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Abstract. This paper describes feature vector indexing, a new, non-
perfect indexing method for clause subsumption. It is suitable for both
forward (i.e., finding a subsuming clause in a set) and backward (finding
all subsumed clauses in a set) subsumption. Moreover, it is easy to im-
plement, but still yields excellent performance in practice. As an added
benefit, by restricting the selection of features used in the index, our
technique immediately adapts to indexing modulo arbitrary AC theories
with only minor loss of efficiency. Alternatively, the feature selection can
be restricted to result in set subsumption. Feature vector indexing has
been implemented in our equational theorem prover E, and has enabled
us to integrate new simplification techniques making heavy use of sub-
sumption. We experimentally compare the performance of the prover for
a number of strategies using feature vector indexing and conventional
sequential subsumption.
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1 Introduction

First-order theorem proving is one of the core areas of automated deduction. In
this field, saturating theorem provers currently show a significant lead compared
to systems based on other paradigms, such as top-down reasoning or instance-
based methods. One of the reasons for this lead is the compatibility of saturating
calculi with a large number of redundancy elimination techniques, as e.g. tau-
tology deletion, rewriting, and clause subsumption. Subsumption allows us to
discard a clause (i.e., exclude it from further proof search) if a (in a suitable
sense) more general clause exists. In many cases, subsumption can eliminate
between 50% and 95% of all clauses under consideration, with a corresponding
decrease in the size of the search state.

Subsumption of multi-literal clauses is an NP-complete problem [7]. If some
attention is paid to the implementation, the worst case is rarely (if ever) en-
countered in practice, and single clause-clause subsumption tests rarely form
a critical bottleneck. However, the sheer number of possible subsumption rela-
tions to test for means that a prover can spend a significant amount of time
in subsumption-related code. Even in the case of our prover E [18, 20], which,



because of its DISCOUNT loop proof procedure, minimizes the use of subsump-
tion, frequently between 10% and 20% of all time was spent on subsumption,
with much higher values observed occasionally. The cost of subsumption sys-
tematically increases if other simplification techniques based on subsumption
are implemented.

In a saturating prover, we are most often interested in subsumption relations
between whole sets of clauses and a single clause. In forward subsumption (FS),
we want to know if any clause from a set subsumes a given clause. In backward
subsumption (BS), we want to find all clauses in a set that are subsumed by a
given clause. This observation can be used to speed up subsumption, by using
indexing techniques that return only candidates suitable for a given subsumption
relation from a set of clauses, thus reducing the number of explicit subsumption
tests necessary. A perfect index will return exactly the necessary clauses, whereas
a non-perfect index should return a superset of candidates for which the desired
relationship has to be verified.

Term indexing techniques have been used in theorem provers for some time
now (see [11] for first implementations in Otter or [4, 5, 23] for increasingly up-to-
date overviews). However, lifting term indexing to clause indexing is not trivial
because the associative and commutative properties of the disjunction, and the
symmetry of the equality predicate, are hard to handle. In many cases, (perfect)
term indexing is used only to retrieve subsumption candidates, i.e., to implement
non-perfect clause indexing (see e.g. [26]). Moreover, often two different indices
are used for forward- and backward subsumption, as e.g. in the very advanced
indexing schemes currently implemented in Vampire [16]. Similar problems af-
fect term indexing modulo associativity or commutativity. McCune’s EQP, for
example, performs unit-subsumption, but disables all indexing as soon as some
symbols are declared AC or C [10].

We suggest a new indexing technique based on subsumption-compatible nu-
meric clause features. It is much easier to implement than known techniques,
and the same, relatively compact data structure can be used for both forward-
and backward subsumption. We have implemented the new technique for E 0.8,
and, in more polished and configurable ways, for later versions, with excellent
results.

In this paper, describe the new technique. We also discuss how it has been
integrated into E, and how it also serves to speed up contextual literal cutting, a
subsumption-based simplification technique that has given another boost to E.
We present the results of various experiments to support our claims.

2 Preliminaries

We are primarily interested in first-order formulae in clause normal form in this
paper. We assume the following notations and conventions. Let F be a finite set
of function symbols. We write f/n ∈ F to denote f as a function symbol with
arity n. Functions symbols are written as lower case letters. We usually employ
a, b, c for function symbols with arity 0 (constants), and f, g, h for other function



symbols. Let V be an enumerable set of variable symbols. We use upper case
letters, usually X,Y, Z to denote variables. The set of all terms over F and V ,
Term(F ,V ), is defined as the smallest set fulfilling the following conditions:

1. X ∈ Term(F ,V ) for all X ∈ V
2. f/n ∈ F , s1, . . . , sn ∈ Term(F ,V ) implies f(s1, . . . , sn) ∈ Term(F ,V )

We typically omit the parentheses from constant terms, as for example in the
expression f(g(X), a) ∈ Term(F ,V ).

An (equational) atom1 is an unordered pair of terms, written as s ' t. A
literal is either an atom, or a negated atom, written as s 6' t. We define a
negation operator on literals as s' t = s 6' t and s 6' t = s ' t. If we want to
write about arbitrary literals without specifying polarity, we use s'̇t, or, in less
precise way, l, l1, l2, . . .. Note that ' is commutative in this notation.

A clause is a multiset of literals, interpreted as an implicitly universally quan-
tified disjunction, and usually written as l1 ∨ l2 . . . ∨ ln. Please note that in this
notation, the ∨ operator is associative and commutative (but not idempotent).
The empty clause is written as �, and the set of all clauses as Clauses(F ,V ). A
formula in clause normal form is a set of clauses, interpreted as a conjunction.

A substitution is a mapping σ : V → Term(F ,V ) with the property that
Dom(σ) = {X ∈ V | σ(X) 6= X} is finite. It is extended to a function on terms,
atoms, literals and clauses in the obvious way.

A match from a term (atom, literal, clause) s to another term (atom, literal,
clause) t is a substitution σ such that σ(s) ≡ t, where ≡ on terms denotes
syntactic identity and is lifted to atoms, literal, clauses in the obvious way, using
the unordered pair and multiset definitions.

3 Subsumption

If we consider a (multi)set of clauses not all of the clauses necessarily contribute
to the meaning of it. Often, some clauses are redundant. Some clauses do not add
any new constraints on the possible models of a formula, because they are already
implied by other clauses. Depending on the mechanism of reasoning employed,
we can delete some of these clauses, thus reducing the size of the formula (and
hence the difficulty of finding a proof). In the case of current saturating calculi,
subsumption is a technique that allows us to syntactically identify certain clauses
that are implied by another clause, and can usually be discarded without loss
of completeness. We can specify the (multiset) subsumption rule as a deleting
simplification rule (i.e., the clauses in the precondition are replaced by the clauses
in the conclusion) as follows:

(CS)
σ(C) ∨ σ(R) C

C

where σ is a substitution, C and R
are arbitrary (partial) clauses

1 For our current discussion, the non-equational case is a simple special case and can
be handled by encoding non-equational atoms as equalities with a reserved constant
$true. We will still write non-equational literals in the conventional manner, i.e.,
p(a) instead of p(a)'$true.



In other words, a clause C ′ is subsumed by another clause C if there is an
instance σ(C) that is a sub-multiset of C ′.

This version of subsumption is used by most modern saturation procedures.
It is particularly useful in reducing search effort, since it allows us to discard
larger clauses in favor of smaller clauses. Smaller clauses typically have fewer
inference positions and generate fewer and smaller successor clauses.

Individual clause-clause subsumption relations are determined by trying to
find a simultaneous match from all literals in the potentially subsuming clause to
corresponding literals in the potentially subsumed clause. This is usually imple-
mented by a backtracking search over permutations of literals in the potentially
subsumed clause (and in the equational case, permutations of terms in equational
literals).

Most of the techniques used to speed up subsumption try to detect failures
early by testing necessary conditions. Those include compatibility of certain
clause measures (discussed in more detail below) and existence of individually
matched literals in the potentially subsumed clause for each literal in the po-
tentially subsuming clause. Additionally, in many cases certain permutations of
literals can be eliminated by partially ordering literals in a clause with a suitable
ordering.

However, while individual subsumption attempts are reasonably cheap in
practice, the number of potential subsumption relations to test for in saturation
procedures is very high. Using a straightforward implementation of subsumption,
we have measured up to 100,000,000 calls to the subsumption subroutine of our
prover E in just 5 minutes on a 300 MHz SUN Ultra-60 for some proof tasks.
Thus, the overall cost of subsumption is significant.

3.1 Subsumption variants

In addition to standard multiset subsumption, there are a number of other sub-
sumption variants and related techniques.

The definition of set subsumption is identical to that of multiset subsump-
tion, except in that clauses are viewed as sets of literals (i.e. a single literal occurs
at most once in a given clause). This allows for a slightly stronger subsumption
relation: p(X)∨p(Y ) can subsume p(a) with set subsumption, but not with mul-
tiset subsumption. Set subsumption can e.g. be used in preprocessing. However,
for most saturation-based calculi (especially those for which factorization is an
explicit inference rule), the fact that a clause can subsume some of its factors
causes loss of completeness.

Subsumption modulo AC is a stronger version of multiset or set subsumption,
where we do not require that the instantiated subsuming clause is a subset of the
subsumed clause, but only that it is equal to a subset modulo a specified theory
for associative and commutative function symbols. For example, if f is commu-
tative, then p(f(a,X)) subsumes p(f(b, a)) ∨ q(a). This variant of subsumption
is useful for systems that reason modulo AC, as e.g. SNARK [3].



Equality subsumption (also known as functional subsumption) allows an equa-
tional unit clause to potentially subsume another clause with an equational literal
implied by the potential subsumer. It can be described by the following simpli-
fication rule:

(ES)
s' t u[p← σ(s)]'u[p← σ(t)] ∨R

s' t
It is typically only applied if s' t cannot be used for rewriting, i.e. if σ(s)'

σ(t) cannot be oriented). This rule is implemented by E and a number of other
provers, including at least the completion-based systems Waldmeister [9] and
DISCOUNT [2], as well as in EQP [12].

Finally, a simplification rule that has been popularized by implementation
in SPASS [28] and Vampire [15], and is sometimes called subsumption resolution
or clausal simplification, combines resolution and subsumption to cut a literal
out of a clause. In the context of a modern superposition calculus, we believe
the rule can be better described as contextual literal cutting :

(CLC)
σ(C) ∨ σ(R) ∨ σ(l) C ∨ l
σ(C) ∨ σ(R) C ∨ l

where l is the negation of l and σ is
a substitution

It can be implemented via a normal subsumption engine (by negating each
individual literal in turn, and then testing for subsumption) and is implemented
thus at least in E and Vampire. Depending on how and when this rule is applied,
it can increase the number of required subsumption tests by many orders of
magnitude.

3.2 Saturation procedures and clause set subsumption

Most modern saturating theorem provers use a variant of the given clause algo-
rithm that was popularized by Bill McCune’s Otter. This algorithm maintains
two sets of clauses, the processed clauses P and the unprocessed clauses U . At
the start, all clauses are unprocessed. The algorithm repeatedly picks one clause
from U , and performs all generating inferences using this given clause and the
clauses in P as premises. It then moves the given clause to P and adds all newly
generated clauses to U .

The original Otter loop performs simplification and subsumption between
all clauses, both processed an unprocessed. A variant, originally implemented
in DISCOUNT, restricts simplification to only allow processed clauses as side
premises in simplification. Figure 1 shows a sketch of the main proof procedure of
our prover E, an implementation of the DISCOUNT loop for full superposition.

Please observe that subsumption appears in exactly two different places and
exactly two different roles in this procedure: First, we test if the given clause g is
subsumed by any clause in P . In other words, we want to know if a single clause
is subsumed by any clause from a set. This is usually called forward subsumption.

If the given clause is not redundant, we next want to find all clauses in P
that are subsumed by g. Again, we have an operation between a single clause
and a whole set, in this case called backward subsumption.



Prover state: U ∪ P
U contains unprocessed clauses, P contains processed clauses.
Initially, all clauses are in U , P is empty.
The given clause is denoted by g.

while U 6= {}
g = delete best(U)
g = simplify(g, P )
if g == �

SUCCESS, Proof found
if g is not subsumed by any clause in P (or otherwise redundant w.r.t. P )
P = P\{c ∈ P | c subsumed by (or otherwise redundant w.r.t.) g}
T = {c ∈ P | c can be simplified with g}
P = (P\T ) ∪ {g}
T = T ∪ generate(g, P )
foreach c ∈ T
c = cheap simplify(c, P )
if c is not trivial
U = U ∪ {c}

SUCCESS, original U is satisfiable

Remarks: delete best(U) finds and extracts the clause with the best heuristic eval-
uation from U . generate(g, P ) performs all generating inferences using g as one
premise, and clauses from P as additional premises. simplify(c, S) applies all sim-
plification inferences in which the main (simplified) premise is c and all the other
premises are clauses from S. This typically includes full rewriting and (CLC).
cheap simplify(c, S) works similarly, but only applies inference rules with a par-
ticularly efficient implementation, often including rewriting with orientable units,
but usually not (CLC).
Similarly, in this context, a clause is trivial, if it can be shown redundant with simple,
local syntactic checks. If we test for redundancy, we also apply more complex and
non-local techniques.

Fig. 1. Saturation procedure of E

It is obvious that we can implement forward and backward subsumption
naively by sequentially testing each clause from P against g. This implemen-
tation was used, for instance, in early versions of SPASS [28], and was used in
E up to version 0.71. However, this does not make use of the fact that we are
interested in subsumption relations between individual clauses and usually only
slowly changing clause sets. The idea behind clause indexing is to preprocess the
clause set so that subsumption queries can be answered more efficiently than by
sequential search.

4 Feature Vector Indexing

Indexing for subsumption is used by a number of provers. Most existing im-
plementations (e.g. [26, 27, 11]) use a variant of discrimination tree indexing on



terms to build a index for forward subsumption, often for non-perfect indexing.
Indexing for backward subsumption is less frequent, and usually based on a vari-
ant of path indexing. We will now present a new and much simpler technique
suitable for both forward and backward subsumption.

Our technique is based on the compilation of necessary conditions on numeric
clause features. Essentially, a clause is represented by a vector of feature values,
and subsumption candidates are identified by comparisons of feature vectors.
Feature vectors for clause sets are compiled into a trie data structure to quickly
identify candidate sets.

4.1 Subsumption-compatible clause features

A (numeric) clause feature function (or just feature) is a function mapping
clauses to natural numbers, f : Clauses(F ,V ) → N. We call f compatible with
subsumption if f(C) ≤ f(C ′) whenever C subsumes C ′. In other words, if f is a
subsumption-compatible clause feature, then f(C) ≤ f(C ′) is a necessary condi-
tion for the subsumption of C ′ by C. Unless we specify a particular subsumption
variant, we assume multiset subsumption.

We will define a number of clause features now, all of which are compati-
ble with multiset subsumption, and many of which are compatible with other
subsumption variants.

Let C be a clause. We denote the sub-multiset of positive literals in C by
C+, and similarly the sub-multiset of negative literals by C−. Please note that
both C+ and C− are clauses as well. |C| is the number of literals in C. |C|f is
the number of occurrences of the symbol f in C, e.g. |p(a, b) ∨ f(a, a) 6'a|a = 4.

Let t be a term, and let f/n be a function symbol. We define df (t) as follows:

df (t) =


0 if f does not occur in t
max{1, df (t1) + 1, . . . , df (tn) + 1} if t ≡ f(t1, . . . , tn)
max{df (t1) + 1, . . . , df (tm) + 1} if t ≡ g(t1, . . . , tm), g/m 6= f ,

f occurs in t

Intuitively, df (t) is the depth of the deepest occurrence of f in t (or 0). The
function is continued to atoms, literals and clauses as follows:

df (s' t) = max{df (s), df (t)}
df (s 6' t) = df (s' t)

df (l1 ∨ . . . ∨ lk) = max{df (l1), . . . , df (lk)}

If we assume the standard representation of terms given above, the following
theorems hold:

Theorem 1. The feature functions defined by the following expressions are com-
patible with multiset subsumption, subsumption modulo AC, and equality sub-
sumption: |C+|, |C−|, |C+|f (for all f), |C−|f (for all f).

The argument is essentially always the same: instantiation can only add new
symbols, and a superset (super-multiset) or superstructure always contains at
least as many symbols as the subset or substructure.



Theorem 2. The feature functions defined by the following expressions are com-
patible with multiset subsumption, set subsumption, and equality subsumption:
df (C+) (for all f), df (C−) (for all f).

The argument is similar: Instantiation can only introduce function symbols at
new positions, never take them away at an existing depth.

If AC terms are represented in flattened form, symbol-counting features need
to correct for the effects of this representation to be subsumption-compatible.
On the other hand, if all terms are fully flattened, then the depth-based features
also become compatible with AC-subsumption.

A final theorem allows us to combine different feature functions while main-
taining compatibility with different subsumption types:

Theorem 3. If any two feature functions f1, f2 are compatible with one of
the listed subsumption types, then any linear combination of the two with non-
negative coefficients is also compatible with that subsumption type. That is, f(C) =
af1(C) + bf2(C) with a, b ∈ R+ is also a compatible feature function.

Many provers already use the criterion that a subsuming clause cannot have
more function symbols that the subsumed one. In our notation, this can be de-
scribed by the requirement that

∑
f∈F |C|f ≤

∑
f∈F |C ′|f . This will, on average,

already decide about half of all subsumption attempts. However, by looking at
and combining more fine-grained criteria, we can do a lot better.

4.2 Clause feature vectors and candidate sets

Let πi
n be the projection function for the ith element of a vector with n elements.

A clause feature vector function is a function F : Clauses(F ,V )→ Nn. We call
F subsumption-compatible (for a given subsumption type) if πi

n◦F is a subsump-
tion compatible feature for each i ∈ {1, . . . , n}. In other words, a subsumption
compatible feature vector function combines a number of subsumption compat-
ible feature functions. We will now assume that F is a subsumption-compatible
feature vector function. If F (C) = v, we call v the feature vector of C.

We define a partial ordering ≤s on vectors by v ≤s v
′ iff πi

n(v) ≤ πi
n(v′)

for all i ∈ {1, . . . , n}. By definition of the feature vector, if C subsumes C ′,
then F (C) ≤s F (C ′). This allows us to succinctly identify the candidate sets of
clauses for forward subsumption and backward subsumption. Let C be a clause
and P be a clause set. Then

candFSF (P,C) = {c ∈ P |F (c) ≤s F (C)}

is a superset of all clauses in P that subsume C and

candBSF (P,C) = {c ∈ P | F (C) ≤s F (c)}

is a superset of all clauses in P that are subsumed by C.
As our experiments show, if a reasonable number of clause features are used

in the clause feature vector, these supersets are usually fairly small. Restricting
subsumption attempts to members of these candidate sets reduces the number
of attempts often by several orders of magnitude.



4.3 Index data structure

Whereas it is possible to store complete feature vectors with every clause in a
set, this approach is rather inefficient in terms of memory consumption, and
still requires the full comparison of all feature vectors. If, on the other hand, we
compile feature vectors into a trie-like data structure, with all clauses sharing
a vector stored at the corresponding leaf, large parts of the vectors are shared,
and candidate sets can be computed much more efficiently.

Assume a (finite) set P of clauses with associated feature vectors F (P ) of
length n. A clause feature vector index for P and F is a tree of uniform depth
n (i.e., each path from the root to a leaf has length n). It can be recursively
constructed as follows: If n is equal to 0, the tree consists of just a leaf node, which
we associate with all clauses in P . Otherwise, let D = {π1

n(F (C)) | C ∈ P}, let
Pi = {C | π1

n(F (C)) = i} for i ∈ D (the set of all clauses for which the first
feature has a given value i), and let F ′ = 〈π2

n, . . . , π
n
n〉◦F (shortening the original

feature vectors by the first element). Then the index consist of a root node with
sub-trees Ti, such that each Ti is an index for Pi and F ′. Inserting and deleting
is linear in the number of features and independent of the number of elements
in the index.

As an example, consider F defined by F (C) = 〈|C+|a, |C+|f , |C−|b|〉, the
clauses C1 = p(a)∨ p(f(a)), C2 = p(a)∨¬p(b), C3 = ¬p(a)∨ p(b), C4 = p(X)∨
p(f(f(b)))}, and the set of clauses P = {C1, C2, C3, C4}. The feature vectors
are as follows: F (C1) = 〈2, 1, 0〉, F (C2) = 〈1, 0, 1〉, F (C3) = 〈0, 0, 0〉, F (C4) =
〈0, 2, 0〉. Figure 2 shows the resulting index.

{C1, C2, C3, C4}

{C3, C4}
0

{C2}
1

{C1}

2

{C3}
0

{C4}
2

{C2}
0

{C1}
1

{C3}
0

{C4}
0

{C2}
1

{C1}
0

Fig. 2. Example of a Clause Feature Vector Index. For illustration purposes, each node
is annotated with the clauses compatible with the features leading to that node. The
actual implementation only stores clauses at the leaf nodes.



4.4 Forward subsumption

For forward subsumption, we do not need to compute the full candidate set
candFSF (P,C). Instead, we can just enumerate the elements and stop as soon
as a subsuming clause is found. Assume a clause set P , a feature function F
with feature vector length n, and an index I. We denote by I[v] the sub-tree of
I associated with value v. The clause to be subsumed is C. Figure 3a) shows the
algorithm for indexed subsumption.

Note that it is trivial to return the subsuming clause (if any), instead of just a
Boolean value. We traverse the sub-trees in order of increasing feature values, so
that (statistically) smaller clauses with a higher chance of subsuming get tested
first.

The subsumption test in the leaves of the tree is implemented by sequen-
tial search. In particular, finding the candidate sets and applying the actual
subsumption test are clearly separated, i.e., it is trivially possible to use any
subsumption concept as long as F is compatible with it.

4.5 Backward subsumption

The algorithm for backward subsumption is quite similar, except that we traverse
nodes with feature values greater than or equal to that of the subsuming clause,
and that we cannot terminate the search early, since we have to find (and return)
all subsumed clauses. We use the same conventions as above. Additionally, mv(I)
is the largest feature value associated with any sub-tree in I. Figure 3b) shows
the algorithm.

4.6 Optimizing the index data structure

Each leaf in the feature vector index corresponds to a given feature vector. If we
ignore the internal structure of the trie, and the order of features in the vector,
we can associate each leaf with an unordered set of tuples (f, f(C)) of individual
feature functions and corresponding feature value. It is easy to see that any order
of features in the feature vector will generate the same number of leaves, and
that each leaf is either compatible with a given set of feature function/feature
value tuples, or not. Thus, at least for a complete search as in the backward
subsumption algorithm, we always have to visit the same number of leaves.

However, we can certainly minimize the internal number of nodes in the
trie, and thus the total number of nodes. Consider for a simple example feature
vectors with two features f1, f2, where f1 yields the same value for all clauses
from a set P , whereas f2 perfectly separates the set into n individual clauses. If
we test f1 first, our tree has just one internal node (plus the root). Traversing all
leaves touches n+ 2 nodes (counting the root). If on the other hand we evaluate
the more informative f2 first, we will immediately split the tree into n internal
nodes, each of which has just one leaf as the successor. Thus, to traverse all
leaves we would touch 2n+ 1 nodes, or, for a reasonably sized n, nearly twice as
many nodes.



(a) Forward subsumption

// Note that d is ranging over the length of F (C)
function search subsuming(I, d, C)

if I is a leaf node then
if a clause in I subsumes C

return true
else

return false
else

for i ∈ {0, . . . , πd
n(F (C))}

if search subsuming(I[i], d+ 1, C)
return true

return false

function is subsumed(I, C) // Return true if clause in I subsumes C
return search subsuming(I, 1, C)

(b) Backward subsumption

function search subsumed(I, d, C)
if I is a leaf node then

return {C′ ∈ I | C′ subsumed by C}
else

res = {}
for i ∈ {πd

n(F (C)), . . . ,mv(I)}
res = res ∪ search subsumed(I[i], d+ 1, C)

return res

function find subsumed(I, C) // Return clauses in I subsumed by C
return search subsumed(I, 1, C)

Fig. 3. Forward and backward subsumption with feature vector indexing

This example easily generalizes to longer vectors. In general, we want the
least informative features first in a feature vector, so that as many initial paths
as possible can be shared. This is somewhat surprising, since for most exclusion
tests it is desirable to have the most informative features first, so that impos-
sible candidates are excluded early. Of course, if we have totally uninformative
features, we can just as well drop them completely, thus shrinking the tree depth.

Unless we want to deal with the complexity and computational cost of dy-
namically adapting the index, we have to determine the feature vector function
before we start building the index, i.e., in practice before the proof search starts.
We can estimate the informativeness of a given feature by looking at the distri-
bution of its values in the initial clause set, and assume that this is typical for
the later clauses.

For best results, we could view application of a feature function to a clause as
a probability experiment and the results on the initial clause set as a sample. We



could then sort features by increasing estimated entropy2 [24] or even conditional
entropy. However, we decided to use a much simpler estimator first, namely the
range of the feature value over the initial clause set. We have implemented three
different mappings: Direct mapping, where the place of a feature in the vector
is determined by the internal representation of function symbols used by the
system (i.e. the first function symbol in the signature is responsible for the first
2 or 4 features, the second for the next, and so on), permuted, where features
are sorted by feature value range, and optimized permuted, where additionally
features with no estimated usefulness (i.e., features which evaluate to the same
value for all initial clauses) are dropped.

Our experimental results show that both permuted and optimized permuted
feature vectors perform much better than direct mapped ones, with optimized
permuted ones being best if we allow only a few features, whereas plain permuted
ones gain if we allow more features. Generally, we can decrease the number of
nodes in an index by about 50% using permuted feature vectors. We explain this
behaviour by noting that the degree of informativeness is generally estimated
correctly, but the prediction whether a feature will be useful at all is less precise.
We have especially observed the situation where only a single negative literal
occurs in the initial clause set (e.g. all unit-equational proof problems with a
single goal), and hence all features restricted to negative literals have an initial
range of zero, although a large and varied set of negative literals is generated
during the proof search.

5 Implementation Notes

We have implemented clause feature vector indexing in our prover E, using
essentially simple versions of standard trie algorithms for inserting and deleting
feature vectors (and hence clauses), and the algorithms described in section 4.4
and 4.5 for forward and backward subsumption. In E’s implementation of the
given-clause algorithm, unprocessed clauses are passive, i.e. they don’t impose
a computational burden once normalized. Hence we are using subsumption only
between the set of processed clauses P and the given clause g and vice versa,
not on the full set of unprocessed clauses. However, we have also implemented
contextual literal cutting using the index. It can be optionally applied either
to the newly generated clauses during simplification (using clauses from P for
cutting) or between g and P , in both directions.

Feature vector indexing is used for forward and backward non-unit multiset
subsumption, all versions of contextual literal cutting, (unit) equality backward
subsumption, and backward simplify-reflect (equational unit cutting, see [18]) in-
ferences. Forward equality subsumption and forward simplify-reflect have been
implemented using discrimination tree indexing (on maximal terms in the unit

2 The entropy of a probability experiment is the expected information gain from it, or,
in other words, the expected cost of predicting the outcome. In our case, a feature
with higher entropy splits the clause set into more (or more evenly distributed) parts.
See e.g. [17] or, for a more comprehensive view, [6].



clause used) since early versions of E. Paramodulation and and backwards rewrit-
ing are implemented using fingerprint indexing[22].

The existing multiset subsumption code, used both for conventional sub-
sumption and to check indexed candidates for actual subsumption, already is
fairly optimized. It uses a number of simple criteria to quickly determine unsuit-
able candidates, including tests based on literal- and symbol count, and trying
to match individual literals in the potential subsumer onto literals in the poten-
tially subsumed clause. Only if all these tests succeed do we start the recursive
permutation of terms and literals to find a common match.

The feature vector index is implemented in a fairly straightforward way,
using a recursive data structure. Note that all our features in practice yield small
integers. Originally, we had implemented the mapping from a feature value to the
associated sub-tree via a dynamic array. However, the current implementation
uses the IntMap data structure, a self-optimizing data structure that reorganizes
itself as either a dynamic array or a splay tree [25], depending on the fraction of
elements used.

Clauses in a leaf node are stored in a simple set data structure (which is
implemented throughout E as a splay tree using pointers as keys). Empty sub-
trees are deleted eagerly.

It may be interesting to note that the first (and working) version of the
indexing scheme took only about three (part-time) days to implement and inte-
grate from scratch. It took approximately 7 more days to arrive at the current
(production-quality) version that allows for a large number of different clause
feature vector functions to be used and applies the index to many different op-
erations, and about half a day to change the implementation to IntMaps. Com-
pared to other indexing techniques, feature vector indexing seems to be easy to
implement and easy to integrate into existing systems.

6 Experimental Results

We used all untyped first-order problems from TPTP 5.2.0 for the experimental
evaluation. There are 15356 problems, about evenly split between 7712 clause
normal form problems, and 7674 full first-order problems. The problems were
not modified in any way. Tests were run on the University of Miami Pegasus
cluster, under the Linux 2.6.18-164.el5 SMP Kernel in 64 bit mode. Each node
of the cluster is equipped with 8 Intel Xeon cores, running at 2.6 GHz, and 16
GB of RAM.3 Test runs were done with a CPU time limit of 300 seconds per
job, a memory limit of 512 MB per job, and with 8 jobs scheduled per node.
Detailed results of these and additional test runs, including an archive of the
source package of the prover version, are available at http://www.eprover.eu/
E-eu/FVIndexing.html.

3 See [14]. Jobs were submitted on the “Small” queue, which schedules only to Intel
Xeon systems.



6.1 Prover instrumentation and configuration

In first-order theorem proving, even small changes to the order of inferences can
influence the course of the proof search significantly. Indexing affects both the or-
der in which clauses are generated and the internal memory layout of the process.
There is no guarantee that the system performs the same search with different
subsumption implementations. To minimize this effect, E has been modified with
an option that imposes a total ordering on newly generated clauses in each iter-
ation of the main loop.4 For the detailed quantitative analysis of the run times,
we use only cases where the prover performs the same number of iterations of
the main loop, and had the same number of processed and unprocessed clauses
at termination time. These three indicators give a high likelihood that the proof
searches followed very similar lines for the indexed and non-indexed case.

To gain more insights into the time spent in various parts of the prover, we
have added a generic profiling mechanism to E by instrumenting the source code.
The system can maintain an arbitrary number of profiling points. The system
computes (at microsecond resolution) the difference between the time a profiled
code segment is entered and left. The times for each profiled segment are summed
over the life time of the process. Here, we use performance counters measuring
the time spent for the whole proof search, non-unit clause-clause subsumption,
set subsumption (i.e. forward- and backward subsumption involving a clause and
a set of clauses), index maintenance, and feature vector computation.

As for all profiling solutions using portable high-level timing interfaces as
defined e.g. in POSIX, the times measured are only statistically valid. Many
functions have run times much shorter than the microsecond resolution of the
UNIX system clock. However, over sufficiently many calls, the average values
become increasingly more reliable. The same holds for the small variations in-
variably caused by small differences in process scheduling and even instruction
scheduling in modern, pipelined multiple-issue processors. We performed tests on
thousands of problems, with many thousands of calls to small profiled functions
for each problem. Thus, noise effects largely average out.

4 The exact options given to the prover were --definitional-cnf=24

--tstp-in --split-clauses=4 --split-reuse-defs --simul-paramod

--forward-context-sr-aggressive --backward-context-sr

--destructive-er-aggressive --destructive-er --prefer-initial-clauses

-tKBO6 -winvfreqrank -c1 -Ginvfreqconjmax -F1 -s

--delete-bad-limit=512000000 -WSelectMaxLComplexAvoidPosPred

-H’(4*RelevanceLevelWeight2(SimulateSOS,0,2,1,2,100,100,100,400,1.5,

1.5,1), 3*ConjectureGeneralSymbolWeight(PreferNonGoals,200,100,200,50,

50,1,100,1.5,1.5,1),1*Clauseweight(PreferProcessed,1,1,1),

1*FIFOWeight(PreferProcessed))’ --detsort-new --fvindex-maxfeatures=<XXX>

--fvindex-featuretypes=<YYY> --subsumption-indexing=<ZZZ>.
Tests were done with E 1.4-011 and E 1.4-012 (for the BI strategy), versions of

E 1.4 which has been instrumented for profiling feature vector operations.



6.2 Feature selection

The indexed version of the prover evaluated here uses a maximum feature vector
length of around 150 elements. Features used in the vectors are |C+|, |C−|, |C+|f
, |C−|f , df (C+) and df (C−) (for some function symbols f). Some feature vector
functions use a “catch-all” feature that summarizes the value of a given feature
type for all function symbols not represented by an individual feature.

The vector might be slightly shorter than 150 elements if only a few symbols
occur in the input formula. The lengths can vary slightly because the feature
vector functions are systematically generated from a set of function symbols,
with either two or four features generated per symbol.

We used 4 different feature selection schemes:

– AC uses the AC-compatible features, |C+|, |C−|, |C+|f , |C−|f , with a
catch-all feature implemented individually for positive and negative literals.
The catch-all sums occurrences of all otherwise uncounted symbols.

– DF uses the set-subsumption compatible features, df (C+) and df (C−), with
a catch-all feature implemented individually for positive and negative liter-
als. The catch-all feature represents the maximum depths of any otherwise
unrepresented function symbols.

– AL uses all the features used by AC or DF, including the 4 catch-all fea-
tures.

– BI was suggested by Bill McCune5 and used by him in Prover9. McCune
noted that predicate symbols always occur at depth 1, and hence df (C)-type
features add no information for predicate symbols. The following features are
used:
• |C+|, |C−|
• |C+|f , |C−|f for all symbols f in the signature
• df (C+) and df (C−) for all proper function symbols (as opposed to pred-

icate symbols) in the signature
BI does not use a catch-all feature.

6.3 Feature vector optimization

We have implemented the two optimizations described in section 4.6. So each
of the 4 different feature selection schemes can be combined with 3 different
orderings of features in the vectors:

– DRT uses direct mapping: Features are ordered by some arbitrary order
naturally generated by the implementation. In practice, different feature
types are grouped together, and sorted by the index of the function symbol
in the symbol table.

– PRM uses permuted feature vectors, with features ordered by their span on
the axiom set.

– OPT uses the same order as PRM, but completely removes features with
span 0 on the axiom from the vector.

5 Personal communication.



We know from previous experiments that PRM is generally the strongest of
these three [19] and hence performed most tests with this schema.

6.4 Basic performance

Table 1 shows the performance of the prover over the whole first-order part of
TPTP 5.2.0 with conventional subsumption and different versions of feature-
vector indexing for subsumption and contextual literal cutting. Feature vector
functions are named in the obvious way. NONE represents the prover using
conventional sequential subsumption. The table is sorted by number of solutions.

Index Number of solutions

NONE 8,471
DRT-DF 8,721
PRM-DF 8,769
DRT-AL 8,832
PRM-BI 8,858
DRT-AC 8,881
PRM-AL 8,897
OPT-AC 8,914
PRM-AC 8,922

Table 1. Basic performance different subsumption methods

The weakest feature vector indexing (DRT-DF) can solve 250 problems more
than the system with conventional subsumption. The best feature vector index-
ing (PRM-AC) can solve an extra 201 problems. We can see that in general,
the use of the AC features is best, followed by AL and finally DF. Also, the
previous result that PRM (marginally) outperforms OPT which outperforms
DRT is confirmed.

It is somewhat surprising that PRM-AL outperforms PRM-BI. Since BI
should capture the same information as AL in the regular features, the most
likely reason for this is the lack of the catch-all feature in BI.

In all pairings of results, the larger set of solutions is very nearly a strict
superset of a smaller set. As an example, there is only one problem solved by
NONE that is not solved by PRM-AC, while there are 441 problems solved
by PRM-AC but not by NONE.

Figure 4 is a scatter plot that illustrates the superiority of indexed (PRM-
AC) over conventional (NONE) subsumption. Each cross represents the perfor-
mance on a single problem. Marks below the diagonal show better performance
for the indexed versions. Marks on the right border represent problems where the
system with conventional subsumption timed out, marks on the upper border to
problems where the indexed system timed out. It is obvious that, with very few
exceptions, the indexed version is much superior in performance.
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Fig. 4. Run times (in seconds) of PRM-AC over NONE

6.5 Profiling and time behavior

In the following we consider only problems solved by all subsumption strategies
under consideration. Moreover, we consider only problems where the system
has, with high likelihood, performed the same proof search. Filtering for these
criteria, 8386 problems remain.

Table 2 shows where the indexed and non-indexed versions of the prover
spend time on this set of problems. The order of strategies is the same as in
Table 1. The columns contain the name of the index, total run-time on all 8386
problems, time spent in the computation of feature vectors, time spent on in-
dex maintenance (insert and delete), time spent directly in the clause-clause
subsumption code, and time spent in forward- and backward subsumption, in-
cluding the overhead of iterating through the sets or the index.

The first row shows that subsumption (including contextual literal cutting)
has a drastic influence on total run time. For the non-indexed version, about
65% of total run time is spent in forward- and backwards subsumption oper-
ations, about 40% in individual non-unit clause-clause subsumption. Feature
vector indexing drastically changes this, cutting the time for subsumption itself
by a factor of more than 22 for PRM-AC. If we consider forward- and back-
ward subsumption (including the sequential or indexed iteration over candidate
clauses), we still see an improvement by a factor of more than 10.

Comparing the different indices, we can see that the run times in Table 2
are roughly, but not strictly, decreasing with the number of solutions in Table 1,



Name Total time FVs Index C/C subsumption F&B subsumption

NONE 69,523.375 N/A N/A 28,379.300 46,160.810
DRT-DF 34,059.599 81.250 51.460 6,848.240 17,548.180
PRM-DF 30,813.326 102.440 30.680 6,845.000 14,675.360
DRT-AL 31,301.364 75.820 86.410 2,051.890 13,322.010
PRM-BI 23,909.235 106.180 27.530 3,065.410 7,792.850
DRT-AC 25,360.085 81.490 72.590 1,217.920 9,017.900
PRM-AL 21,758.335 83.710 23.030 2,104.840 5,624.780
OPT-AC 20,963.105 100.580 35.930 1,423.630 4,550.500
PRM-AC 20,663.982 103.040 38.440 1,283.890 4,418.090

Table 2. Time (in seconds) spend in various code segments

indicating that the major reason for the improved performance is indeed the
speed-up of subsumption. We can also see that index maintenance and feature
vector computation are comparatively negligible. The cost for computing per-
muted vectors is slightly higher than for direct vectors, but this is more than
compensated for by the smaller cost for index maintenance.

Name Non-unit subsumption calls Recursive subsumption calls

NONE 120,934,644,536 14,142,932,647
DRT-DF 24,954,121,073 4,774,601,640
PRM-DF 25,897,859,434 4,851,875,239
DRT-AL 4,545,278,003 2,537,935,468
PRM-BI 8,832,113,671 4,189,693,241
DRT-AC 2,840,076,064 1,691,440,719
PRM-AL 5,795,826,572 2,936,641,523
OPT-AC 3,550,612,558 1,933,200,370
PRM-AC 3,254,649,092 1,846,439,309

Table 3. Number of (non-unit) clause/clause subsumption attempts

The most dramatic improvement is in the time spent in actual subsumption
code. The reason for this becomes obvious in Table 3. Column 2 shows the
number of (non-unit) clause-clause subsumption attempts, column 3 the number
of those that cannot be rejected by non-recursive tests and actually go into the
exponential matching algorithm. The number of subsumption attempts drops by
97% of subsumption attempts when comparing NONE and PRM-AC. Even
more dramatically, the number of recursive calls drops by nearly two full orders
of magnitude. The reduction in subsumption attempts is also illustrated in the
scatter plot of Figure 5.

Note the double logarithmic scale necessary to adequately display the large
variation in numbers. The conventional version needs, over all problems, about
40 times more calls than the indexed version. For individual problems the im-
provement factor varies from 1 (for some trivial problems) to approximately
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Fig. 5. Non-unit subsumption attempts of PRM-AC over NONE

7500 e.g. for PUZ080+2, where the number of subsumption attempts drops from
69504083 with NONE to only 9284 with PRM-AC.

6.6 Performance in automatic mode

The previous section listed results for a consistent search heuristic. However,
much of the power of modern provers comes from an automatic selection of
various search parameters in an auto-mode. We have also run E in its automatic
mode with both NONE, DRT-AC and PRM-AC. The results are presented
in Table 4.

Index Number of solutions

NONE 9,241
DRT-AC 9,782
PRM-AC 9,823

Table 4. Performance in automatic mode

With E in automatic mode, the prover gains more than 600 solutions if
PRM-AC is used.



7 Future Work

While we are very satisfied with the performance of our current implementation,
there are a number of open research opportunities.

On the one side, we can still improve the technique itself. Mark Stickel has
pointed out to us that additional useful features can be constructed not only from
the greatest occurrence depth of a function symbol, but also from the smallest
occurrence depth (if properly transformed).6

Recent theorem prover applications yield problems with very large signatures.
In this case, the number of possible features is also very large. However, as Table 2
shows, for all the indexed strategies, time spent traversing the index is already
longer than actual subsumption time. Several approaches to dealing with this
are promising. If signatures are large, many feature values will be 0, since most
symbols will not occur in any single clause. We can represent these default value
feature implicitly in the index by annotating each node not only with the feature
value, but also with the feature itself (usually represented as the numerical index
describing its position in the vector). This would result in a fairly compact index
even for large vectors, at the cost of slightly more complex algorithms. This is
the version implemented by Korovin in iProver7. However, to our knowledge no
systematic evaluation has taken place so far.

Secondly, we can make use of Theorem 3 to define more complex features
that represent properties of the clause with respect to sets of function symbols.
This requires only changes in the individual feature functions, not the other
algorithms. An prototypical implementation of this in E already shows promising
results, cutting total time for subsumption by another factor of two.

On a different track, while we developed feature vector indexing with the aim
of finding a good solution for clause subsumption indexing, it can also be used to
index terms for the retrieval relations matches and is matched by. While there
are very good techniques for term indexing, most of them cannot handle AC
symbols well. Feature vector indexing, on the other hand, handles associativity
and commutativity easily. This might make an attractive choice for implementing
forward and backward rewriting modulo AC.

8 Conclusion

Feature vector indexing has proved to be a simple, but effective answer to the
subsumption problem for saturating first-order theorem provers. In our experi-
ments, it is able to reduce the number of subsumption tests by, on average, about
97% compared to a naive sequential implementation, and thus reduces cost of
subsumption in our prover to a level that makes it hard to measure using stan-
dard UNIX profiling tools. In addition to the direct benefit, this gain in efficiency
has enabled us to implement otherwise relatively expensive subsumption-based

6 Personal communication.
7 Personal communication.



simplification techniques (like contextual literal cutting), further improving over-
all performance of our prover.

Feature vector indexing has been successful not only in E and Prover9, but
has also been implemented in the description logic reasoner KAON-2 [13], in
the SMT-solver Z3 [1], and in the instance-generation based first-order prover
iProver [8].

Afterword

A preliminary version of this paper was presented in 2004 at the Workshop on
Empirically Successful First-Order Reasoning (ESFOR), associated with IJCAR
in Cork. This updated version of the paper describes some of the evolution of
the implementation and adds a more detailed analysis of the costs and benefits
of feature vector indexing.

ESFOR was the first of a series of workshops [21] with a renewed focus on
practically useful systems and applications. I was one of the organizers, and we
considered ourselves very lucky when Bill McCune joined the program commit-
tee. As it turned out, Bill was also one of the anonymous reviewers of my paper.
Half a year later, he send me an email stating:

A few weeks ago I tried your feature vector indexing in one of my provers.
Powerful, easy to implement, elegant. The best new idea in indexing I’ve
seen in many years.

It was one of the proudest moments of my life.
This informal style of cooperation was typical for Bill. He was always generous

with credit, help, and advice, even when I first met him as a brand-new Ph.D.
student in 1996. It is hard to accept that he is no longer around.

Acknowledgements: I thank the University of Miami’s Center for Computational Sci-

ence HPC team for making their cluster available for the extended experimental eval-

uation.
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