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Abstract. Most users of proof assistants want more proof automation.
Some proof assistants discharge goals by translating them to first-order
logic and invoking an efficient prover on them, but much is lost in
translation. Instead, we propose to extend first-order provers with native
support for higher-order features. Building on our extension of E to λ-free
higher-order logic, we extend E to full higher-order logic. The result is
the strongest prover on benchmarks exported from a proof assistant.

1 Introduction

In the last few decades, proof assistants have become indispensable tools for
developing trustworthy formal proofs. They are used both in academia to verify
mathematical theories [17] and in industry to verify the correctness of hardware
[21] and software [16, 22, 24]. However, due to the lack of strong built-in proof
automation, proving seemingly simple goals can be a tedious manual task. To
mitigate this, many proof assistants include a subsystem such as CoqHammer,
HOL(y)Hammer, or Sledgehammer [9] that translates higher-order goals to
first-order logic and passes them to efficient first-order automatic provers. If a
first-order prover succeeds, the proof is reconstructed and the goal is closed.

Unfortunately, the translation of higher-order constructs is clumsy and leads
to poor performance on goals that require higher-order reasoning. Using native
higher-order provers such as Satallax [10] as backends is not always a good solution
because they are much less efficient than their first-order counterparts [37]. To
bridge this gap, in 2016 we proposed to develop a new generation of higher-
order provers that extend the arguably most successful first-order calculus,
superposition, to higher-order logic, starting from a position of strength.

Our research has focused on three milestones: supporting λ-free higher-order
logic, adding λ-terms, and adding first-class Boolean terms. In 2019, we extended
the state-of-the-art first-order prover E [32] with a λ-free superposition calculus
[42], obtaining a version of E called Ehoh, as a stepping stone towards full
higher-order logic. Together with Bentkamp, Tourret, and Waldmann, we have
since developed calculi, called λ-superposition, corresponding to the other two
milestones [4, 5] and implemented them in the experimental superposition prover
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Zipperposition [14]. This OCaml prover is not nearly as efficient as E. Nevertheless,
it has won the higher-order division of the CASC prover competition [39] in 2020,
2021, and 2022, ending nearly a decade of Satallax domination.

We now fulfill a four-year-old promise: We present the extension of Ehoh to
full higher-order logic (Sect. 2) based on incomplete variants of λ-superposition.
We call this prover λE. In λE’s implementation, we used the extensive experience
with Zipperposition to choose a set of effective rules that could easily be retrofitted
into an originally first-order prover. Another guiding principle was gracefulness:
Our changes should not impact the strong first-order performance of E and Ehoh.

One of the main challenges we faced was retrofitting λ-terms in Ehoh’s
term representation (Sect. 3). Furthermore, Ehoh’s inference engine assumes
that inferences compute a most general unifier. We implemented a higher-order
unification procedure [41] that can return multiple unifiers (Sect. 4) and integrated
it in the inference engine. Finally, we extended and adapted the superposition
rule, resulting in an incomplete, pragmatic variant of λ-superposition (Sect. 5).

We evaluated λE on a selection of proof assistants benchmarks as well as
all higher-order theorems in the TPTP library [38] (Sect. 6). λE outperformed
all other higher-order provers on the proof assistant benchmarks; on the TPTP
benchmarks, it ended up second only to the cooperative version of Zipperposition,
which employs Ehoh as a backend. An arguably fairer comparison without the
backend puts λE in first place for both benchmark suites. We also compared the
performance of λE with E on first-order problems and found that no overhead
has been introduced by the extension to higher-order logic.

λE is part of the E prover’s development repository and will be part of E 3.0.
It can be enabled by passing the option --enable-ho to the configure script.
E and λE’s source code is freely available online.1

2 Logic

Our target logic is monomorphic classical higher-order logic with Hilbert choice.
The following text is partly based on Vukmirović et al. [40, Sect. 2].

Terms s, t, u, v are inductively defined as free variables F,X, . . ., bound vari-
ables x, y, z, . . . , constants f, g, a, b, . . . , applications s t, and λ-abstractions λx. s.
Bound variables may be loose (e.g., y in λx. y a) [27].

We let s tn stand for s t1 . . . tn and λxn. s for λx1. . . . λxn. s. Every β-normal
term can be written as λxm. s tn, where s is not an application; we call s the
head of the term. If s is a free variable, we call the term flex ; otherwise, the
term is rigid. A term of type o, where o is the distinguished Boolean type, is
called a formula. A term whose type is of the form τ1 → · · · → τn → o is called a
predicate. Logical symbols are part of the signature and may thus occur within
terms. We write them in bold: ⊥⊥⊥,⊤⊤⊤,¬¬¬,∧∧∧,∨∨∨,→→→,↔↔↔,∀∀∀,∃∃∃,≈≈≈.

On top of the terms, we define some clausal structure. This structure is needed
by λ-superposition. A literal l is an equation s ≈ t or a disequation s ̸≈ t. A clause
is a finite multiset of literals, interpreted and written disjunctively: l1 ∨ · · · ∨ ln.
1 https://github.com/eprover/eprover.git
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3 Terms

E is designed around perfect term sharing [25], a principle that we kept in Ehoh
and λE: Any two structurally identical terms are guaranteed to be the same
object in memory. This is achieved through term cells, which represent individual
terms. Each cell has (among other fields) (1) f_code, an integer corresponding to
the symbol at the head of the term (negative if the head is a free variable, positive
otherwise); (2) num_args, corresponding to the number of arguments applied to
the head; and (3) args, an array of size num_args of pointers to argument terms.
We use the notation f(s1, . . . , sn) to denote a cell whose f_code corresponds to
f, num_args equals n, and args points to the cells for s1, . . . sn.

Like Leo-III [33, Sect. 4.8], Ehoh represents λ-free higher-order terms using a
flattened, spine notation [12]. Thus, the terms f, f a, and f a b are represented by
the cells f, f(a), and f(a, b). To ensure that free variables are perfectly shared,
Ehoh treats applied free variables differently: Arguments are not applied directly
to a free variable, but using a distinguished symbol @ of variable arity. For
example, the term X a b is represented by the cell @(X, a, b). This ensures that
two different occurrences of the free variable X correspond to the same object,
which makes substitutions more efficient [42].

Representation of λλλ-Terms. To support full higher-order logic, Ehoh’s λ-free
cell data structure must be extended to support the λ binder. We use the locally
nameless representation [13]: De Bruijn indices represent (possibly loose) bound
variables, whereas we keep the current representation for free variables.

Extending the term representation of Ehoh with a new term kind involves
intricate manipulation of the cell data structure. De Bruijn indices must be
represented like other cells with either a negative or a positive f_code, but the
code must clearly identify that the cell is a De Bruijn index.

Apart from during β-reduction, De Bruijn indices mostly behave like constants.
Therefore, we choose to represent De Bruijn indices using positive f_codes: The
De Bruijn index i will have f_code i. To ensure that De Bruijn indices are not
mistaken for function symbols, we use the cell’s properties bitfield, which holds
precomputed properties. We introduce the property IsDBVar to denote that the
cell represents a De Bruijn index. De Bruijn indices are systematically created
through a dedicated function that sets the IsDBVar property. When given the
same De Bruijn index and type, this function always returns the same object.
Finally, we guard all the functions and macros that manipulate function codes
to check if the property IsDBVar is set. To ensure perfect sharing of De Bruijn
indices, arguments to De Bruijn indices are applied like for free variables, using @.

Extending cells to support λ-abstraction is easier. Each λ-abstraction has the
distinguished function code LAM as the head symbol and two arguments: (1) a
De Bruijn index 0 of the type of the abstracted variable; (2) the body of the
λ-abstraction. Consider the term λx. λy. f xx, where both x and y have the type ι.
This term is represented as λλ f 11 in locally nameless representation, where
bold numbers represent De Bruijn indices. In λE, the same term is represented
by the cell LAM(0, LAM(0, f(1,1))), where all De Bruijn variables have type ι.
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The first argument of LAM is redundant, since it can be deduced from the
type of the λ-abstraction. However, basic λ-term manipulation operations often
require access to this term. We store it explicitly to avoid creating it repeatedly.

Efficient βββ-Reduction. Terms are stored in βη-reduced form. As these two
reductions are performed very often, they ought to be efficient. Ehoh performs
β-reduction by reducing the leftmost outermost β-redex first. To represent β-
redexes, E uses the @ symbol. Thus, the term (λx. λy. (x y)) f a is represented
by @(LAM(0, LAM(0, @(1,0))), f, a). Another option would have been to add argu-
ments applied to λ-terms directly to the λ representation (as in LAM(0, LAM(0,
@(1,0)), f, a)), but this would break the invariant that LAM has two arguments.
Furthermore, replacing free variables with λ-abstractions (e.g., replacing X with
λx. x in @(X, a)) would require additional normalization.

A term can be β-reduced as follows: When a cell @(LAM(0, s), t) is encountered,
the field binding (normally used to record the substitution for a free variable)
of the cell 0 is set to t. Then s is traversed to instantiate every loose occurrence
of 0 in s with binding, whose loose De Bruijn indices are shifted by the number
of λ binders above the occurrence of 0 in s [20]. Next, this procedure is applied
to the resulting term and its subterms, in leftmost outermost fashion.

λE’s β-normalization works in this way, but it features a few optimizations.
First, given a term of the form (λxn. s) tn, λE, like Leo-III [34], replaces the
bound variables xi with ti in parallel. Avoiding the construction of intermediate
terms reduces the number of recursive function calls and calls to the cell allocator.

Second, in line with the gracefulness principle, we want λE to incur little (or
no) overhead on first-order problems and to excel on higher-order problems with
a large first-order component. If β-reduction is implemented naively, finding a β-
redex involves traversing the entire term. On purely first-order terms, β-reduction
is then a waste of time. To avoid this, we use Ehoh’s perfectly shared terms and
their properties field. We introduce the property HasBetaReducibleSubterm,
which is set if a cell is β-reducible. Whenever a new cell that contains a β-
reducible term as a direct subterm is shared, the property is set. Setting of
the property is inductively continued when further superterms are shared. For
example, in the term t = f a (g((λx. x) a)), the cells for (λx. x) a, g ((λx. x) a), and
t itself have the property HasBetaReducibleSubterm set. When it needs to find
β-reducible subterms, λE will visit only the cells with this property set. This
further means that on first-order subterms, a single bit masking operation is
enough to determine that no subterm should be visited.

Along similar lines, we introduce a property HasDBSubterm that caches
whether the cell contains a De Bruijn subterm. This makes instantiating De Bruijn
indices during β-normalization faster, since only the subterms that contain De
Bruijn indices must be visited. Similarly, some other operations such as shifting
De Bruijn indices or determining whether a term is closed (i.e., it contains no
loose bound variables) can be sped up or even avoided if the term is first-order.

Efficient ηηη-Reduction. The term λx. s x is η-reduced to s whenever x does not
occur unbound in s. Observing that a term cannot be η-reduced if it contains no
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λ-abstractions, we introduce a property HasLambda that notes the presence of
λ’s in a term. Only terms with λ’s are visited during η-reduction.

λE performs parallel η-reduction: It recognizes terms of the form λxm. s xm

such that none of the xi occurs unbound in s. If done naively, reducing terms
of this kind requires up to m traversals of s to check if each xi occurs in s. In
λE, exactly one traversal of s is required. More precisely, when η-reducing a cell
LAM(0, s), λE considers all λ binders in s as well. In general, the cell will be of the
form LAM(0, . . . , LAM(0, t) . . .), where t is not a λ-abstraction, and l is the number
of LAM symbols above t. Then λE breaks the body t down into a decomposition
u (n − 1) . . . 10 where u is not of the form . . . n ; such a decomposition is unique.
If n = 0, the cell is not η-reducible. Otherwise, u is traversed to determine the
minimal index j of a loose De Bruijn index, taking j = ∞ if no such index
exists. λE can then remove the k = min{j, l, n} rightmost outermost λ binders
in LAM(0, . . . , LAM(0, t) . . .) and replace t by the variant of u (n − 1) . . . (k + 1) k
obtained by shifting the loose De Bruijn indices down by k.

To illustrate this convoluted De Bruijn arithmetic, we consider the term
λx. λy. λz. f xx y z. This term is represented by the cell LAM(0, LAM(0, LAM(0,
f(2,2,1,0)))). λE splits f(2,2,1,0) into two parts: u = f 2 and the arguments
2,1,0. Since the minimal index in u is 2, we can omit the De Bruijn indices 1
and 0 and their λ binders, yielding the η-reduced cell LAM(0, f(0,0)).

Parallel η-reduction both speeds up η-reduction and avoids creating interme-
diate terms. For finding the minimal loose De Bruijn index, optimizations such
as the HasDBSubterm property are used.

Representation of Boolean Terms. E and Ehoh represent Boolean terms
using cells whose f_codes are reserved for logical symbols. Quantified formulas
are represented by cells in which the first argument is the quantified variable
and the second one is the body of the quantified formula. For example, the
term ∀∀∀x. px corresponds to the cell ∀∀∀(X, p(X)), where X is a free variable. This
representation is convenient for parsing and clausification, which is what E and
Ehoh use it for, but in full higher-order logic, it is problematic during proof
search: Booleans can occur as subterms in clauses, as in q(X) ∨ p(∀∀∀(X, r(X))),
and instantiating X in the first literal should not affect X in the second literal.

To avoid this issue, in λE we use λ binders to represent quantified formulas, as
is customary in higher-order logic [1, §51]. Thus, ∀∀∀x. s is represented by ∀∀∀ (λx. s).
Quantifiers are then unary symbols that do not directly bind the variables. Since
λE represents bound variables using De Bruijn indices, this solves all α-conversion
issues. However, this solution is incompatible with thousands of decades-old lines
of clausification code that assumes E’s representation of quantifiers. Therefore,
λE converts quantified formulas only after clausification, for Boolean terms that
occur in a higher-order context (e.g., as argument to a function symbol).

New Term Orders. The λ-superposition calculus is parameterized by a term
order that is used to break symmetries in the search space. We implemented the
versions of the Knuth–Bendix order (KBO) and lexicographic path order (LPO)
for higher-order terms described by Bentkamp et al. [4]. These orders encode
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λ-terms as first-order terms and then invoke the standard KBO or LPO. For
efficiency, we implemented separate KBO and LPO functions that compute the
order directly, intertwining the encoding and the order computation.

Ehoh cells contain a binding field that can be used to store the substitution
for a free variable. Substitutions can then be applied by following the binding
pointers, replacing each free variable with its instance. Thus, when Ehoh needs
to perform a KBO or LPO comparison of an instantiated term, it needs only
follow the binding pointers. In full higher-order logic, however, instantiating a
variable can trigger a chain of βη-reductions, changing the shape of the term
dramatically. To prevent this, λE computes the βη-reduced instances of the terms
before comparing them using KBO or LPO.

4 Unification, Matching, and Term Indexing

Standard superposition crucially depends on the concept of a most general unifier
(MGU). In higher-order logic, the concept is replaced by that of a complete
set of unifiers (CSU), which may be infinite. Vukmirović et al. [41] designed
an efficient procedure to enumerate a CSU for a term pair. It is implemented
in Zipperposition, together with some extensions to term indexing. In λE, we
further improve the performance of this procedure by implementing a terminating,
incomplete variant. We also introduce a new indexing data structure.

The Unification Procedure. The unification procedure works by maintaining
a list of unification pairs to be solved. After choosing a pair, it first normalizes
it by β-reducing and instantiating the heads of both terms in the pair. Then, if
either head is a variable, it computes an appropriate binding for this variable,
thereby approximating the solution.

Unlike in first-order and λ-free higher-order unification, in the full higher-order
case there may be many bindings that lead to a solution. To reduce this mostly
blind guessing of bindings, the procedure features support for oracles [41]. These
are procedures that solve the unification problem for a subclass of higher-order
terms on which unification is decidable and, for λE, unary. Oracles help increase
performance, avoid nontermination, and avoid redundant bindings.

Vukmirović et al. described their procedure as a transition system. In λE, the
procedure is implemented nonrecursively, and the unifiers are enumerated using
an iterator object that encapsulates the state of the unifier search. The iterator
consists of five fields: (1) constraints, which holds the unification constraints;
(2) bt_state, a stack that contains information necessary to backtrack to a
previous state; (3) branch_iter, which stores how far we are in exploring different
possibilities from the current search node; (4) steps, which remembers how many
different unification bindings (such as imitation, projection, and identification)
are applied; and (5) subst, a stack storing the variables bound so far.

The iterator is initialized to hold the original problem in constraints, and all
other fields are initially empty. The unifiers are retrieved one by one by calling
the function ForwardIter. It returns True if the iterator made progress, in
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which case the unifier can be read via the iterator’s subst field. Otherwise, no
more unifiers can be found, and the iterator is no longer valid. The function’s
pseudocode is given below, including two auxiliary functions:

function NormalizeHead(t) is
if t .head = @ ∧ t .args[0].is_lambda() then

reduce the top-level β-redex in t
return NormalizeHead(t)

else if t .head .is_var() ∧ t .head .binding ̸= Nil then
t .head ← t .head .binding
return NormalizeHead(t)

else
return t

function BacktrackIter(iter) is
if iter .bt_state.empty() then

clear all fields in iter
return False

else
pop (constraints, branch_iter , steps, subst) from iter .bt_state
set the corresponding fields of iter
return True

function ForwardIter(iter) is
forward ← ¬ iter .constraints.empty() ∨BacktrackIter(iter)
while forward ∧ ¬ iter .constraints.empty() do
(lhs, rhs)← pop pair from iter .constraints
lhs ← NormalizeHead(lhs)
rhs ← NormalizeHead(rhs)
normalize and discard the λ prefixes of lhs and rhs

if ¬lhs.head .is_var() ∧ rhs.head .is_var() then
swap lhs and rhs

if lhs.head .is_var() then
oracle_res ← Fixpoint(lhs, rhs, iter .subst)

if oracle_res = NotInFragment then
oracle_res ← Pattern(lhs, rhs, iter .subst)

if oracle_res = NotUnifiable then
forward ← BacktrackIter(iter)

else if oracle_res = NotInFragment then
n_steps,n_branch_iter ,n_binding ←

NextBinding(lhs, rhs, iter .steps, iter .branch_iter)

if n_branch_iter ̸= BindEnd then
push pair (lhs,rhs) back to iter .constraints
push quadruple (iter .constraints,n_branch_iter ,
iter .steps, iter .subst) onto iter .bt_state

extend iter .subst with n_binding
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iter .steps ← n_steps
iter .branch_iter ← BindBegin

else if lhs.head = rhs.head then
create constraint pairs of arguments of lhs and rhs

and push them to iter .constraints
iter .branch_iter ← BindBegin

else if lhs.head = rhs.head then
create constraint pairs of arguments of lhs and rhs

and push them to iter .constraints
else
forward ← BacktrackIter(iter)

return forward

ForwardIter begins by backtracking if the previous attempt was successful
(i.e., all constraints were solved). If it finds a state from which it can continue,
it takes term pairs from constraints until there are no more constraints or it is
determined that no unifier exists. The terms are normalized by instantiating the
head variable with its binding and reducing the potential top-level β-redex that
might appear. This instantiation and reduction process is repeated until there are
no more top-level β-redexes and the head is not a variable bound to some term.
Then the term with shorter λ prefix is expanded (only on the top level) so that
both λ prefixes have the same length. Finally, the λ prefix is ignored, and we focus
only on the body. In this way, we avoid fully substituting and normalizing terms
and perform just enough operations to determine the next step of the procedure.

If either term of the constraint is flex, we first invoke oracles to solve the con-
straint. λE implements the most efficient oracles implemented in Zipperposition:
fixpoint and pattern [41, Sect. 6]. An oracle can return three results: (1) there
is an MGU for the pair (Unifiable), which is recorded in subst, and the next
pair in constraints is tried; (2) no MGU exists for the pair (NotUnifiable),
which causes the iterator to backtrack; (3) if the pairs do not belong to the
subclass that oracle can solve (NotInFragment), we generate possible variable
bindings—that is, we guess the approximate form of the solution.

λE has a dedicated module that generates bindings (NextBinding). This
module is given the current constraint and the values of branch_iter and steps,
and it either returns the next binding and the new values of branch_iter and
steps or reports that all different variable bindings are exhausted. The bindings
that λE’s unification procedure creates are imitation, Huet-style projection,
identification, and elimination (one argument at a time) [41, Sect. 3]. A limit
on the total number of applied binding rules can be set, as well as a limit on
the number of individual rule applications. The binding module checks whether
limits are reached using the iterator’s steps field.

Computing bindings is the only point in the procedure where the search
tree branches and different possibilities are explored. Thus, when λE follows the
branch indicated by the binding module, it records the state to which it needs
to return should the followed branch be backtracked. The state consists of the
values of constraints, steps , and subst before the branch is followed and the value
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of branch_iter that points past the followed branch. The values of branch_iter
are either BindBegin, which denotes that no binding was created, intermediate
values that NextBinding uses to remember how far through bindings it is, and
BindEnd, which indicates that all bindings are exhausted.

If all bindings are exhausted, the procedure checks whether the pair is flex–flex
and both sides have the same head. If so, the pair is decomposed and constraints
are derived from the pair’s arguments; otherwise, the iterator backtracks. If
the pair is rigid–rigid, for unification to succeed, the heads of both sides must
be the same. Unification then continues with new constraints derived from the
arguments. Otherwise, the iterator must be backtracked.

Matching. In E, the matching algorithm is mostly used inside simplification rules
such as demodulation and subsumption [29]. As these rules must be efficiently
performed, using a complex matching algorithm is not viable. Instead, we provide
a matching algorithm for the pattern class of terms [27] to complement Ehoh’s
λ-free higher-order matching algorithm [42, Sect. 4]. A term is a pattern if each
of its free variables either has no arguments (as in first-order logic) or is applied
to distinct De Bruijn indices.

To help determine whether to use the pattern or λ-free algorithm, we introduce
a cached property HasNonPatternVar, which is set for terms of the form X sn
where n > 0 and either there exists some si that is not a De Bruijn index or
there exist indices i < j such that si = sj is a De Bruijn index. This property is
propagated to the superterms when they are perfectly shared. This allows later
checks if a term belongs to the pattern class to be performed in constant time.

We modify the λ-free higher-order matching algorithm to treat λ prefixes as
above in the unification procedure—by bringing the prefixes to the same length
and ignoring them afterwards. This ensures that the algorithm will never try to
match a free variable with a λ-abstraction, making sure that β-redexes never
appear. We also modify the algorithm to ensure that free variables are never
bound to terms that have loose bound variables. This algorithm cannot find
many complex matching substitutions (matchers), but it can efficiently determine
whether two terms are variable renamings of each other or whether a simple
matcher can be used, as in the case of (X (λx. x) b, f (λx. x) b), where X 7→ f is
usually the desired matcher. If this algorithm does not find a matcher and both
terms are patterns, pattern matching is tried.

Indexing. E, like other modern theorem provers, efficiently retrieves unifiable or
matchable pairs of terms using indexing data structures. To find terms unifiable
with a query term or instances of a query term, it uses fingerprint indexing [30].
Vukmirović et al. extended this data structure to support full higher-order terms
in Zipperposition [41, Sect. 6]. We use the same approach in λE, and we extend
feature vector indices [31] in the same way.

E uses perfect discrimination trees [26] to find generalizations of the query
term (i.e., terms of which the query term is an instance). This data structure
is a trie that indexes terms by representing them in a serialized, flattened form.
The left branch from the root in Figure 1 shows how the first-order terms f aX
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Fig. 1. First-order, λ-free higher-order, and higher-order pattern terms in a perfect
discrimination tree

and f a a are stored. In Ehoh, this data structure is extended to support partial
application and applied variables [42].

In λE, we extend this structure to support λ-abstractions and the higher-order
pattern matching algorithm. To this end, we change the way in which terms
are serialized. First, we require that all terms are fully η-expanded (except for
arguments of variables applied in patterns). Then, when the term is serialized,
we use a single node for applied variable terms X sn, instead of a node for X
followed by nodes for the arguments sn. We serialize the λ-abstraction λx. s using
a dedicated node LAMτ , where τ is the type of x, followed by the serialization
of s. Other than these changes, serialization remains as in Ehoh, following the
gracefulness principle. Figure 1 shows how g (X a b) c and h (λx. λy.X y x) are
serialized. Since the terms are stored in serialized form, it is hard to manipulate λ
prefixes of stored terms during matching. Performing η-expansion when serializing
terms ensures that matchable terms have λ prefixes of the same length.

We have dedicated separate nodes for applied variables because access to
arguments of applied variables is necessary for the pattern matching algorithm.
Even though arguments can be obtained by querying the arity n of the variable
and taking the next n arguments in the serialization, this is both inefficient and
inelegant. As for De Bruijn indices, we treat them the same as function symbols.

Following the notation from the extension of perfect discrimination trees to
λ-free higher-order logic [42], we now describe how enumeration of generalizations
is performed. To traverse the tree, λE begins at the root node and maintains two
stacks: term_stack and term_proc, where term_stack contains the subterms of
the query term that have to be matched, and term_proc contains processed terms
that are used to backtrack to previous states. Initially, term_stack contains the
query term, the current matching substitution σ is empty, and the successor node
is chosen among the child nodes as follows:

A. If the node is labeled with a symbol ξ (where ξ is either a De Bruijn index
or a constant) and the top item t of term_stack is of the form ξ tn, replace
t by n new items t1, . . . , tn, and push t onto term_proc.
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B. If the node is labeled with a symbol LAMτ and the top item t of term_stack
is of the form λx. s and the type of x is τ , replace t by s, and push t onto
term_proc.

C. If the node is labeled with a possibly applied variable X sn (where n ≥ 0),
and the top item of term_stack is t, the matching algorithm described above
is run on X sn and t. The algorithm takes into account σ built so far and
extends it if necessary. If the algorithm succeeds, pop t from term_stack,
push it onto term_proc, and save the original value of σ in the node.

Backtracking works in the opposite direction: If the current node is labeled
with a De Bruijn index or function symbol node of arity n, pop n terms from
term_stack and move the top of term_proc to term_stack. If the node is
labeled with LAMτ , pop the top of term_stack and move the top of term_proc
to term_stack. Finally, if the node is labeled with a possibly applied variable,
move the top of the term_proc to term_stack and restore the value of σ.

As an example of how finding a generalization works, when looking for
generalizations of g (f a b) c in the tree of Figure 1, the following states of stacks
and substitutions emerge, from left to right:

ϵ g g.(X a b) g.(X a b).c

term_stack [g (f a b) c] [f a b, c] [c] []
term_proc [] [g (f a b) c] [f a b, g (f a b) c] [c, f a b, g (f a b) c]
σ ∅ ∅ {X 7→ f} {X 7→ f}

5 Preprocessing, Calculus, and Extensions

Ehoh’s simple λ-free higher-order calculus performed well on Sledgehammer prob-
lems and formed a promising stepping stone to full higher-order logic [42]. When
implementing support for full higher-order logic, we were guided by efficiency and
gracefulness with respect to Ehoh’s calculus rather than completeness. Whereas
Zipperposition provides both complete and incomplete modes, λE only offers
incomplete modes.

Preprocessing. Our experience with Zipperposition showed the importance
of flexibility in preprocessing the higher-order problems [40]. Therefore, we
implemented a flexible preprocessing module in λE.

To maintain compatibility with Ehoh, λE can optionally transform all λ-
abstractions into named functions. This process is called λ-lifting [19]. λE also
removes all occurrences of Boolean subterms (other than ⊥⊥⊥,⊤⊤⊤, and free variables)
in higher-order contexts using a FOOL-like transformation [23]. For example, the
formula f(p∧∧∧ q)≈≈≈ a becomes (p∧∧∧ q→→→ f(⊤⊤⊤)≈≈≈ a)∧∧∧ (¬¬¬ (p∧∧∧ q)→→→ f(⊥⊥⊥)≈≈≈ a).

Many TPTP problems use the definition role to identify the definitions of
symbols. λE can treat definition axioms as rewrite rules, and replace all occur-
rences of defined symbols during preprocessing. Furthermore, during SInE [18]
axiom selection, it can always include the defined symbol in the trigger relation.
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Calculus. λE implements the same superposition calculus as Ehoh with three
important changes. First, wherever Ehoh requires the MGU of terms, λE enu-
merates unifiers from a finite subset of the CSU, as explained in Sect. 4. Second,
λE uses versions of the KBO and LPO orders designed for λ-terms.

The third difference is more subtle. One of the main features of Ehoh is
prefix optimization [42, Sect. 1]: a method that, given a demodulator s ≈ t,
makes it possible to replace both applied and unapplied occurrences of s by t by
traversing only the first-order subterms of a rewritable term. In a λ-free setting,
this optimization is useful, but in the presence of βη-normalization, the shapes
of terms can change drastically, making it much harder to track prefixes of terms.
This is why we disable the prefix optimization in λE. To compensate for losing
this optimization, we introduce the argument congruence rule AC in λE and
enable positive and negative functional extensionality (PE and NE) by default:

s ≈ t ∨ C
AC

sX ≈ tX ∨ C

s ̸≈ t ∨ C
NE

s (sk X) ̸≈ t (sk X) ∨ C

s X ≈ t X ∨ C
PE

s ≈ t ∨ C

AC and NE assume that s and t are of function type. In NE, X denotes all
the free variables occurring in s and t, and sk is a fresh Skolem symbol of the
appropriate type. PE has a side condition that X may not occur in s, t, or C.

Saturation. E’s saturation procedure assumes that each attempt to perform an
inference will either result in a single clause or fail due to one of the inference
side conditions. Unification procedures that produce multiple substitutions break
this invariant, and the saturation procedure needed to be adjusted.

For Zipperposition, Vukmirović et al. developed a variant of the saturation
procedure that interleaves computing unifiers and scheduling inferences to be
performed [40]. Since completeness was not a design goal for λE, we did not
implement this version of the saturation procedure. Instead, in places where
previously a single unifier was expected, λE consumes all elements of the iterator
used for enumerating a unifier, converting them into clauses.

Reasoning about Formulas. Even though most of the Boolean structure is
removed during preprocessing, formulas can reappear at the top level of clauses
during saturation. For example, after instantiating X with λx. λy. x∧∧∧y, the clause
X p q ∨ a ≈ b becomes (p ∧∧∧ q) ∨ a ≈ b. λE converts every clause of the form
φ ∨ C, where φ has a logic symbol as its head, or it is a (dis)equation between
two formulas different than ⊤⊤⊤, to an explicitly quantified formula. Then, the
clausification algorithm is invoked on the formula to restore the clausal structure.
Zipperposition features more dynamic clausification modes, but for simplicity we
decided not to implement them in λE.

The λ-superposition calculus for full higher-order logic [4] includes many rules
that act on Boolean subterms, which are necessary for completeness. Other than
Boolean simplification rules, which use simple tautologies such as p∧∧∧⊤⊤⊤↔↔↔ p to
simplify terms, we have implemented none of the Boolean rules of this calculus in
λE. First, we have observed that complicated rules such as FluidBoolHoist and
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FluidLoobHoist are hardly ever useful in practice and usually only contribute
to an uncontrolled increase in the proof state size. Second, simpler rules such as
BoolHoist can usually be simulated by pragmatic rules that perform Boolean
extensionality reasoning, described below.

To make up for excluding Boolean rules, we use an incomplete, but more
easily controllable and intuitive rule, called primitive instantiation. This rule
instantiates free predicate variables with approximations of formulas that are
ground instances of this variable. We use the approximations described by
Vukmirović and Nummelin [43, Sect. 3.3].

λE’s handling of the Hilbert choice operator is inspired by Leo-III’s [35]. λE
recognizes clauses of the form ¬P X ∨ P (f P ), which essentially denote that f is
a choice symbol. Then, when subterm f s is found during saturation, s is used to
instantiate the choice axiom for f. Similarly, Leibniz equality [43] is eliminated
by recognizing clauses of the form ¬P a ∨ P b ∨ C. These clauses are then
instantiated with P 7→ λx. x ≈ a and P 7→ λx. x ̸≈ b, which results in a ≈ b ∨ C.

Finally, λE treats induction axioms specially. Like Zipperposition [40, Sect. 4],
it abstracts literals from the goal clauses and instantiates induction axioms with
these abstractions. Since Zipperposition supports dynamic calculus-level clausifi-
cation, induction axioms are instantiated during saturation, when the axioms are
processed. In λE, this instantiation is performed immediately after clausification.
After λE has collected all the abstractions, it traverses the clauses and instantiates
those that have applied variable of the same type as the abstraction.

Extensionality. λE takes a pragmatic approach to reasoning about functional
and Boolean extensionality: It uses abstracting rules [5] which simulate basic
superposition calculus rules but do not require unifiability of the partner terms
in the inference. More precisely, assume a core inference needs to be performed
between two β-reduced terms u and v, such that they can be represented as
u = C[s1, . . . , sn] and v = C[t1, . . . , tn], where C is the most general “green” [5]
common context of u and v, not all of si and tj are free variables, and for at
least one i, si ̸= ti, si and ti are not possibly applied free variables, and they
are of Boolean or function type. Then, the conclusion is formed by taking the
conclusion D of the core inference rule (which would be created if s and t are
unifiable) and adding literals s1 ̸≈ t1 ∨ · · · ∨ sn ̸≈ tn.

These rules are particularly useful because λE has no rules that dynamically
process Booleans in FOOL-like fashion, such as BoolHoist. For example, given
the clauses f (p∧∧∧q) ≈ a and g (f p) ̸≈ b, the abstracting version of the superposition
rule would result in g a ̸≈ b ∨ (p ∧∧∧ q) ̸≈ p. In this way, the Boolean structure
bubbles up to the top level and is further processed by clausification. We noticed
that this alleviates the need for the other Boolean rules in practice.

6 Evaluation

We now try to answer two questions about λE: How does λE compare against
other higher-order provers (including Ehoh)? Does λE introduce any overhead
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compared with Ehoh? To answer these questions, we ran provers on problems from
the TPTP library [38] and on benchmarks generated by Sledgehammer (SH) [28].
The experiments were carried out on StarExec Miami [36] nodes equipped with
Intel Xeon E5-2620 v4 CPU clocked at 2.10 GHz. For the TPTP part, we used
the CASC 20212 time limits: 120 s wall-clock and 960 s CPU. For SH benchmarks
and to answer the other question, we used Sledgehammer’s default time limit:
30 s wall-clock and CPU. The raw evaluation data is available online.3

Comparison with Other Provers. To answer the first question, we let λE
compete with the top contenders in the higher-order division of CASC 2021: cvc5
0.0.7 [2], Ehoh 2.7 [42], Leo-III 1.6.6 [35], Vampire 4.6 [8], and Zipperposition
2.1 [40]. We also included Satallax 3.5 [10]. We used all 2899 higher-order
theorems in TPTP 7.5.0 as well as 5000 SH higher-order benchmarks originating
from the Seventeen benchmark suite [15]. On SH benchmarks, cvc5, Ehoh, λE,
Vampire, and Zipperposition were run using custom schedules provided by their
developers, optimized for single-core usage and low timeouts. Otherwise, we used
the corresponding CASC configurations.

Although it internally does not support λ-abstractions, Ehoh 2.7 can parse
full higher-order logic using λ-lifting. We included two versions of Zipperposition:
coop uses Ehoh 2.7 as a backend to finish proof attempts, whereas uncoop does
not. Both Ehoh and λE were run in the automatic scheduling mode. Compared
with Ehoh, λE features a redesigned module for automatic scheduling, it can
exploit multiple CPU cores, and its heuristics have been more extensively trained
on higher-order problems.

The results are shown in Figure 2. λE dramatically improves E’s higher-order
reasoning capabilities compared with Ehoh. It solves 20% more TPTP benchmarks
and 7% more SH benchmarks. The reason for the higher preformance increase
for TPTP is likely that TPTP benchmarks tend to require more higher-order
reasoning than SH benchmarks, which often have a large first-order component
and for which Ehoh was already very successful.

λE was envisioned as an efficient backend to proof assistants. As such, it excels
on SH benchmarks, outperforming the competition. On TPTP, it outperforms
all higher-order provers other than Zipperposition-coop. If Zipperposition’s Ehoh
backend is disabled, λE outperforms Zipperposition by a wide margin. This
comparison is arguably fairer; after all, λE does not use an older version of
Zipperposition as a backend. These results suggest that λE already implements
most of the necessary features for a high-performance higher-order prover but
could benefit from the kind of fine-tuning that Zipperposition underwent in the
last four years.

Remarkably, the raw evaluation data reveals thats λE solves 181 SH problems
and 24 TPTP problems that Zipperposition-coop does not. The lower number
of uniquely solved TPTP problems is likely because Zipperposition was heavily
optimized on the TPTP.

2 http://www.tptp.org/CASC/28/
3 https://doi.org/10.5281/zenodo.6389849
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TPTP SH

cvc5 1931 2577
Ehoh 2105 2611
λE 2533 2804
Leo-III 2282 1601
Satallax 2320 1719
Vampire 2203 2240
Zipperposition-coop 2583 2754
Zipperposition-uncoop 2483 2181

Fig. 2. Comparison of higher-order provers

TPTP

Ehoh FO 535
Ehoh HO 538
λE FO 537
λE HO 541

Fig. 3. Evaluation of λE’s
overhead

Comparison with the First-Order E. Both Ehoh and λE can be compiled in
a mode that disables most of the higher-order reasoning. This mode is designed
for users that are interested only in E’s first-order capabilities and care a lot
about performance. To answer the second evaluation question, about assessing
overhead of λE, we chose all the 1138 unique problems used at CASC from 2019
to 2021 in the first-order theorem division and ran Ehoh and λE both in this
first-order (FO) mode and in higher-order (HO) mode.

We fixed a single configuration of options, because Ehoh’s and λE’s automatic
scheduling methods could select different configurations and we would not be
measuring the overhead but the quality of the chosen configurations. We chose
the boa configuration [42, Sect. 7], which is the configuration most often used by
E 2.2 in its automatic scheduling mode. The results are shown in Figure 3.

Counterintuitively, the higher-order versions of both provers outperform
the first-order counterparts. However, the difference is so small that it can be
attributed to the changes to memory layout that affect the order in which clauses
are chosen. Similar effects are visible when comparing the first-order versions.

CASC Results. λE also took part in CASC 2022. In the TPTP higher-order
division, λE finished second, after Zipperposition, as expected. In the Sledge-
hammer division, λE tied with Ehoh for first place, a disappointment. The likely
explanation is that λE used a wrong configuration in this division, as we found
out afterwards. We expect better performance at CASC 2023.

7 Discussion and Related Work

On the trajectory to λE, we developed, together with colleagues, three super-
position calculi: for λ-free higher-order logic [6], for a higher-order logic with
λ-abstraction but no Booleans [5], and for full higher-order logic [5]. These mile-
stones allowed us to carefully estimate how the increased reasoning capabilities
of each calculus influence its performance.

Extending first-order provers with higher-order reasoning capabilities has
been attempted by other researchers as well. Barbosa et al. extended the SMT
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solvers CVC4 (now cvc5) and veriT to higher-order logic in an incomplete way [3].
Bhayat and Reger first extended Vampire to higher-order logic using combinatory
unification [8], an incomplete approach, before they designed and implemented a
complete higher-order superposition calculus based on SKBCI combinators [7].
The advantage is that combinators can be supported as a thin layer on top
of λ-free terms. This calculus is also implemented in Zipperposition. However,
in informal experiments, we found that λ-superposition performs substantially
better, corroborating the CASC results, so we decided to make a more profound
change to Ehoh and implement λ-superposition.

Possibly the only actively maintained higher-order provers built from the
bottom up as higher-order provers are Leo-III [35] and Satallax’s [10] successor
Lash [11]. A further overview of other traditional higher-order provers and the
calculi they are based on can be found in the paper about Ehoh [42, Sect. 9].

8 Conclusion

In 2019, the reviewers of our Ehoh paper [42] were skeptical that extending Ehoh
with support for full higher-order logic would be feasible. One of them wrote:

A potential criticism could be that this step from E to Ehoh is just
extending FOL by those aspects of HOL that are easily in reach with
rather straightforward extensions (none of the extensions is indeed very
complicated), and that the difficult challenges of fully supporting HOL
have yet to be confronted.

We ended up addressing the theoretical “difficult challenges” in other work
with colleagues. In this paper, we faced the practical challenges pertaining to
the extension of Ehoh’s data structures and algorithms to support full higher-
order logic and demonstrated that such an extension is possible. Our evaluation
shows that this extension makes λE the best higher-order prover on benchmarks
coming from interactive theorem proving practice, which was our goal. λE lags
slightly behind Zipperposition on TPTP problems. One reason might be that
Zipperposition does not assume a clausal structure and can perform subtle
formula-level inferences. It would be useful to implement the same features in
λE. We have also only started tuning λE’s heuristics on higher-order problems.
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