Where, What, and How?

Lessons from the Evolution of E
Stephan Schulz

schulz@eprover.org

Stephan Schulz

10000 *

8000 -]

6000 E18 x]
"EO0.2" -

4000

2000 - :

0 50 100 150 200 250 300

Stephan Schulz

Automated Theorem Proving

?
Al C

..Where

A={As,..., Ay} is a set of axioms
C is the conjecture

..in First-Order Logic with Equality

E

is a

fully automatic
Theorem Prover
for
First-Order Logic
with Equality

Stephan Schulz

Stephan Schulz

Stephan Schulz

(E

From the E NEWS file:

Sat Jul 5 02:28:25 MET DST 1997 : First line of code
written (in BASICS/clb_defines.h). StS

Stephan Schulz

Start of
development

Stephan Schulz

First place in CNF

First place in MIX at CASC 23
at CASC 17

Stephan Schulz

First public

Release (GPL)

Stephan Schulz

10000 *

8000 -]

6000 E18 x]
"EO0.2" -

4000

2000 - :

0 50 100 150 200 250 300

Stephan Schulz

A

Search
Control

Stephan Schulz

What inference

system to use?

How to do
inferences efficiently?

Implementation

A

Search

Control

Where to search

for proofs?

9

A Virtual Tour in Time

E has been under development since 1997
» ~15 years of ATP history
» Mostly one developer
(Mostly) conservative extensions
» New features have been added to the core
» New features can be activated/deactivated
Non-conservative changes

» Scaleability
» Robustness
» Improvements to basic data types

Stephan Schulz

We can simulate many aspects of old versions of E J

Strengths and Limitations

Simulated:

» Calculus

» Search heuristics

» Many alternative algorithms
» Scope/language

» Usability

Not simulated:

» Robustness issues
» Most scaleability features
» Bugs!

Stephan Schulz

Stephan Schulz

Benefits

Historical situation
» Interleaved evolution of features
» Only major steps published
Simulation supports isolation of variables

» Implementation features
» Calculus modifications
» Search control

Agenda

Introduction

Scope and Usability
Implementation
Calculus evolution
Search control

Conclusion

Stephan Schulz

Stephan Schulz

Scope and Usability |

Stephan Schulz

Parser)

H A\ 4

:._..,(Saturation)

Q======4

Stephan Schulz

Stephan Schulz

A

Search
Control

Stephan Schulz

Robustness
&
Scalability

Stephan Schulz

Robustness
&
Scalability

Stephan Schulz

Clausification and
FOF support

Automatic
Auto-Mode Automatic
Strategy
Scheduling

2
o

Stephan Schulz

Full FOF and Clausification

Historical

» First-order = CNF

» Proving = Showing unsatisfiability
Clausification in E

» E 0.82 (2004): Original “naive” clausifier

» E 0.91 (2006): Clausifier with definitions
Implementation

» Based on Nonnengart/Weidenbach: Computing Small Clause

Normal Forms, 2001
» Shared formulas
» Shared definition

Stephan Schulz

10000
8000

6000

4000

2000 - :

0 50 100 150 200 250 300

20

Stephan Schulz

Robustness
&
Scalability

21

Stephan Schulz

Clausification and
FOF support

Automatic
Auto-Mode Automatic
Strategy
Scheduling

2
)

Automatic Modes

Common properties:
» Analyze problem
» Determine problem class
» Pick strategy or strategies
» Automatically generated from test data
E 0.5 (1999): Auto-Mode
» Pick single best strategy for class
E 1.8 (2013): Auto-Schedule
» Simple portfolio approach
» Try 5 strategies with fixed time allocation
» Greedy schedule generation

23

Stephan Schulz

Stephan Schulz

10000 + ” i T

8000 -

E 1.8 Portfolio

*

6000

E 1.8 Auto o
E 1.8 Best
4000 | R
2000 - R
0

0 50 100 150 200 250 300

24

Stephan Schulz

10000

8000 :

6000

”ITI

1.8 Best 1

4000 ¢ .

2000 - :

0 50 100 150 200 250 300

24

Stephan Schulz

Implementation)

25

Stephan Schulz

“Who controls the present controls the past”

Early E: Undeserved reputation for speed
> ...writtenin C (?)
» ...convenient explanation for performance (?)

26

Stephan Schulz

“Who controls the present controls the past”

Early E: Undeserved reputation for speed
> ...writtenin C (?)
» ...convenient explanation for performance (?)

Countermeasures J

Top-down: Tarnish that reputation
» E: A Brainiac Theorem Prover
Bottom-up: Justify that reputation
» Loéchner’s Linear KBO/Polynomial LPO
» Feature Vector Indexing (subsumption)
» Fingerprint Indexing (rewriting and superposition)

26

Stephan Schulz

Calculus

Superposition calculus (evolved from [BG94])

vVvyVvyy

Refutational calculus

Proof state: Set of clauses

Goal: Derive empty clause

Method: Saturation up to redundancy

27

Stephan Schulz

What is a clause?

Multi-set of equational literals

» {f(X) # a,P(a) # $true,g(Y) = f(a)}
Disjunction of literals

» f(X)#av-Pa)Vvg(Y)=f(a)
Conditional rewrite-rule

» f(X)=aAP(a)= g(Y)=f(a)
Special clauses

» The empty clause O = {} is unsatisfiable
» Unit clauses s = t are potential rewrite rules

28

Stephan Schulz

Inferences

Generating inferences

» 1-2 premises generate new clause
» Superposition, equality resolution, equality factoring

Necessary evil]

Contracting/simplifying inferences

» Replace or remove main premise
» Rewriting, subsumption, ...

Expensive, but well worth it J

29

Stephan Schulz

The Given-Clause Algorithm

P » Aim: Move everything
(processed clauses) from U to P

V)
(unprocessed clauses)

30

Stephan Schulz

The Given-Clause Algorithm

P » Aim: Move everything
(processed clauses) from U to P

» Invariant: All
generating inferences
with premises from P
have been performed

V)
(unprocessed clauses)

30

Stephan Schulz

The Given-Clause Algorithm

(processed clauses)

Simpli- s
fiable?

» Aim: Move everything
from Uto P

» Invariant: All
generating inferences
with premises from P
have been performed

» Invariant: P is
interreduced

Simplify

U
(unprocessed clauses)

30

Stephan Schulz

The Given-Clause Algorithm

» Aim: Move everything
from Uto P

» Invariant: All
generating inferences
with premises from P
have been performed

» Invariant: P is
interreduced

» Clauses added to U
are simplified with
respect to P

(processed clauses)

Slm li-
fiable?

Simplify

V)
(unprocessed clauses)

30

Stephan Schulz

31

Stephan Schulz

Given-Clause Loop
while U # {}

g = delete_best(U)
g = simplify(g, P)
ifg=="0
SUCCESS, Proof found
if g is not subsumed by any clause in P (or otherwise redundant w.r.t. P)
P = P\{c € P | ¢ subsumed by (or otherwise redundant w.r.t.) g}
T = {c € P | c can be simplified with g}
P=(P\T)u{g}
T = T Ugenerate(g, P)
foreachce T
¢ = cheap_simplify(c, P)
if ¢ is not trivial
U=Uu{c}
SUCCESS, original U is satisfiable

32

Stephan Schulz

while U # {}
g = delete_best(U)
g = simplify(g, P)
ifg==
SUCCESS, Proof found
if g is not redundant w.r.t. P
P = P\{c € P| credundant w.r.t. g}
T = {c € P | c simplifiable with g}
P=(P\T)u{g}
T = T Ugenerate(g, P)
foreachce T
¢ = cheap_simplify(c, P)
if ¢ is not trivial
U=Uu{c}
SUCCESS, original U is satisfiable

P
(processed clauses)

fiable? I
U
(unprocessed clauses)

33

Stephan Schulz

while U # {}
g = delete_best(U)
g = simplify(g, P)
ifg==
SUCCESS, Proof found
if g is not redundant w.r.t. P
P = P\{c € P| credundant w.r.t. g}
T = {c € P | c simplifiable with g}
P=(P\T)u{g}
T = T Ugenerate(g, P)
foreachce T
¢ = cheap_simplify(c, P)
if ¢ is not trivial
U=Uu{c}
SUCCESS, original U is satisfiable

P
(processed clauses)

fiable? I
U
(unprocessed clauses)

33

Stephan Schulz

while U # {}
g = delete_best(U)
g = simplify(g, P)
ifg==
SUCCESS, Proof found
if g is not redundant w.r.t. P
P = P\{c € P| credundant w.r.t. g}
T = {c € P | c simplifiable with g}
P=(P\T)u{g}
T = T Ugenerate(g, P)
foreachce T
¢ = cheap_simplify(c, P)
if ¢ is not trivial
U=Uu{c}
SUCCESS, original U is satisfiable

P
(processed clauses)

fiable? I
U
(unprocessed clauses)

33

Stephan Schulz

while U # {}
g = delete_best(U)
g = simplify(g, P)
ifg==
SUCCESS, Proof found
if g is not redundant w.r.t. P
P = P\{c € P | credundant w.r.t. g}
T = {c € P | c simplifiable with g}
P=(P\T)u{g}
T = T Ugenerate(g, P)
foreachce T
¢ = cheap_simplify(c, P)
if ¢ is not trivial
U=Uu{c}
SUCCESS, original U is satisfiable

P
(processed clauses)

fiable? I
U
(unprocessed clauses)

33

Stephan Schulz

while U # {}
g = delete_best(U)
g = simplify(g, P)
ifg==
SUCCESS, Proof found
if g is not redundant w.r.t. P
P = P\{c € P | credundant w.r.t. g}
T = {c € P | c simplifiable with g}
P=(P\T)u{g}
T = T Ugenerate(g, P)
foreachce T
¢ = cheap_simplify(c, P)
if ¢ is not trivial
U=Uu{c}
SUCCESS, original U is satisfiable

P
(processed clauses)

fiable? I
U
(unprocessed clauses)

33

Stephan Schulz

while U # {}
g = delete_best(U)
g = simplify(g, P)
if g==
SUCCESS, Proof found
if g is not redundant w.r.t. P
P = P\{c € P | credundant w.r.t. g}
T = {c € P | c simplifiable with g}
P=(P\T)u{g}
T = T Ugenerate(g, P)
foreachce T
¢ = cheap_simplify(c, P)
if ¢ is not trivial
U=Uu{c}
SUCCESS, original U is satisfiable

P
(processed clauses)

Simpli-

fiable? I
(unprocessed clauses)

33

Stephan Schulz

while U # {}
g = delete_best(U)
g = simplify(g, P)
if g==
SUCCESS, Proof found
if g is not redundant w.r.t. P
P = P\{c € P | credundant w.r.t. g}
T = {c € P | c simplifiable with g}
P=(P\T)u{g}
T = T Ugenerate(g, P)
foreachce T
¢ = cheap_simplify(c, P)
if ¢ is not trivial
U=Uu{c}
SUCCESS, original U is satisfiable

P
(processed clauses)

Simpli-

fiable? I
(unprocessed clauses)

33

Stephan Schulz

Run times "E 0.2 FAST"

300

250

200

150

100 -

50

Speed Demon

#
* P K ¥ K’ K KK g

50 100 150 200 250 300
Run times "E 0.2"

35

Stephan Schulz

Stephan Schulz

Speed Demon tamed (?)

10000 * :

8000 - :

6000 "E 0.2 FOF"

4000 |

2000 - .

0 50 100 150 200 250 300

36

10000

8000

6000

4000

2000

Speed Demon tamed (?)

Stephan Schulz

E 1.8 Best

E 0.2 FOF Fast

50 100 150 200 250

36

300

Run times "E 1.8 Best"

300
250
200

150 L

100

On the other Hand

0O 50 100 150 200 250 300
Run times "E 1.8 Best Slow"

37

Stephan Schulz

10000

6000

4000

2000

Some Vindication

Stephan Schulz

E 1.8 Best
E 1.8 Slow

[0}

50

100

150

200

38

250

300

Stephan Schulz

Calculus evolution)

39

Stephan Schulz

Simultaneous
Destructive superposition
equality resolution

AC redundancy

elimination
Contextual

Simplify-Reflect =
Subsumption
Resolution = Claus%

simplification = ...

10000

8000

6000

4000

2000

Calculus evolution alone

Stephan Schulz

"E 0.2 FOF/Calc"

—.nNn.n

— V.o

50 100 150 200 250

41

300

Stephan Schulz

Calculus evolution alone

10000 g
8000 | i
L EisEe
4000 o~ E 0.2 FOF x |
2000 - R

O | | | | |

0 50 100 150 200 250 300

41

Stephan Schulz

42

Stephan Schulz

Clause selection

while U # {}
g = delete_best(U)
g = simplify(g, P)
ifg==
SUCCESS, Proof found
if g is not redundant w.r.t. P
P = P\{c € P| credundant w.r.t. g}
T = {c € P | c simplifiable with g}
P=(P\T)u{g}
T = T Ugenerate(g, P)
foreachce T
¢ = cheap_simplify(c, P)
if ¢ is not trivial
U=Uu{c}
SUCCESS, original U is satisfiable

P
(processed clauses)

fiable? I
U
(unprocessed clauses)

43

Stephan Schulz

Basic Approaches

Symbol counting

» Pick smallest clause in P

> [{f(X) # a, P(a) # $true,g(Y) = f(a)}| = 10
FIFO

» Always pick oldest clause in P
Flexible weighting

» Symbol counting, but give different weight to different symbols
» E.g. lower weight to symbols from goal!

Combinations
» Interleave different schemes

44

Stephan Schulz

Influences on E

DISCOUNT

» Different experts (heuristic evaluation functions)
» Only one expert per saturation phase

Otter

» Interleaves size/age selection
» Larry Wos: "The optimal pick-given ration is 57

Waldmeister
» Larry is right in general, wrong in detalil

45

Stephan Schulz

The Second System Effect

The general tendency is to over-design the second system,
using all the ideas and frills that were cautiously sidetracked
on the first one. The result, as Ovid says, is a “big pile.”

— Frederick P. Brooks, Jr.

46

Stephan Schulz

Given-Clause Selection in E

Domain Specific Language (DSL) for clause selection scheme

Arbitrary number of queues

Each queue ordered by:
» Unparameterized priority function
» Parameterized heuristic evaluation function

Clauses picked using weighted round-robbin scheme
» Example:

4 clauses from queue 1

2 clauses from queue 2

2 clauses from queue 3

Start over at queue 1

v

vYyy

Second-system effect gone wild |

47

Stephan Schulz

Cluns salaction First goal-directed

DSL clause selection E14 %

10000

8000

6000

4000

2000

The Influence of Clause Selection

Stephan Schulz

E0°2°G0als
s =G~y -
= E0.2SC]

50

100 150

200

49

250

300

10000

8000 ;

6000

4000

2000

The Influence of Clause Selection

Stephan Schulz

F. 1.8 Best

3

E 0.2 Goals

—

50

100 150

49

300

Stephan Schulz

Literal Selection

Literal selection in superposition:
» In clauses with negative literals, pick any single negative literal
» Only this selected literal is used for inferences
» Otherwise, all maximal literals are used
Intuition:
> f(X)=aAP(a)= g(Y)=f(a)
» We need to solve all conditions before the implication becomes

relevant
» So start with any one condition. ..

50

Stephan Schulz

Literal selection

0

Stephan Schulz

Anonymous Reviewers

52

Stephan Schulz

Literal Selection in E

Ca. umpteen hard-coded strategies
Example 1: SelectSmallestNegLit

» Always select the smallest literal

» Idea: Fewer inferences possible
SelectMaxLComplexAvoidPosPred

» Select, in the following order:

>

vVVvYyVvyVvYyYyy

Maximal, pure variable (X # Y)

Maximal, ground, largest size difference

Maximal, non-ground, largest difference

Pure variable

Ground, largest size difference

Non-ground, largest difference

... all things being equal, avoid predicates from positive literals

53

Stephan Schulz

The Influence of Literal Selection

10000 + .

8000 - .

B E 0.2 SmallestNeal it .«
L 0.2 MaxLComplexAvoidPosPred

6000

ps
1

4000

2000 ¢ ,

0 50 100 150 200 250 300

54

Stephan Schulz

The Influence of Literal Selection

10000 + :

8000 | g
E 1.8 Best

C U2 SmdinesiNeygLit

6000

E 0.2 FOF

ps

4000

2000 ¢ ,

0 50 100 150 200 250 300

54

Stephan Schulz

55

Stephan Schulz

Conclusion

E’s core progress has been due to

» Primarily search control
» Secondarily calculus and implementation

Significant interplay between

» Calculus and implementation
» Literal selection and term orderings

Users profit from usability and scope

» Full automation (including parameterization)
» Support for rich(er) logics

56

Stephan Schulz

Some Open Points

Understand literal selection

» What makes a good strategy?
» Interaction of literal selection and ordering

Proof search

» Improve goal-directed search
» Better meta-control (“Auto-Mode”)

Can big-data approaches help? |

57

Stephan Schulz

Bug reports for E should include:

>

vvyy

Ceterum Censeo. ..

The exact command line leading to the bug
All input files needed to reproduce the bug
A description of what seems wrong

The output of eprover —--version

58

	Introduction
	Scope and Usability
	Implementation
	Calculus evolution
	Search control
	Conclusion

