
Performance of Clause Selection Heuristics for
Saturation-Based Theorem Proving

Stephan Schulz and Martin Möhrmann
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Abstract. We analyze the performance of various clause selection heuris-
tics for saturating first-order theorem provers. These heuristics include
elementary first-in/fist-out and symbol counting, but also interleaved
heuristics and a complex heuristic with goal-directed components.
We can both confirm and dispel some parts of developer folklore. Key
results include: (1) Simple symbol counting heuristics beat first-in/first-
out, but by a surprisingly narrow margin. (2) Proofs are typically small,
not only compared to all generated clauses, but also compared to the
number of selected and processed clauses. In particular, only a small
number of given clauses (clauses selected for processing) contribute to
any given proof. However, the results are extremely diverse and there are
extreme outliers. (3) Interleaving selection of the given clause according
to different clause evaluation heuristics not only beats the individual
elementary heuristics, but also their union - i.e. it shows a synergy not
achieved by simple strategy scheduling. (4) Heuristics showing better
performance typically achieve a higher ratio of given-clause utilization,
but even a fairly small improvement leads to better outcomes. There
seems to be a huge potential for further progress.

1 Introduction

Saturating theorem provers for first-order logic try to show the unsatisfiability of
a clause set by systematically enumerating direct consequences and adding them
to the clause set, until either no new (non-redundant) clauses can be generated,
or the empty clause as an explicit witness of inconsistency is found.

At this time, the most powerful provers for first-order logic with equality
are based on saturation. These provers implement saturation by variants of the
given-clause algorithm. In this algorithm, clauses are selected for inferences one
at a time. The order of selection of the given clause for each iteration of the
main loop is a major choice point in the algorithm. While there is significant
folklore about this choice point, we are not aware of a systematic evaluation of
different heuristics for this choice point.

There is also little understanding of the properties of proofs and the proof
induced by different strategies. Previous work was restricted to unit-equational
logic and much smaller search spaces [4].

In this paper, we compare different classical and modern clause selection
heuristics. In particular, we consider the following questions:



– How powerful are different heuristics on different classes of problems?
– How well do different heuristics perform compared to a perfect oracle that

finds the same proofs? Which proportion of selected clauses is contributing
to a given proof?

– How do different heuristics interact when interleaved?
– Can commonly held beliefs about clause selection be supported by data?
– What are typical properties of proofs found by a modern theorem prover?

To obtain data on these questions, we have instrumented the prover E to
efficiently collect data about the ongoing proof search and to print out an analysis
of both the proof object and the complete proof search graph at termination.

This paper is organized as follows. First, we introduce the concept of satura-
tion and briefly describe the given-clause algorithm. We also discuss the basics of
clause evaluation and E’s flexible implementation of clause selection heuristics.
In section 3 we describe the design of the experiments and the particular clause
selection heuristics analyzed. Section 4 contains results on the performance of
different heuristics and their analysis, as well as information on properties and
structures of proofs and proof search. We then conclude the paper.

2 Saturating Theorem Proving

Modern saturating theorem proving started with resolution [17]. It was also a
natural framework for completion-based equational reasoning [7, 6, 1]. The con-
fluence of resolution and completion, implemented e.g. in Otter [12, 13], the
first modern-style high-performance theorem prover, lead to the the still current
equality-based superposition calculus, definitively described by Bachmair and
Ganzinger [2]. Today, systems based on superposition and saturation like Vam-
pire [15, 8], Prover9 [11], SPASS [23] and E [19, 20] define the state of the art in
theorem proving for first-order logic with equality.

Saturating calculi for first-order logic are based on a refutational paradigm,
i.e. the axioms and conjecture are converted into a clause set that is unsatisfiable
if and only if the conjecture is logically implied by the axioms. The calculus
defines a series of inference rules which take one or more (most often two) existing
clauses as premises and produce a new clause as the conclusion. This new clause is
added to the original clause set and is available as a premise for future inferences.
The process stops when either no new non-redundant clause can be derived (in
this case, the clause set is saturated up to redundancy), or when the empty clause
as an explicit witness of unsatisfiability is derived.

Current calculi also include simplification rules which allow the replacement
of some clauses by simpler (and often syntactically smaller) clauses, or even the
complete removal of redundant clauses. Examples include in particular rewriting
(replacement of terms by smaller terms), subsumption (discarding of a clause
implied by a more general clause) and tautology deletion.

In most cases, saturation can, in principle, derive an infinite number of con-
sequences. In these cases, completeness of the proof search requires a certain
notion of fairness, namely that no non-redundant inference is delayed infinitely.



Search state: (U,P )
U contains unprocessed clauses, P contains processed clauses.
Initially, P is empty and all clauses are in U .
The given clause is denoted by g.

while U 6= {}
g = extract best(U)
g = simplify(g, P )
if g == �

SUCCESS, Proof found
if g is not subsumed by any clause in P (or otherwise redundant w.r.t. P )

P = P\{c ∈ P | c subsumed by (or otherwise redundant w.r.t.) g}
T = {c ∈ P | c can be simplified with g}
P = (P\T ) ∪ {g}
T = T ∪ generate(g, P )
foreach c ∈ T

c = cheap simplify(c, P )
if c is not trivial

U = U ∪ {c}
SUCCESS, original U is satisfiable

Remarks: extract best(U) finds and extracts the clause with the best heuristic eval-
uation from U . This is the choice point we are particularly interested in this paper.

Fig. 1: The given-clause algorithm as implemented in E

The superposition calculus is the current state of the art in saturating the-
orem proving. It subsumes earlier calculi like resolution, paramodulation, and
unfailing completion. In the superposition calculus, inferences can be restricted
to maximal terms of maximal literals using a term ordering, and optionally to
selected negative literals using a literal selection scheme. All systems we are
currently aware of determine a fixed term ordering and literal selection scheme
before saturation starts, either by user input or automatically after analyzing
the problem.

2.1 Saturation Algorithms

Saturation algorithms handle the problem of organizing the search through the
space of all possible derivations. The simplest and obviously fair algorithm is
level saturation. Given a clause set C0, level saturation computes the set of all
direct consequences D0 of clauses in C0. The union C1 = C0∪D0 then forms the
basis for the next iteration of the algorithm. Level saturation does not support
heuristic guidance, and we are not aware of any current or competitive system
built on the basis of level saturation. To our knowledge level saturation has never
been implemented with modern redundancy elimination techniques.

At the other extreme, a single step algorithm performs just one inference at
a time, adding the consequence to the set and making it available for further



inferences (and potential simplification). The major disadvantage of the single-
step algorithm is the book-keeping necessary. Moreover, while search heuristics
can work at the finest possible granularity, the objects of heuristic evaluations
are potential inferences, not concrete clauses. We are not aware of any system
that uses a per-inference evaluation for search guidance, although e.g. Vampire’s
limited resource strategy [16] discards some potential inferences up-front, based
on a very cursory evaluation.

The most widely used saturation algorithms are variants of the given-clause
algorithm. They split the set of all clauses into two subsets U of unprocessed
clauses and P of processed clause (initially empty). In each iteration, the algo-
rithm selects one clause g from U and adds it to P , computing all inferences in
which g is at least one premise and all other premises are from P . The algorithm
adds the resulting new clauses to U , maintaining the invariant that all inferences
between clauses in P have been performed.

Variants of the given-clause algorithm are at the heart of most of today’s
saturating theorem provers. The two main variants are the so-called Otter loop
and the DISCOUNT loop, popularized by the eponymous theorem provers [13,
3]. In the Otter loop, all clauses are used for simplification. In particular, newly
generated clauses are used to back-simplify both processed and unprocessed
clauses. In the DISCOUNT loop, unprocessed clauses are truly passive, i.e. only
clauses that are selected for processing are used for back-simplification. As a
result, the Otter loop can typically find proofs in less iterations of the main loop,
but each iteration takes longer. In the DISCOUNT loop, contradictory clauses in
U may not be discovered until selected for processing. However, each individual
iteration of the main loop results in less work. In both variants, selection of the
given clause is the main heuristic choice point. In the DISCOUNT loop this
control is at a finer level of granularity, since each iteration of the main loop
represents a smaller part of the proof search.

In addition to Otter, the Otter loop is implemented in Prover9, SPASS and
Vampire. The DISCOUNT loop historically was implemented in systems spe-
cializing in equational reasoning, including Waldmeister [10] and E. It was also
added as an alternative loop to both SPASS and Vampire. There is little evidence
that one or the other variant has a systematic advantage. A comparison in Vam-
pire [16] showed some advantage for the DISCOUNT loop over the plain Otter
loop, but also some advantage of the Otter loop in combination with the limited
resource strategy (which sacrifices completeness for efficiency by discarding some
new clauses) over Vampire’s DISCOUNT loop.

Fig. 1 depicts the DISCOUNT loop as implemented in E. The given-clause
selection is represented by the extract best() function.

2.2 Clause Selection Heuristics

Once term ordering and literal selection scheme are fixed, clause selection, i.e.
the order of processing of the unprocessed clauses, is the main choice point. The
standard implementation assigns a heuristic weight to each clause, and processes



clauses in ascending order of weight, i.e. at each iteration of the main loop the
clause with the lowest weight is selected.

Most modern provers allow at least the interleaving of a best-first (lowest
weight) and breadth-first (oldest clause) search, where the weight is usually
based on (weighted) symbol counting. The ratio of clauses picked by size to
clauses picked by age is also known as the pick-given ratio [12]. E generalizes this
concept. It supports a large number of different parameterized clause evaluation
functions and allows the user to specify an arbitrary number of priority queues
and a weighted round-robin scheme that determines how many clauses are picked
from each queue. This enables us to configure the prover to use nearly arbitrarily
complex clause selection heuristics and makes it possible to simulate nearly any
conventional clause selection heuristic.

In this study, we are, in particular, concerned with the properties of con-
ventional clause selection schemes. Thus, we look at the following basic clause
evaluation heuristics:

– First-in/First-out or FIFO clause selection always prefers the oldest un-
processed clause. In E, this is realized by giving each new clause a pseudo-
evaluation based on a counter that is increased each time a new clause is
generated. If one ignores simplification, a pure FIFO strategy will emulate
level saturation, i.e. it will generate all clauses of a given level before clauses
of the next level. In this case, it should find the shortest possible proof (by
number of generating inferences). Integration of simplification complicates
the issue, although we would still expect FIFO to find short proves. FIFO is
an obviously fair heuristic.

– Symbol counting or SC clause evaluation counts the number of symbols
in a clause, and prefers small clauses. Function symbols and variables can
have uniform or different weights. There are several intuitive reasons why
this should be a good strategy. On the most obvious level, the goal of the
saturation is the derivation of the empty clause, which has zero symbols.
Moreover, clauses with fewer symbols are more general, hence allowing the
system to remove more redundancy via subsumption and rewriting. And
finally, clauses with fewer symbols also have fewer positions, and hence likely
fewer successors, keeping explosion of the search spaces lower than large
clauses. As long as all symbols (or at least all function symbols with non-
zero arity) have positive weight, SC -based strategies are fair (there are only
finitely many different clauses below any given weight).

– Ordering-aware evaluation functions are symbol-counting variants that are
designed to prefer clauses with few maximal terms and maximal literals. In
the general case, this reduces the number of inference positions (and hence
potential successors), decreasing the branching factor in the search space.
In the unit-equational case it will also prefer orientable equations (rules) to
unorientable equations. Rules are much cheaper to apply for simplification.
In E, the refined weight (RW ) heuristic achieves the desired effect by multi-
plying the weight of maximal terms and maximal literals by user-selectable
constant factors.



– A major feature of E is the use of goal-directed evaluation functions (GD).
These give a lower weight to symbols that occur in the conjecture, and a
higher weight to other symbols, thus preferring clauses which are more likely
to be applicable for inferences with the conjecture.

Most of our experiments look at simple heuristics employing only one or
two clause evaluation functions - see the experimental design section. However,
for comparison we also include the globally best clause selection heuristic for E
known to us. This scheme was created via genetic algorithm from a population of
random heuristics spanning the parameter space of manually created heuristics
developed over the last 15 years [18].

In addition to clause selection based on the syntactic form of the clause,
the system can also select clauses based on their origin. In particular, a common
recommendation is to first process all the initial clauses, before any of the derived
clauses is picked.

3 Experimental Design

We added the ability to efficiently record compact internal proof objects in E 1.8.
The overhead for proof recording is minimal and barely measurable [20]. We
have now slightly extended the internal representation of the proof search to be
able to record all processed given clauses, thus enabling the prover to provide
more detailed statistics on the quality of clause selection. Other statistics were
obtained by analyzing the existing proof object, and by counting operations and
inferences performed during the proof search. The code is part of E version 1.9.1
(pre-release) and will be included in the next release of the prover.

3.1 Computing Environment and Test Set

We used problems from the TPTP [22] library, version v6.3.0. Since we are
interested in the performance of the heuristics for proof search, and since several
of our statistical measures only make sense for proofs, we restricted the problem
set to full first-order (FOF) and clause normal form (CNF) problems that should
be provable, i.e. CNF problems with status Unsatisfiable or Unknown1 and FOF
problems with status Unsatisfiable, ContradictoryAxioms, or Theorem.2

This selection left 13774 problems, 7082 FOF and 6692 CNF problems. FOF
problems were translated to CNF by E dynamically, with (usually short) trans-
lation time included in the reported times.

We report performance results separately for unit problems (all clauses are
unit), Horn problems (all clauses are Horn and at least one clause is a non-
unit Horn clause) and general (there is at least one non-Horn clause), with and

1 Status Unknown is assigned to problems which should be provable, but for which no
machine proof is known.

2 Two trivial syntactic test examples were excluded. They tested floating point syntax
features that at the time of the experiments were incorrectly handled by E.



Table 1: Clause selection heuristics used

Heuristic Description

FIFO First-in/First-out, i.e. oldest clause first
SC12 Symbol counting, function symbols have weight 2, variables have

weight 1
SC11 Symbol counting, both function symbols and variables have weight 1
SC21 Symbol counting, function symbols have weight 2, variables have

weight 1
RW212 Symbol counting, function symbols have weight 2, variables have

weight 1, maximal terms receive double weight.
2SC11/FIFO Interleaved selection: Select 2 out of every 3 clauses according to SC11,

the remaining one with FIFO
5SC11/FIFO Ditto, with a selection ration of 5:1. This is inspired by Larry Wos

comment on Otter (“The optimal pick-given ratio is five”)
10SC11/FIFO Ditto, selection ratio 10:1
15SC11/FIFO Ditto, selection ratio 15:1
GD Individual goal-directed heuristic, extracted from Evolved below
5GD/FIFO GD interleaved 5:1 with FIFO
SC11-PI As SC11, but always process initial clauses first
10SC11/FIFO-PI As 10SC11/FIFO, but always process initial clauses first
Evolved Evolved heuristic, combining 2 goal-directed evaluation functions, two

symbol-counting heuristics, and FIFO. See [18]

without equality. The classification of problems into these types refers to the
clausified form and was performed by E after clausification.

The StarExec Cluster [21] was used for all benchmark runs. Each problem was
executed alone and single threaded on an Intel Xeon E5-2609 processor running
at 2.4 GHz base clock speed. Each node had at least 128 Gigabyte RAM. We
ran the experiments with a per-problem time limit of 300 seconds and, given the
amount of RAM available, without enforced memory limit.

3.2 Claus Selection Heuristics

We tested 40 different clause selection heuristics. From these we selected the 14
heuristics described in Table 1 as sufficiently distinct and reasonably covering
the parameter space we are interested in.

The 14 selected heuristics include basic FIFO and symbol counting, ordering-
aware and goal-directed heuristics, as well as combinations of symbol counting
variants with FIFO. We also tested the performance of a preference for initial
clauses, and include the Evolved heuristic as a benchmark that represents the
current state of the art.

The full data for all 40 strategies and the exact parameters for the provers are
archived and available at http://www.eprover.eu/E-eu/Heuristics.html.
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The large plot shows overall performance (vertical axis is number of proofs found up to
a given time, horizontal axis is run time in seconds). The smaller plots scale interesting
sections of the y-axis to differentiate strategies with similar overall performance.

Fig. 2: Solutions over time for different clause selection heuristics

4 Results

4.1 Global Search Performance

Table 2 summarizes the performance of the 14 different strategies on the full
test set. The Rank column shows the ranking of strategies by total number of
successes within the time limit. The third column shows the number of successes,
as an absolute number and as a fraction of all 13774 problems. The next column
shows how many problems were solved by the corresponding strategy only, not
by any of the other strategies. Finally, the last column shows how many problems
are solved within a 1 second search time, and the fraction of total successes by
that strategy this number represents. Figure 2 visualizes the performance of a
selected subset of strategies over time.

From this data, we can already draw a number of conclusions:



Table 2: Global search performance

Heuristic Rank Successes Successes within 1s
total unique absolute of column 3

FIFO 14 4930 (35.8%) 17 3941 79.9%
SC12 13 4972 (36.1%) 5 4155 83.6%
SC11 9 5340 (38.8%) 0 4285 80.2%
SC21 10 5326 (38.7%) 17 4194 78.7%
RW212 11 5254 (38.1%) 13 5764 79.8%
2SC11/FIFO 7 7220 (52.4%) 24 5846 79.7%
5SC11/FIFO 5 7331 (53.2%) 3 5781 78.3%
10SC11/FIFO 3 7385 (53.6%) 1 5656 77.6%
15SC11/FIFO 6 7287 (52.9%) 6 5006 82.5%
GD 12 4998 (36.3%) 12 5856 78.4%
5GD/FIFO 4 7379 (53.6%) 62 4213 80.2%
SC11-PI 8 6071 (44.1%) 13 4313 86.3%
10SC11/FIFO-PI 2 7467 (54.2%) 31 5934 80.4%
Evolved 1 8423 (61.2%) 593 6406 76.1%

– All performance curves are similar in basic shape, and all strategies find
the bulk of their proofs within the first few seconds. Indeed, most strategies
reach around 80% of their successes within the first second, and even for
the Evolved strategy, more than three quarter of the successes are achieved
within one second.

– FIFO is the weakest of the search strategies. However, even SC11, the best
simple symbol counting heuristic, proves less than 10% more than FIFO.

– There is no evidence that using different weights for function symbols and
variables increases overall performance. Indeed, using a higher weight for
variables markedly decreases performance. However, it changes the part of
the search space explored early, potentially adding more solutions to the
performance of the ensemble of all strategies.

– The ordering-aware RW212 has slightly lower global performance than the
corresponding simple symbol-counting heuristics. This is surprising, since
this and similar strategies have for a long time been major contributors to
E’s collection of standard heuristics.

– All four strategies interleaving simple symbol counting and FIFO perform
much better than the corresponding pure symbol-counting strategy, with the
best one solving more than 2000 extra problems, an increase of nearly 40%.
On the other hand, the spread of performance over the pick-given ratios from
2 to 15 is very small, varying by only about 2%. The best ratio in our tests
for E is not 5 as sometimes anecdotally reported for the Otter loop, but 10.

– For the union of solutions found by SC11 and FIFO (with 300 second time
limit for each), the prover finds only 6329 proofs. Thus, there is real synergy
in the interleaved strategies, which beat not only the individual components
but also their union. We believe this is due to two effects: Symbol counting
selection builds a compact representation of the theory induced by the ax-



Table 3: Number of problems solved in 300 seconds for different problem classes

Type general Horn unit
Equational eq non-eq eq non-eq eq non-eq
Heuristic/Size (8626) (1607) (1011) (1432) (1037) (61)

FIFO 2421 (28%) 907 (56%) 371 (37%) 835 (58%) 335 (32%) 61 (100%)
SC12 2160 (25%) 842 (52%) 432 (43%) 828 (58%) 649 (63%) 61 (100%)
SC11 2369 (27%) 918 (57%) 465 (46%) 853 (60%) 674 (65%) 61 (100%)
SC21 2410 (28%) 978 (61%) 428 (42%) 800 (56%) 649 (63%) 61 (100%)
RW212 2336 (27%) 972 (60%) 429 (42%) 800 (56%) 656 (63%) 61 (100%)
2SC11/FIFO 3809 (44%) 1199 (75%) 576 (57%) 953 (67%) 622 (60%) 61 (100%)
5SC11/FIFO 3798 (44%) 1200 (75%) 606 (60%) 983 (69%) 683 (66%) 61 (100%)
10SC11/FIFO 3803 (44%) 1192 (74%) 617 (61%) 989 (69%) 723 (70%) 61 (100%)
15SC11/FIFO 3732 (43%) 1187 (74%) 612 (61%) 967 (68%) 728 (70%) 61 (100%)
GD 2271 (26%) 819 (51%) 431 (43%) 821 (57%) 595 (57%) 61 (100%)
5GD/FIFO 3860 (45%) 1153 (72%) 606 (60%) 967 (68%) 732 (71%) 61 (100%)
SC11-PI 2894 (34%) 968 (60%) 523 (52%) 913 (64%) 712 (69%) 61 (100%)
10SC11/FIFO-PI 3929 (46%) 1142 (71%) 631 (62%) 986 (69%) 718 (69%) 61 (100%)
Evolved 4477 (52%) 1201 (75%) 712 (70%) 1204 (84%) 768 (74%) 61 (100%)

ioms, thus enabling the prover to traverse larger parts of search space, while
FIFO ensures that no part of the search space is unduly delayed.

– The goal-directed heuristic on its own is not particularly powerful. Its per-
formance is in line with the symbol-counting heuristics. However, it profits
even more from the addition of a FIFO component than the other strategies.

– Processing initial clauses first does indeed boost performance of a strategy.
However, the effect is much stronger for the pure symbol-counting heuristic
than for a strategy that interleaves FIFO selection. The intuitive explanation
is that FIFO selection will bring in all initial clauses relatively early anyways.

– The Evolved strategy significantly outperforms even the best other strategy.

4.2 Search Performance by Problem Class

Table 3 breaks down the performance of the different heuristics by problem class.
Interesting observations are in particular in the unit categories. First, all strate-
gies solved all non-equational unit problems. This is not surprising, since this
category is decidable and comprises only the task of finding one pair of comple-
mentary unifiable literals. In the unit-equality category, FIFO is comparatively
much weaker than in the other categories. Likewise, GD is weak, but makes a
strong showing in the combination with FIFO. Most of the results in the non-
unit problems are in line with the general performance discussed in the previous
section. We do notice that general (i.e. non-Horn) problems with equality are
the hardest class for the tested strategies.



4.3 Proof Size and Structure

We are interested in the properties of proofs actually found by the prover. Par-
ticular properties we are interested in are:

– Is there a substantial difference between proofs found by different heuristics?
– How many of the initial clauses are used in the proof? I.e. what is the size of

the unsatisfiable core of the axioms (and negated conjecture) that the prover
found? In addition to the general interest, this value also provides important
information for tuning pre-search axiom pruning techniques [9] like SInE [5]
and MePo [14].

– How many inferences are in a typical proof, and how many search decisions
contribute to it?
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Proof size scatter plots. Each dot corresponds to one solved problem, with the size of
the proof found by Evolved on the y-axis and the size of the FIFO proof on the X-axis.
Proof size measure in the left is number of given clauses in the proof object, on the
right it is total number of inferences in the proof. Both diagrams where cut off at 100
on each axis for better visibility. The left plot covers 93.8% and the right plot covers
90% of all data points. Only proofs where both strategies need at least 0.02 seconds
are represented. The linear regression lines are 1.0x + 1.44 for the left and 1.0x− 1.72
for the right plot.

Fig. 3: Comparison of proof sizes

In principle, we would expect FIFO to find shorter proofs, since the under-
lying search is breadth-first. However, simplification may complicate this, and
symbol-counting heuristics are likely to find more compact representations of
the equational theory earlier, thus using fewer rewrite steps in normalization.

Figure 3 shows a comparison of the size of individual proof objects for proofs
found with FIFO and Evolved, the two strategies with the widest difference in



Table 4: Number of clauses in proofs and proof searches

Heuristic Proofs Given clauses in proof search
found Mean Minimum First quartile Median Third Quartile Maximum

FIFO 4930 2302.5 1 28 157 875 209154
Evolved 8423 3598.7 1 38 188 1506 190309

Heuristic Proofs Total clauses generated
found Mean Minimum First quartile Median Third Quartile Maximum

FIFO 4930 342422.4 0 28 582 16951 21822536
Evolved 8423 356893.0 0 37 1023 38327 26187659

performance. While relative proof sizes are distributed over the whole diagram,
there is a distinct increase in density towards the diagonal, and the computed
regression is very close to the diagonal indeed. On average, FIFO proofs have
slightly smaller number of given clauses, in line with our expectations. Evolved
proofs have slightly fewer inferences. The difference is indeed due to the number
of simplification steps. However, neither effect is very strong, and on average the
proofs found by both heuristics seem to be of very similar sizes.

Figure 4 (top) shows the distribution of the number of initial clauses in proof
objects. On average, there are 12.7 clauses in a non-trivial FIFO proof, and
nearly 50% more initial clauses in an Evolved proof. Note that this statistic
is based on all proofs found by either strategy, not on the subset of problems
solved by both strategies. The bulk of the weight of the distribution is towards
small numbers of initial axioms, with the mean very much influenced by a small
number of combinatorial problems that need over 1000 clauses.

A similar observation holds for the actual proof size as shown in Figure 4
(bottom). By median, Evolved proofs are nearly twice as large than FIFO proofs,
and at the third quartile, Evolved proofs are nearly 3 times as long as FIFO
proofs. Thus, quite a lot of non-trivial proofs can be found. The mean proof size
is again strongly influenced by a small number of combinatorial problems that
require nearly a million inferences.

4.4 Proof Search Statistics and Performance

Table 4 shows the size of the search space constructed and traversed during
the proof search. Comparing this with Fig. 4, we see that the number of given
clauses actually processed to find a proof is orders of magnitude greater than
the number of such clauses in the proof object. However, we also see that the
number of clauses generated is again much larger, i.e. for non-trivial proofs many
clauses derived by the inference engine are never processed.

An interesting measure is the fraction of processed given clauses that end up
in the proof object, i.e. that represent good search decisions that contributed to
the proof. We have plotted this given-clause utilization in Figure 5 (comparing
different heuristics pairwise) and in Figure 6 (showing the distribution of the
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Heuristic Proofs Initial clauses in proof
found Mean Minimum First quartile Median Third quartile Maximum

FIFO 4930 12.7 1 4 6 9 1330
Evolved 8423 18.3 1 5 9 15 1330

For FIFO, there are 104 proofs with more than 60 initial clauses in the proof object,
i.e. the diagram covers 97.9% of all proofs. For Evolved there are 326 proofs with more
than 60 initial clauses, i.e. the diagram covers 96.1% of all proofs.
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Heuristic Proofs Given clauses in proof
found Mean Minimum First quartile Median Third Quartile Maximum

FIFO 4930 784.8 1 4 9 17 933822
Evolved 8423 587.2 1 7 17 49 933819

There are 171 FIFO proofs with more than 200 inferences, i.e. the diagram covers
96.5% of all proofs. There are 658 Evolved proofs with more than 200 inferences, i.e.
the diagram covers 92.2% of all proofs.

Fig. 4: Distribution of the number of initial clauses and inferences in proofs
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Given-clause utilization rate scatter plot. The vertical axis shows the given-clause uti-
lization for Evolved, the horizontal axis for FIFO (left) and 10SC11/FIFO (right).
Only proofs where both strategies need at least 0.02 seconds are represented. The lin-
ear regression lines are 0.992x + 0.111 for the left and 0.957x + 0.043 for the right
plot.

Fig. 5: Comparison of given-clause utilization ratios

ratio over the set of problems solved by four representative strategies). In both
diagrams it is clear that the given-clause utilization is, on average, quite low.
Also, Figure 6 strongly suggests that given-clause utilization is a good predictor
for overall performance, with stronger strategies showing significantly better
ratios.

5 Conclusion

Our analysis has shown the comparative performance of several classical and
modern clause selection heuristics. We can confirm that interleaving symbol-
counting and FIFO selection shows significantly better performance than either
individually. We also found that preferring initial clauses is, on average, a sig-
nificant advantage, and that goal-directed heuristics seem to work best in com-
bination with other heuristics.

Proofs found by different heuristics for the same problem seem to be similar
in size and complexity, however, stronger heuristics are able to find longer and
more complex proofs. The average given-clause utilization as a measure of the
quality of search decisions seems to correlate well with performance. It also shows
us that even the best heuristics are far from optimal, or, to state it positively,
that there still is a lot of room for improvement.
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seconds are considered). The graph shows how many problems are solved with a given-
clause utilization no better than the value on the vertical axis.

Fig. 6: Given clause utilization ratios over problem set

An open question is how far these results can be transferred to provers which
employ the Otter loop, which places more priority to immediate simplification.
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