Where, What, and How? Lessons from the Evolution of E

Stephan Schulz

schulz@eprover.org

Automated Theorem Proving

$$A \models C$$

... where

 $A = \{A_1, \dots, A_n\}$ is a set of axioms

C is the conjecture

...in First-Order Logic with Equality

From the E NEWS file:

Sat Jul 5 02:28:25 MET DST 1997: First line of code written (in BASICS/clb_defines.h). StS

A Virtual Tour in Time

E has been under development since 1997

- \triangleright \approx 15 years of ATP history
- Mostly one developer

(Mostly) conservative extensions

- New features have been added to the core
- New features can be activated/deactivated

Non-conservative changes

- Scaleability
- Robustness
- Improvements to basic data types

We can simulate many aspects of old versions of E

Strengths and Limitations

Simulated:

- Calculus
- Search heuristics
- Many alternative algorithms
- Scope/language
- Usability

Not simulated:

- Robustness issues
- Most scaleability features
- Bugs!

Benefits

Historical situation

- Interleaved evolution of features
- Only major steps published

Simulation supports isolation of variables

- Implementation features
- Calculus modifications
- Search control

Agenda

Introduction

Scope and Usability

Implementation

Calculus evolution

Search control

Conclusion

Scope and Usability

Full FOF and Clausification

Historical

- First-order = CNF
- Proving = Showing unsatisfiability

Clausification in E

- ► E 0.82 (2004): Original "naive" clausifier
- ▶ E 0.91 (2006): Clausifier with definitions

Implementation

- Based on Nonnengart/Weidenbach: Computing Small Clause Normal Forms, 2001
- Shared formulas
- Shared definition

Automatic Modes

Common properties:

- Analyze problem
- Determine problem class
- Pick strategy or strategies
- Automatically generated from test data

E 0.5 (1999): Auto-Mode

- Pick single best strategy for class
- E 1.8 (2013): Auto-Schedule
 - Simple portfolio approach
 - Try 5 strategies with fixed time allocation
 - Greedy schedule generation

Implementation

"Who controls the present controls the past"

Early E: Undeserved reputation for speed

- ...written in C (?)
- ...convenient explanation for performance (?)

"Who controls the present controls the past"

Early E: Undeserved reputation for speed

- ... written in C (?)
- ... convenient explanation for performance (?)

Countermeasures

Top-down: Tarnish that reputation

E: A Brainiac Theorem Prover

Bottom-up: Justify that reputation

- Löchner's Linear KBO/Polynomial LPO
- Feature Vector Indexing (subsumption)
- Fingerprint Indexing (rewriting and superposition)

Calculus

Superposition calculus (evolved from [BG94])

- Refutational calculus
- Proof state: Set of clauses
- Goal: Derive empty clause
- Method: Saturation up to redundancy

What is a clause?

Multi-set of equational literals

▶ $\{f(X) \neq a, P(a) \neq \$true, g(Y) = f(a)\}$

Disjunction of literals

$$f(X) \neq a \vee \neg P(a) \vee g(Y) = f(a)$$

Conditional rewrite-rule

$$f(X) = a \land P(a) \Longrightarrow g(Y) = f(a)$$

Special clauses

- ▶ The empty clause $\Box = \{\}$ is unsatisfiable
- ▶ Unit clauses s = t are potential rewrite rules

Inferences

Generating inferences

- ▶ 1-2 premises generate new clause
- Superposition, equality resolution, equality factoring

Necessary evil

Contracting/simplifying inferences

- Replace or remove main premise
- Rewriting, subsumption, . . .

Expensive, but well worth it

► Aim: Move everything from *U* to *P*

- ► Aim: Move everything from *U* to *P*
- Invariant: All generating inferences with premises from P have been performed

- ► Aim: Move everything from *U* to *P*
- Invariant: All generating inferences with premises from P have been performed
- Invariant: P is interreduced

- ► Aim: Move everything from *U* to *P*
- Invariant: All generating inferences with premises from P have been performed
- Invariant: P is interreduced
- Clauses added to U are simplified with respect to P

Given-Clause Loop

```
while U \neq \{\}
  g = \text{delete\_best}(U)
  g = simplify(g, P)
  if a == \square
     SUCCESS. Proof found
  if g is not subsumed by any clause in P (or otherwise redundant w.r.t. P)
     P = P \setminus \{c \in P \mid c \text{ subsumed by (or otherwise redundant w.r.t.) } g\}
     T = \{c \in P \mid c \text{ can be simplified with } g\}
     P = (P \backslash T) \cup \{q\}
     T = T \cup \text{generate}(g, P)
     foreach c \in T
        c = \text{cheap\_simplify}(c, P)
        if c is not trivial
           U = U \cup \{c\}
SUCCESS, original U is satisfiable
```

```
while U \neq \{\}
   g = delete\_best(U)
   g = simplify(g, P)
   if g == \square
      SUCCESS, Proof found
   if g is not redundant w.r.t. P
      P = P \setminus \{c \in P \mid c \text{ redundant w.r.t. } g\}
      T = \{c \in P \mid c \text{ simplifiable with } g\}
      P = (P \backslash T) \cup \{g\}
      T = T \cup \operatorname{generate}(g, P)
      foreach c \in T
         c = \text{cheap\_simplify}(c, P)
         if c is not trivial
            U = U \cup \{c\}
SUCCESS, original U is satisfiable
```


Speed Demon

Speed Demon tamed (?)

Speed Demon tamed (?)

Some Vindication

Calculus evolution

Calculus evolution alone

Calculus evolution alone

Search control

Clause selection

```
while U \neq \{\}
   g = \text{delete\_best}(U)
   g = simplify(g, P)
                                                                                (processed clauses)
   if q == \square
      SUCCESS, Proof found
   if g is not redundant w.r.t. P
                                                                                          Simpli-
fiable?
      P = P \setminus \{c \in P \mid c \text{ redundant w.r.t. } g\}
                                                                        rate
      T = \{c \in P \mid c \text{ simplifiable with } g\}
      P = (P \backslash T) \cup \{g\}
                                                                                                   Cheap
                                                                                                   Simplify
      T = T \cup \operatorname{generate}(g, P)
      foreach c \in T
                                                                      Simplify
         c = \text{cheap\_simplify}(c, P)
         if c is not trivial
                                                                              (unprocessed clauses)
            U = U \cup \{c\}
SUCCESS, original U is satisfiable
```

Basic Approaches

Symbol counting

- ▶ Pick smallest clause in P
- $|\{f(X) \neq a, P(a) \neq \$true, g(Y) = f(a)\}| = 10$

FIFO

Always pick oldest clause in P

Flexible weighting

- Symbol counting, but give different weight to different symbols
- E.g. lower weight to symbols from goal!

Combinations

Interleave different schemes

Influences on E

DISCOUNT

- Different experts (heuristic evaluation functions)
- Only one expert per saturation phase

Otter

- Interleaves size/age selection
- Larry Wos: "The optimal pick-given ration is 5"

Waldmeister

Larry is right in general, wrong in detail

The Second System Effect

The general tendency is to over-design the second system, using all the ideas and frills that were cautiously sidetracked on the first one. The result, as Ovid says, is a "big pile." — Frederick P. Brooks, Jr.

46

Given-Clause Selection in E

Domain Specific Language (DSL) for clause selection scheme Arbitrary number of queues Each queue ordered by:

- Unparameterized priority function
- Parameterized heuristic evaluation function

Clauses picked using weighted round-robbin scheme

- Example:
 - 4 clauses from queue 1
 - 2 clauses from queue 2
 - 2 clauses from queue 3
 - Start over at queue 1

Second-system effect gone wild

The Influence of Clause Selection

The Influence of Clause Selection

Literal Selection

Literal selection in superposition:

- In clauses with negative literals, pick any single negative literal
- Only this selected literal is used for inferences
- Otherwise, all maximal literals are used

Intuition:

- $f(X) = a \land P(a) \Longrightarrow g(Y) = f(a)$
- We need to solve all conditions before the implication becomes relevant
- So start with any one condition...

Anonymous Reviewers

Literal Selection in E

Ca. umpteen hard-coded strategies

Example 1: SelectSmallestNegLit

- Always select the smallest literal
- Idea: Fewer inferences possible

SelectMaxLComplexAvoidPosPred

- Select, in the following order:
 - ▶ Maximal, pure variable $(X \neq Y)$
 - Maximal, ground, largest size difference
 - Maximal, non-ground, largest difference
 - Pure variable
 - Ground, largest size difference
 - Non-ground, largest difference
 - ▶ ... all things being equal, avoid predicates from positive literals

The Influence of Literal Selection

The Influence of Literal Selection

Conclusion

Conclusion

E's core progress has been due to

- Primarily search control
- Secondarily calculus and implementation

Significant interplay between

- Calculus and implementation
- Literal selection and term orderings

Users profit from usability and scope

- Full automation (including parameterization)
- Support for rich(er) logics

Some Open Points

Understand literal selection

- What makes a good strategy?
- Interaction of literal selection and ordering

Proof search

- Improve goal-directed search
- Better meta-control ("Auto-Mode")

Can big-data approaches help?

Ceterum Censeo...

Bug reports for E should include:

- The exact command line leading to the bug
- All input files needed to reproduce the bug
- A description of what seems wrong
- ► The output of eprover --version

