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Automated Theorem Proving

?
Al C

..Where

A={As,..., Ay} is a set of axioms
C is the conjecture

..in First-Order Logic with Equality




E

is a

fully automatic
Theorem Prover
for
First-Order Logic
with Equality
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(E

From the E NEWS file:

Sat Jul 5 02:28:25 MET DST 1997 : First line of code
written (in BASICS/clb_defines.h). StS
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Start of
development
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First place in CNF

First place in MIX at CASC 23
at CASC 17
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First public

Release (GPL)
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What inference

system to use?

How to do
inferences efficiently?

Implementation

A

Search

Control

Where to search

for proofs?
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A Virtual Tour in Time

E has been under development since 1997
» ~15 years of ATP history
» Mostly one developer
(Mostly) conservative extensions
» New features have been added to the core
» New features can be activated/deactivated
Non-conservative changes

» Scaleability
» Robustness
» Improvements to basic data types
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We can simulate many aspects of old versions of E J




Strengths and Limitations

Simulated:

» Calculus

» Search heuristics

» Many alternative algorithms
» Scope/language

» Usability

Not simulated:

» Robustness issues
» Most scaleability features
» Bugs!
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Benefits

Historical situation
» Interleaved evolution of features
» Only major steps published
Simulation supports isolation of variables

» Implementation features
» Calculus modifications
» Search control
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Introduction

Scope and Usability
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Calculus evolution
Search control

Conclusion
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Scope and Usability |
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Clausification and
FOF support

Automatic
Auto-Mode Automatic
Strategy
Scheduling
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Full FOF and Clausification

Historical

» First-order = CNF

» Proving = Showing unsatisfiability
Clausification in E

» E 0.82 (2004): Original “naive” clausifier

» E 0.91 (2006): Clausifier with definitions
Implementation

» Based on Nonnengart/Weidenbach: Computing Small Clause

Normal Forms, 2001
» Shared formulas
» Shared definition
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Robustness
&
Scalability
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Clausification and
FOF support

Automatic
Auto-Mode Automatic
Strategy
Scheduling
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Automatic Modes

Common properties:
» Analyze problem
» Determine problem class
» Pick strategy or strategies
» Automatically generated from test data
E 0.5 (1999): Auto-Mode
» Pick single best strategy for class
E 1.8 (2013): Auto-Schedule
» Simple portfolio approach
» Try 5 strategies with fixed time allocation
» Greedy schedule generation

23
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Implementation )
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“Who controls the present controls the past”

Early E: Undeserved reputation for speed
> ...writtenin C (?)
» ...convenient explanation for performance (?)
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“Who controls the present controls the past”

Early E: Undeserved reputation for speed
> ...writtenin C (?)
» ...convenient explanation for performance (?)

Countermeasures J

Top-down: Tarnish that reputation
» E: A Brainiac Theorem Prover
Bottom-up: Justify that reputation
» Loéchner’s Linear KBO/Polynomial LPO
» Feature Vector Indexing (subsumption)
» Fingerprint Indexing (rewriting and superposition)
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Calculus

Superposition calculus (evolved from [BG94])

vVvyVvyy

Refutational calculus

Proof state: Set of clauses

Goal: Derive empty clause

Method: Saturation up to redundancy
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What is a clause?

Multi-set of equational literals

» {f(X) # a,P(a) # $true,g(Y) = f(a)}
Disjunction of literals

» f(X)#av-Pa)Vvg(Y)=f(a)
Conditional rewrite-rule

» f(X)=aAP(a)= g(Y)=f(a)
Special clauses

» The empty clause O = {} is unsatisfiable
» Unit clauses s = t are potential rewrite rules
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Inferences

Generating inferences

» 1-2 premises generate new clause
» Superposition, equality resolution, equality factoring

Necessary evil ]

Contracting/simplifying inferences

» Replace or remove main premise
» Rewriting, subsumption, ...

Expensive, but well worth it J
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The Given-Clause Algorithm

P » Aim: Move everything
(processed clauses) from U to P

V)
(unprocessed clauses)
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The Given-Clause Algorithm

P » Aim: Move everything
(processed clauses) from U to P

» Invariant: All
generating inferences
with premises from P
have been performed

V)
(unprocessed clauses)
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The Given-Clause Algorithm

(processed clauses)

Simpli- s
fiable?

» Aim: Move everything
from Uto P

» Invariant: All
generating inferences
with premises from P
have been performed

» Invariant: P is
interreduced

Simplify

U
(unprocessed clauses)
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The Given-Clause Algorithm

» Aim: Move everything
from Uto P

» Invariant: All
generating inferences
with premises from P
have been performed

» Invariant: P is
interreduced

» Clauses added to U
are simplified with
respect to P

(processed clauses)

Slm li-
fiable?

Simplify

V)
(unprocessed clauses)
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Given-Clause Loop
while U # {}

g = delete_best(U)
g = simplify(g, P)
ifg=="0
SUCCESS, Proof found
if g is not subsumed by any clause in P (or otherwise redundant w.r.t. P)
P = P\{c € P | ¢ subsumed by (or otherwise redundant w.r.t.) g}
T = {c € P | c can be simplified with g}
P=(P\T)u{g}
T = T Ugenerate(g, P)
foreachce T
¢ = cheap_simplify(c, P)
if ¢ is not trivial
U=Uu{c}
SUCCESS, original U is satisfiable
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while U # {}
g = delete_best(U)
g = simplify(g, P)
ifg==
SUCCESS, Proof found
if g is not redundant w.r.t. P
P = P\{c € P| credundant w.r.t. g}
T = {c € P | c simplifiable with g}
P=(P\T)u{g}
T = T Ugenerate(g, P)
foreachce T
¢ = cheap_simplify(c, P)
if ¢ is not trivial
U=Uu{c}
SUCCESS, original U is satisfiable

P
(processed clauses)

fiable? I
U
(unprocessed clauses)
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Speed Demon tamed (?)
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Run times "E 1.8 Best"
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Calculus evolution )

39



Stephan Schulz

Simultaneous
Destructive superposition
equality resolution

AC redundancy

elimination
Contextual

Simplify-Reflect =
Subsumption
Resolution = Claus%

simplification = ...
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Calculus evolution alone
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Clause selection

while U # {}
g = delete_best(U)
g = simplify(g, P)
ifg==
SUCCESS, Proof found
if g is not redundant w.r.t. P
P = P\{c € P| credundant w.r.t. g}
T = {c € P | c simplifiable with g}
P=(P\T)u{g}
T = T Ugenerate(g, P)
foreachce T
¢ = cheap_simplify(c, P)
if ¢ is not trivial
U=Uu{c}
SUCCESS, original U is satisfiable

P
(processed clauses)

fiable? I
U
(unprocessed clauses)
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Basic Approaches

Symbol counting

» Pick smallest clause in P

> [{f(X) # a, P(a) # $true,g(Y) = f(a)}| = 10
FIFO

» Always pick oldest clause in P
Flexible weighting

» Symbol counting, but give different weight to different symbols
» E.g. lower weight to symbols from goal!

Combinations
» Interleave different schemes
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Influences on E

DISCOUNT

» Different experts (heuristic evaluation functions)
» Only one expert per saturation phase

Otter

» Interleaves size/age selection
» Larry Wos: "The optimal pick-given ration is 57

Waldmeister
» Larry is right in general, wrong in detalil
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The Second System Effect

The general tendency is to over-design the second system,
using all the ideas and frills that were cautiously sidetracked
on the first one. The result, as Ovid says, is a “big pile.”

— Frederick P. Brooks, Jr.
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Given-Clause Selection in E

Domain Specific Language (DSL) for clause selection scheme

Arbitrary number of queues

Each queue ordered by:
» Unparameterized priority function
» Parameterized heuristic evaluation function

Clauses picked using weighted round-robbin scheme
» Example:

4 clauses from queue 1

2 clauses from queue 2

2 clauses from queue 3

Start over at queue 1

v

vYyy

Second-system effect gone wild |
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Cluns salaction First goal-directed

DSL clause selection E14 %
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Literal Selection

Literal selection in superposition:
» In clauses with negative literals, pick any single negative literal
» Only this selected literal is used for inferences
» Otherwise, all maximal literals are used
Intuition:
> f(X)=aAP(a)= g(Y)=f(a)
» We need to solve all conditions before the implication becomes

relevant
» So start with any one condition. ..
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Literal selection

0
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Anonymous Reviewers
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Literal Selection in E

Ca. umpteen hard-coded strategies
Example 1: SelectSmallestNegLit

» Always select the smallest literal

» Idea: Fewer inferences possible
SelectMaxLComplexAvoidPosPred

» Select, in the following order:

>

vVVvYyVvyVvYyYyy

Maximal, pure variable (X # Y)

Maximal, ground, largest size difference

Maximal, non-ground, largest difference

Pure variable

Ground, largest size difference

Non-ground, largest difference

... all things being equal, avoid predicates from positive literals

53



Stephan Schulz

The Influence of Literal Selection
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The Influence of Literal Selection
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Conclusion

E’s core progress has been due to

» Primarily search control
» Secondarily calculus and implementation

Significant interplay between

» Calculus and implementation
» Literal selection and term orderings

Users profit from usability and scope

» Full automation (including parameterization)
» Support for rich(er) logics
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Some Open Points

Understand literal selection

» What makes a good strategy?
» Interaction of literal selection and ordering

Proof search

» Improve goal-directed search
» Better meta-control (“Auto-Mode”)

Can big-data approaches help? |
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Bug reports for E should include:

>

vvyy

Ceterum Censeo. ..

The exact command line leading to the bug
All input files needed to reproduce the bug
A description of what seems wrong

The output of eprover —--version
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