated clause patterns and feeding the resulting set into
a term space mapping algorithm.

Our implementation of term space mapping supports flat, recursive and recurrent term
space maps. It also can, on request of the user, recode the recursive clause patterns stored
in the knowledge base on the fly into flat clause patterns. We have implemented all index
functions described in Theorem 6.1 (up to a compile-time defined depth limit for the index
functions based on top terms). Index functions can be selected by the user. Alternatively,
the cheapest (in term of computing resources for the evaluation of new clauses)1 information
optimal index function is automatically selected.

There is one more open variable we need to determine before we can use the term space
map to evaluate new clauses. This is the value eu assigned to term nodes not mapped
by the term space map. For arbitrary classification experiments it makes sense to use the

1These leads to the following preference ordering on index functions: Iar, Isymb, Iid, Itop1
, Itop′

1
, Icstop1

,
Iestop1 ,. . . , Itopn , Itop′

n
, Icstopn , Iestopn . In general, the explicit copying of term tops is the most expensive

operation in index function computation in our current implementation.
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average evaluation of all terms in the training set used to build the term space map, on the
assumption that this training set is a typical sample. However, for clause evaluation we
can use more a-priori knowledge. Assume a hypothetical clause that maps onto a node not
mapped by the training set. Obviously, this clause does not participate in any proof in the
set of selected proof experiences. Hence, its value for the parameter pn is 0. Similarly, this
fictive clause is not even close enough to a proof to be selected. As an estimate, we can
say that the value pd for this clause is greater than for any clause that has been selected
as part of a proof representation. For the other parameters, the best estimates we can give
are the average values of the clauses in the training set. This leads to following premise:

Premise: A good (normalized) evaluation eu for unmapped term nodes in a
TSM generated by a set of clauses with combined evaluations M is the (nor-
malized) evaluation of a fictive clause with combined evaluation (1, 0, pd, mp,
mn, gp, gn, sc), where pd is the maximum value of any proof distance in M
plus 1, and where mp, mn, gp, gn and sc are the weighted averages of the
corresponding values in M .

7.4 Knowledge Application

In the application phase, the term space map generated by the learning module is used
to define a heuristic evaluation function for new clauses. The complete application phase
consists of transforming newly generated and normalized clauses into representative clause
patterns and evaluating them with the help of the term space map.

The resulting heuristic evaluation function should have two important properties. First,
the resulting search strategy should be complete, i.e. any proof derivation generated with
this strategy should be fair. Secondly, the search strategy should perform adequately even
in cases where no previous knowledge exists.

The term evaluation functions induced by a term space map constructed as described
in the previous section evaluates a clause pattern based only on information from previous
proof searches, not on syntactical properties or on the current proof derivation. If the term
space map covers only a finite subset of all clauses (as e.g. is the case for any representative
flat term space map for the index function Iid), the search strategy on new clauses is
undefined (or rather defined by the implementation of the base prover and usually similar
to FIFO), and unlikely to deliver good performance.

Moreover, if a more general index function is used, the evaluation function defined by
a term space map may even result in unfair proof derivations:

Example: Consider the flat term space map (for index function Iar and flat representative
clause patterns) in Figure 7.2, which might be the result of a proof search where only
unit clauses contributed to the proof. It will always yield a lower evaluation for unit
clauses than for clauses with 2 literals, and hence will not generate a fair search
derivation for most problems.



110 The E/TSM ATP System

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

0; 02; 1 1; 0

Figure 7.2: A flat TSM representing an unfair term evaluation function

To overcome this problem, we combine the TSM defined evaluation with a conventional
clause weight evaluation:

Definition 7.6 (The TSMWeight evaluation function)
Let tsm be a term space map, let tev ∈ {fev , rev , cev} be a TSM-based evaluation function,
assume eu ∈ [0; 1], wlearn ∈ R+ (the weight of the learned evaluation) and wf , wv ∈ R. Let
C be clause and let P be a (flat or recursive) representative clause pattern for C. Then

TSMWeight(tsm, tev , eu, wlearn, wf , wv, C)

= (1 + wlearn tev(tsm,P , eu))× CWeight(wf , wv, C)

J

E/TSM uses this evaluation function for guiding the proof search. Note hat for the
value wlearn = 0 the evaluation function is equivalent to the ordinary clause weight, and
that for large values of wlearn it becomes equivalent to the product of the term space map
evaluation and the clause weight evaluation.

This evaluation function results (under reasonable assumptions about the parameters)
in a fair proof derivation:

Theorem 7.1 (Fairness of TSMWeight)
Let tsm be a representative TSM for a set of clauses with normalized evaluations and as-
sume tev , eu, wlearn, wf and wv as in the previous definition with the additional constraints
that wf > 0 and wv > 0. Then any proof derivation resulting from the given-clause al-
gorithm that always selects the clause C with the lowest weight TSMWeight(tsm, tev , eu,
wlearn, wf , wv, C) is fair.

Proof: Note that the normalized clause evaluations as well as eu are from the interval
[0; 1]. Hence all evaluations of terms under the representative TSM are also from this
interval.
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According to Theorem 4.1, we have to show that no persistent clause remains in the
set U forever. Now assume that a clause C with evaluation e = TSMWeight(tsm,
tev , eu, wlearn, wf , wv, C) is never selected for processing. Obviously, only clauses
with a clause weight smaller than e can get a smaller overall evaluation than C. But
there is only a finite number of clauses with this property, as the number of symbol
occurrences in the clause is limited by e

min(wf ,wv )
and the number of different function

symbols and variables2 is finite as well.

�

7.5 Summary

In this chapter we have described how we integrated the techniques developed in the
previous chapters to create the learning theorem prover E/TSM. This prover is the first
ATP system for clausal logic that combines solutions to all major problems for learning
from previous proof experiences.

The proof system consists of five major components: The inference engine, the proof
analysis module, the knowledge base, the proof experience selection module, and the learn-
ing module.

Proof search experiences are generated by the inference engine. The proof analysis mod-
ule transforms each proof search into a compact representation, consisting of a numerical
representation of the proof problem and a set of annotated clause patterns corresponding
to important search decisions. Annotations for a clause pattern store information about
the usefulness of the corresponding clause in a given proof search, encoded as a numerical
vector. The representations of each proof problem are then stored in a knowledge base.

To apply the stored knowledge to a new proof search, the proof experience selection
module analyzes the new formula, transforms it into a numerical representation, and then
uses the normalized Euclidean distance between this representation and the representa-
tions of previous proof problems in the knowledge base to select a subset of similar proof
experiences.

The learning module accepts the list of similar proof problems as input. The clause
patterns corresponding to the selected problems are associated with an evaluation that is
computed from their annotations, and are transformed into a representative term space
map. This term space map is then used to modify a conventional evaluation heuristic that
is used to guide the proof search.

The resulting proof derivation is always fair, and hence the completeness of the prover
is not compromised by the use of learning heuristics. The following chapter shows that
very good results can be achieved with the learning heuristics.

2As stated in Section 2.5, we identify clauses that are only variants of each other, and hence can assume
a clause to be in a variable-normalized form.



Chapter 8

Experimental Results

In this chapter we present the experimental results obtained with our implementation. In
the first part, we apply term space mapping to some artificial classification experiments
and demonstrate that the different kind of term space maps can learn different properties
of terms. In the second part, Section 8.2, we present the results obtained by our learning
theorem prover E/TSM under different conditions. We use a set of relatively easy proof
problems as training examples and show that the learned search control knowledge helps
us to find proofs for new, harder problems.

8.1 Artificial Classification Problems

To be able to evaluate the performance of the different versions of term space mapping,
we have created a set of simple test problems. For each of this problems, a set of terms is
split into two classes, a positive class and a negative class. A term space map is trained
on a part of the total set, and then used to classify the remaining terms. We used all three
kinds of term space maps, and all index functions identified in Theorem 6.1, with a depth
limit of 5 for the index functions based on term tops.

8.1.1 Experimental Setup

Random term generation

The first problem in designing these classification experiments is to obtain suitable term
sets. As the set of all terms is infinite for any non-trivial signature, there is no obvi-
ously fair probability distribution. Even naive term generation schemes will not terminate
stochastically, as the number of potential open branches in a term increases exponentially
with the term depth.

We have developed a procedure that handles these problems by a suitable distribution
on a the arity of function symbols and by introducing a depth-based probability for term
branch cut-off. The procedure is depicted in Figure 8.1.

112
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Variables:

l Magical number, yields distribution of arities. Larger values lead to
broader terms. We use l = 0.95 in our experiments.

d The depth level for which the term is generated, initially 0.
t The newly generated term.
s The top symbol of the generated term.
a Number of direct subterms of the term to be generated.
t1...ta Subterms.
sig The signature (see main text).

procedure genterm(d)

{
select a randomly from [0,3] with probabilities

p(3) = (1-1/(d+1))*(l*l/2*l/4)

p(2) = (1-1/(d+1))*(l*l/2*(1-l/4))

p(1) = (1-1/(d+1))*(l*(1-l/2))

p(0) = 1/(d+1)+ (1-1/(d+1))*(1-l);=-

select s with equal probabilities

from {s ∈ sig |ar(s) = a};
(t1,...,ta) := (genterm(d+1),...,genterm(d+1));

t := s(t1,...,ta);

return t;

}

Figure 8.1: Generating random terms

We have generated two sets of 20,000 pseudo-random ground terms1 over the signature
{f01/0, . . . , f04/0, f11/1, . . . , f13/1, f21/2, . . . , f22/2, f31/3} by repeatedly using this proce-
dure. The first set , term set A, was filtered for repeated terms, the second set, B, contains
terms as generated by the procedure. Table 8.1 shows some statistical data on the term
sets. We will use these sets as the basis for all classification experiments. For two tests
(recognizing symmetry and memorization) we will modify the term sets (to ensure that
the required properties for these experiments are present), for all other experiments we use
the sets as they were generated.

Our method for generating terms has advantages and disadvantages. Advantages are

1Note that term space mapping does not distinguish between constants and variable symbols in terms
on a syntactic basis – all symbols are treated equally.
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Term set A B

Number of terms 20,000 20,000
Number of distinct terms 20,000 15,097
Average term depth 5.814 5.032
Maximal term depth 14 14
Average number of symbols 13.410 10.751
Maximal number of symbols 75 69

Table 8.1: Term sets used in classification experiments

that the generated terms cover a relatively range for both size and depth, and that function
symbols for a given arity are distributed equally. Disadvantages are that the method favors
small terms heavily, and that function symbols of different arities are selected with very
different probabilities. These properties are likely to skew some experiments.

Evaluation method

To get statistically significant results, we use 10 fold cross-evaluation. This is a standard
evaluation technique used in the field of machine learning. The complete set of all examples
is randomly split into 10 equal parts (or folds). One after the other, each of the ten folds
is set aside as a test set . The remaining 9 parts are combined into a training set . Terms in
the training set are associated with the evaluation +1 for terms from the positive class and
-1 for terms from the negative class. The terms are then used to compute a representative
term space map. This TSM is then used to classify the part set aside as a test set. For
each of the 10 experiments the rate of success is measured. The overall performance of
the term space map is given by the average rate of success, reliability of this result is the
standard deviation of the individual rates.

We compare the results with those that would be achieved of a random guesser and
by a naive learner . A random guesser guesses the two classes randomly according to their
frequency in the data set. If the relative frequency of the larger class is given by p, it
achieves the average correctness of p× p+ (1− p)× (1− p). A naive learner always guesses
the most frequent class. If the relative frequency of the larger class is again given by p, the
expected correctness of a naive learner is p.

Classification limits

To classify terms with a term space map, we need to decide on an evaluation for unmapped
terms (see Definitions 6.9, 6.13 and 6.15) and on the classification limit used to separate
the two classes (Definition 6.11).

We use the average evaluation of all terms in the training set under the term space map
as an evaluation for unmapped terms. As a term space map that is representative for a
certain set of terms always maps all terms of this set completely, this value is well-defined.
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For the classification limit, we choose the average of the average evaluations for terms
in each of the two classes.

More formally, consider a multi-set M = M+]M− of terms (training examples) and let
tsm be a flat, recursive or recurrent representative term space map for M (with evaluations)
and some index function, and let tev be the corresponding (flat, recursive or recurrent)
evaluation function.

We use the value eu for the evaluation of unmapped terms and the classification limit
l given by

eu =

∑
t∈M tev(tsm, t, 0)

|M |

and

l =

∑
t∈M+ tev(tsm,t,eu)

|M+| +
∑

t∈M− tev(tsm,t,eu)

|M−|

2

for the following experiments.

8.1.2 Recognizing small terms

The first task we want to learn is the classification of terms into large and small terms. This
is the classification problem corresponding most closely to the symbol counting evaluation
heuristics used in theorem proving.

We selected a size limit of 10 symbols for the class split, i.e. terms with more than 10
symbols make up the positive class and terms with up to 10 symbols make up the negative
class. This results in fairly even sized classes for both term set A and term set B. For
term set A, there are 11069 positive terms and 8931 negative terms, resulting in a success
rate of 50.57% for the random guesser and 55.345% for the naive learner. For term set B,
we have 8252 positive terms and 11748 negative terms. In this case, the random guesser
would achieve 51.52% and the naive learner 58.74%.

This test is very likely to be affected by the skewed distribution of terms noted in
Section 8.1.1, as the classification criterion is directly linked to the same factor that limits
the growth of the pseudo-random terms. The much higher density of generated terms for
smaller sizes makes an over-specialization to these terms rewarding.

Table 8.2 shows the results achieved by the different term space mapping algorithms.
In all cases, the best results are significantly better than both the random and the naive
learner.

Recursive term space maps perform best for both term sets on this problem. As the
problem is one of term topology, this is to be expected. Flat term space maps also perform
quite good, although the size of the training set is very small compared to the training set
size required in Theorem 6.3 for perfect classification. For very specialized index functions,
we can observe over-fitting in both cases: The learned term space maps allow nearly no
generalization to new examples, and the performance deteriorates towards those for a naive
learner.
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Index Term set A Term set B
fct. Flat Recursive Recurrent Flat Recursive Recurrent

Iar 67.1±0.95 74.5±0.97 61.5±1.24 75.0±1.18 76.0±1.34 58.9±1.26

Isymb 67.1±0.94 72.4±0.83 62.5±1.34 75.0±1.18 75.8±1.12 61.1±1.37

Iid 55.3±1.22 55.3±1.22 54.0±1.15 58.7±1.24 58.7±1.24 47.0±1.08

Itop1 67.1±0.94 72.4±0.83 62.5±1.34 75.0±1.18 75.8±1.12 61.1±1.37
Itop′1 67.2±0.93 72.7±0.96 61.9±1.17 75.1±1.17 76.4±1.20 61.3±1.40
Icstop1 67.2±0.93 72.7±0.96 61.9±1.17 75.1±1.17 76.4±1.20 61.3±1.40
Iestop1 67.2±0.93 72.7±0.96 61.9±1.17 75.1±1.17 76.4±1.20 61.3±1.40
Itop2 71.7±0.63 74.7±0.72 59.3±0.91 78.8±0.55 80.8±0.63 55.1±1.40
Itop′2 72.8±0.92 75.2±0.76 57.4±1.07 77.9±0.75 79.8±0.77 54.1±1.52

Icstop2 72.7±0.88 75.3±0.88 57.1±1.08 77.6±0.92 79.2±0.87 53.9±1.50
Iestop2 72.5±0.89 75.0±0.92 56.2±1.12 77.6±0.89 79.3±0.87 53.4±1.53

Itop3 71.0±1.11 70.8±1.16 53.9±0.90 60.8±0.83 60.6±0.85 52.1±0.74
Itop′3 70.5±1.40 70.3±1.36 53.9±0.80 60.2±1.11 60.1±1.12 51.4±1.08

Icstop3 70.2±1.51 70.0±1.44 53.6±0.67 60.2±1.08 59.9±1.06 50.9±0.96
Iestop3 68.9±1.28 68.8±1.26 53.7±0.79 60.3±1.02 59.9±1.06 50.6±0.88

Itop4 60.3±1.30 60.3±1.24 54.8±0.93 58.2±1.12 58.4±1.18 46.7±0.95
Itop′4 60.0±1.29 60.0±1.23 54.8±0.96 58.3±1.12 58.5±1.16 46.7±0.97

Icstop4 59.5±1.37 59.5±1.33 54.7±1.01 58.4±1.12 58.5±1.14 46.6±1.10
Iestop4 59.3±1.33 59.3±1.28 54.8±1.07 58.4±1.12 58.5±1.15 46.7±1.05

Itop5 55.7±1.26 55.7±1.26 54.2±1.23 58.7±1.25 58.7±1.25 47.0±1.01
Itop′5 55.6±1.26 55.6±1.26 54.2±1.23 58.7±1.25 58.7±1.25 47.0±1.04

Icstop5 55.6±1.27 55.6±1.27 54.2±1.22 58.7±1.25 58.7±1.25 46.9±1.05
Iestop5 55.6±1.27 55.6±1.27 54.2±1.22 58.7±1.25 58.7±1.25 46.9±1.03

Iopt 67.1±0.95 72.4±0.58 61.5±1.24 75.0±1.18 76.0±1.33 58.9±1.26

Remarks: Iopt shows the result for the information-optimal term space maps. The best
results for each term set and each type of term space map are marked in bold face.

Table 8.2: Results for term classification by size

Recurrent term space maps, finally, perform worst of all. This is unsurprising, as the
flattening of the terms in the construction of recurrent term space maps destroys the very
feature the classification depends on. For unsuitable index functions, the recurrent term
space maps are even worse than the naive, and in some few cases even the random guesser.

The information-optimal term space maps show about average performance. For all
cases except the recurrent term space map for term set B they are still significantly better
than the naive learner. Information-optimal term space maps perform much better for the
experiments described in the following sections. There are two reasons why they perform
less well in this case. First, we try to separate a finite class (small terms) from an infinite
class of terms. Consequently, the relative frequency of a class on the (finite) training set is
not a good estimation for the overall probability of a term to belong to this class. As the
relative information gain is based on the entropy of an estimated probability distribution,
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this problem translates into a weakness of this selection criterion for index functions.
Secondly, we believe that this performance is influenced by the skewed term distribu-

tion as described above. This belief is supported by the fact that the information-optimal
recurrent term space map for term set B performs relatively much worse then the corre-
sponding term space map for set A. As set B contains repeated terms (nearly all of which
are small in size), over-specialization to small terms pays off even more in this case.

To fix this problem, we would need to use a better estimation for the global probabilities
of the classes. This estimation would need to take the probability distribution of terms in
the test and training set into account.

8.1.3 Recognizing term properties

In this section, we test the performance of term space mapping for recognizing certain term
properties. There are three different problems in this problem set:

• First, we try to recognize terms which carry certain symbols at certain positions.
More exactly, we try to recognize terms t with the property that 1 ∈ O(t) and
head(t|1) ∈ {f01, f02, f03, f04, f11, f12, f13}. This is the most specific constraint of this
type we could find that still splits the two sets of terms into about equal parts.
We refer to this problem as Topstart. For term set A, there are 9299 terms in the
positive class and 10701 terms in the negative one. For term set B there are 10319
positive terms and 9681 negative ones. A random guesser would get 50.246% on A
and 50.0509% on B, a naive learner 53.505% and 51.595%, respectively.

• The second problem, Symmetry, tries to recognize terms that are instances of f21(x, x)
or f22(x, x). As only about 20 terms from the set A and B have this property, we
constructed new test sets A’ and B’ for this problem. In both cases, every second
term t from A or B was transformed into a symmetric term by randomly selecting a
function symbol with arity 2 and using t at both argument positions. The resulting
term sets are very well balanced. A’ contains 10011 positive terms and 9985 negative
ones, for random and naive success rates of 50.00006% and 50.055%, respectively.
For B’ we have 10015 positive and 9985 negative terms, with corresponding rates of
50.0001% and 50.075%

• The last problem we discuss in this section is Symbol occ. The positive classes con-
tains all terms in which the function symbol f01 occurs. For term set A this results in
a 14514/5486 split (with random and naive success rates of 60.188% and 72.57%), for
term set B we get a more even 12274/7726 split, and values of 52.586% and 61.37%
for random guesser and naive learner.

Table 8.3 and Table 8.4 summarizes the results of the different experiments for the term
sets A and B. We only give numbers for selected index functions (including the best index
function) and the information-optimal index function.
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Index function Flat Recursive Recurrent

Topstart (Random: 50.246 Naive: 50.246%)
Iar 58.4±1.12 100.0±0.00 66.3±1.19
Isymb 58.4±1.12 99.9±0.06 66.3±1.14
Iid 53.5±1.08 53.5±1.08 60.0±1.16
Itop′1 58.3±1.10 98.5±0.13 66.7±1.15
Itop2 99.2±0.16 99.2±0.16 60.4±1.33
Itop′2 98.0±0.40 98.0±0.40 59.1±1.36
Iestop3 72.9±0.94 72.9±0.94 59.5±1.12
Itop′4 60.3±0.96 60.3±0.96 63.4±0.93
Iopt 99.2±0.16 99.2±0.16 66.3±1.19

Symmetry (Random: 50.00006% Naive: 50.055%)
Iar 77.5±0.95 77.5±0.94 55.1±1.20
Isymb 77.5±0.95 77.5±0.94 54.5±1.05
Iid 49.3±0.81 49.3±0.81 53.8±14.14
Itop′1 100.0±0.02 100.0±0.02 49.2±0.80
Itop2 95.9±0.96 95.6±0.95 51.4±0.65
Itop′2 97.6±1.66 97.6±1.66 50.7±0.95
Iestop3 74.0±14.07 74.0±14.07 61.1±1.26
Itop′4 55.9±5.79 55.9±5.79 56.5±9.84
Iopt 100.0±0.02 100.0±0.02 55.1±1.20

Symbol occ (Random: 60.188% Naive: 72.57%)
Iar 61.3±1.06 63.5±1.05 62.1±1.44
Isymb 61.3±1.06 64.7±1.01 92.4±0.55
Iid 72.6±1.00 72.6±1.00 75.7±0.70
Itop′1 61.4±1.05 65.3±0.92 92.5±0.47
Itop2 61.3±1.21 69.3±1.27 89.9±0.86
Itop′2 62.6±0.85 70.1±1.04 89.0±0.78
Iestop3 71.8±0.84 72.4±0.87 75.9±0.84
Itop′4 73.1±0.82 73.1±0.83 75.9±0.74
Iopt 72.6±1.00 72.6±1.00 92.4±0.55

Remarks: See Table 8.2.

Table 8.3: Term classification experiments (Term sets A/A’)

As a general observation, we can see that both for the best and the information-optimal
index functions the classification rates are significantly better than either the random
guesser or the naive learner for nearly all term space map types and all experiments. As a
second observation we can also note that the performance on term set B is usually better
than on term set A (if compared to the respective rates of the naive learner). This indicates
that the mapping algorithms do benefit from the ability to learn individual evaluations for



8.1 Artificial Classification Problems 119

Index function Flat Recursive Recurrent

Topstart (Random: 50.0509 Naive: 51.595%)
Iar 56.6±1.07 100.0±0.00 71.6±0.84
Isymb 56.6±1.07 100.0±0.00 71.9±0.82
Iid 60.3±1.01 60.3±1.01 54.3±1.63
Itop′1 56.6±1.06 99.1±0.23 72.3±0.73
Itop2 99.7±0.15 99.7±0.15 63.0±1.28
Itop′2 97.7±0.43 97.7±0.43 63.0±1.48
Iestop3 72.3±0.84 72.3±0.84 59.5±1.57
Itop′4 61.1±0.99 61.1±0.99 54.4±1.45
Iopt 99.7±0.15 99.7±0.15 71.6±0.84

Symmetry (Random: 50.0001% Naive: 50.075%)
Iar 82.7±0.80 82.7±0.80 53.3±0.91
Isymb 82.7±0.80 82.7±0.80 53.1±1.05
Iid 62.0±0.70 62.0±0.70 55.2±9.29
Itop′1 100.0±0.00 100.0±0.00 47.6±0.85
Itop2 96.8±0.53 96.5±0.55 48.9±1.15
Itop′2 97.8±1.19 97.8±1.19 48.2±0.88
Iestop3 77.9±8.90 77.9±8.90 58.5±1.45
Itop′4 66.0±3.44 66.0±3.44 56.5±6.69
Iopt 82.7±0.80 87.2±1.11 53.3±0.91

Symbol occ (Random: 52.586% Naive: 61.37%)
Iar 63.9±1.22 71.7±1.47 60.7±0.97
Isymb 65.3±1.07 74.2±1.11 92.1±0.50
Iid 80.7±0.85 80.7±0.85 82.0±0.73
Itop′1 65.3±1.06 74.1±0.98 91.7±0.51
Itop2 71.9±1.08 77.9±0.55 88.8±0.42
Itop′2 72.7±0.78 78.5±0.54 88.4±0.60
Iestop3 78.5±1.00 80.2±0.83 81.7±0.64
Itop′4 81.0±0.66 81.1±0.61 81.9±0.81
Iopt 80.7±0.85 80.7±0.85 92.1±0.50

Remarks: See Table 8.2.

Table 8.4: Term classification experiments (Term sets B/B’)

repeated terms.
Let us now discuss the three individual experiments:

• For Topstart, both the flat and the recursive term space maps achieve perfect or
nearly perfect results. As the distinguishing property is defined in terms of function
symbols at absolute positions, this is as we expected from the theoretical discussion
in Chapter 6. We can also note that the recursive term space map achieves a better
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overall score with less specific index functions.

The information-optimal index function is the best index function for the flat case. It
is not the best one for the recursive case, though. This shows a general weakness of
the way index functions are selected in the recursive case. As the information-optimal
index function is selected at each term position individually, unnecessarily specific
index functions are selected at the top level in this case. The same index functions
are used to split the example set for the recursive descent, and hence the relevant
features are lost to the lower level basic term space maps. Section 9.3 discusses
potential improvements.

Finally, the recurrent term space maps perform worst. As for the size-based features,
the flattening of the terms destroys a part of the relevant properties (the absolute po-
sitioning of the function symbols), and hence no better performance is to be expected.
The information-optimal index function is not the best one, but the differences are
statistically insignificant in all cases.

• For the Symmetry problem, we achieve the absolutely best results for both flat and
recursive term space maps for term set A. Both achieve perfect classification of the
test set, and in both cases the information-optimal term space map achieves this
performance as well. The abstraction defined by one of our of index functions is very
well suited for this problem, and the entropy-based selection of index functions is
able to identify the optimal function even though the classification performance on
the training set is the same for the three index functions Itop′ , Iestop and Icstop.

For term set B, we get the same best-case performance, but the relative information
gain criterion fails to identify the best term space map. The reason for this is the
particularly skewed term distribution. Since repeated terms are allowed in term set
B, and since most generated terms are small terms, nearly all terms with arity 2 are
artificially generated symmetrical case. Hence just checking the arity of the top func-
tion symbol results in nearly 90% classification correctness. The relative information
gain criterion prefers this 4-way split with high accuracy (relative information gain
0.568412) to the much larger split with perfect accuracy it gets for Itop′2 , although
only barely. The relative information gain for this split is 0.522210.

The recurrent term space map again suffers from the fact that the absolute position
of the relevant features is destroyed in flattening. It’s performance and the best index
function can be explained by the construction of our term sets A’ and B’. Since most
of the positive terms are constructed by combining a random top symbol and two
copies of a term from sets A or B, the average size of positive terms is more than twice
as large as the average size of negative terms. Hence terms matching a sufficiently
large term top are likely to be positive, as are terms where different subterms occur
more than once.

• The Symbol occ problem shows the potential of the recurrent term space map if
the classification-relevant property is not bound to an absolute term position. The
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recurrent term space maps achieve the best classification results. For term set A,
the information-optimal term space map performs insignificantly worse that the best
one, for term set B the information-optimal recurrent term space map also is the one
showing optimal performance.

The flat and recurrent term space maps are unable to recognize this class. Their per-
formance on term set A is never significantly better than the naive learner, and the
classification is often as bad as a random guess. For term set B, where memorization
helps to classify small terms, the performance of flat and recurrent term space maps
is better, and the information-optimal index functions again perform only insignif-
icantly worse than the best index functions. Note that we discussed an equivalent
classification problem on page 93 and pointed out that flat terms space maps cannot
in general learn to recognize terms containing a certain function symbol.

8.1.4 Memorization

We have already noted that the term space maps generally seem to perform better on term
set B, where they can utilize then fact that terms can occur in both training and test sets.
In this section, we will test this ability further. We have randomly assigned classes to term
from term set A, and have created a new (multi)-set of examples by taking two copies of
each of these randomly classified terms. The task for the term space maps is to separate
these two random classes again.

Please note that for 10-fold cross validation the chance for a term in the test set to
also occur in the training set in this case is about 90% (90.0025 to be exact: there are two
copies of each term, the remaining copy for an arbitrary term in the training set is either
one of the 3999 terms in the test set or one of the 36000 terms in the training set). In
other words, the best performance we can expect is about 95% (about 90% for the case
of perfect memorization, and 5% by randomly guessing the class of the remaining 10% of
terms). As the positive and the negative classes exactly of the same size, both the random
guesser and the naive learner would only achieve 50%.

Table 8.5 shows the performance of our term space maps for this problem. As we can
see, both the flat and the recurrent term space map achieve the optimal result of about
95%. In both cases the information-optimal term space map is Iid, as we can expect in
a case where the classes are randomly selected and hence no term property carries any
information about the classes. It is interesting to see that the recursive term space maps
performs a lot better than the flat ones for all index functions but the identity function. The
reason for this is, of course, that it tests more term properties than the single abstraction
used by the flat term space map.

The recurrent term space map, on the other hand, does not perform significantly better
than the random learner. This is easy to explain: Nearly every subterm will occur in both
positive and negative terms. As the recurrent term space map evaluates all subterms
against the same term space map, no clear evaluation can be expected.
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Index function Flat Recursive Recurrent

Iar 50.0±0.59 52.2±0.67 50.0±0.71
Isymb 50.4±0.46 55.9±0.94 49.8±0.93
Iid 94.8±0.57 94.8±0.57 50.2±1.00
Itop1 50.4±0.46 55.9±0.94 49.8±0.93
Itop′1 50.4±0.46 56.6±0.97 49.8±0.96
Icstop1 50.4±0.46 56.6±0.97 49.8±0.96
Iestop1 50.4±0.46 56.6±0.97 49.8±0.96
Itop2 53.1±0.50 82.4±0.81 50.2±0.91
Itop′2 55.2±0.58 84.3±0.69 50.1±0.96
Icstop2 55.3±0.54 85.1±0.87 50.1±0.93
Iestop2 55.5±0.51 85.2±0.87 50.1±0.93
Itop3 76.6±0.51 94.1±0.38 50.3±0.72
Itop′3 78.7±0.72 94.2±0.53 50.3±0.86
Icstop3 79.4±0.66 94.3±0.51 50.3±0.83
Iestop3 80.1±0.66 94.4±0.56 50.3±0.87
Itop4 91.2±0.66 94.8±0.50 50.2±0.95
Itop′4 91.6±0.69 94.8±0.52 50.2±0.94
Icstop4 91.9±0.71 94.8±0.55 50.2±0.96
Iestop4 92.0±0.70 94.8±0.55 50.2±0.97
Itop5 94.5±0.59 94.7±0.55 50.2±1.00
Itop′5 94.5±0.59 94.7±0.55 50.2±1.00
Icstop5 94.6±0.59 94.7±0.56 50.2±1.00
Iestop5 94.6±0.59 94.7±0.56 50.2±1.00
Iopt 94.8±0.57 94.8±0.57 49.8±0.93

Remarks: See Table 8.2.

Table 8.5: Term memorization with term space maps

8.1.5 Discussion

The experimental results in the previous sections demonstrated that different kinds of
term space maps can learn different concepts. Flat and recursive term space maps are very
good at learning concepts that can be described by localized term properties. Recursive
term space maps usually generalize better to unknown examples. However, the automatic
selection of information-optimal index functions does not usually lead to the optimal term
space maps for the recursive case. For flat term space maps, on the other hand, the
information-optimal term space map is usually among the term space maps that give the
best performance.

Recurrent term space maps are good at learning non-localized term properties, a field
of problems where flat and recursive term space maps perform bad both in theory and in
practice.



8.2 Search Control 123

Generally, the learning success is better if one of the possible index functions is suitable
for a compact description of the concept to be learned. If this is the case, the relative
information gain is a very good way to identify the optimal index function at least for flat
and recurrent term space maps.

8.2 Search Control

In this section we describe the successes of term space mapping applied to the problem of
learning search control knowledge in the E/TSM system described in the previous chapter.

For learning theorem provers, we are restricted to a finite set of proof problems from
published collections. Moreover, the time for the evaluation of a search heuristic on a single
problem is about 4-5 orders of magnitude larger than the time for the classification of an
individual term. Cross validation is therefore neither practical nor customary for learning
theorem provers.

As we are interested in the increase in the performance of our theorem prover, we select
only easy problems as training examples. We test the resulting strategies on the complete
TPTP, with special consideration for all harder problems. This split allows us to evaluate
the generalization of the learned control knowledge to new, unknown proof problems. Easy
and hard are defined with respect to the base strategy used to build the knowledge base.
An easy problem is a problem that can be solved in less than 100 seconds by the base
strategy, a hard problem is a problem that cannot be solved within this time limit.

We use all 3275 clause normal form examples from the TPTP problem library [SSY94]
version 2.1.0 [SS97b] for our evaluation, and use two different knowledge bases. KB1

contains 1251 proof experiences from unsatisfiable problems that can be solved in less than
100 seconds (including overhead for writing a protocol of the proof search) with the RWeight
strategy described in Section 4.3. The second knowledge base, KB2, contains 1427 proof
experience that can be solved in less than 100 seconds with the RWeight/FIFO strategy,
the strongest of the strategies analyzed in Section 4.3. In both cases we only included
proof experiences, not experiences for problems which can be shown to be satisfiable (by
saturating them without deriving the empty clause). For both knowledge bases we selected
all proof clauses and up to the same number of clauses close to the proof to represent each
proof search.

Table 8.6 shows some data about the two knowledge bases. There are two interesting
observations about this data:

• First, the number of clause patterns is much lower than the number of original clauses.
Moreover, while KB2 contains significantly more proof experiences and clauses, the
number of clause patterns does not increase proportionally. Both of these facts
indicate that the represented proofs share a lot of clauses with the same structure.

• Secondly, we can see that the memory requirements are fairly moderate by current
standards. The largest part of the knowledge base is taken up by the proof experience
archive. The functional part is small enough to allow e.g. integration of this part into
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KB1 KB2

Proof experiences 1251 1427
Generated with strategy RWeight RWeight/FIFO
Original clauses 54653 61813
Distinct clause patterns 12474 12807
Size (with archive) in kilobyte 16048 18241
Size (functional part only) in kilobyte 4047 4634

Table 8.6: Knowledge bases used for the evaluation of E/TSM

a program (to speed up processing times and reduce overhead) or easy distribution to
potential users. The storage space taken up by the knowledge base do not seriously
restrict the deployment of the prover in any reasonable environment.

In the following section, we will present the results obtained by E/TSM with the two
different knowledge bases and a variety of TSM-based search heuristics. In all cases we
used the standard KBO (see A.1.3) and the literal selection function SelectLargestNegLit

(see A.2.2), exactly as we did for the proof experience generation.
All results have been obtained in compliance with the guidelines for use of the TPTP.

TPTP input files were unchanged except for removal of equality axioms and syntax trans-
formation. The performance was evaluated on a cluster of SUN Ultra 60 workstations
running at 300 MHz. CPU time per attempt was limited to 300 seconds, memory to
192 MB.

8.2.1 General observations

All of the TSM-based strategies rely on a fairly large set of parameters. For convenience,
we will give a short overview here.

• There are 7 different variables for the initial evaluation of clause patterns:

– wpn is the relative weight given to the number of proofs a pattern occurred in.

– wpd is the relative weight given to the average proof distance of a pattern.

– wmp is the relative weight for the number of modifying inferences with clauses
matching the pattern and that contributed to a proof.

– Similarly, wmn is the relative weight for the number of modifying inferences not
contributing to a proof.

– wgp is the relative weight for the number of generating inferences contributing
to a proof.

– wgn is the relative weight for the number of superfluous inferences contributing
to a proof.
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– wsc is the relative weight for the number of subsumption inferences.

• There are parameters controlling the number of similar proof experiences that are
selected to guide a new problem:

– sel abs gives the absolute maximum number of proof experiences to select.

– sel rel gives the maximum number of proof experiences to select as a fraction
of the number of all proof experiences.

– sel dist gives a relative limit for the maximum distance for a proof experience
from the new problem.

• There is the TSM type (flat, recursive or recurrent), the index function, and the
clause pattern type (flat or recursive).

• Finally, there are the parameters for the final evaluation:

– wlearn is the influence of the TSM-evaluation.

– wf and wv are the variable and function symbol weights for the underlying clause
weight strategy.

This set of parameters results in a very large number of possible strategies. Due to the
size of the parameter space and the limited computing resources we have performed only
a cursory survey so far. We will only present some selected results and give an overview
of our other findings here. Full protocols of all test runs are archived and can be obtained
upon request.

• Of the seven weights for the a-priory evaluation, only the first two (number of proofs
and average proof distance) have a strong individual influence on the performance of
the resulting strategy, with the proof distance being very slightly more useful. Effects
of the other parameters are not significant. For the test results presented later we
use wpn = −20, wpd = 20, wmp = −2, wmn = −1, wgp = 0, wgn = 1, wsc = −1.
Keep in mind that a positive weight means that the evaluation of the clause becomes
worse with the corresponding parameter, a negative value implies that the evaluation
becomes better if the parameter value increases.

• The performance of the learning strategies is fairly stable for values of wlearn between
0.5 and 20. It drops off rapidly for smaller values and slowly for larger values. Unless
otherwise mentioned, we use wlearn = 5 for the following results.

• The selection of similar proof experiences is best guided by sel dist. The best results
were obtained for sel dist = 1, i.e. for selecting all problems that have a less than
average distance to the current proof problems. We have always used values for
sel abs and sel rel that do not influence the selection in the following results.
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• The information-optimal index function is almost invariable Iid for flat and recurrent
term space maps. We have therefore used fixed index functions only.

We have kept wf = 2 and wv = 1 fixed for the presented results. This allows us to
compare the performance of the learning strategies with the base strategies used to build
the knowledge base as well as with the standard clause weight evaluation. We always used
the default recursive clause pattern encoding for flat term space maps and the flat clause
pattern encoding for recursive and recurrent term space maps.

8.2.2 Performance with KB1

Table 8.7 shows the comparative performance of a set of learning and non-learning strate-
gies.

As a first observation, we can see that among the homogeneous strategies (those not
interleaved with a first-in/first-out component) all of the TSM-based strategies outperform
the non-learning ones significantly. Particularly among the hard problems, the learning
strategies can solve between 50% and 250% more problems than the conventional ones.

Similarly, among the strategies that interleave a base strategy and FIFO, all of the
learning strategies are again significantly better than the conventional one. In this case,
the improvements are split between better performance on the training examples and on
the other problems. The best learning strategy can solve 24 training problems and 29 hard
problems that the strongest conventional heuristic, RWeight/FIFO, cannot solve at all.

The computational overhead of the learning strategies is notable. If they are not allowed
to profit from their additional effort (as in the case of the TSM0-strategies), they perform
worse than the Weight2 heuristic, although they generate the same proof derivations.

Finally, we can see that all strategies can show for nearly the same number of formulae
that they are not unsatisfiable, but have a model. Even the generally very weak pure
FIFO strategy can prove this property for 87 problems. This suggests that most of these
problems in the TPTP are very easy, and are proven by nearly every strategy.

Let us now discuss some of individual learning strategies in more detail:

• Both of the learning strategies using flat term space maps can reproduce nearly all of
the training examples. There is no significant difference between the heuristic with
and without proof experience selection. The probable reason for this is the low degree
of generalization provided by this particular choice of term space map. Only patterns
from the knowledge base that exactly match a new clause are used in the evaluation
of this clause. But clauses from very different proof problems are unlikely to have
this property. Therefore, a selection of suitable knowledge is performed automatically
within the TSM.

• The heuristics using recursive term space maps perform slightly worse. Neverthe-
less, they still improve the overall performance very significantly if compared to both
Weight2 and RWeight. In this case, the selection of similar experiences does result
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Strategy Training Other Problems Overall
Problems Proofs Models Successes

Weight2 1201 95 87 1383
RWeight 1251 68 87 1406
RWeight/FIFO 1218 259 88 1565
TSM(flat,Iid,all) 1249 149 87 1485
TSM(flat,Iid,sel.) 1249 149 87 1485
TSM(recursive,Isymb,all) 1243 146 87 1476
TSM(recursive,Isymb,sel.) 1242 155 87 1484
TSM(recurrent,Iid,all) 1242 169 88 1499
TSM(recurrent,Iid,sel.) 1247 169 88 1504
TSM(flat,Iid,all)/FIFO 1250 262 86 1598
TSM(recursive,Isymb,sel.)/FIFO 1219 286 87 1592
TSM(recurrent,Iid,sel.)/FIFO 1232 288 88 1608
TSM0(flat,Iid,all) 1197 86 87 1370
TSM0(recursive,Iid,all) 1191 82 87 1360
TSM0(recurrent,Iid,all) 1190 82 87 1359

Remarks: Shown are the number of successfully terminated proof searches within a time
limit of 300 seconds CPU time on a SUN Ultra 60/300 workstation. TSM-based strategies
are described as TSM(tsm type, index fct, selection state), where tsm type gives the type
of the TSM, index fct describes the index function used in the TSM and selection state de-
scribes if all proof experiences from KB1 were used or is only similar ones (with sel dist = 1)
were selected. For the other parameters see section 8.2.1. Strategies of the type Base/FIFO
select 5 out of every 6 clauses according to the base heuristic, the last one according to
the FIFO strategy. The TSM0-strategies use the same clause selection as Weight2, but
simulate the overhead of the corresponding TSM evaluation functions. For a more detailed
discussion of the overhead see Section 8.2.4.

Table 8.7: Performance of learning strategies with KB1

in an improvement in the learning heuristics. As recursive term space maps, espe-
cially with a very general index function as Isymb, generalize better than flat ones to
unknown examples, this is consistent with our analysis for the flat case above.

• Finally, the recurrent term space maps show the best performance. Both perform
very well on the hard problems, and especially the heuristic with experience selection
reproduces nearly all of the training problems. Recurrent term space maps allow
generalization to unknown examples even with Iid as index function, as all subterms
are evaluated individually. In this case, particular subterms seem to play important
roles in the proof process, and are recognized as such.

In the analysis of the RWeight/FIFO strategy in Section 4.3, we noted that in some
proof problems the clauses describing the theorem to be proved are rather large, and
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Strategy Training Other Problems Overall
Problems Proofs Models Successes

RWeight/FIFO 1427 50 88 1565
TSM(flat,Iid,all) 1422 113 86 1621
TSM(recursive,Isymb,sel.) 1394 94 86 1574
TSM(recurrent,Iid,sel.) 1417 120 88 1625
TSM(flat,Iid,all)/FIFO 1425 141 87 1653
TSM(recursive,Isymb,sel.)/FIFO 1400 121 87 1608
TSM(recurrent,Iid,sel.)/FIFO 1419 132 88 1639
TSM(flat,Iid,all)/FIFO 8/1 1425 158 87 1670

Remarks: See Table 8.7. The TSM-based heuristics now use KB2.

Table 8.8: Performance of learning strategies with KB2

hence are selected very late by symbol-counting heuristics. However, such goal clauses
typically change from problem to problem, while our learning strategies will primarily
learn knowledge about parts of the proof search that are common to many proof problems.
For this reason, we have also interleaved some of the learning strategies with FIFO. The
success justifies this decision. The resulting strategies are much stronger than both the
non-learning and the homogeneous learning strategies.

As for the homogeneous case, performance of the flat term space map is better than
for the recursive term space map, and the recurrent map performs best.

8.2.3 Performance with KB2

As we saw in the previous section, learning on the examples easily solvable with RWeight
lead to significant improvements over all non-learning strategies. However, it required inter-
leaving with FIFO to make learning strategies better than the best non-learning strategy.
We will now use the larger knowledge base KB2 constructed from problems that are easy
for RWeight/FIFO. Table 8.8 shows the results. We only tested those evaluation heuristics
from each class that performed particularly well on the smaller knowledge base.

We can see that in this case the learning heuristics perform better, both overall and
particularly on hard problems, than the RWeight/FIFO strategy (and, by extension, all
of the non-learning heuristics). Even without interleaving FIFO, the improvements are
quite significant for the heuristics using flat and recurrent term space maps. If we again
interleave FIFO, the performance increases still further. The improvement, however, is less
significant than in the case of the smaller knowledge base. This is not surprising, as many
problems solvable only with interleaved FIFO are already among the training examples,
and can once again be reproduced in nearly all cases.

It is interesting to see that that in this case the the pure recurrent strategy is only
slightly better than the pure flat strategy, and that for the interleaved case this relation
is inverted. This is compatible with earlier results for pure pattern memorization in the
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unit-equational case, where we found that the performance of pure pattern-based strategies
improves continuously with the number of proof experiences [DS96a, DS98].

Table 8.8 also contains data about the best TSM-based strategy we have found so far.
As the evaluation of clauses with term space maps is a lot better than for standard symbol
counting, we have reduced the pick-given ratio to 8-1, i.e. we select 8 out of every 9 clauses
with TSM(flat,Iid,all) and the last one with the first-in/first-out strategy.
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Remarks: Shown is the number of successes over runtime (in seconds). Plotted results
are for:
1: Weight2
2: RWeight/FIFO
3: TSM(flat,Iid,all)/FIFO 8/1 (based on KB2)

Figure 8.2: Comparion of learning and non-learning strategies

Figure 8.2 compares Weight2 (the base strategy modified by the term space maps),
RWeight/FIFO and the best TSM strategy in more detail. It shows the number of successes
a strategy achieves over the run time limit for a proof attempt. We can see that the
conventional strategies find many proofs during the constant overhead time of the learning
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heuristic, but that they are nearly immediately overtaken once this strategy starts the
main inference process. From about 50 seconds to 300 seconds the three plots run more or
less parallel, which indicates that the advantage of the learning heuristic should be stable
even for longer run-times.

Finally, Table 8.9 compares the three strategies on different types of proof problems.
We contrast the performance of the strategies for 6 different classes of formulae: Unit
formulae, Horn Formulae and general formulae, with and without equality.

Problem No. in Weight2 RWeight/FIFO TSM/FIFO 8/1
Type Class Proofs Models Proofs Models Proofs Models

Unit, no eq. 11 8 3 8 3 8 3
Unit, eq. 402 240 1 258 1 275 1

Horn, no eq. 557 384 5 417 5 443 5
Horn, eq. 321 172 2 219 3 222 3

General, no eq. 766 211 73 238 73 247 72
General, eq. 1218 281 3 337 3 388 3

Remarks: Shown are successes within the standard time limit of 300 seconds.

Table 8.9: Performance comparison for different problem types

We can see that the learning strategy improves the performance of the prover for all
problem classes except the trivial case of unit problems without equality. However, the
improvement for general formulae with equality is particularly impressive. This is both the
largest and the most difficult problem class in the TPTP. It contains a very large group
of 886 hard problems based on a common axiomatization of set theory and described in
Appendix B.6. The learning strategies apparently are able to profit from this large group
– they can prove 198 of these problems (as opposed to 160 for RWeight/FIFO and 145 for
Weight2).

8.2.4 Overhead

We will now take a more detailed look at the computational overhead of the learning strate-
gies compared to pure symbol counting and compared to strategies using term orderings
(see Section 4.3 and Appendix A.2.1). We can compare this overhead very well, as we
can select parameters for all strategies that lead to very nearly the same proof derivation
in all cases. For the TSM-based strategies we simply set the value wlearn to 0, for the
ordering-based strategy we set the weight multipliers for maximal terms and literals to 1.

For this measurement, we will again consider our six standard examples described in
Appendix B. We consider these problems to be fairly representative for problems solvable
by E with conventional strategies. The set includes unit, Horn and general problems, and
also includes pure equality problems, problems with some equality, and a problem without
equality.
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We compare two conventional search heuristics and four different TSM-based strategies
that use term space maps similar to those of the best learning heuristics above:

Weight2: This heuristic is described in Section 4.3. It uses the clause weight with wf =
2, wv = 1 as an evaluation.

RWeight0: This heuristic determines maximal terms and literals in a clause, ignores the
result and returns the same result as the previous one.

TSM(flat,Iid,all): This strategy uses flat term space maps with index function Iid. It
selects all problems from the knowledge base KB1 and evaluates clause patterns
against the resulting TSM. However, it ignores the result and returns only the term
weight as above.

TSM(flat,Iid,sel.): This search heuristic is nearly identical to the previous one, but only
selects proof experiences that with a distance smaller than the average distance of
all problems from the knowledge base.

TSM(recursive,Isymb,all): This variant uses recursive term space maps with the index
function Isymb. Otherwise it is identical to the first TSM-based heuristic.

TSM(recurrent,Iid,all): Again, this heuristic is similar to the first one. The only differ-
ence is the use of a recurrent term space map.

All TSM-based heuristics use KB1. Tables 8.10 and 8.11 show the times for different
parts of the prover run on our 6 test problems. We can see that for the conventional
strategies the startup times (time from the start of the program to the first inference) is
insignificant. For the learning strategy, the total startup time varies from about 10 seconds
to about 45 seconds. It consists of a very nearly constant time of about 7 seconds for the
selection phase and a variable part for the term space mapping phase. This second part
depends on both the number of proof problems selected and on the term space map type.

• For flat term space map, the mapping time for all 12474 distinct clause patterns in
the knowledge base is about 9 seconds. If we restrict the selection of problems to
those that are similar to the current proof problem, this time drops to about 2–4.5
seconds, depending on the problem.

• For recursive term space maps, the mapping time relatively moderate. Mapping all
12474 clause patterns takes only about 4 seconds, despite the fact that 8675 distinct
term space maps are created. The main reason for this is that the index function
Isymb is very cheap to compute and does not require any complex operations or term
copying. If we use Iid here (which is uninteresting, as in this case the resulting
strategy is identical to the one resulting from a flat term space map), mapping time
rises to nearly 40 seconds.
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Strategy Startup time Inference Overall
Selection TSM Time Time

INVCOM
Weight2 0.030 - 0.030
RWeight0 0.030 - 0.050
TSM(flat,Iid,all) 6.870 9.280 - 16.040
TSM(flat,Iid,sel.) 6.870 3.890 - 10.820
TSM(recursive,Isymb,all) 6.930 3.750 - 10.830
TSM(recurrent,Iid,all) 6.860 24.750 - 31.610

BOO007-2
Weight2 0.040 36.740 36.780
RWeight0 0.030 37.660 37.690
TSM(flat,Iid,all) 6.980 9.000 48.240 64.220
TSM(flat,Iid,sel.) 6.970 2.570 47.770 57.310
TSM(recursive,Isymb,all) 7.060 3.960 44.860 55.880
TSM(recurrent,Iid,all) 6.990 24.850 57.510 89.350

LUSK6
Weight2 0.030 16.260 16.290
RWeight0 0.030 16.840 16.870
TSM(flat,Iid,all) 6.860 9.200 23.350 39.410
TSM(flat,Iid,sel.) 6.860 2.870 23.540 33.270
TSM(recursive,Isymb,all) 6.930 3.940 21.540 32.410
TSM(recurrent,Iid,all) 6.880 24.790 30.670 62.340

Remarks: Shown are CPU times in seconds on a SUN Ultra 60/300 as returned by the
UNIX operating system timer. The accuracy of this timer is limited, we have observed
differences of up to ±0.02 seconds for different runs on the same task. A dash implies that
the time is negligible and cannot be measured with any accuracy. Selection is the time for
the selection of similar proof problems, TSM is the time for the construction of the term
space map. Non-learning strategies only have an overall startup time. Inference time is
the time actually spend processing clauses.

Table 8.10: Startup and inference time comparison

• Finally, for recurrent term space maps we have by far the largest mapping time.
While only a single term space map is created, the number of terms is increased very
significantly by the flattening procedure that represent a term as the set of all of its
subterms.

In addition to the constant overhead, the evaluation of new clauses also has a per-
clause overhead resulting from pattern-transformation and evaluation. If we look at the
times taken for the inference process, we can estimate this part very well.

• First, the performance of the two conventional strategies is very similar. The more
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Strategy Startup time Inference Overall
Selection TSM Time Time

HEN011-3
Weight2 0.030 44.330 44.390
RWeight0 0.030 44.430 44.490
TSM(flat,Iid,all) 6.950 9.040 52.990 68.980
TSM(flat,Iid,sel.) 6.970 4.570 52.870 64.410
TSM(recursive,Isymb,all) 7.080 3.960 51.670 62.710
TSM(recurrent,Iid,all) 6.980 24.830 59.460 91.270

PUZ031-1
Weight2 0.030 0.040 0.070
RWeight0 0.030 0.050 0.080
TSM(flat,Iid,all) 7.040 9.090 0.040 16.170
TSM(flat,Iid,sel.) 7.110 4.090 0.040 11.240
TSM(recursive,Isymb,all) 7.180 3.560 0.050 10.790
TSM(recurrent,Iid,all) 7.070 24.740 0.030 31.840

SET103-6
Weight2 0.080 40.430 40.510
RWeight0 0.090 41.020 41.110
TSM(flat,Iid,all) 6.880 9.080 53.940 69.900
TSM(flat,Iid,sel.) 6.890 2.340 52.480 61.710
TSM(recursive,Isymb,all) 6.960 3.990 50.350 61.300
TSM(recurrent,Iid,all) 6.880 24.890 66.490 98.260

Remarks: See table 8.11.

Table 8.11: Startup and inference time comparison (continued)

complex ordering-based approach is slightly slower, however this effect is near the
limit of measurability.

• All of the learning strategies are significantly slower than the conventional ones. The
difference in inference speed varies between 20% and 60%.

• The two flat search strategies perform very similar, despite the different size of the
term space maps used. Our index functions are realized using splay trees with an
average retrieval time that is logarithmic in the number of entries, so that only a
small increase is expected. However, this is also an indication that the largest part
of the extra work for the learning strategies with flat evaluation is the generation of
the representative pattern for new clauses.

• The recursive evaluation is, in general, slightly faster than the flat evaluation. This
is unsurprising, since the recursive evaluation requires only one term traversal (with
the very cheap index function Isymb, while the flat evaluation requires a search in
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the index set, which usually involves multiple full term comparisons. Again, the
similarity of the overhead is an indication that the evaluation cost is dominated by
pattern computation.

• Finally, the recurrent evaluation is again the most expensive one. All subterms in a
pattern have to be evaluated against a very large term space map. This results in an
overhead that is about twice as large as for flat evaluation.

All in all we find that the overhead for the complex learning strategies is significant,
but acceptable. The fact that the learning strategies perform as good as they do on the
complete TPTP shows that the work for intelligent clause evaluation is well-spent.

8.2.5 Discussion

We have seen that the learning strategies significantly improve the performance of the
proof system. They always perform better than the base strategy used to generate training
examples. This is particularly significant as the learning strategies operate with a fairly
large computational overhead. The fact that they perform as well as they do despite this
overhead is an indication that our approach is indeed able to learn useful search control
knowledge.

This is a justification for our model of learning. Apparently, both the representation of
proof experiences as sets of clauses that are close to the proof in the proof derivation graph
and the generalization of clauses into representative patterns is an adequate abstraction of
the overall search process and retains sufficient information to learn good search decisions.

Similarly, the fact that the selection of similar proof experiences usually improves the
performance of a learning heuristic indicates that the used criterion of similarity is adequate
and can identify good proof examples at least among those problems present in the TPTP
problem library.

The fact that the best results were obtained with flat and recurrent term space maps
and the Iid index function are an indication that the strategies primarily learn domain
knowledge, i.e. knowledge about important facts and objects in the modeled domains as
opposed to calculus-specific technical knowledge. This is supported by the fact that none
of the less detailed term abstractions gave a better relative information gain than the term
identity function.

We have once more shown that effort into good guidance for the inference process of a
theorem prover is usually well invested. This holds for both the effort of the researcher as
well as for the computational cost associated with powerful search guiding heuristics.

8.3 Summary

Our experimental results have demonstrated a variety of important points both about term
space mapping and about our approach to the learning of search control knowledge. The
most important results about term space mapping are listed below:
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• Term space mapping can be used to recognize a variety of non-obvious term properties
from example sets. The learning success increases if the selected index function is
appropriate for representing the necessary concepts compactly.

• Flat and recursive term space maps are good for learning localized properties of
terms. Recursive term space maps typically learn the same concepts with a more
general index function (i.e. a stronger abstraction).

• Recurrent term space maps are good for learning non-localized properties of terms.

• The relative information gain is a very good measure for the quality of different index
functions.

Results about the learning of search control knowledge include the following items:

• The learning system E/TSM outperforms the same prover with conventional search
heuristics significantly. This validates the decisions we made in the design of the
proof system.

• In all tested cases, the learning heuristic performs much better on hard problems
than the conventional strategy that has been used to generate training experiences
for it.

• This increase in performance also holds if both conventional and learning heuristics
are interleaved with a first-in/first-out strategy for clause selection.

• Best results are achieved for the flat and recurrent term space maps with the identity
index functions. However, recursive term space maps with Isymb also lead to an
improved performance.

• The successes of the learning heuristics are achieved despite the significant computa-
tional overhead for the clause evaluation that that slows down the inference process.

• The selection of similar training examples can improve the performance of the prover
further. The importance of this feature seems to become larger for term space map-
ping variants that are better at generalization to unknown terms.

• There are some indications that our current system learns primarily domain knowl-
edge, not calculus-specific knowledge.
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Future Work

The previous chapter has demonstrated the success of our prototypical implementation of a
learning theorem prover. We have layed both the theoretical and the practical foundations
for a capable, fully automatic, proof system that can be adapted to different domains and
that can profit from previous experiences especially for the solution of hard problems.

However, we can still significantly improve both our proof system and the underlying
ideas. In this chapter we will discuss some of the options for future work. There are tree
main fields: Improving the practical usefulness of the proof system by improving the various
interfaces to the human user and particularly to other reasoning systems, improving the
efficiency of the implementation of our existing learning techniques, and finally improving
the expressive power of term space mapping.

9.1 Proof Analysis

At the moment, the analysis of a proof search and the selection of representative clauses is
based on a very lean, specialized protocol of the inference process. This protocol is not very
suitable for other tasks. For the future, we plan to use a more general, prover-independent
protocol, similar to PCL [DS94a, DS94b, DS96b].

Based on this general format, we will implement a variety of tools to complement our
prover. Among these tools we want to implement a proof checker, a proof structuring
tool and a proof presentation program that transforms superposition proofs into a human-
readable format.

A more general format also will allow us to implement a more detailed proof analy-
sis. This would in particular allow us to try to learn good literal selection functions as
mentioned in 4.2.4.

A major advantage of a general proof search communication language is the poten-
tial ability to exchange proof experiences from different provers. It is well known that
even provers implementing very similar calculi often can prove very different problem sets.
The ability to transfer search control knowledge between provers therefore may lead to
significant synergy effects.
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9.2 Knowledge Selection and Representation

At the moment, E/TSM represents individual proof problems with a feature vector and a
set of annotations in the clause pattern set. We only use feature vectors for determining
similarity of proof problems. This approach works fairly well for the TPTP, however, as
already discussed in Section 5.1 and Section 6.1, the selection of a feature set strongly limits
the concepts of similarity that can be expressed. In [Bra98, SB99] we developed similarity
measures based on recursive term space maps generated from the problem formulae. These
similarity measures have already been implemented for DISCOUNT/TSM, and seem to
complement the feature-based approaches well. We will transfer this approach to E/TSM
to further improve the selection.

A core concept of our knowledge representation is the representative clause pattern.
We use such clause patterns to represent potentially large numbers of equivalent clauses
or clauses with a similar structure by a unique element. As we need to transform all
newly generated clauses into their respective representative pattern, the efficiency of this
operation is fairly important for the total efficiency of the prover with learning strategies.

The algorithm introduced in Section 5.2 is fairly straightforward. It certainly can be
improved, in particularly for the worst case. Some ideas are based on observations of this
worst case:

• Consider a clause of the form f1(x1) ' g1(y1) ∨ f2(x2) ' g2(y2) ∨ fn(xn) ' gn(yn).
All terms and literals contain disjoint sets of symbols, and all terms have exactly
the same structure. Therefore all literals and literal encodings are equivalent under
the ordering >preord or any other ordering that is compatible with function symbol
renaming, and such orderings do not constrain the search for the representative clause
pattern. However, in this particular case, all term encodings of the clause lead to
the same representative clause pattern, and hence no such search is necessary.

More generally, whenever we have a partially constructed clause pattern and the
remaining literals have the same structure, but do not share any unrenamed symbols,
the order of these literals in the clause encoding does not influence the resulting clause
patterns.

• If, on the other hand, we have a set of structurally identical literals that do share
some unrenamed symbols, we can use the position of these symbols to constrain the
possible literal orderings.

Consider the case of the clause a' a ∨ a' b ∨ c' c. In this case, we can directly
compute the representative pattern, without any search at all. Only the first and the
third literal can be minimal in the final pattern representation, as the second literal
contains an additional function symbol that immediately would make this literal and
hence the resulting clause pattern larger. However, while both literals have equivalent
pattern representations, the repetition of the function symbol a in the second literal
forces the ordering of literals in the minimal pattern to be the same as in the original
clause.
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We believe that such relationships can be used to combine our current algorithm with
explicit constraints to speed up the pattern computation for large clauses.

9.3 Term-Based Learning Algorithms

Term space mapping, as currently described, can be refined in a variety of ways.

At the moment, we select a single homogeneous index function from a small set of
possible function to partition the term space. However, Theorem 6.2 gives us a lot of
freedom for creating new index functions by combining existing ones. In particular, as any
term top function is an index function, we can select arbitrary term tops to select a subset
of terms.

One possible way to use this is to systematically search for good term space alterna-
tives in a way analogous to the method used in the CN2-algorithm [CN89]. In this case,
individual hypotheses (corresponding to term space alternatives) can be evaluated for sig-
nificance (number of matching examples) and correctness (percentage of examples in one
class). Possible alternatives can be described not only by term top variations, but also by
term feature collections similar to those used in path indexing [McC92], or by combinations
of term-based and numerical index functions.

Finally, to overcome the problems of recursive term space maps with information-
optimal index functions, we can use two different partitions of the term space, a maximally
general one (taking only the term geometry into account) and an arbitrary different one
to induce the evaluations.

Another alternative is to replace term space maps completely. We have performed some
preliminary experiments for the application of folding architecture networks in saturating
theorem provers [SKG97]. However, there is no current implementation of a saturating
theorem prover with a folding architecture network component for search control. We con-
sider the combination of the signature-abstracting properties of patterns and the expressive
power of folding architecture networks to be particularly interesting. As the learning times
for folding architecture networks are very high, learning on demand as implemented at the
moment is probably impossible. However, we can pre-train many networks on classes of
problems and use the selection module to find a suitable network for new proof problems.

9.4 Domain Engineering and Applications

The last years have seen a constant and sometimes dramatic improvement in the power
of automated theorem provers. We believe that this will lead to a strong increase in the
practical application of theorem provers and related technologies.

As we described in the introduction to this thesis, theorem prover are already being
used for many important tasks. In most of these cases the theorem prover is used in a
given application domain, which can be encoded using a standard signature and a (possibly
hierarchic) axiomatization. It is very likely that future applications will follow this pattern.



9.5 Other Work 139

As we have seen in the previous chapter, our approach seems to be particularly useful
for capturing (general) domain knowledge. A very interesting application of our theorem
prover is therefore the modeling of one or more individual domains. In this case, special
function symbols that describe e.g. unusual concepts in the application can be exempt
from the generalization in the representative patterns and thus receive special treatment.
This would have the double effect of speeding up pattern computation (as fewer potential
patterns have to be explored) and of representing special knowledge (that may even come
from non-standard proof searches) about these symbols and the sub-domains in which they
play an important role.

If this approach is successful, a next step would be the automatic detection of such
application domains, using techniques as described in [DK96] and [HJL99], and the auto-
matic switch to one of several knowledge bases. Alternatively, if only a small number of
domains is involved, it might be possible to combine this knowledge in a single knowledge
base.

9.5 Other Work

There are some additional assorted avenues for future work:

• Up to now, we only make very limited use of meta-knowledge in E. To further improve
the performance of the prover in default mode, we want to use meta-learning to
learn good term orderings (e.g. by automating the process used to optimize the
Waldmeister theorem prover) and to select good literal selection functions.

• We do need to do further evaluation of E/TSM. Important areas are larger knowledge
bases, different literal selection functions and term orderings, and different weights
for the clause weight heuristic modified by the term space map. Based on the result of
these additional tests, we will integrate learning strategies into the automatic mode
of the prover.

• In the future, we want to further integrate E and SETHEO into a tightly coupled
system E-SETHEO, where E is used as a bottom-up saturating system and SETHEO
tries to find top-down proofs for pre-saturated formulae, using some variant of the
METOP calculus [Mos96]. As SETHEO cannot cope well with too many clauses, the
selection of a good subset of clauses is crucial for the performance of the combined
system. This task is very similar to the clause selection within E, however, learning
good decisions for this choice point requires the analysis of combined proofs.

• For many applications of theorem provers, explicit and human-readable proofs are
either a necessity or at least strongly desirable. Especially for a combined system
proof presentation requires techniques closely related to the proof analysis necessary.
We therefore expect to deal with both of these problems at once by finding com-
patible and general standard representations for both top-down and saturating proof
searches.
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• Finally, while the code for the learning search heuristics has been tested extensively
and works flawlessly, we believe that with the experiences gained from our first im-
plementation we can now create a much more compact, structured, and efficient
implementation of the same concepts.
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Conclusion

In this work we have for the first time developed an automated theorem prover for clausal
logic that combines solutions for all phases of the learning cycle. Our approach also is
the first attempt to learn search control knowledge for a saturating theorem prover for full
clausal logic.

To achieve this goal, we have generalized a variety of techniques previously only applied
to the simpler unit-equational case. This includes the introduction of numerical distance
measures to determine similarity between proof problems, and the proof analysis techniques
necessary to represent proof derivations by a small set of annotated clauses standing for
important search decisions. A particularly important contribution is the introduction of
representative clause patterns, as a generalization of the representative term patterns we
developed earlier. Representative patterns allow us to abstract from the usually arbitrarily
chosen symbols in different proof problems.

We also developed learning by term space mapping, a class of learning algorithms that
learn evaluations for terms by partitioning the set of all terms in different ways, and by
associating evaluations from a representative term set with each partition. Term space
maps can incorporate a very wide variety of different term abstractions. To select the best
of these abstractions, we have developed the information-theory based concept of relative
information gain that compares the useful information gain induced by an abstraction
to the unnecessary information cost for applying it. Experimental results show that this
measure is a very powerful tool. It solves a very old and very general problem in machine
learning, namely the selection of a suitable type and level of abstraction, and can easily be
applied to a wide range of inductive learning problems.

The experimental evaluation of our theorem prover, E/TSM, has shown that our ap-
proach to learning search control knowledge works very well. The prover can typically
prove more than twice as many hard problems with the learning strategy than with the
base strategy used to generate the training examples, despite the fact that the use of
learned knowledge has both a significant startup cost and leads to a lower inference speed.

This success implies that the premises of our approach are correct. In particular, the
representation of proof experiences as a set of annotated clauses and the transformation of
clauses into representative patterns maintain a large amount of information about the value
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of different search decisions. Term space mapping is able to transform this information
into operative knowledge useful for the evaluation of new clauses.

In addition to the general relevance of the relative information gain, much of our
other work can be applied to various related fields where forward-chaining search pro-
cesses need to be controlled. This includes in particular other saturating theorem provers,
e.g. resolution-based systems or inductive theorem provers, but also many rule-based ex-
pert systems and automated planning systems. It also can be extended to the bottom-up
component of systems combining both forward and backward reasoning, as implemented
in cooperative theorem provers.



Appendix A

The E Equational Theorem Prover –
Conventional Features

E is a purely equational theorem prover, based on ordered paramodulation and rewriting.
It is based on the superposition calculus SP described in Section 2.7 and the given-clause
algorithm from Figure 4.2 on page 44. The unique features of the prover are the perfectly
shared term representation and the optimizations enabled by this, and the very flexible
and powerful interface for integrating and selecting search control heuristics.

The proof procedure is realized on a layer of libraries roughly depicted in Figure A.1.
The infrastructure layer implements services and data types used by all other modules.
Important among the services are an efficient memory management subsystem, stream
abstractions for file input, and a generic scanner for lexical analysis of data from arbi-
trary sources. Important data types are splay trees (statistically balanced binary search
trees [ST85]) for different key/value pairs, dynamic strings with reference counting, unlim-
ited stacks, queues and dynamic arrays.

The next layer implements more specialized data types for theorem proving, like terms,
equations, clauses and evaluation trees. It also implements basic operations, like term
replacing, matching, unification and term orderings. Based on this layer, a separate module
implements the basic inferences of the calculus. These two layers form the core inference
engine discussed in the next section.

On the same level as the inference module is a module for heuristics and strategies,
which is described in Section A.2. It implements various literal selection functions and the
clause selection mechanism.

Finally, we have implemented the proof procedure on top of the other modules.
The theorem prover is implemented in about 70,000 lines of ISO/ANSI C, and is widely

portable among current UNIX dialects. The code used exclusively for the learning com-
ponent consists of about 12,000 lines of code and makes extensive use of the lower library
layers.

Separate programs are used for the prover evaluation and for automatically generating
the prover configuration scheme from test results (see Section A.2.3). They are imple-
mented in the GNU dialect of AWK [AKW88].
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Figure A.1: Software architecture of E

A.1 Inference Engine

As described above, E is directly based on the SP calculus. Most inferences are imple-
mented in a straightforward way. The prover does not implement any special inferences
for non-equational literals. However, since any inference is typically followed by clause
normalization and elimination of redundant literals, superposition and equality resolution
simulate resolution inferences relatively closely.

A.1.1 Shared terms and rewriting

The inference engine of E is built around perfectly shared terms as the core data type.
That means that any unique subterm in the current clause set is only represented once.
Exceptions are only short-lived temporary clause copies for generating inference between
different instances of the same clause, and individual term nodes that represent top posi-
tions of maximal terms in literals eligible for resolution and hence can be rewritten only
under stricter conditions.

The shared term data structure is realized as a general term bank where terms are
indexed by top symbol, a selectable set of flags to differentiate between otherwise identical
terms (used only to differentiate between top terms of literals eligible for resolution in E),
and pointers to the argument terms. A combination of hashing and splay trees is used for
efficient access to the terms stored in the bank. Terms are administrated using reference
counting and superterm-pointers. Consequently, they are inserted bottom-up and removed
top-down.

Example: Consider the two clauses
g(x)'x and
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Remarks: Solid lines indicate term-subterm relationships, dashed lines indicate term-in-
literal relationships. The boxed term node corresponds to a top position of a maximal
term in a literal eligible for resolution.

Figure A.2: Shared term representation in E

f(g(g(g(a))), g(a))'g(a) ∨ g(x) 6'a.
Maximal terms in literals eligible for resolution are marked by underlining.

Figure A.2 shows the graph representation of the clauses, the following table shows
a possible representation of the term set in a term bank:

Address Top symbol Flags Subterms Represented term

1 x 0 - x
2 a 0 - a
3 g 0 *1 g(x)
4 g 1 *1 g(x)

5 g 0 *2 g(a)
6 g 0 *5 g(g(a))
7 g 0 *6 g(g(g(a)))
8 f 0 *7,*5 f(g(g(g(a))), g(a))

Given this term bank, the two clauses are represented as ∗4'∗1 and ∗8'∗5∨∗3 6'∗2.

In normal proof searches, term sharing can reduce the number of term nodes needed
to represent a search state between 10 and 1000 fold. It is quite typical that less than two
term nodes are needed to represent the terms in a literal, i.e. the amount of memory taken
up by term nodes grows at most linearly with the number of literals. In practice, memory
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consumed by term representations is not a dominant factor. This differs strongly from our
experience with e.g. DISCOUNT, where term representations are the single most critical
data structure for memory consumption.

As term nodes are typically shared between a large number of clauses, we can afford
to store several pre-computed values with each term. In our case this includes the term
weight (which is computed automatically during normal from building), a flag to denote
reducibility with respect to a currently investigated rule or equation, and, most importantly,
normal form dates for different rewrite relations (see the next section).

E not only shares terms to save memory, but also performs rewriting on the shared
term representation. If a rewrite rule is applied to any subterm in any clause, all shared
occurrences of this subterm in all clauses will be replaced. As this may influence superterms,
the change is propagated recursively to all superterms. This may even lead to the collapse
of large parts of the term bank.

Example: Consider again the two clauses from the previous example. If we use the unit-
clause as a rewrite rule to replace g(a) by a in the second clause, f(g(g(g(a))), g(a))'
g(a) ∨ g(x) 6'a, this clause immediately collapses to f(a, a)'∨g(x) 6'a.

To replace g(a) with a, we replace all pointers to ∗5 with pointers to ∗2 in the
term bank and check the affected superterms for existing duplicates in the term
bank. In this case, the entry for g(g(a)) at address 6 becomes identical to the
originally replaced entry at address 5. Thus, we recursively replace ∗6 with ∗2 (as
the replacement for ∗5). Now the same effect happens at address 7. After we resolve
this in a similar way, we can remove all terms no longer referenced.

The modified term bank looks like this:

Address Top symbol Flags Subterms Represented term

1 x 0 - x
2 a 0 - a
3 g 0 *1 g(x)
4 g 1 *1 g(x)

5
6
7
8 f 0 *2,*2 f(a, a)

The term bank representation of the affected clause has changed to ∗8'∗2∨∗3 6'∗2.

Note that rewriting g(x) in this clause does not have any effect on the left hand side
of the rewrite rule, as the two terms are not shared in this case.

Shared rewriting significantly speeds up normal form building. Normal forms need
only be computed once for each term, and similarly the reducibility of a term with a new
clause (used in backward-contraction, i.e. the removing of rewritable clauses from the set
of processed clauses) has to be checked only once for each term node.
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A.1.2 Matching and unification

Matching is at the core of most contracting inferences, unification at the core of most gen-
erating ones. Since generating inferences are only performed between the selected clauses,
the effort for contraction usually outweighs the effort for generation by far. In particular,
we found unification to be very cheap despite its theoretically exponential behaviour. Con-
sequently, unification is implemented in a straightforward manner. Nevertheless, it is still
less costly than e.g. the checking of ordering constraints or even the construction of new
terms for newly generated clauses.

Matching attempts, on the other hand, are a major contributor to the overall CPU
usage of most theorem provers which perform rewriting. While each individual match
attempt is cheap, the search for matching rules and equations from the set of processed
clauses is quite expensive. We have therefore implemented an indexing scheme that makes
use of our shared term representation to optimize the access to these clauses.

The aim of an index for rewriting is the following: Given a term t and a set of unit-
clauses P , find (sequentially or all at once) all clauses l'r from P such that σ(l) = t.

Following the extremely impressive results of Waldmeister, we have chosen a perfect dis-
crimination tree (see [Gra95, GF98]) as the core data structure for our indexing algorithm.
Perfect discrimination trees are a perfect filter for terms, i.e. they find only matching term,
and can construct the match during the search. Moreover, they are easy to modify if new
terms are inserted or old terms (or clauses) are deleted from the index.

A perfect discrimination tree basically treats a term as linear word, and branches on the
symbol at each position in this word. Each branch in the tree thus represents a set of terms
with a common initial sequence. What is new in E is that we maintain a monotonously
increasing time counter for each proof search. This counter is increased whenever a new,
non-trivial unit-clause is selected for processing, i.e. whenever the rewrite relation is about
to change. We also store the normal form date of each term with respect to orientable unit
clauses and with respect to all unit clauses with each term. Branches in the discrimination
tree are annotated with the time at which the the youngest clause indexed by this branch
was selected and the weight of the smallest indexed term.

This data can be used to cut off branches of the tree early. The following (somewhat
artificial) example illustrates this point:

Example: Consider the following set of rewrite-rules, where the selection date of each
clause is given by its running number and the weight given in brackets is computed
by counting 2 for each function symbol and 1 for each variable symbol in the left
hand side of the rule:

1. f(x, b)→ e (5)

2. f(x, c)→ e (5)

3. f(x, d)→ e (5)

4. f(a, g(a))→ e (8)
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5. f(a, g(g(a)))→ e (10)

6. f(a, g(g(g(a))))→ e (12)

7. f(y, y)→ e (4)

Figure A.3 shows the resulting constrained perfect discrimination tree.

If we want to find a match for f(a, a) with normal form date 4 and weight 6, we
can immediately eliminate the branch starting with f − x due to the age constraint.
Similarly, we can eliminate the branch starting with f−a due to the size constraints.
Thus, the only match, f(y, y)→ e is found without any backtracking.

The pruning of older clauses is particularly effective in combination with the shared
terms, as a large number of terms for which we want to find a potential rewrite rule have
been brought into normal form at some earlier date.

Our indexing scheme is efficient enough to ensure the time for rewriting is usually domi-
nated not by the search for matching clauses but by the ordering comparisons necessary for
rewriting with unorientable unit clauses. In fact, for many problems with a large number of
unit equality clauses it pays to use only orientable clauses for normalizing unprocessed new
clauses for evaluation. This is facilitated in E by using two separate indexes for orientable
and unorientable positive unit clauses.

We use the same indexing structure for all contracting inferences with unit clauses:
Rewriting, simplify-reflect, and equality subsumption. However, for simplify-reflect and
equality subsumption we can use only weight constraints.

A.1.3 Term orderings

E supports two kinds of reduction orderings: The lexicographic term ordering (LPO),
suggested by Kamin and Levi as a variant of the Recursive Path Ordering [Der79], and the
Knuth-Bendix-Ordering (KBO) [KB70].

The LPO is parameterized by a precedence on the function symbols, the KBO by a
precedence and a set of weights for the function symbol. E currently does not allow the
user to explicitly set weights or precedence. It does contain a selection of simple algorithms
that generate weight and precedence based on properties of the symbols and the problem
specification, such as arity of the symbol or frequency of occurrence. The default term
ordering used in all our experiments is a KBO. In the default precedence unary symbols
are the largest, all other symbols are ordered by arity (i.e. a symbol with larger arity is
larger than a symbol with smaller arity). Order between symbols with the same arity is
decided by order of appearance. The largest non-constant symbol (which is usually unary)
is assigned a weight of 0, all others a weight of 1. This ordering copes well with group-like
structures with an inverse element, which occur quite frequently in real proof problems.

The current implementation of term orderings is straightforward, with only very limited
optimizations. Consequently, ordering comparisons are one of the most costly operations
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youngest clause in the subtree.

Figure A.3: A constrained perfect discrimination tree

in E at the moment, and improvements in both the implementation (using caching to speed
up comparisons) and the generation of good orderings are among our top priorities.
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A.2 Search Control

A.2.1 Clause selection

E has a very flexible and powerful interface for specifying clause selection heuristics. It
controls the selection of a clause using a weighted round-robin scheme with an arbitrary
number of priority queues, where the order within each queue is determined by a priority
function and and a weight function.

Priority functions

Priority functions assign one of a relatively small number of priorities to a clause. Some
typical priority functions implemented in E are ConstPrio, PreferGoals, PreferNonGoals
and PreferUnitGroundGoals.

ConstPrio assigns the same priority to all clauses. Combining this priority function
with one or two weight functions simulates the search control of most existing theorem
provers.

PreferGoals assigns a high priority to all negative clauses (potential goals) and a low
priority to all other clauses. PreferNonGoals behaves in exactly the opposite way. These
functions can e.g. be used to emulate the behaviour of DISCOUNT on problems with
non-ground goals (compare Section 4.3).

Finally, PreferUnitGroundGoals will always prefer unit ground goals. It can be used to
emulate the behaviour of a traditional completion-based prover for goals without variables,
where all processed clauses are immediately used to rewrite the goal. However, it has also
proven to be quite useful for the general case.

For a complete overview of available priority functions see [Sch99a].

Weight functions

Weight functions are the most important means of ordering clauses. They assign a numer-
ical evaluation, i.e. a (real) number to a clause. For most weight functions, this weight is
based on syntactic properties of the clause, however, some weight functions also consider
the state of the proof search. The learning heuristics described in this thesis are used to
implemented weight functions.

We will only describe the most important weight functions here – for a more complete
overview again see [Sch99a]. There are three primary generic weight functions. These are
Clauseweight, Refinedweight and FIFOWeight.

Clauseweight takes three arguments: A weight for function symbols wf , a weight for
variable symbols wv, and a multiplier mp applied to positive literals. It returns the sum
of the term weights of the terms in negative literals (see Definition 4.6) plus the sum of
the weights of the terms in positive literals times mp as the weight of a clause. Thus, it
realizes a slightly generalized version of simple symbol counting.
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Refinedweight is a very similar weight function. It differs in that it uses two additional
arguments, mt and ml. These are applied to maximal terms and maximal literals (in the
used term ordering or its extension to literals), respectively.

FIFOWeight finally is a very simple function that just returns an monotonically in-
creasing value for each new clause it evaluates. Thus, it realizes the first-in first-out search
heuristic.

Composite search heuristics

As we stated above, complete search heuristics are defined by a set of priority queues and a
weighted round-robin scheme. Each queue is ordered according to an evaluation function,
which combines a priority function and a weight function. A general specification of a
search heuristic consists of a weighted list of evaluation functions.

Example: The Default search heuristic used if neither automatic mode or a specific
heuristic are chosen by the user is specified as

(3*Refinedweight(PreferNonGoals,2,1,1.5,1.1,1),

1*Refinedweight(PreferGoals,1,1,1.5,1.1,1.1)).

If this heuristic is chosen, 3 out of 4 clauses are chosen from the non-negative clauses
(unless none are present), the last clause is selected from the set of negative clauses.
Clauses selected according to the first evaluation functions are evaluated with the
Refinedweight weight function with wf = 2, wv = 1, mt = 1.5, ml = 1.1, and
mp = 1. Other clauses are evaluated similarly with wf = 1, wv = 1, mt = 1.5,
ml = 1.1, and mp = 1.1.

E has some other predefined heuristics, two of which are referenced throughout this the-
sis. The first one, Weight, is equivalent to (1*Clauseweight(PreferUnitGroundGoals,

2,1,1))1, which closely emulates the behaviour of the completion-based prover DIS-
COUNT in default mode. The second frequently used search heuristic is Standardweight,
defined as (1*Clauseweight(ConstPrio,2,1,1)). Standardweight closely models the
search heuristic of most traditional saturating theorem provers based solely on symbol
counting.

A.2.2 Literal selection

The standard superposition calculus (described e.g. in [BG94]) allows the selection of ar-
bitrary negative literals. For SP we have extended this and, under certain circumstances,
allow the additional selection of positive literals. E makes use of this double freedom and
implements a large number of different literal selection strategies.

1In this case, wf = 2, wv = 1, and mp = 1.



152 The E Equational Theorem Prover – Conventional Features

We will only describe some of these strategies that are of particular interest. A complete
overview is again available in [Sch99a].

First, the NoSelection strategy will not use literal selection at all, but rather imple-
ments the standard superposition calculus without selection.

The SelectNegativeLiterals selection scheme will always select all negative literals.
In this way, it implements a maximum literal positive unit strategy [Der91] in the Horn
case. It implements the least restricted positive strategy in the general case.

The SelectLargestNegLit strategy selects the largest literal (by weight of the terms)
if at least one negative literal occurs in the clause. In case of ties it picks an arbitrary
literal among the largest ones. This is very simple, but quite successful general purpose
literal selection strategy.

Finally, SelectNonRROptimalLit is a more complex literal selection scheme that dy-
namically decides if a literal shall be selected at all. If the clause is range-restricted (i.e. if
all variables occurring in negative literals also occur in positive literals), then no selection
takes place. If the clause contains negative literals and is not range-restricted, then if there
are negative ground literals, the negative ground literal with the largest weight difference
between both sides is selected. If there are negative literals, but no negative ground literals,
the negative literal with the largest weight difference between both sides is selected.

The rationale for this scheme is easy to explain: First, range-restricted Horn-clauses
can be seen as procedures, where the head (the positive literal) does the variable binding
and the tail (the remaining negative literals) realize the body of the procedure. If we
view the a clause in this way, not using the head literal for paramodulating into another
clause is counterproductive. Note that for non-Horn clauses, this argument does not hold
(a stronger form of restriction might be useful here), however, we treat them in the same
way for consistencies sake.

If we select negative literals in all clauses that have negative literals, a clause can only be
used for paramodulation into another clause, if it has no negative literals. In other words,
if we want to use a clause, we need to solve all of its negative literals. Ground literals
can either be solved without further instantiation, or cannot be solved at all. Therefore
there is usually much less effort associated with solving a ground literal than with solving
a non-ground literal. We therefore select ground literals first. Moreover, if we need to solve
all literals, we in particular need to solve the most difficult literal. It therefore makes sense
to delay all work on the clause until this literal has been solved. In equational theorem
proving, solving a negative literal means we need to show that both sides of the literal are
equal. We use the size difference as a very simple approximation for the difficulty of this
task. This explains why we select literals with a large weight difference between the two
sides first.

A.2.3 Automatic prover configuration

There is a very wide range of proof problems, from a variety of domains and with very
different syntactic and semantic properties. No single proof search strategy or heuristic can
give optimal performance in all different cases. Therefore most leading theorem provers
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feature an automatic mode in which the prover analyzes certain problem characteristics
and selects a (hopefully) suitable strategy. We have implemented a similar mode for E. It
partitions the space of all problems according to 8 criteria:

1. The most important criterion is the type of the axioms, i.e. the least specific type of
any non-negative clause in the original specification. Possible values are unit, Horn,
and general.

2. Similarly, the type of the goal or goals (all negative clauses) is categorized into one
of the values unit and Horn.

3. The third feature is the equality content. We distinguish between problems without
equality, with some equality literals, and pure equality problems.

4. The next feature evaluates the number of positive non-ground unit clauses. We found
that this feature is very helpful for choosing a literal selection function. Possible
values are few, some, and many such clauses, the exact limits for each category
depend on the axioms’ types.

5. The fifth criterion again is determined by the goals. It distinguishes between ground
goals and non-ground goals. This feature is particularly important for unit-equality
problems, where ground goals can be proveed with pure unfailing completion, while
non-ground goals need a more general strategy.

6. Another relevant feature is the number of clauses in the initial specification. Possible
values of this feature are again few (less than 30), some (more than 30 but less than
150) and many clauses.

7. Similarly, we count the number of literals in the initial clauses. Limits here are 15
for few and 100 to discriminate between some and many literals.

8. The last feature is determined by the number of term cells in the initial axioms. We
consider problems with less than 60 term cells to have small terms, problems with
more than 60 but less than 1000 term cells to have medium terms, and problems with
more than 1000 term cells to have large terms.

We have implemented a program that automatically determines good values for the
clause selection heuristic, the literal selection strategy and some secondary parameters for
each of the classes spanned by this parameter space from the results of standardized test
runs. While the 8 features partition the potential space of all problems into 2916 sub-
classes, only about 150 of them contain any TPTP problems. E 0.51 needs only 34 distinct
strategies to cover these classes, including default strategies for the empty classes.



Appendix B

Specification of Proof Problems

In this appendix we give a short description and (except for the SET103-6 problems) the
complete specification for the proof problems frequently referenced in the main text. All
problems except for INVCOM and LUSK6 are taken from the TPTP problem library,
version 2.1.0 [SS97b].

B.1 INVCOM

INVCOM is a very simple problem in the domain of groups. The equational specification
of a group goes back to [KB70]. We have added a very simple hypothesis: Multiplication of
an element with the corresponding inverse element is commutative. The resulting problem
can be solved by any state-of-the-art prover with support for equality in trivial time and
with a very short search derivation.

#-------------------------------------------------------------

# Equational specification of a group with simple hypothesis

#

# Only unit clauses in infix-equational notation.

#

# There exists a right-neutral element (0).

f(X,0)=X.

# For each X, there is a right inverse element i(X).

f(X,i(X))=0.

# f is associative.

f(f(X,Y),Z)=f(X,f(Y,Z)).

# Skolemized and inverted hypothesis: Multiplication with inverse

# element is commutative.

f(a,i(a)) != f(i(a),a).

154
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B.2 BOO007-2

BOO007-2 is a unit-equality problem of medium difficulty taken from the TPTP version
2.1.0. The aim is to show that the multiplicative operator in a boolean algebra is associa-
tive.

#------------------------------------------------------------------

# File : BOO007-2 : TPTP v2.1.0. Released v1.0.0.

# Domain : Boolean Algebra

# Problem : Product is associative ( (X * Y) * Z = X * (Y * Z) )

# Version : [ANL] (equality) axioms.

# English :

#

# Refs : [Ver92] Veroff (1992), Email to G. Sutcliffe

# Source : [Ver92]

# Names : associativity [Ver92]

#

# Status : unsatisfiable

# Rating : 0.33 v2.1.0, 0.75 v2.0.0

# Syntax : Number of clauses : 15 ( 0 non-Horn; 15 unit;

# 1 RR)

# Number of literals : 15 ( 15 equality)

# Maximal clause size : 1 ( 1 average)

# Number of predicates : 1 ( 0 propositional;

# 2-2 arity)

# Number of functors : 8 ( 5 constant; 0-2 arity)

# Number of variables : 24 ( 0 singleton)

# Maximal term depth : 3 ( 2 average)

#

# Comments :

# : tptp2X -f setheo:sign -t rm_equality:rstfp BOO007-2.p

#------------------------------------------------------------------

# commutativity_of_add, axiom.

equal(add(X, Y), add(Y, X)) <- .

# commutativity_of_multiply, axiom.

equal(multiply(X, Y), multiply(Y, X)) <- .

# distributivity1, axiom.

equal(add(multiply(X, Y), Z), multiply(add(X, Z), add(Y, Z))) <- .

# distributivity2, axiom.

equal(add(X, multiply(Y, Z)), multiply(add(X, Y), add(X, Z))) <- .

# distributivity3, axiom.

equal(multiply(add(X, Y), Z), add(multiply(X, Z), multiply(Y, Z))) <- .

# distributivity4, axiom.

equal(multiply(X, add(Y, Z)), add(multiply(X, Y), multiply(X, Z))) <- .
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# additive_inverse1, axiom.

equal(add(X, inverse(X)), multiplicative_identity) <- .

# additive_inverse2, axiom.

equal(add(inverse(X), X), multiplicative_identity) <- .

# multiplicative_inverse1, axiom.

equal(multiply(X, inverse(X)), additive_identity) <- .

# multiplicative_inverse2, axiom.

equal(multiply(inverse(X), X), additive_identity) <- .

# multiplicative_id1, axiom.

equal(multiply(X, multiplicative_identity), X) <- .

# multiplicative_id2, axiom.

equal(multiply(multiplicative_identity, X), X) <- .

# additive_id1, axiom.

equal(add(X, additive_identity), X) <- .

# additive_id2, axiom.

equal(add(additive_identity, X), X) <- .

# prove_associativity, conjecture.

<- equal(multiply(a, multiply(b, c)), multiply(multiply(a, b), c)).

#------------------------------------------------------------------

B.3 LUSK6

The LUSK6 example is one of the problems presented in [LO82], an equivalent version is
contained in TPTP 2.1.0 as RNG009-5. The hypothesis is that in a ring with x3 = x for
all x the multiplicative operator is commutative. This is a challenging problem even for
most specialized unit-equational provers. The first known automatic proof for this problem
was found by DISCOUNT in 1995. DISCOUNT needs about 400 seconds to prove this
problem on a current SUN SPARCStation Ultra-10/300. E and Waldmeister can prove the
the problem in about 10 seconds on identical hardware.

#----------------------------------------------------------------

# In a ring, if x*x*x = x for all x in the ring, then

# x*y = y* for all x,y in the ring.

#

j(0,X) = X. # 0 is a left identity for sum

j(X,0) = X. # 0 is a right identity for sum

j(g(X),X) = 0. # There exists a left inverse for sum

j(X,g(X)) = 0. # There exists a right inverse for sum
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j(j(X,Y),Z) = j(X,j(Y,Z)). # Associativity of addition

j(X,Y) = j(Y,X). # Commutativity of addition

f(f(X,Y),Z) = f(X,f(Y,Z)). # Associativity of multiplication

f(X,j(Y,Z)) = j(f(X,Y),f(X,Z)). # Distributivity axioms

f(j(X,Y),Z) = j(f(X,Z),f(Y,Z)). #

f(f(X,X),X) = X. # Special hypothesis: x*x*x = x

f(a,b) != f(b,a). # Hypothesis

B.4 HEN011-3

The problem HEN011-3 is a Horn problem with equality. Despite its relatively small
axiomatization, it is fairly hard. The problem specifies a certain division operation and
shows that this is symmetric. Details can be found in [MOW76].

#--------------------------------------------------------------------------

# File : HEN011-3 : TPTP v2.1.0. Released v1.0.0.

# Domain : Henkin Models

# Problem : This operation is commutative

# Version : [MOW76] axioms.

# English : Define & on the set of Z’, where Z’ = identity/Z,

# by X’ & Y’=X’/(identity/Y’). The operation is commutative.

# Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a

# Source : [ANL]

# Names : HP11 [ANL]

# Status : unsatisfiable

# Rating : 0.83 v2.1.0, 1.00 v2.0.0

# Syntax : Number of clauses : 13 ( 0 non-Horn; 10 unit; 9 RR)

# Number of literals : 17 ( 9 equality)

# Maximal clause size : 3 ( 1 average)

# Number of predicates : 2 ( 0 propositional; 2-2 arity)

# Number of functors : 9 ( 8 constant; 0-2 arity)

# Number of variables : 13 ( 3 singleton)

# Maximal term depth : 4 ( 1 average)

# Comments :

# : tptp2X -f setheo:sign -t rm_equality:rstfp HEN011-3.p

#--------------------------------------------------------------------------

# Quotient_less_equal1, axiom.

equal(divide(X, Y), zero) <-

less_equal(X, Y).

# quotient_less_equal2, axiom.

less_equal(X, Y) <-

equal(divide(X, Y), zero).

# quotient_smaller_than_numerator, axiom.
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less_equal(divide(X, Y), X) <- .

# quotient_property, axiom.

less_equal(divide(divide(X, Z), divide(Y, Z)), divide(divide(X, Y), Z)) <- .

# zero_is_smallest, axiom.

less_equal(zero, X) <- .

# less_equal_and_equal, axiom.

equal(X, Y) <-

less_equal(X, Y),

less_equal(Y, X).

# identity_is_largest, axiom.

less_equal(X, identity) <- .

# part_of_theorem, hypothesis.

<- equal(divide(divide(identity, a), divide(identity,

divide(identity, b))), divide(divide(identity, b),

divide(identity, divide(identity, a)))).

# identity_divide_a, hypothesis.

equal(divide(identity, a), c) <- .

# identity_divide_b, hypothesis.

equal(divide(identity, b), d) <- .

# identity_divide_c, hypothesis.

equal(divide(identity, c), e) <- .

# identity_divide_d, hypothesis.

equal(divide(identity, d), g) <- .

# prove_commutativity, conjecture.

<- equal(divide(c, g), divide(d, e)).

#--------------------------------------------------------------------------

B.5 PUZ031-1

PUZ031-1 is a classical problem for testing the performance of automated theorem provers,
also known as Schubert’s Steamroller. It is the formalization of a logical puzzle and encodes
a set of food-chain relationships between animals and grains. The problem contains unit,
Horn and non-Horn clauses, but no equality. A more detailed description can be found
in [Sti86]. Most current theorem provers can prove this problem in a few seconds.

#--------------------------------------------------------------------------

# File : PUZ031-1 : TPTP v2.1.0. Released v1.0.0.

# Domain : Puzzles
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# Problem : Schubert’s Steamroller

# Version : Special.

# English : Wolves, foxes, birds, caterpillars, and snails are animals, and

# there are some of each of them. Also there are some grains, and

# grains are plants. Every animal either likes to eat all plants

# or all animals much smaller than itself that like to eat some

# plants. Caterpillars and snails are much smaller than birds,

# which are much smaller than foxes, which in turn are much

# smaller than wolves. Wolves do not like to eat foxes or grains,

# while birds like to eat caterpillars but not snails.

# Caterpillars and snails like to eat some plants. Therefore

# there is an animal that likes to eat a grain eating animal.

# Refs : [Sti86] Stickel (1986), Schubert’s Steamroller Problem: Formul

# : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au

# : [WB87] Wang & Bledsoe (1987), Hierarchical Deduction

# : [MB88] Manthey & Bry (1988), SATCHMO: A Theorem Prover Implem

# Source : [Pel86]

# Names : Pelletier 47 [Pel86]

# : steamroller.ver1.in [ANL]

# : steam.in [OTTER]

# : SST [WB87]

# Status : unsatisfiable

# Rating : 0.22 v2.1.0, 0.00 v2.0.0

# Syntax : Number of clauses : 26 ( 1 non-Horn; 6 unit; 26 RR)

# Number of literals : 63 ( 0 equality)

# Maximal clause size : 8 ( 2 average)

# Number of predicates : 10 ( 0 propositional; 1-2 arity)

# Number of functors : 8 ( 6 constant; 0-1 arity)

# Number of variables : 33 ( 0 singleton)

# Maximal term depth : 2 ( 1 average)

# Comments : This problem is named after Len Schubert.

# : tptp2X -f setheo:sign -t rm_equality:rstfp PUZ031-1.p

#--------------------------------------------------------------------------

# wolf_is_an_animal, axiom.

animal(X) <-

wolf(X).

# fox_is_an_animal, axiom.

animal(X) <-

fox(X).

# bird_is_an_animal, axiom.

animal(X) <-

bird(X).

# caterpillar_is_an_animal, axiom.

animal(X) <-

caterpillar(X).
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# snail_is_an_animal, axiom.

animal(X) <-

snail(X).

# there_is_a_wolf, axiom.

wolf(a_wolf) <- .

# there_is_a_fox, axiom.

fox(a_fox) <- .

# there_is_a_bird, axiom.

bird(a_bird) <- .

# there_is_a_caterpillar, axiom.

caterpillar(a_caterpillar) <- .

# there_is_a_snail, axiom.

snail(a_snail) <- .

# there_is_a_grain, axiom.

grain(a_grain) <- .

# grain_is_a_plant, axiom.

plant(X) <-

grain(X).

# eating_habits, axiom.

eats(Animal, Plant);

eats(Animal, Small_animal) <-

animal(Animal),

plant(Plant),

animal(Small_animal),

plant(Other_plant),

much_smaller(Small_animal, Animal),

eats(Small_animal, Other_plant).

# caterpillar_smaller_than_bird, axiom.

much_smaller(Catapillar, Bird) <-

caterpillar(Catapillar),

bird(Bird).

# snail_smaller_than_bird, axiom.

much_smaller(Snail, Bird) <-

snail(Snail),

bird(Bird).

# bird_smaller_than_fox, axiom.

much_smaller(Bird, Fox) <-

bird(Bird),

fox(Fox).
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# fox_smaller_than_wolf, axiom.

much_smaller(Fox, Wolf) <-

fox(Fox),

wolf(Wolf).

# wolf_dont_eat_fox, axiom.

<- wolf(Wolf),

fox(Fox),

eats(Wolf, Fox).

# wolf_dont_eat_grain, axiom.

<- wolf(Wolf),

grain(Grain),

eats(Wolf, Grain).

# bird_eats_caterpillar, axiom.

eats(Bird, Catapillar) <-

bird(Bird),

caterpillar(Catapillar).

# bird_dont_eat_snail, axiom.

<- bird(Bird),

snail(Snail),

eats(Bird, Snail).

# caterpillar_food_is_a_plant, axiom.

plant(caterpillar_food_of(Catapillar)) <-

caterpillar(Catapillar).

# caterpillar_eats_caterpillar_food, axiom.

eats(Catapillar, caterpillar_food_of(Catapillar)) <-

caterpillar(Catapillar).

# snail_food_is_a_plant, axiom.

plant(snail_food_of(Snail)) <-

snail(Snail).

# snail_eats_snail_food, axiom.

eats(Snail, snail_food_of(Snail)) <-

snail(Snail).

# prove_the_animal_exists, conjecture.

<- animal(Animal),

animal(Grain_eater),

grain(Grain),

eats(Animal, Grain_eater),

eats(Grain_eater, Grain).

#--------------------------------------------------------------------------
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B.6 SET103-6

The last problem, SET103-6, is selected from a set of very hard problems. They are based
on a common specification of set theory described in [Qua92]. This specification contains
91 clauses with up to 5 literals, and a very large number of predicate and function symbols.
Moreover, the specification includes fairly large equational literals. These properties lead
to a very early explosion of the search space, and only fairly short proofs can be found
for this class of problems. There is a total of 886 problems in TPTP 2.1.0 that use the
same specification of set theory (with different queries and additional assumptions), i.e.
these problems make up more than a quarter of the 3275 clause normal form problems
in this TPTP release. Only 16.4% or 145 of these problems can be proved by E with
the StandardWeight heuristic in 300 seconds, as opposed to 42.2% of the set of all clause
normal form problems in this TPTP release.

SET103-6 is among those problems that can be solved by E with the standard heuristic.
However, it still is a fairly hard problem for most state-of-the-art theorem provers.

As the full specification of the problem would take more than 8 pages, we refrain from
including it. It is available with recent releases of the TPTP or on the WWW at
http://wwwjessen.informatik.tu-muenchen.de/

∼schulz/WORK/TPTP/SET/SET103-6+rm eq rstfp.lop.
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abstraction, 32, 86, 100
analogy, 34, 36
annotated patterns, see patterns, annotated
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combined, for clause patterns, 108
application phase, 32, 83, 110–112
approximate information, 83
ar (arity of symbols), 12, 13
arity frequency vector, 105
atoms, 18, 19
ATP, 1
automatic mode, 154
axioms, 20, 60, 154

back-propagation through structure, 85
backtracking, 39, 41, 42
backward-contraction, 147
bias, 83, 84, 94
binary relations, 7
black-box, 33
block calculus, 33
branching factor, 1, 39, 44, 53, 55

CASC, 6, 21, 67
case-based learning, see case-based reason-

ing
case-based reasoning, 34, 35, 48, 66
choice points, 38, 42, 44
Church-Rosser, 18
clausal logic, 6
clause evaluation functions, see heuristic eval-

uation functions
clause family, 77, 81, 105
clause normal form, 20
clause pattern store, 104, 105

clause patterns, see patterns, representative,
for clauses

clause weight, 55
clauses, 18–20

empty, 19, 21
generated, 50
Horn-, 19, 52
multi-set representation of, 22
negative, 19
ordering, 22
persistent, 29, 112
positive, 19
processed, 42, 50, 53
selection of, 50–61, 151
superfluous, 52
term encoding, 72

flat, 72
recursive, 72, 73

unit, 19
unprocessed, 42, 53
used in proof, 50
useful, 52
variants, 19
weight, 56

CN2-algorithm, 139
compatibility

of index functions, see index functions,
compatibility

of signatures, 13
with a reduction ordering, 17
with substitutions, 17
with the term structure, 16, 17

completeness, 23, 26, 29, 30, 42, 110
of search strategies, 40

completion, 2, 6, 59
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composite search heuristics, 152
compositeness, 26, 28, 42

of clauses, 26
of index functions, see index functions,

composite
of inferences, 27
stability of, 27, 28

conclusion, main, see main conclusion
confluence, 18
congruence relation, 17
consequence, see logical consequence
constants, 13
contraction, 3, 148
contradictory information, 83
convergence, 18
correctness, 23, 26
cost (of search derivations), 39
cross-evaluation, 115

decision trees, 98, 100
δ (relative difference function), 67
derivation, 24, 29, 30, 34, 54, 110
derivational analogy, 36
DISCOUNT, 1, 4, 34, 42, 52, 58–60, 65, 68,

85, 147, 151, 152, 157
DISCOUNT/TSM, 67, 106, 138

distance
between proof problems, 107
Euclidean, 66
in graphs, 11
Manhattan, 66
measures, 34, 63, 106
proof, 78
relative Euclidean, 67
relative Manhattan, 67
weighted Euclidean, 66

distance measures, 66
absolute, 66
normalized relative, 67
relative, 66

domain engineering, 139

E (theorem prover), 4, 21, 25, 42, 44, 48,

50, 52, 53, 55, 59, 60, 65, 67, 140,
144–154, 157

architecture, 144
automatic configuration, 153
E/TSM, 103–112, 124, 138, 140
search control, 151–154

eligible for paramodulation, see literals, eli-
gible

eligible for resolution, see literals, eligible
eligible literals, see literals, eligible
entropy, 98

conditional, 99
remainder, 99

EQP , 1
equality, 2
equality (modulo E), 17
equality factoring, 24
equality resolution, 24
equational representation (of atoms), 19
equations, 16

conditional, 21, 22
multi-set representation of, 22
negated, 16
term encoding, 71

equivalence relation, 17
evaluation

for clause patterns, 108
normalized, for clause patterns, 108

experiences, 32
experimental results, 113–136

classification, 113–124
search control, 124–135

explanation-based generalization, 35, 83
extension, 39, 41

fairness, 23, 29, 46, 110, 111
feature vectors, 64, 84
features

Boolean, 64
for clause sets, 64, 106
for clauses, 64
for terms, 64
numerical, 34, 63–67
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feedback, 3
FIFO, 54, 55
first-in, first out, see FIFO
first-order predicate logic, 6
flattened term representation, 97
flattened term set representation, 97
flexible reenactment, 34, 36, 68, 83
focus facts, 68
folding architecture, 85, 139
forests, 12
formulae, 18–20

feature representation, 106
Horn, 20
unit, 20

fsr(sig) (function symbol renamings), 68
function symbol renamings, 68
function symbols, 12

Gandalf, 42, 60
generality

of substitutions, 15
of terms, 15

generalization, 32
genetic algorithms, 35, 84
given clause, 53, 103
given-clause algorithm, 5, 38, 42–47, 79, 111
goal, 20
goal-directed, 59
graphs, 10–12

acyclic, 12
connected, 12
finite, 12
FLODAGS, 86
labeled, 10
ordered, 12
weighted, 10

Haskell, 2
Herbrand equality interpretation, see inter-

pretation
heuristic control knowledge, 3
heuristic evaluation functions, 2, 4, 34, 36,

54, 65, 103, 110, 152

FIFO, 56
RWeight, 56
RWeight/FIFO, 56
TSMWeight , 111
Weighti, 56

Horn, see clauses, Horn-

I-derivation, see derivation
ILF, 1, 33
independence, 99
index functions, 88, 91, 92, 94, 100

compatibility, 90
composite, 90
dynamic selection, 98–102
examples, 89
information-optimal, 101, 139
relative information gain, 101

index set, 88
indexing, see term indexing
inductive logic programming, 83
inference engine, 103, 145–150
inference rules

contracting, 23, 54
deleting, 76
generating, 23, 76
modifying, 76

inference system, 23
inferences, 23

contracting, 43, 57
deleting, 76
generating, 76
modifying, 76

information, 98
conditional, 99

information gain, 99
relative, 100

information theory, 98
interpretation, 20, 29
irreducible, 17
iterative deepening, 41

KBO, see Knuth-Bendix-Ordering
KIV, 1
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knowledge
application, 36
approximate, 63
domain, 135
meta, 4, 33, 35
proof search intrinsic, 4, 33, 34
selection, 35

knowledge base, 103–105
description, 104

Knuth-Bendix-completion, see completion
Knuth-Bendix-Ordering, 149

learning, 3
general analysis, 32–37
phases, 32

learning algorithms
hybrid, 85
numerical, 83–85
spectrum of, 84
symbolic, 83–84

learning cycle, 32, 33
learning module, 103, 107–110
learning on demand, 83, 85
level saturation, 54
lexicographic path ordering, 149
limit (of a derivation), 29
literals, 18, 19

eligible, 21–23
negative, 19
ordering, 22
positive, 19
selection of, see selection functions
term encoding, 71

local confluence, see confluence
logical consequence, 21
LPO, see lexicographic path ordering

machine learning, 63
magic, 114
main conclusion, 76
main premise, see premise, main
match, 15
matching, 148

memorization, 36, 83, 92, 122
meta-knowledge, see knowledge, meta
METOP, 53, 140
mgu, see unifier, most general
model, 20
model elimination, 6, 40
modifying edges, 77
most general unifier, see unifier, most gen-

eral
multi-sets, 8, 19

cardinality of, 8
image of, 9
orderings on, 9

naive learner, 115
narrowing, 60
nearest neighbour, 67
neural networks, 35, 65, 85
non-determinism, 42
normal form, 17
normal form date, 148

O(t), 13
Ωmega, 1
operators, see function symbols
orderings

ground reduction, 16
lenght-lexicographic, 8
lexicographic, 8
lexicographic term–, 69
on multi-sets, see multi-sets
partial, 7
quasi-, 7
reduction, 16, 21, 149
rewrite, 16
simplification, 16
stable under function symbol renamings,

74
subsumption, 16
subterm, 16
total, 7

Otter, 1, 42, 60
over-fitting, 85, 116, 118
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overhead, 127, 130–135

paramodulation, 2
patching, 36
path, 11

length of, 11
pattern memorization, 68, 85, 92, 129
pattern substitution, 70
patterns, 36, 67–76

annotated, 63, 103
equivalent, 70
for terms, 4, 63, 70
more general, 70
most general, 70
representative, 4, 69, 85

for clauses, 5, 74, 75, 138
for terms, 70

PCL, 137
perceptron, 65
perfect discrimination trees, 50, 148

constrained, 148–150
pick-given ratio, 56, 60
PLAGIATOR, 69
precedence, 149
predecessor nodes, 10
premise

main, 76
side, 76

priority functions, 151
priority queues, 151
probability, 98

conditional, 99
probability distribution, 98
problem index, 104
proof, 78
proof analysis, 4, 103
proof catch, 35
proof derivation, see derivation
proof derivation graph, 76, 77, 103
proof distance, see distance, proof, 81
proof experience archive, 104, 105
proof intrinsic knowledge, see knowledge, proof

search intrinsic

proof object, 78
proof path, 78
proof procedure, 42
proof reuse, 36
proof search analysis, 34
proof search intrinsic knowledge, see knowl-

edge, proof search intrinsic
proof search protocol, 63

quote-edges, 77

random guesser, 115
range-restriction, 153
recurrent term space maps, see term space

maps, recurrent
recursive term space maps, see term space

maps, recursive
redundancy, 21, 26
relative frequencies, 100
representative patterns, see patterns, repre-

sentative
representative search decisions, 79–80
resolution, 2, 6
rewritable, 17
rewrite relation, 17
rewrite rules, 17, 19
rewrite system, 17
rewriting, 2, 6, 14, 24, 25, 145, 149

strategy, 48, 49
innermost, 48
outermost, 48

rftsmI(M), see term space maps, represen-
tative flat

rctsmI(M), see term space maps, represen-
tative recurrent

rrtsmI(M), see term space maps, represen-
tative recursive

satisfiability, 28
satisfiable, 20
satisfies, 20
saturated, 28
saturating, 3
search, 1, 38
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decisions, 79
derivation, 39
paths, 39
problem, 38, 39
solution, 39
space, 39
states, 38, 53
strategy, 40
success, 40
transition relation, 38

search space explosion, 55
selection functions, 21, 22, 152

choice of, 52–53
selection module, 103, 105–107
set of support, 59
set theory problems, 163
SETHEO, 1, 40, 65, 140

E-SETHEO, 65, 67, 140
p-SETHEO, 42, 60, 65, 67
SETHEO/NN, 34, 85
use of features, 67

shared terms, see terms, perfectly shared
side premise, see premise, side
signature match, 68
signatures, 12, 18, 20, 68

distance between, 105
similarity, 35, 63, 66, 105
simplify-reflect, 25, 149
SP (calculus), 21–30, 42, 76, 103, 144, 152
SPASS, 1, 25, 42, 52
specification, 18, 20, 59
stability under symbol renaming, 73
standard deviation (feature), 106
startover, 39, 41, 42
Steamroller, 159
subgraph, 10
substitutions, 14

composition of, 15
ground, 15
grounding, 15

subsumption, 25, 149
subsumption edges, 77
successor nodes, 10

superposition, 2, 3, 6, 21–30, 152
symbol counting, 58, 116, 151, 152
symbol renamings, 68

tableaux, 34
tautology deletion, 25
TEAMWORK, 60
term bank, 145
term evaluation trees, 36, 85, 96
term indexing, 41, 43, 148
term orderings, 47, 149
term patterns, see patterns, for terms
term space alternatives, 91

evaluation, 91
term space mapping, 82, 85
term space maps, 4, 36, 90–103

basic, 90
empty, 91
flat term evaluation, 91
information-optimal, 101
mapping, 91
performance, see experimental results
recurrent, 96
recurrent term evaluation, 97
recursive, 95
recursive term evaluation, 95
representative basic, 91
representative flat, 92, 93
representative recurrent, 96
representative recursive, 95
use for classification, 92

terminating, 7, 9, 18
terms, 12–16, 18

depth, 56
features, see features, for terms
graph representation, 86
ground, 13
maximally shared representation, 87
perfectly shared, 144, 145
positions, 13
random generation, 113–115
replacing, 14
subterms, 14
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traversal strategy, 48
tree representation, 86
weight, 56

test set, 82, 115
top term, 87
top-reducible, 18
TPTP, 2, 53, 56, 124, 155, 163
training set, 82, 100, 115
transformational analogy, 69
trees, 12
TSA, see term space alternatives
TSM, see term space maps
TSMWeight , 111

unification, 148
unifier, 15

most general, 15
unit-strategy, 52
unsatisfiable, 20

Vampire, 42, 60
variable normalized, 14
variable renaming, 15, 19
variable symbols, 13

Waldmeister, 42, 47, 48, 60, 148, 157
weight functions, 151

xyzzy, 114


