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Goals for Today

» Practical issues

» Programming language survey

» Execution of languages

> Low-level code vs. high-level code

» Structure of a Compiler
» Refresher

Grammars
Flex/Bison

» Programming exercises
Scientific calculator revisited



This Course in Context

» Formal languages and automata
Basic theory - languages and automata
General grammars
Abstract parsing
Computability

Focus on foundations )

» Compiler construction
Advanced theory - parsers and languages
Tools and their use
Writing parsers and scanners
Code generation and run times

Focus on practical applications J




Practical issues

» Lecture time: Wednesdays, 12:30-16:45
Lecture (with exercises): 12:30-14:45
Lab: 15:00-16:45
Breaks will be somewhat flexible
No lecture on March 25th (I'm snowboarding)
» Grading:
Lecture Compilerbau: Written Exam, grade averaged with Formal
Languages&Automata for module grade
Lab: Pass/Fail based on success in exercises



Computing Environment

» For practical exercises, you will need a complete Linux/UNIX
environment. If you do not run one natively, there are several
options:

You can install VirtualBox (https://www.virtualbox.org) and
then install e.g. Ubuntu (http://www.ubuntu.com/) on a virtual
machine. Make sure to install the Guest Additions

For Windows, you can install the complete UNIX emulation package
Cygwin from http://cygwin.com

For MacOS, you can install fink
(http://fink.sourceforge.net/) or MacPorts
(https://www.macports.org/) and the necessary tools

» You will need at least flex, bison, gcc, grep, sed, AWK, make, and
a good text editor


https://www.virtualbox.org
http://www.ubuntu.com/
http://cygwin.com
http://fink.sourceforge.net/
https://www.macports.org/

Resources

» Course web page
http://wwwlehre.dhbw-stuttgart.de/~sschulz/cb2015.html
> Literature
Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman:
Compilers: Principles, Techniques, and Tools

Kenneth C. Louden: Compiler Construction - Principles and Practice
Ulrich Hedtstiick: Einfiihrung in die theoretische Informatik


http://wwwlehre.dhbw-stuttgart.de/~sschulz/cb2015.html

Exercise: Programming Languages

» Name and describe several modern programming languages!



Modern Programming Languages

Desirable properties of high-level languages
» Expressive and flexible
Close to application domains
Good abstractions
Powerful constructs
Readable
» Compact
Programmer productivity depends on length (!)
Machine independent

Code should run on many platforms
Code should run on evolving platforms

v

v

Strong error-checking

Static
Dynamic

v

Efficiently executable

10



Low-Level Code

» Machine code
Binary
Machine-specific
Operations (and operands) encoded in instruction words
Basic operations only
Manipulates finite number of registers
Direct access to memory locations
Flow control via conditional and unconditional jumps (think goto)
Basic data types (bytes, words)

11
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Low-Level Code

» Machine code
Binary
Machine-specific
Operations (and operands) encoded in instruction words
Basic operations only
Manipulates finite number of registers
Direct access to memory locations
Flow control via conditional and unconditional jumps (think goto)
Basic data types (bytes, words)

Directly executable by processor |

» Assembly languages
Textual representation of machine code
Symbolic names for operations and operands
Labels for addresses (code and data)

Direct one-to-one mapping to machine code )
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Exercise: Low-Level Code — Minimal C

» Predefined global variables
Integers RO, R1, R2, R3, R4
Integer array mem [MAXMEM]
No new variables allowed
» No parameters (or return) for functions
» Flow control: Only if and goto (not while, for, ...)
No blocks after if (only one command allowed)
» Arithmetic only between RO, R1, R2, R3, R4

Result must be stored in one of RO, R1, R2, R3, R4
Operands: Only RO, R1, R2, R3, R4 allowed (no nested
sub-expressions)

Unary incement/decrement is ok (RO++)

RO, R1, R2, R3, R4 can be stored in/loaded from mem, indexed
with a fixed address or one of the variables.

12



Exercise: Minimal C Example

/+* Compute sum from 0 to RO,

void user_code(void)
{

R1 = 0; /% Sum,

R2 =0, /«

R3 = 1,; /%
loop:

if (R2 > RO)

goto end;
R1 = RI+R2;
R2 = R2+R3;

return

result

/+* RO is the input value and limit x/

goto loop;

end:

}

return;

Loop counter x/
For increments x/

value returned x/

in R1 %/

13



Exercise: Low-Level Code

» Write (in Minimal C) the following functions:

A program computing the factorial of RO
A program computing the Fibonacci-number of RO iteratively
A program computing the Fibonacci-number of RO recursively

» You can find a frame for your code at the course web page,

http://wwwlehre.dhbw-stuttgart.de/~sschulz/cb2015.html

14


http://wwwlehre.dhbw-stuttgart.de/~sschulz/cb2015.html

Surprise!

Computers don’t execute high-level languages (directly)!

)
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Execution of high-level programs

Compiled languages

Interpreted languages

Development Time

Run Time
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Execution of high-level programs

Compiled languages

Data

Program

Interpreted languages

Development Time

A\ 4

Compiler

Executable

Results

Run Time
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Execution of high-level programs

Compiled languages

Program

Interpreted languages

A\ 4

Compiler

Data

Executable

Results

Data

Program

Development Time

»| Interpreter

Results

16
Run Time



Compilers

Compilers translate high-level languages into low-level code!

17



Reminder: Syntactic Structure of Computer Languages

» Most computer languages are mostly context-free
Regular: vocabulary
» Keywords, operators, identifiers
> Described by regular expressions or regular grammar
» Handled by (generated or hand-written) scanner/tokenizer/lexer
Context-free: program structure
» Matching parenthesis, block structure, algebraic expressions, ...
» Described by context-free grammar
» Handled by (generated or hand-written) parser
Context-sensitive: e.g. declarations
» Described by human-readable constraints
» Handled in an ad-hoc fashion (e.g. symbol table)

18



High-Level Architecture of a Compiler

Source handler

D

A
Lexical
(token

Syntactic

Sequence of characters:

int w,a,b i a=0b+1;

nalysis
iser)

i

Sequence of tokens:

(id, “int"), (id, "a"), (id, “b"), (semicolon), (id, “a"), (eq), (id, “b"), (plus), (int, “1"), (semicolon)

analysis

(parser)

Semantic

vl

e.g. Abstract syntax tree

analysis

f

e.g. AST+symbol table

Code gen

(several optimisation passes)

eration

I

Variable

v

e.g. assembler code

1d a,b
e, 1
add ¢
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Source Handler

v

Handles input files

v

Provides character-by-character access

» May maintain file/line/colum (for error messages)

v

May provide look-ahead

Result: Sequence of characters (with positions)

20



Lexical Analysis/Scanning

» Breaks program into token

» Typical tokens:
Reserved word (if, while)
Identifier (i, database)
Symbols ({, }, ¢, ), +, -,

Result: Sequence of tokens

21



Exercise: Lexical Analysis

int main(int argc, charx argv|[])

{
RO =0
Rl =0
R2 = 0;
R3 =1
1

n

for(int i = 0; i<VMAXMEM; i++)

user_code ();

return O;

22



Automatisation with Flex

Source handler

F I ex Sequence of characters:
int =, a,b i a=0b+1;
v

Lexical analysis
tokeniser)

Sequence of tokens:

e.g. Abstract syntax tree

(
A4
Syntactic analysis
(parser)
v

Semantic analysis

e.g. AST+symbol table

A 4

Code generation
(several optimisation passes)

(id, “int"), (id, "a"), (id, “b"), (semicolon), (id, “a"), (eq), (id, “b"), (plus), (int, “1"), (semicolon)

Variable

e.g. assembler code

v

1d a,b
e,
add ¢

1
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Syntactical Analysis/Parsing

» Description of the language with a context-free grammar
» Parsing:
Try to build a parse tree/abstract syntax tree (AST)

Parse tree unambiguously describes structure of a program
AST reflects abstract syntax (can e.g. drop parenthesis)

» Methods:

Manual recursive descent parser
Automatic with a table-driven bottom-up parser

Result: Abstract Syntax Tree

24



Automatisation with Bison

Source handler

D

Flex

BiSE‘T‘;

Lexical
(token

Sequence of characters:

int =, a,b i a=0b+1;

nalysis
iser)

i

Sequence of tokens:

(id, "int"), (id, "a"), (id, “b"), (semicolon), (id, “a"), (eq), (id, “b"), (plus), (int, “1"), (semicolon)

analysis

parser)

A

i

e.g. Abstract syntax tree

Semantic analysis

A 4

f

e.g. AST+symbol table

(several optimisation passes)

Code gen

eration

Variable

e.g. assembler code

1d a,b
e,
add ¢

1
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Semantic Analysis

» Analyze static properties of the program

Which variable has which type?
Are all expressions well-typed?
Which names are defined?
Which names are referenced?

» Core tool: Symbol table

Result: Annotated AST

26



Optimization

» Transform Abstract Syntax Tree to generate better code
Smaller
Faster
Both
» Mechanisms
Common sub-expression elimination
Loop unrolling
Dead code/data elimination

Result: Optimized AST

27



Code Generation

» Convert optimized AST into low-level code
» Target languages:

Assembly code

Machine code

VM code (z.B. JAVA byte-code, p-Code)
C (as a “portable assembler”)

Result: Program in target language

28
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Flex Overview

» Flex is a scanner generator
» Input: Specification of a regular language and what to do with it
Definitions - named regular expressions
Rules - patters+actions
(miscellaneous support code)
» Output: Source code of scanner
Scans input for patterns
Executes associated actions
Default action: Copy input to output
Interface for higher-level processing: yylex () function

30



Flex Overview

Miscellanous code

flex+gcc

e scanner Tokenized/
processed

output

Input

31



Flex Overview

Development time

Miscellanous code

flex+gcc

SN g SCanner

Execution time

Tokenized/
processed
output

31



Flex Example Task

» (Artificial) goal: Sum up all numbers in a file, separately for ints and

floats
» Given: A file with numbers and commands
Ints: Non-empty sequences of digits
Floats: Non-empty sequences of digits, followed by decimal dot,
followed by (potentially empty) sequence of digits
Command print: Print current sums
Command reset: Reset sums to 0.

» At end of file, print sums

32



Flex Example Output

Input Output

12 3.1415 int: 12 ("12")

0.33333 float: 3.141500 ("3.1415")
print reset float: 0.333330 ("0.33333")
2 11 Current: 12 : 3.474830

1.5 2.5 print Reset

1 int: 2 ("2")

print 1.0 int: 11 ("11")

float: 1.500000 ("1.5")
float: 2.500000 ("2.5")
Current: 13 : 4.000000
int: 1 (1)

Current: 14 : 4.000000
float: 1.000000 ("1.0")
Final 14 : 5.000000



Basic Structure of Flex Files

» Flex files have 3 sections

Definitions
Rules
User Code

» Sections are separated by %%

» Flex files traditionally use the suffix .1

34



Example Code (definition section)

%hoption noyywrap
DIGIT [0-9]

#{
int intval =0;
double floatval
%

]
o
o

hh

35



Example Code (rule section)

{DIGIT}+ {
printf( "int: %4 (\"%s\")\n", atoi(yytext), yytext );
intval += atoi(yytext);
}
{DIGIT}+"."{DIGIT}* {
printf( "float: %f (\"%s\")\n", atof(yytext),yytext );
floatval += atof(yytext);

}
reset {
intval = 0;
floatval = 0;
printf ("Reset\n");
}
print {
printf ("Current: %d : %f\n", intval, floatval);
}
\nl. {
/* Skip */
}

36



Example Code (user code section)

070,
o
int main( int argc, char **argv )
{
++argv, --argc; /* skip over program name */

if ( argec > 0 )

yyin = fopen( argv[0], "r" );
else

yyin = stdin;
yylex();

printf("Final %d : %f\n", intval, floatval);

37



Generating a scanner

> flex -t numbers.l > numbers.c
> gcc —-c —-o numbers.o numbers.c
> gcc numbers.o -o scan_numbers
> ./scan_numbers Numbers.txt

int: 12 ("12")

float: 3.141500 ("3.1415")

float: 0.333330 ("0.33333")
Current: 12 : 3.474830

Reset

int: 2 ("2")

int: 11 ("11m)
float: 1.500000 ("1.
float: 2.500000 ("2.

5||)
5||)

38



Flexing in detail

> flex -tv numbers.l > numbers.c

scanner options: -tvI8 -Cem

37/2000 NFA states

18/1000 DFA states (50 words)

5 rules

Compressed tables always back-up

1/40 start conditions

20 epsilon states, 11 double epsilon states

6/100 character classes needed 31/500 words
of storage, 0 reused

36 state/nextstate pairs created

24/12 unique/duplicate transitions

381 total table entries needed



Definition Section

» Can contain flex options
» Can contain (C) initialization code
Typically #include () directives
Global variable definitions
Macros and type definitions
Initialization code is embedded in %{ and %}
» Can contain definitions of regular expressions
Format: NAME RE
Defined NAMES can be referenced later

40



Example Code (definition section) (revisited)

%%hoption noyywrap
DIGIT [0-9]
W

int intval = 0;
double floatval

1]
o
o

3z

hh

4



Rule Section

v

v

v

v

v

This is the core of the scanner!
Rules have the form PATTERN ACTION

Patterns are regular expressions
Typically use previous definitions

THERE IS WHITE SPACE BETWEEN PATTERN AND ACTION!

Actions are C code
Can be embedded in { and }
Can be simple C statements
For a token-by-token scanner, must include return statement
Inside the action, the variable yytext contains the text matched by
the pattern
Otherwise: Full input file is processed

42



Example Code (rule section) (revisited)

{DIGIT}+ {
printf( "int: %4 (\"%s\")\n", atoi(yytext), yytext );
intval += atoi(yytext);
}
{DIGIT}+"."{DIGIT}* {
printf( "float: %f (\"%s\")\n", atof(yytext),yytext );
floatval += atof(yytext);

}
reset {
intval = 0;
floatval = 0;
printf ("Reset\n");
}
print {
printf ("Current: %d : %f\n", intval, floatval);
}
\nl. {
/* Skip */
}

43



User code section

» Can contain all kinds of code

v

For stand-alone scanner: must include main ()

v

In main(), the function yylex () will invoke the scanner

v

yylex() will read data from the file pointer yyin (so main() must
set it up reasonably

44



Example Code (user code section) (revisited)

Dot
int main( int argc, char **argv )
{
++argv, --argc; /* skip over program name */
if ( argec > 0 )
yyin = fopen( argv[0], "r" );
else
yyin = stdin;

yylex();

printf("Final %d : %f\n", intval, floatval);
}

45



A comment on comments

» Comments in Flex are complicated
... because nearly everything can be a pattern
» Simple rules:

Use old-style C comments /#* This is a comment */
Never start them in the first column

Comments are copied into the generated code

Read the manual if you want the dirty details

46



Flex Miscellany

» Flex online:

http://flex.sourceforge.net/
Manual: http://flex.sourceforge.net/manual/
REs: http://flex.sourceforge.net/manual/Patterns.html

» make knows flex
Make will automatically generate file.o from file.l
Be sure to set LEX=flex to enable flex extensions
Makefile example:
LEX=flex
all: scan_numbers
numbers.o: numbers.1l

scan_numbers: numbers.o
gcc numbers.o —o scan_numbers

47


http://flex.sourceforge.net/
http://flex.sourceforge.net/manual/
http://flex.sourceforge.net/manual/Patterns.html
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YACC/Bison

» Yacc - Yet Another Compiler Compiler
Originally written =1971 by Stephen
C. Johnson at AT&T
LALR parser generator
Translates grammar into syntax
analyzer

» GNU Bison

Written by Robert Corbett in 1988
Yacc-compatibility by Richard
Stallman

Output languages now C, C++, Java

» Yacc, Bison, BYacc, ... mostly
compatible (POSIX P1003.2)

49



Yacc/Bison Background

» By default, Bison constructs a 1 token Look-Ahead Left-to-right
Rightmost-derivation or LALR(1) parser
Input tokens are processed left-to-right
Shift-reduce parser:

>
>

>
>
>

Stack holds tokens (terminals) and non-terminals

Tokens are shifted from input to stack. If the top of the stack
contains symbols that represent the right hand side (RHS) of a
grammar rule, the content is reduced to the LHS

Since input is reduced left-to-right, this corresponds to a rightmost
derivation

Ambiguities are solved via look-ahead and special rules

If input can be reduced to start symbol, success!

Error otherwise

» LALR(1) is efficient in time and memory
Can parse “all reasonable languages”

For unreasonable languages, Bison (but not Yacc) can also construct
GLR (General LR) parsers

>
>

Try all possibilities with back-tracking
Corresponds to the non-determinism of stack machines

50



Yacc/Bison Overview

» Bison reads a specification file and converts it into (C) code of a
parser

» Specification file: Definitions, grammar rules with actions, support
code

Definitions: Token names, associated values, includes, declarations
Grammar rules: Non-terminal with alternatives, action associated with

each alternative
Support code: e.g. main() function, error handling. ..
Syntax similar to (F)lex

» Sections separated by %%
» Special commands start with %

» Bison generates function yyparse ()

» Bison needs function yylex()
Usually provided via (F)lex

51



Yacc/Bison workflow

Bison Input File
<file>.y

i

{1150)

Flex Input file Definitions file
<file>.| <file>.tab.h

ﬁnclude
R}

Lexer Source
<file>.c

Lexer object
<file>.0

~.

Parser Source
<file>.tab.c

Parser object
<file>.tab.o

Some input '
to process

Final executable
parser

. Some output
produced
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Yacc/Bison workflow

Development time

Bison Input File
<file>.y

i

<file>.1

Flex Input file Definitions file

<file>.tab.h

ﬁnclude
R}

Lexer Source
<file>.c

Lexer object
<file>.0

Some input
to process

~.

Parser Source
<file>.tab.c

Parser object
<file>.tab.o

ﬁ

Execution time

Final executable
parser

. Some output
produced




Example task: Desk calculator

» Desk calculator
Reads algebraic expressions and assignments
Prints result of expressions
Can store values in registers RO-R99

53



Example task: Desk calculator

» Desk calculator
Reads algebraic expressions and assignments

Prints result of expressions
Can store values in registers RO-R99

» Example session:

[Shell] ./scicalc
R10=3%(5+4)

> RegVal: 27.000000
(3.1415%R10+3)

> 87.820500
R9=(3.1415%R10+3)

> RegVal: 87.820500
RO9+R10

> 114.820500

53



Abstract grammar for desk calculator (partial)

GDC — <VN7 VT7 P7 5>

» Vr = {PLUS, MULT,
ASSIGN, OPENPAR,
CLOSEPAR, REGISTER,
FLOAT, ...}

Some terminals are
single characters (+,

Others are complex:
R10, 1.3e7
Terminals ( “tokens™)
are generated by the
lexer

» Vi = {stmt, assign,
expr, term, factor, ...}

> P
stmt

assign
expr

term

factor

assign

expr

REGISTER ASSIGN expr
expr PLUS term

term

term MULT factor
factor

REGISTER

FLOAT

OPENPAR expr CLOSEPAR

—d—4i—1 11

» S = *handwave*

For a single statement, S = stmt
In practice, we need to handle
sequences of statements and empty
input lines (not reflected in the

grammar)
54



Lexer interface

» Bison parser requires yylex() function
» yylex () returns token

Token text is defined by regular expression pattern
Tokens are encoded as integers
Symbolic names for tokens are defined by Bison in generated header
file
» By convention: Token names are all CAPITALS
» yylex() provides optional semantic value of token
Stored in global variable yylval
Type of yylval defined by Bison in generated header file
> Default is int
» For more complex situations often a union

» For our example: Union of double (for floating point values) and
integer (for register numbers)

55



Lexer for desk calculator (1)

/%
Lexer for a minimal "scientific" calculator.
Copyright 2014 by Stephan Schulz, schulz@eprover.org.
This code is released under the GNU General Public Licence
Version 2.
*/

%option noyywrap

13t

#include "scicalcparse.tab.h"

h}

56



Lexer for desk calculator (2)

DIGIT [0-9]

INT {DIGIT}+

PLAINFLOAT {INT}|{INT}[.]|{INT}[.]1{INT}|[.]1{INT}
EXP [eE] (\+|-)7{INT}

NUMBER {PLAINFLOAT}{EXP}?

REG R{DIGIT}{DIGIT}?

Do

"x" {return MULT;}

"+" {return PLUS;}

"=" {return ASSIGN;}
"(" {return OPENPAR;}
")" {return CLOSEPAR;}
\n {return NEWLINE;}



Lexer for desk calculator (3)

{REG} {
yylval.regno = atoi(yytext+1);
return REGISTER;
¥
{NUMBER} {
yylval.val = atof (yytext);
return FLOAT;
¥

[ 1 { /* Skip whitespace*x/ }

/* Everything else is an invalid character.

{ return ERROR;}

Toto

*/

58



Data model of desk calculator

» Desk calculator has simple state

100 floating point registers
RO-R99

» Represented in C as array of doubles:
#define MAXREGS 100

double regfile[MAXREGS];

» Needs to be initialized in support code!

59



Bison code for desk calculator: Header
A
#include <stdio.h>
#define MAXREGS 100
double regfile[MAXREGS];
extern int yyerror(char* err);
extern int yylex(void);
%t
Y%union {

double val;
int regno;

60



Bison code for desk calculator: Tokens

%start stmtseq

%left PLUS
%left MULT
%token ASSIGN
Ytoken OPENPAR
%token CLOSEPAR
%token NEWLINE
%token REGISTER
%token FLOAT
J%token ERROR

Dot



Actions in Bison

» Bison is based on syntax rules with associated actions

Whenever a reduce is performed, the action associated with the rule
is executed

» Actions can be arbitrary C code
» Frequent: semantic actions
The action sets a semantic value based on the semantic value of the
symbols reduced by the rule
For terminal symbols: Semantic value is yylval from Flex
Semantic actions have “historically valuable” syntax
Value of reduced symbol: $$

Value of first symbol in syntax rule body: $1
Value of second symbol in syntax rule body: $2

v

vVvyVvVvyy

Access to named components: $<val>1

62



Bison code for desk calculator: Grammar (1)

stmtseq: /* Empty */
| NEWLINE stmtseq {}
| stmt NEWLINE stmtseq {}
| error NEWLINE stmtseq {}; /* After an error,
start afresh */

v

Head: sequence of statements

v

First body line: Skip empty lines

v

Second body line: separate current statement from rest

v

Third body line: After parse error, start again with new line

63



Bison code for desk calculator: Grammar (2)

stmt: assign {printf("> RegVal: %f\n", $<val>1);}
| expr {printf ("> %f\n", $<val>1);};

assign: REGISTER ASSIGN expr {regfile[$<regno>1] = $<val>3;
$<val>$ = $<val>3;7} ;

expr: expr PLUS term {$<val>$ = $<val>1l + $<val>3;}
| term {$<val>$ = $<val>1;};

term: term MULT factor {$<val>$ = $<val>1 * $<val>3;}
| factor {$<val>$ = $<val>1;};

factor: REGISTER {$<val>$ = regfile[$<regno>1];}
| FLOAT {$<val>$ = $<val>1;}
| OPENPAR expr CLOSEPAR {$<val>$ = $<val>2;};
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Bison code for desk calculator: Support code

int yyerror(char* err)

{
printf ("Error: %s\n", err);
return 0O;
}
int main (int argc, char* argv([])
{
int i;

for(i=0; i<MAXREGS; i++)
{
regfile[i] = 0.0;
}
return yyparse();

}

65



Reminder: Workflow and dependencies

Bison Input File
<file>.y

p

(v,
T
(o)

<file>.|

Flex Input file Definitions file

<file>.tab.h

%nc lude
R}

Lexer Source
<file>.c

Lexer object
<file>.0

Some input
to process

~

Parser Source
<file>.tab.c

Parser object
<file>.tab.o

ﬁ

Final executable
parser

. Some output
produced
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Building the calculator

1. Generate parser C code and include file for lexer

bison -d scicalcparse.y
Generates scicalcparse.tab.c and scicalcparse.tab.h

2. Generate lexer C code

flex -t scicalclex.l > scicalclex.c
3. Compile lexer

gcc —-c¢ -o scicalclex.o scicalclex.c
4. Compile parser and support code

gcc —c -o scicalcparse.tab.o scicalcparse.tab.c
5. Link everything

gcc scicalclex.o scicalcparse.tab.o -o scicalc
6. Fun!

./scicalc
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Exercise

» Exercise 1 (Refresher):
Go to
http://wuwlehre.dhbw-stuttgart.de/~sschulz/cb2015.html
Download scicalcparse.y and scicalclex.1l
Build the calculator
Run and test the calculator
» Exercise 2 (Warm-up):
Add support for division and subtraction /, -
Add support for unary minus (the negation operator -)
» Exercise 3 (Bonus):
Change the desk calculator so that it converts its input into a C

program that will perform the same actions that the calculator
performed interactively!
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Review: Goals for Today

» Practical issues

» Programming language survey

» Execution of languages

> Low-level code vs. high-level code

» Structure of a Compiler
» Refresher

Grammars
Flex/Bison

» Programming exercises
Scientific calculator revisited
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Feedback round

» What was the best part of todays lecture?

» What part of todays lecture has the most potential for
improvement?

Optional: how would you improve it?
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Goals for Today

Refresher

v

v

Reminder: Grammars and Chomsky-Hierarchy
Grammars
Regular languages and expressions
Context-free grammars and languages

v

Syntactic structure of programming languages

v

nanolang

v

Programming exercise: Tokenizing nanolLang
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Refresher

» Some properties of programming languages and implementations
Object oriented vs. Procedural
Imperative vs. Functional
Statically typed vs. dynamically typed (vs. ,,no types")
Compiled vs. interpreted

» High-level level languages

Expressive/Complex functionality
Features correspond to application concepts
Good abstraction

» Low-level languages

Simple operations

Features dictated by hardware architecture
(Close to) what processors can execute
Limited abstraction

72



Refresher

» Structure of compiler
Tokenizer
Parser
Semantic analyis
Optimizer
Code generator

» Some applications of compiler technology
Implementation of programming languages
Parsing of data formats/serialization
» E.g. Word documents - may include optimization!
HTML/XML for web pages/SOA
XSLT document transformers
KTEX
ATCCL

vVvyVvyYyy

» Flex & Bison
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Formal Grammars: Motivation

Formal grammars describe formal languages!
» Derviative approach
A grammar has a set of rules
Rules replace words with words
A word that can be derived from a special start symbol is in the
language of the grammar
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Formal Grammars: Motivation

Formal grammars describe formal languages!

» Derviative approach

A grammar has a set of rules

Rules replace words with words

A word that can be derived from a special start symbol is in the
language of the grammar

In the concrete case of programming languages, “Words of the
language” are syntactically correct programs!
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S—aA, A—bB, B—c¢
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Grammars: Examples

S§—aA, A—>bB, B—e¢
generates ab (starting from S): S — aA — abB — ab
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Grammars: Examples

S§—aA, A—>bB, B—e¢
generates ab (starting from S): S — aA — abB — ab

S—¢e S—aSh
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Grammars: Examples

S§—aA, A—>bB, B—e¢
generates ab (starting from S): S — aA — abB — ab

S—¢e S—aSh
generates a"b"
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Grammars: definition

Noam Chomsky defined a grammar as a quadruple
G={(Wn,V7,P,S) (1)

with
1. the set of non-terminal symbols Vj,
2. the set of terminal symbols VT,

3. the set of production rules P of the form
a— (2)

with a e V*WV* 5e V' V=VyuVr
4. the distinguished start symbol S € Vj.
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Grammars: Shorthand

For the sake of simplicity, we will be using the short form

a— P1|---|Bn replacing a — (1

a — B
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Example: C identifiers

We want to define a grammar

G=(Wn,VT,P,S)

to describe identifiers of the C programming language:

» alpha-numeric words
» which must not start with a digit
» and may contain an underscore (_)
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Example: C identifiers

We want to define a grammar
G =(Wn, V1,P,S) (4)

to describe identifiers of the C programming language:
» alpha-numeric words
» which must not start with a digit
» and may contain an underscore (_)
Vi = {I, R, L, D} (identifier, rest, letter, digit),
Vr = {a,--- ,Z, A - 2,0, ’977}Y

P=A{ | — LR|_R|L|_
R — LR|DR|_R|L|D|_
L — a|--|z[a]---|z
D — o0]---|9}
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Formal grammars: derivation

Derivation: description of operation of grammars

Given the grammar
G =(Vn, V1,P,S), (5)

we define the relation

X=GY (6)
iff Ju,v,p,ge V¥ i (x=upv)AN(p—>q€ P)AN(y =uqv) (7)

pronounced as “G derives y from x in one step”.
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Formal grammars: derivation

Derivation: description of operation of grammars
Given the grammar
G — <VN7 VT7 P7 5>7

we define the relation

X=GY
iff Ju,v,p,g e V*: (x=upv)A(p— g€ P)A(y = uqv)

pronounced as “G derives y from x in one step”.
We also define the relation

x =¢ yiff Iwg, ..., w,

with wp = x, w, =y, wj_1 =¢ w; for i € {1,--- ,n}

pronounced as “G derives y from x (in zero or more steps)”.
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Formal grammars: derivation example |

G=(Wn,V1,P,S)

with
1. Wy ={S},
2. Vr ={o},

3. P={S—0S, S—o0}
4. S=S.
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Formal grammars: derivation example |

G =(Wn, V1,P,S5) (9)
with
1. Wy ={S},
2. Vr ={o},
3. P={S—0S, S—o0}
4. S=S.

Derivations of G have the general form

S$=05S=00S= ---=0"15=0" (10)
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Formal grammars: derivation example |

G =(Wn, V1,P,S5) (9)
with
1. Wy ={S},
2. Vr ={o},
3. P={S—0S, S—o0}
4. S=S.

Derivations of G have the general form
S=05S=00S=---=0"1S=0" (10)
Apparently, the language produced by G (or the language of G) is

L(G) = {0"|n € N; n > 0} (11)
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Formal grammars

with
1. Wy ={S},
2. Vr={0,1},

3. P={S — 051,
4. S =5.

: derivation example Il

G=(Wn,V1,P,S)

S — 01},

(12)
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Formal grammars: derivation example ||

G =(VWn,V7,P,S) (12)
with
1. Wy ={S}
2. Vr={0,1},
3. P={S— 051, S— 01},
4. S=S.

Derivations of G have the general form

S =051=00S11 = --- = 0" 151" 1 = 0"1", (13)
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Formal grammars: derivation example ||

G =(VWn,V7,P,S) (12)
with
1. Wy ={S}
2. Vr={0,1},
3. P={S— 051, S— 01},
4. S=S.

Derivations of G have the general form
S =051=00S11 = --- = 0" 151" 1 = 0"1", (13)
The language of G is
L(G) ={0"1"|n € N; n > 0}. (14)
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Formal grammars: derivation example ||

G =(VWn,V7,P,S)
with
1. Wy ={S}
2. Vr={0,1},
3. P={S— 051, S— 01},
4. 5=S.
Derivations of G have the general form

S=051=00S11 = --- = 0""151" 1 = 0"1",
The language of G is
L(G) ={0"1"|n € N; n > 0}.

Reminder: L(G) is not regular!

(12)
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The Chomsky hierarchy (0)

Given the grammar
G = (VWn, V1, P,S), (15)

we define the following grammar/language classes

» G is of Type 0 or unrestricted
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The Chomsky hierarchy (0)

Given the grammar
G = <VN7 vTu ’Du 5>7

we define the following grammar/language classes

» G is of Type 0 or unrestricted

All grammars are Type 0!

(15)
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The Chomsky hierarchy (1)
G = <VN7 VTv 'D7 5>7
» G is Type 1 or context-sensitive
if all productions are of the form

a1Aar — a1 fBas with A € Vy; a1, a0 € V¥, 3 € VW

Exception:
S — e € Pis allowed if

g e (V\{SHIV\{S})

(17)
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The Chomsky hierarchy (1)
G = <VN7 VTv 'D7 5>7
» G is Type 1 or context-sensitive
if all productions are of the form

a1Aar — a1 fBas with A € Vy; a1, a0 € V¥, 3 € VW

Exception:
S — e € Pis allowed if

g e (V\{SHIV\{S})

If S — e € P, then S is not allowed in any right hand side
Consequence: Rules (almost) never derive shorter words

(17)
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The Chomsky hierarchy (2)
G =(Vn,V7,P,S)

» G is of Type 2 or context-free
if all productions are of the form
A — B with Aec Vy; 8 e VW*

Exception:

S — e € Pisallowed, if 3 € (V\{S}H(V\{S})"

(19)

85



The Chomsky hierarchy (2)
G =(Vn,V7,P,S)

» G is of Type 2 or context-free
if all productions are of the form
A — B with Aec Vy; 8 e VW*

Exception:

S — e € Pisallowed, if 3 € (V\{S}H(V\{S})"

Only single non-terminals are replaced
If S — ¢ € P, then S is not allowed in any right hand side

(19)
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The Chomsky hierarchy (3)

G:<VN5 VTaP75> (22)

» G is of Type 3 or right-linear (regular) if all productions are of the
form
A — aB or (23)

A—awith A, Be Vy,ae Vr

Exception:

S —ec€ P isallowed, if Be Vy\{S} (24)
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The Chomsky hierarchy: exercises

G=(Wn,V1,P,S)

with
1. Vv ={S,A B},
2. Vr = {0},
3. P: S ¢
S — ABA
AB — 00
0A — 000A
A—0

a b~ W N
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The Chomsky hierarchy: exercises

G =(VWn,V7,P,S) (25)
with
1. Vv ={S,A B},
2. Vr = {0},
3. P: S — £ 1
S— ABA 2
AB — 00 3
0A — 000A 4
A—0 5
4. §=S.

a) What is G's highest type?

b) Show how G derives the word 00000.

c) Formally describe the language L(G).

d) Define a regular grammar G’ equivalent to G.
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The Chomsky hierarchy: exercises (cont.)

An octal constant is a finite sequence of digits starting with O followed by
at least one digit ranging from 0 to 7. Define a regular grammar
encoding exactly the set of possible octal constants.
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Context-free grammars

» Reminder: G = (W, V1, P,S) is context-free, if all | — r € P are
of the form A — (8 with
A€ Vyand g € VV*
(special case: S — € € P, then S is not allowed in any /)
» Context-free languages/grammars are highly relevant

Core of most programming languages
Algebraic expressions

XML

Many aspects of human language
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Grammars in Practice

v

Most programming languages are described by context-free
grammars (with extra “semantic”’ constraints)

» Grammars generate languages

v

PDAs and e.g. CYK-Parsing recognize words

v

For compiler we need to ...

identify correct programs
and understand their structure!
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Lexing and Parsing

» Lexer: Breaks programs into tokens
Smallest parts with semantic meaning
Can be recognized by regular languages/patterns
Example: 1, 2, 5 are all Integers
Example: i, handle, stream are all Identifiers
Example: >, >=, * are all individual operators

» Parser: Recognizes program structure

Language described by a grammar that has token types as terminals,
not individual characters
Parser builds parse tree
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Our first language: nanolang

v

Simple but Turing-complete language
Block-structured

v

Functions with parameters
Blocks of statements with local variables

Syntax C-like" but simplified
Basic flow control (if, while, return)

v

v

Simple static type system

Integers (64 bit signed)
Strings (immutable)
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# The first ever nanolLang program

Integer main ()

{
print "Hello_World\n";

return 0;
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More Substantial nanoLang Example

Integer hello(Integer repeat, String message)
{
Integer i;
i = 0;
while(i<repeat)
{ .
print message;
i = i+1;
}

return O;

}

Integer main()

{
hello (10, "Hello\n");

return O;
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nanolang Lexical Structure

Reserved words:

v

if, while, return, print, Integer, String

Comments: # to the end of the line

v

v

Variable length tokens:
Identifier (letter, followed by letters and digits)
Strings (enclosed in double quotes ("This is a string”)
Integer numbers (non-empty sequences of digits)
Other tokens:
Brackets: (,), {,}
Operators: +, -, *, /
Comparison operators: >, >=, <, <=, I=
Equal sign = (used for comparison and assignments!)
Separators: ,, ;

v
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nanolLang Program Structure

» A nanolLang program consists of a number of definitions
Definitions can define global variables or functions
All symbols defined in the global scope are visible everywhere in the
global scope
» Functions accept arguments and return values
Functions consit of a header and a statement blocks
Local variables can be defined in statement blocks
» Statements:
if: Bedingte Ausfiihrung
while: Schleifen
return: Return value from function
print: Print value to Screen
Assignment: Set variables to values
Function calls (return value ignored)
» Expressions:
Integers: Variables, numbers, +,-,%,/
Booleans: Compare two values of equal type
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» Write a recursive and an iterative implementation of Fibonacci
numbers in nanolang
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nanolLang Grammar (Bison format) (0 -tokens)

Jstart prog

%token OPENPAR CLOSEPAR
%left MULT DIV

%left PLUS MINUS

%token EQ NEQ LT GT LEQ GEQ
%token OPENCURLY CLOSECURLY
%token SEMICOLON COMA

%token <ident> IDENT

%token <string> STRINGLIT
%token <intval> INTLIT
%token INTEGER STRING
%token IF WHILE RETURN PRINT

%token ERROR
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nanoLang Grammar (Bison format) (1)

prog: /* Nothing */
| prog def

def: vardef
| fundef

vardef: type IDENT SEMICOLON

b

fundef: type IDENT OPENPAR params CLOSEPAR body

b

type: STRING
| INTEGER
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nanoLang Grammar (Bison format) (2)

params: /* empty */
| paramlist

paramlist: type IDENT
| type IDENT COMA paramlist

body: OPENCURLY vardefs stmts CLOSECURLY

b

vardefs: /* empty */
| vardefs vardef

stmts: /* empty */
| stmts stmt
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nanoLang Grammar (Bison format) (3)

stmt: while_stmt
| if_stmt
| ret_stmt
| print_stmt
| assign

| funcall_stmt

while_stmt: WHILE OPENPAR boolexpr CLOSEPAR body

b

if_stmt: IF OPENPAR boolexpr CLOSEPAR body

b

ret_stmt: RETURN expr SEMICOLON

I
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nanoLang Grammar (Bison format) (4)

print_stmt: PRINT expr SEMICOLON

3

assign: IDENT EQ expr SEMICOLON

I

funcall_stmt: funcall SEMICOLON

I

boolexpr: expr EQ expr
expr NEQ expr
expr LT expr

expr LEQ expr

|

|

| expr GT expr
|

| expr GEQ expr
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nanoLang Grammar (Bison format) (5)

funcall

INTLIT

IDENT

STRINGLIT

OPENPAR expr CLOSEPAR
expr PLUS expr

expr MINUS expr

expr MULT expr

expr DIV expr

MINUS expr
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nanoLang Grammar (Bison format) (6)

funcall: IDENT OPENPAR args CLOSEPAR

3

args: /* empty */
| arglist

arglist: expr
lexpr COMA arglist
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Exercise

» Write a flex-based scanner for Example output for Hello World

nanolLang Integer = 277
At minimum, it should output main = 274
the program token by token ( = 258
Bonus: Find a way to keep ) = 259

track of line numbers for { = 270
tokens print = 282
Superbonus: Also keep track  "Hello World\n" = 275
of columns ;= 272
» Reminder: Compiling flex return = 281
programs: 0 = 276
;= 272

flex -t myflex.l > myflex.c

gcc -o myflex myflex.c y=2on



Review: Goals for Today

Refresher

v

v

Reminder: Grammars and Chomsky-Hierarchy
Grammars
Regular languages and expressions
Context-free grammars and languages

v

Syntactic structure of programming languages

v

nanolang

v

Programming exercise: Tokenizing nanolLang
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Feedback round

» What was the best part of todays lecture?

» What part of todays lecture has the most potential for
improvement?

Optional: how would you improve it?
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Goals for Today

» Refresher

» Syntax analysis revisited

The truth about Context-Free Grammars
Derivations and Parse Trees
Abstract Syntax Trees

» Programming exercise: Parsing nanolang
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Refresher

Refresher

v

v

Reminder: Grammars and Chomsky-Hierarchy
Grammars
Regular languages and expressions
Context-free grammars and languages

v

Syntactic structure of programming languages

v

nanolang

v

Programming exercise: Tokenizing nanolLang
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The Truth about Context-Free Grammars (1)

» Reminder: G is of Type 2 or context-free
if all productions are of the form

A— B with Ae Vy; B8 € VW*
Exception:

S — e € Pisallowed, if 8 € (V\{S}H(V\{S})"

Only single non-terminals are replaced
If S — e € P, then S is not allowed in any right hand side

(26)

(27)
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» Question: Is nanolLang context-free?
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The Truth about Context-Free Grammars (2)

» Question: Is nanoLang context-free?

» Question: Is the nanoLang grammar context-free?

112



The Truth about Context-Free Grammars (2)

» Question: Is nanoLang context-free?

» Question: Is the nanoLang grammar context-free?

Yes/No, but ...
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The Truth about Context-Free Grammars (2)

» Question: Is nanoLang context-free?

» Question: Is the nanoLang grammar context-free?

Yes/No, but ...

» Problem:
prog: /* Nothing */
| prog def
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The Truth about Context-Free Grammars (2)

» Question: Is nanoLang context-free?

» Question: Is the nanoLang grammar context-free?

Yes/No, but ...

» Problem:
prog: /* Nothing */
| prog def
» prog is the start symbol

prog — €
prog — prog def
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The Truth about Context-Free Grammars (3)

» Chomsky's original definition:
G is of Type 2 or context-free
if all productions are of the form

A— Bwith Ae Vy; e V* (28)
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The Truth about Context-Free Grammars (3)

» Chomsky's original definition:
G is of Type 2 or context-free
if all productions are of the form

A— Bwith Ae Vy;Be V*

Fact: Every Chomsky-CF-Grammar can be converted into a
FLA-CF-Grammar!
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Exercise: Eliminating € rules

» Consider the following productions:
1. S—e¢
2. S—>AS
3. A—»i=n
» Upper-case letters are non-terminals, S is the start symbol
Specify Vy and V7
Create an equivalent FLA-CF-Grammar

Can you give a general method to convert Chomsky-CF-grammars to
FLA-CF-gammars?
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A Running Example

» We will consider the set of well-formed expressions over x, +, *.(, )
as an example, i.e. L(G) for G as follows
Vv ={E}
VT = {(7 )7 =+, *7X}
Start symbol is E
Productions:
1. E—x
E — (E)
E—-E+E
E—-ExE
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Derivations

Definition: Assume a Grammar G. A derivation of a word w;, in L(G)
is a sequence S = w; —> ... = w,, where S is the start symbol,
and each w; is generated from its predecessor by application of a
production of the grammar

» Example: Consider our running example. We bold the replaced
symbol. The following is a derivation of x 4+ x 4+ x * x:

E

E+ E
E+E+E
E+E+ExE
x+E+ExE
x+x+ExE
x+x+x%*E
X+ X+ X*xX

RN
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Rightmost /Leftmost Derivations

Definition:
» A derivation is called a rightmost derivation, if at any step it
replaces the rightmost non-terminal in the current word.

» A derivation is called a leftmost derivation, if at any step it replaces
the leftmost non-terminal in the current word.

» Examples:
The derivation on the previous slide is neither leftmost nor rightmost.
E—=F+E—E+E+E=—E+E+ExE=
E+E+Exx—=E+4+E+xsxx—=E+x+xsx—=—=x+x+x%x
is a rightmost derivation.

117




Parse trees

Definition: A parse tree for a derivation in a grammar
G = (Vn, V1, P,S) is an ordered, labelled tree with the following
properties:

>

»

»

Each node is labelled with a symbol from Vj U V1

The root of the tree is labelled with the start symbol S.

Each inner node is labelled with a single non-terminal symbol from
Vn

If an inner node with label A has children labelled with symbols
Qi,...,0Q,, then there is a production A — a3 ...a, in P.

The parse tree represents a derivation of the word formed by the
labels of the leaf nodes
It abstracts from the order in which productions are applied.
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Parse trees: Example

Consider the following derivation:
E—E+E—E+E+E—E+E+ExE—=
E+E+Exx—=E+E+xsxx=—=E+x+xxx=x+X+Xx%X
It can be represented by a sequence of parse trees:
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Parse trees: Example

Consider the following derivation:
E—E+E—E+E+E—E+E+ExE=
E+E+Exx—E+E+xsxx—E+x+xsxx—=x+Xx+x%x
It can be represented by a sequence of parse trees:

D,
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Parse trees: Example

Consider the following derivation:
E—E+E—E+E+E—E+E+ExE=
E+E+Exx—E+E+xxx—E+Xx+x*xXx—=x+Xx+Xx%Xx
It can be represented by a sequence of parse trees:
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Parse trees: Example

Consider the following derivation:
E—E+E—E+E+E—E+E+ExE=
E+E+Exx—E+E+xxx—E+x+x*xx—=x+Xx+Xx%xx
It can be represented by a sequence of parse trees:

(=2 @ @)
DI,
DI,
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Parse trees: Example
Consider the following derivation:
E—F+E—E+E+E=—=E+E+ExE=

E+E+Exx—=E+E+xsxx=—=E+x+Xxxx=x+X+Xx%X
It can be represented by a sequence of parse trees:
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Parse trees: Example

Consider the following derivation:
E—=E+E=E+E+E=E+E+ExE=
E+E+Esx—=E4+E+xxx=—=E+x+xxx=X+Xx+Xx%X
It can be represented by a sequence of parse trees:
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Parse trees: Example

Consider the following derivation:
E—=E+E=E+E+E=E+E+ExE=
E+E+Esx—=E4+E+xxx=—=E+x+xxx=X+Xx+Xx%X
It can be represented by a sequence of parse trees:
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Parse trees: Example

Consider the following derivation:
E—=E+E=E+E+E=E+E+ExE=
E+E+Esx—=E4+E+xxx=—=E+x+xxx=X+Xx+Xx%X
It can be represented by a sequence of parse trees:

119



Parse trees: Example

Consider the following derivation:
E—=E+E=E+E+E=E+E+ExE=
E+E+Esx—=E4+E+xxx=—=E+x+xxx=X+Xx+Xx%X
It can be represented by a sequence of parse trees:
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Ambiguity

Definition: A grammar G = (Vy, V7, P, S) is ambiguous, if it has
multiple different parse trees for a word w in L(G).

» Consider our running example with the following productions:
1. E—x
2. E— (E)
3. EE+E
4. E—-ExE

» The following 2 parse trees represent derivations of x + x + x:



Exercise: Ambiguity is worse. . .

» Consider our example ©O) ©
and the parse trees from
the previous slide: OIOIO, OO0
L E—x OCOOEO OO
2. E— (E)
3. E-»E+E ) OO O
4. E—-ExE
» Provide a rightmost derivation for the right tree.
» Provide a rightmost derivation for the left tree.
» Provide a leftmost derivation for the left tree.
» Provide a leftmost derivation for the right tree.
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Exercise: Eliminating Ambiguity

» Consider our running example with the following productions:
1. E—x
2. E— (E)
3. E-E+E
4. E—-ExE
» Define a grammar G’ with L(G) = L(G’) that is not ambiguous,
that respects that * has a higher precedence than +, and that
respects left-associativity for all operators.
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Flex/Bison Interface

» Bison callse function yylex to get the next token
» yylex executes user rules (pattern/action)
User actions return token (integer value)
Additionally: yylval can be set and is available in Bison via the
$$/$1/1dots mechanism
» yylval provides the semantic value of a token
For complex languages: Use a pointer to a struct
» Content: Position, string values, numerical values, ...
Type of yylval if set in Bison file!
%define api.value.type {YourType}
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Grading Exercise 2

» Write a Bison parser for nanolLang

Bonus: Translate nanoLang into Abstract Syntax Trees (will be
required next week!)
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Review: Goals for Today

» Refresher

» Syntax analysis revisited
The truth about Context-Free Grammars
Derivations and Parse Trees
Abstract Syntax Trees
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Feedback round

» What was the best part of todays lecture?

» What part of todays lecture has the most potential for
improvement?

Optional: how would you improve it?
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Goals for Today

Refresher

v

v

Revisiting derivations, parse trees, abstract syntax trees

v

Walk-through: Parsing expressions in practice

v

Programming exercise: ASTs for nanolLang
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Refresher

» Refresher

» Syntax analysis revisited
The truth about Context-Free Grammars
Derivations and Parse Trees
Abstract Syntax Trees
» Programming exercise: Parsing nanolLang (i.e. writing a program
that accepts syntactically correct nanoLang programs and rejects
syntactially incorrect ones (due next week)
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Parse trees

Definition: A parse tree for a derivation in a grammar
G = (Vn, V1, P,S) is an ordered, labelled tree with the following
properties:

>

»

»

Each node is labelled with a symbol from Vj U V1

The root of the tree is labelled with the start symbol S.

Each inner node is labelled with a single non-terminal symbol from
Vn

If an inner node with label A has children labelled with symbols
Qi,...,0Q,, then there is a production A — a3 ...a, in P.

The parse tree represents a derivation of the word formed by the
labels of the leaf nodes
It abstracts from the order in which productions are applied.
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Parse trees: Example

Consider the following derivation:
E—E+E—E+E+E—E+E+ExE—=
E+E+Exx—=E+E+xsxx=—=E+x+xxx=x+X+Xx%X
It can be represented by a sequence of parse trees:
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Parse trees: Example

Consider the following derivation:
E—E+E—E+E+E—E+E+ExE=
E+E+Exx—E+E+xsxx—E+x+xsxx—=x+Xx+x%x
It can be represented by a sequence of parse trees:

D,
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Parse trees: Example

Consider the following derivation:
E—E+E—E+E+E—E+E+ExE=
E+E+Exx—E+E+xxx—E+Xx+x*xXx—=x+Xx+Xx%Xx
It can be represented by a sequence of parse trees:

130



Parse trees: Example

Consider the following derivation:
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E+E+Exx—E+E+xxx—E+x+x*xx—=x+Xx+Xx%xx
It can be represented by a sequence of parse trees:

(=2 @ @)
DI,
DI,
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Parse trees: Example
Consider the following derivation:
E—F+E—E+E+E=—=E+E+ExE=

E+E+Exx—=E+E+xsxx=—=E+x+Xxxx=x+X+Xx%X
It can be represented by a sequence of parse trees:
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Parse trees: Example

Consider the following derivation:
E—=E+E=E+E+E=E+E+ExE=
E+E+Esx—=E4+E+xxx=—=E+x+xxx=X+Xx+Xx%X
It can be represented by a sequence of parse trees:
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Parse trees: Example

Consider the following derivation:
E—=E+E=E+E+E=E+E+ExE=
E+E+Esx—=E4+E+xxx=—=E+x+xxx=X+Xx+Xx%X
It can be represented by a sequence of parse trees:
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Parse trees: Example

Consider the following derivation:
E—=E+E=E+E+E=E+E+ExE=
E+E+Esx—=E4+E+xxx=—=E+x+xxx=X+Xx+Xx%X
It can be represented by a sequence of parse trees:
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Ambiguity

Definition: A grammar G = (Vy, V7, P, S) is ambiguous, if it has
multiple different parse trees for a word w in L(G).

» Consider our running example with the following productions:
1. E—x
2. E— (E)
3. EE+E
4. E—-ExE

» The following 2 parse trees represent derivations of x + x + x:



Exercise: Ambiguity is worse. . .

» Consider our example ©O) ©
and the parse trees from
the previous slide: OIOIO, OO0
L E—x OCOOEO OO
2. E— (E)
3. E-»E+E ) OO O
4. E—-ExE
» Provide a rightmost derivation for the right tree.
» Provide a rightmost derivation for the left tree.
» Provide a leftmost derivation for the left tree.
» Provide a leftmost derivation for the right tree.
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Abstract Syntax Trees

» Abstract Syntax Trees represent the structure of a derivation
without the specific details

» Think: “Parse trees without the syntactic sugar”
» Example:

Parse Tree: Corresponding AST:
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From text to AST in practice: Parsing nanoLang
expressions

v

Example for syntax analysis and building abstract syntax trees

v

Language: nanolLang expressions (without function calls)

v

Structure of the project
Building
Code walk-through

\4

v
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Exercise: Building exprcc

» Go to
http://wwwlehre.dhbw-stuttgart.de/~sschulz/cb2015.html

Download NANOEXPR.tgz

Unpack, build and test the code
To test:

./exprcc exprl.nano
./exprcc --sexpr exprl.nano
./exprcc --dot exprl.nano

v

v

v
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http://wwwlehre.dhbw-stuttgart.de/~sschulz/cb2015.html

exprcc Overview

#include b

flex/bison -—"

gecc e >

linker

Lexer implementation
nanolex.c
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» Test expression: —a+b* (c+d)
» Corresponding AST?
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» Test expression: —a+b* (c+d)
» Corresponding AST?
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Simplified nanolLang expression syntax

INTLIT

IDENT

STRINGLIT

OPENPAR expr CLOSEPAR
expr PLUS expr

expr MINUS expr

expr MULT expr

expr DIV expr

MINUS expr
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expr —> INTLIT

IDENT
STRINGLIT

( expr )
expr + expr
eXpr - expr
expr * expr
expr / expr
- expr
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expr —> INTLIT

IDENT
STRINGLIT

( expr )
expr + expr
expr - expr
expr * expr
expr / expr
- expr

140



Alternative notation

expr —> INTLIT

Question:

IDENT
STRINGLIT

( expr )
expr + expr
expr - expr
expr * expr
expr / expr
- expr

Is the grammar unambiguous?

» How do we solve this?

140



» Code: nanoparse.y token definitions

» The trick with unary -

141



» Code: ast.c, ast.h

142



» Code: nanolex.1

143



» Code: nanoparse.y syntax rules and semantic actions
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Grading Exercise 3

» Extend the nanolang parser to generate abstract syntax trees
nanolang programs
You can use your own parser or extend the expression parser from this
lecture
Due date: Our lecture on April 22nd
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Review: Goals for Today

Refresher

v

v

Revisiting derivations, parse trees, abstract syntax trees

v

Walk-through: Parsing expressions in practice

v

Programming exercise: ASTs for nanolLang
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Feedback round

» What was the best part of todays lecture?

» What part of todays lecture has the most potential for
improvement?

Optional: how would you improve it?
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Goals for Today

Refresher

v

v

Semantic properties
Names, variables, identifiers
Visibility and scopes
Simple types and type systems

v

Symbol tables

» Memory organisation and storage locations
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Refresher

v

Formal definition of parse trees

v

Ambiguity and derivation types

v

Abstract syntax trees
Syntax analysis in practice

nanolang expression parser
Abstract syntax tree datatype and algorithms
Parsing nanolLang expressions with Bison

v

v

Programming exercise: Parsing nanolang into abstract syntax trees
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High-Level Architecture of a Compiler

Source handler

D

Sequence of characters:

int o, a,b i a=0b+1;
A

Lexical analysis
(tokeniser)

i

Sequence of tokens:
(id, “int"), (id, "a"), (id, “b"), (semicolon), (id, “a"), (eq), (id, “b"), (plus), (int, “1"), (semicolon)

Syntactic analysis
(parser)

e.g. Abstract syntax tree

Semantic analysis

f

vl

Variable Type
e.g. AST+symbol table+attributes tr a int
v b b int

Code generation

(several optimisation passes)

1d a,b
e.g. assembler code | 13 o 1

v add ¢
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High-Level Architecture of a Compiler

Source handler
F I e X Sequence of characters:
int =, a,b i a=0b+1;

Lexical analysis
(tokeniser)

i

Sequence of tokens:
(id, "int"), (id, "a"), (id, “b"), (semicolon), (id, “a"), (eq), (id, “b"), (plus), (int, “1"), (semicolon)

A
3 Syntactic analysis
Bispn e

e.g. Abstract syntax tree

C (Eodel s

i

i

Variable Type
e.g. AST+symbol table+attributes tr a int
v b b int
Code generation
(several optimisation passes)
H 1d ab
i eg. assembler code o
v

add ¢
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Group Exercise: Spot the Bugs (1)

Integer funl(Integer i,

{
Integer i;
if(i > 0)
{

print j;

}

¥

Integer main()

{
funl (1, 2);
fun2(1, 2);
return 0;

Integer

)
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Group Exercise: Spot the Bugs (2)

Integer funl(Integer

{

Integer i;
if(i >"0")
{
print j+"12";
}
return 1;
}
Integer main()
{

funl(1, "Hello");
fun2(1, 2, 3);
return 0;

Integer j)
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Group Exercise: Spot the Bugs (3)

Integer funl(Integer i, Integer j)
{

while (j>i)

{

Integer j;

print j;
=i+
}

return 1;
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Semantic constraints of nanolLang (V 1.0)

v

Every name has to be defined before it can be used
Every name can only be defined once in a given scope

Functions must be called with arguments of the right type in the
right order

Operands of comparison operators must be of the same type
Operands of the arithmetic operators must be of type Integer
Every program must have a main()

(Every function must have a return of proper type)
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Managing Symbols

» Properties of identifiers are stored in a symbol table
Name
Type
» Properties of identifiers depend on part of the program under
consideration!

Names are only visible in the scope they are declared in
Names can be redefined in new scopes
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Managing Symbols

» Properties of identifiers are stored in a symbol table
Name
Type
» Properties of identifiers depend on part of the program under
consideration!

Names are only visible in the scope they are declared in
Names can be redefined in new scopes

Symbol tables need to change when traversing the program/AST for
checking properties and generating code!
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Names and Variables

» Definition: A variable is a location in memory (or “in the store”)
that can store a value (of a given type)
Variables can be statically or dynamically allocated
» Typically: global variables are statically allocated (and in the data
segment of the process
> Local variables are dynamically managed and on the stack
» Large data structures and objects are stored in the heap
» Definition: A name is an identifier that identifies a variable (in a
given scope)
The same name can refer to different variables (recursive function
calls)
Different names can refer to the same variables (depends on
programming languages - aliasing
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Scopes and Environments

» The environment establishes a mapping from names to variables
» Static scope: Environment depends on block structure of the
language
In any situation, the name refers to the variable defined in the neares
surrounding block in the program text
Examples: C (mostly), Pascal, Java, modern LISPs (mostly)

» Dynamic scope: Environment depends on calling sequence in
program

Name refers to the same variable it referred to in the calling function
Traditional LISP systems (Emacs LISP)
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Group exercise: Static and dynamic scopes

#include <stdio.h>

int a=10;

int b=10;

#define adder(x) (x)+a

void machwas(int a, int c)

printf(”adder(a)=%d\n", adder(a));
printf(”adder(b)=%d\n", adder(b));
printf(”adder(c)=%d\n", adder(c));
{

int ¢ =

printf(” adder(c):%d\n”, adder(c));

}
int main(void)

machwas (1, 2);
machwas (2, 3);

return 0;

}
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Example: Scopes in nanolLang

Integer i;

Integer funl(Integer loop)

{

Integer i;
i=0;
while (i<loop)
{
i=i+1;
print "Hallo"”;
}
}
Integer main()
{ .
i =5;
funl(i);
}
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Scopes in nanolLang

» Global scope

Global variables
Functions

» Function scope
Function parameters
» Block scope
block-local variables
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Example: Scopes in nanolLang

Integer i;

Integer funl(Integer loop)

{

Integer i;
i=0;
while (i<loop)
{
i=i+1;
print "Hallo"”;
}
}
Integer main()
{ .
i =5;
funl(i);
}
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Walking the AST
D,
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Static type checking

v

Types are associated with variables

v

Types are checked at compile time or development time

v

Advantages:
?

v

Disadvantages:
?

v

Typically used in:
?
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Dynamic type checking

v

Types are associated with values

v

Types are checked at run time

v

Advantages:
?

v

Disadvantages:
?

v

Typically used in:
?
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No type checking

v

Programmer is supposed to know what (s)he does

v

Types are not checked at all

Advantages:
?

v

v

Disadvantages:
?

v

Typically used in:
?
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Exercise: How many types occur in this example?

Integer i;

Integer funl(Integer loop)

{
Integer i;
i=0;
while (i<loop)
{
i=i+1;
print "Hallo"”;
}
}
Integer main()
{
i = b;
funl(i);
}
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Symbol tables

v

Store name (identifier) and type

v

Nested for each scope:
Global scope
Each new scope entered will result in a new symbol table for that
scope, pointing to the preceeding (larger scope)

v

Local operations:
Add name/type (error if already defined)

v

Global operations:
Find name (finds “nearest” matching entry, or error)
Enter new scope (creates a new empty symbol table pointing to the
predecessor (if any)
Leave scope (remove current scope)
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Walking the AST
D,
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Walking the AST
D,

D @D 6
@ o>
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Representing types

» Types table:
Numerical encoding for each type
Recipe for each type
» nanolang basic types are atomic
» Atomic types can also be addressed by name
» Function types are vectors of existing types

| Encoding | Type | Recipe |
> Eg. 0 String atomic
1 Integer atomic
2 Integer fun(Integer, String) | (1, 1, 0)

» Operations:
Find-or-insert type
» Return encoding for a new type
> If type does not exist yet, create it
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Programming Exercise

» Develop data structures for representing nanolLang types

» Develop data structures for implementing nested symbol tables
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Review: Goals for Today

Refresher

v

v

Semantic properties
Names, variables, identifiers
Visibility and scopes
Simple types and type systems

v

Symbol tables

» Memory organisation and storage locations
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Feedback round

» What was the best part of todays lecture?

» What part of todays lecture has the most potential for
improvement?

Optional: how would you improve it?

173



Goals for Today

Refresher

v

v

Symbol Tables in practice

v

Type inference and type checking

v

Exercise: Build symbol tables
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Refresher

» Semantic properties

Names, variables, identifiers
Visibility and scopes
Simple types and type systems

» Symbol tables
» Memory organisation and storage locations
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The Big Picture: Type Checking

» We need to know the type of every expression and variable in the
program
... to detect semantic inconsistencies
...to generate code
» Some types are simple in nanolLang
String constants are type String
Integer constants are type Integer
Results of arithmetic operations are Integer
» Harder: What to do with identifiers?
Type of the return value of a function?
Types of the arguments of a function?
Types of the values of a variable?
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The Big Picture: Type Checking

» We need to know the type of every expression and variable in the
program
... to detect semantic inconsistencies
...to generate code
» Some types are simple in nanolLang

String constants are type String
Integer constants are type Integer
Results of arithmetic operations are Integer

» Harder: What to do with identifiers?

Type of the return value of a function?
Types of the arguments of a function?
Types of the values of a variable?

The answers depend on the definitions in the program!
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Symbol Tables

» Symbol tables associate identifiers and types
» Symbol tables form a hierarchy

Symbols can be redefined in every new context
The “innermost” definition is valid

» Symbol tables are filled top-down

Outermost symbol-table contains global definitions
Each new context adds a new layer
Search for a name is from innermost to outermost symbol table
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Building Symbol Tables

Program Symbol table
Integer ij;

Integer funl(Integer loop)
{

Integer i;

i=0;
while(i<loop)
{
i=i+1;
print "Hallo";
}
}

Integer main()
{
i=25;
fun1(i);
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Program Symbol table
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Building Symbol Tables

Program

Integer i;

Integer funl(Integer loop)

{

}

Integer i;

i=0;
while (i<loop)
{
i=i+1;
print "Hallo";

}

Integer main()

{

i =53
fun1(i);

Symbol table

Integer

funl

(Integer)-~Integer

main

()-Integer
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Integer i;

Integer funl(Integer loop)
{

Integer i;
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while(i<loop)
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Building Symbol Tables

Program
Integer i;

Integer funl(Integer loop)
{

Integer i;

i=0;
while(i<loop)
{

i=i+1;

print "Hallo";

Integer main()
{
i=25;
fun1(i);

Symbol table

Integer

funl

(Integer)-~Integer

main

()-Integer

loop

Integer

Integer

Integer

funl

(Integer)-~Integer

main

()-Integer
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Simplified Type Handling

» Handling complex types directly is cumbersome
» Better: Manage types separately

Types are stored in a separate table
Symbol table only needs to handle indices into type table
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Symbol Tables and Type Tables

Program Symbol table Type table
Integer ij; it 1 1 Integer
funi |2 2 (Integer)-Integer
Integer funl(Integer loop)
{ main |3 3 ()-Integer
Integer ij; loop |1
. i 1
i=0;
while(i<loop) - -
{
i=i+1;
print "Hallo";
}
}
i 1
Integer main() funt |2
{
i=25; main |3
funi(i); - -




Type Inference in nanolLang

» Goal: Determine the (result) type of every expression in the program
» Process: Process AST bottom—up

Constants: “natural” type
Variables: Look up in symbol table
Function calls: Look up in symbol table

» If arguments are not of proper type, error
» Otherwise: return type of the function

Arithmetic expressions:

> |If arguments are Integer, result type is Integer
» Otherwise: error
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Contrast: Aspects of Type Inference in C

v

Arithmetic expressions:
Roughly: arithmetic types are ordered by size (char < int < long <
long long < float < double)
Type of a + b is the greater of the types of a and b

v

Arrays
If ais an array of int, than a[1] is of type int
Pointers

\4

If ais of type char*, then *a is of type char
» Many more cases:

Structures
Enumerations
Function pointers
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Symbol Tables and the AST

Integer i;
Integer funl(Integer loop)
Integer i;

1=0;
while(i<loop)

i=itl;
print "Hallo";

}

Integer main()
{
i=5;
fun1(i);

) (P @D &
,

i

Integer

funl

(Integer)-Integer

main

()-Integer

Loop

Integer

i

Integer

i

Integer

funl

(Integer)“Integer

main

()+Integer
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Implementation Examples

v

main() in nanoparse.y
STBuildAllTables() in semantic.c
» symbols.h and symbols.c

v

v

types.h and types.c
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Grading Exercise 4

Extend your compiler project by computing the relevant symbol tables for
all nodes of your AST
» Develop a type table date type for managing different types
» Define a symbol table data type for managing symbols and their
types
Use a hierarchical structure
Suggested operations:
» EnterScope()
> LeaveScope()
» InserSymbol() (with type)
» FindSymbol() (return entry including type)
[
» Traverse the AST in a top-down fashion, computing the valid
symbol table at each node
» Annotate each AST node with the symbol table valid at that node
At the end, print all symbols and types of the global, top-level symbol
table!
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Example Output

> ncc NANOEXAMPLES/scopes.nano
Global symbols:

i : Integer

funi : (Integer) -> Integer
main : () -> Integer

Types

0: NoType

1: String

2: Integer

3: (Integer) -> Integer
4: () -> Integer
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Review: Goals for Today

» Symbol Tables in practice
» Type inference and type checking

» Exercise: Build symbol tables
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Feedback round

» What was the best part of todays lecture?

» What part of todays lecture has the most potential for
improvement?

Optional: how would you improve it?
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Goals for Today

Refresher

v

v

Excursion: assert() in C

v

Code generation considerations
Parameter passing
Assignments
Calling conventions
Runtime support
Libraries

v

nanolang runtime
Parameter passing
nanolang string semantics
nanolang library functions and OS interaction

v

Exercise: Type checking
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Refresher

v

Symbol Tables in practice (top-down traversal)

v

Type inference and type checking (bottom-up traversal)

v

Example code walk-through

v

Exercise: Build symbol tables
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Excursion: assert ()

» assert() is a facility to help debug programs
Part of the C Standard since C89
To use, #include <assert.h>
> assert(expr) evaluates expr
If expr is false, then an error message is written and the program is
aborted
Otherwise, nothing is done
» Hints:
Particularly useful to check function parameter values
To disable at compile time, define the macro NDEBUG (e.g. with the
compiler option ~DNDEBUG
Useful idiom: assert(expr && "What’s wrong");
More information: man assert
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Semantics of Compiled and Target Language

» Before we can compile a language, we must understand its semantics
» Important questions:

How are parameter passed into functions?
Related: How do assignments work?

» Before we can compile a language, we must understand the target
language and environment

How are parameters and local variables handled?
How does the program interact with the OS and the environment?
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Parameter Passing

» Call by value
Formal parameters become new local variables
Actual parameters are evaluated and used to initialize those variables
Changes to variables are irrelevant after function terminates

» Call by reference
Only references to existing variables are passed
In effect, formal parameters are bound to existing variables
Actual parameters that are not variables themselves are evaluated and
placed in anonymous new variables
Changes to paramters in functions change the original variable

» Call-by-name
Only historically interesting
Semantics mostly similar to call-by-value
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Parameter Passing - Advantages and Disadvantages?

» Call by value?
» Call by reference?
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Parameter Passing - Advantages and Disadvantages?

» Call by value?
» Call by reference?
» For your consideration:

int fun(int a, int b)

{

a++;

b++;

return a+b;
}
int main(void)
{

int i=0;

fun(i,i);

printf("i=%d\n", i);
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Parameter Passing in C/C++/Pascal/Scheme?

» C?

C++7

Pascal?
LISP/Scheme?
Others?

v

v

v

v
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Assignments

» What happens if a = b; is encountered?
If both are integer variables?
If both are string variables?
If both have an object type?
If both are arrays?
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Calling conventions

v

How are paramters values passed at a low level?
Registers?
Stack?
Other?

Who is responsible for preserving registers?
Caller?
Callee?

In which order are parameters passed?

v

v

v

How is the old context (stack frame and PC) preserved and restored?
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Calling conventions

v

How are paramters values passed at a low level?
Registers?
Stack?
Other?

Who is responsible for preserving registers?
Caller?
Callee?

In which order are parameters passed?

v

v

v

How is the old context (stack frame and PC) preserved and restored?

For our nanoLang compiler, we rely on C to handle these things!
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Runtime system and OS Integration

» Runtime system provides the glue between OS and program
Translates OS semantics/conventions to compiled language and back
» Runtime system provides execution support for program semantics

Higher-level functions/data types
Memory management
Library functions

198



Parameter passing and assignments in nanolLang

» Suggestion: All parameter passed “as if” by value

» Integer: Pass by value
» Immutable strings

Can be passed by reference

Need to be memory-managed (reference counting, a job for the
runtime system)

Alternative is not simpler!
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nanoLang OS integration

» Command line arguments
Suggestion: main() takes arbitrary number of string arguments
These are filled from the command line
Spare arguments are represented by the empty string

» Exit and return value
Library function Exit(val) terminates program and returns integer
value
return from main() has the same effect
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nanolang Library Functions

» Suggested function to make things interesting:
StrIsInt(str): Returns 1 if str encodes a valid integer, 0 otherwise
StrToInt(): Converts a string to an integer. If str is not an integer
encoding, result is undefined
IntToStr(int): Returns a string encoding of the given integer
StrLength(str): Returns the lengths of str

» More sugegstions?
String StrFront(str, int) - return first int characters as new
string
String StrRest(str, int) - return all but first int characters
String StrCat(str, str) - concatenate strings, return as new
string
Integer StrToASCII(str) - only for strings of lenght 1, return
ASCII value
String ASCIIToStr(int) - reverse of the above
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nanolang Strings

» Temptation: Use C char*

» Fails as soon as strings can be dynamically created
» Suggestion: Structure with reference counting
String value - the actual string (malloc()ed charx)
Length (maybe)
Reference count - how many places have a reference to the string?

> Increase if string is assigned to a variable or passed to a function
> Decrease, if a variable is reassigned or goes out of scope
» Free string, if this reaches 0
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Grading Exercise 5

Extend your compiler project by computing the types of all expressions in
your system and check type constraints

v

Check that variables are only assigned values of the right type

v

Check that functions are only called with correctly typed parameters

v

Check that operators have compatible types

v

Check that comparisons only happen between expressions of the
same type

v

Bonus: Check that functions (always) return the correct type
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Review: Goals for Today

» Excursion: assert() in C
» Code generation considerations

Parameter passing
Assignments
Calling conventions
Runtime support
Libraries

» nanolang runtime

Parameter passing
nanolLang string semantics
nanolang library functions and OS interaction
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Feedback round

» What was the best part of todays lecture?

» What part of todays lecture has the most potential for
improvement?

Optional: how would you improve it?
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Goals for Today

Refresher
Coding Hints

v

v

v

Code generation nanolLang to C

v

(Simple) Optimizations

v

Exercise: Code generation (1)
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Refresher

> assert()
» General considerations for code generation

Semantics of parameters/assignments
Function calls
Runtime support and libraries

» Special considerations for nanolLang
Strings
Command line processing
Built-in library functions
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Coding hints

» The nanolLang compiler is a non-trivial piece of software

Several modules
Several different data types (AST, Types, Symbols)

» It helps to follow good coding practices
The big stuff: Good code structure

> One function per function
» Not more than one screen page per function

The small stuff

» Clean formatting (including vertical space)

Use expressive names for functions and variables
Reasonable comments (don’t over-comment, though!)

Use assert()

Compile with warnings enables (Makefile: CFLAGS = -Wall)

vvyVvyy
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The Final Phase

Source handler

Lexical analysis
(tokeniser)

v

Sequence of characters:
int i, a, b a=b+1;

Sequence of tokens:
(id, “int"), (id, "a"), (id, "

Syntactic analysis
(parser)

e.g. Abstract syntax tree

Semantic analysis

A 4

e.g. AST+symbol table+attributes

Code generation
(several optimisation passes)

), (semicolon), (id, “a"), (eq), (id, “b"), (plus), (int, 1), (semicolon)

Variable

v

1d a,b
e.g. assembler code | 13 o 1

add ¢
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The Final Phase

Source handler

Sequence of characters:

v
Lexical analysis
(tokeniser)

Sequence of tokens:
(id, “int"), (id, “a"), (id

A4
Syntactic analysis
(parser)

e.g. Abstract syntax tree

v

Semantic analysis

int o, a,b i a=0b+1;

e.g. AST+symbol table+attributes

b"), (semicolon), (id, “a”), (eq), (id,

“b"), (plus), (int, "1"), (semicolon)

Variable

e.g. assembler code

v

1d a,b
e, 1
add ¢
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Code Generation nanoLang to C

» Suggestion: Code generation uses separate phases

Initial boilerplate

Global variable definitions
Function declarations

Constant library code

Translation of function definitions
C main() function
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Name Mangling

» To avoid name conflicts, nanolLang identifer should use a standard
naming scheme
» Suggestion:

Atomic type names are prepended with N_
Function and variable names are prepended with n_
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Initial boilerplate

» Emit constant code needed for each translated nanolLang program
Comment header
Standard system includes
Type definitions
Possibly macro definitions
» Implementation via printing constant string

Easiest way
Alternative: Read from file
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Global variable definitions

» Visibility difference between nanolLang and C
Globally defined nanolLang identifiers are visible throughout the
program
C definitions are visible from the point of definition only
Hence we need to declare variables (and functions) upfront
» Implementation suggestion:

Iterate over all symbols in the global symbol table
For each variable symbol, emit a declaration
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Function declarations

» The same visibility difference between nanolLang and C affects
functions

We need to declare all functions upfront!
» Implementation suggestion:

Iterate over all symbols in the global symbol table
For each function symbol, emit a declaration
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Function declarations

» The same visibility difference between nanolLang and C affects
functions

We need to declare all functions upfront!
» Implementation suggestion:

Iterate over all symbols in the global symbol table
For each function symbol, emit a declaration

Suggestion: For simplicity and consistency, we should insert the
nanolLang standard library functions (Exit (), StrIsInt(), StrTolInt,

..) into the symbol table (and do so before semantic analysis to stop
the user from inadvertently redefining them!)
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Constant library code

» The nanolLang runtime will need various pieces of code
Data types and helper functions to handle e.g. Strings
Implementations of the build-in functions

» Implementation options
Just insert plain C code here (Alternative 0, but this may be lengthy)
Alternative 1: Read this C code from a file
Alternative 2: Just #include the full C code
Alternative 3: #include only header with declarations, then require
linking with a run time library later
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Translation of function definitions

» This is the heart of the compiler!
» Go over the AST and emit a definition for each function

nanolang functions become C functions
Local nanolLang variables become C variables of an appropriate type
nanolang blocks become C blocks
nanolang instructions are translated into equivalent C statement
sequences
Mostly straightforward

> print requires case distinction

» String comparisions require library calls
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Translation of function definitions

» This is the heart of the compiler!
» Go over the AST and emit a definition for each function

nanolang functions become C functions
Local nanolLang variables become C variables of an appropriate type
nanolang blocks become C blocks
nanolang instructions are translated into equivalent C statement
sequences
Mostly straightforward

> print requires case distinction

» String comparisions require library calls

More complex: Proper string handling

216



C main() function

» Generate an appropriate main() function
» Tasks:
Read commandline and initialize parameters for nanoLang main ()

Call nanoLang main
Exit program, returning value from nanolLang main() to OS
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|deas for optimization

v

v

v

Constant subexpression evaluation
Common subexpression elimination
To do this well, we need to identify pure functions!

Shift unneeded computations out of loop

Eliminate computations of unused values

while (i <10)
{

a = 3x%10xi;
b = 3%x10xfun(a);
i=i+1;

}

return a;
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Grading Exercise 6

Extend your compiler project to generate a basic C programm
» Compile nanolLang statements into equivalent C statements
» Compile nanoLang definitions into C declarations and definitions
» Generate a basic main()

» For now, you can treat String as an imutable char* - we'll do the
library next week
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Review: Goals for Today

v

Refresher
Coding Hints

v

v

Code generation nanolLang to C

v

Optimizations

v

Exercise: Code generation (1)
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Feedback round

» What was the best part of todays lecture?

» What part of todays lecture has the most potential for
improvement?

Optional: how would you improve it?
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Goals for Today

> Refresher
» Practical aspects of nanolLang code generation

» An introduction to top-down recursive descent parsing
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Refresher

» Coding Hints
» Code generation nanolLang to C
Name handling
Global definitions
Libraries
Functions

» Optimizations
Constant subexpressions
Common subexpressions (purely functional functions!)
Lift invariant expression out of loops
Eliminate computation of unused results
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Practical code generation for nanolLang
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nanolLang C premable (1)

Automatically generated by the nanolLang compiler ncc.

The bolierplate and library code is released under the GNU General Public
Licence, version 2 or, at your choice, any later version. Other code is
governed by the license of the original source code.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef long long N_Integer;
typedef char *N_String;

#define NANOMAKESTR(s) s
#tdefine NANOSTRASSIGN(I, r) (1) = (r)
#define NANOSTRVAL(s) s

/*

Global user variables x/
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nanolLang C premable (2)

/* Function declarations x/

N_Integer n_Exit(N_.Integer);

N_Integer n_Strisint (N_String);

N_Integer n_StrTolnt(N_String);

N_Integer n_StrLen(N_String);

N_String n_IntToStr(N_Integer);

N_String n_StrFront(N_String, N_Integer);
N_String n_StrRest(N_String, N_Integer);
N_String n_StrCat(N_String, N_String);
N_Integer n_StrToASCII(N_String);
N_String n_ASClIToStr(N_Integer);
N_String n_testfun(N_Integer, N_String);
N_Integer n_main(N_String , N_String);

/* nanolang runtime library code x/

/+ String functions x/

N_String n_StrCat(N_String argl, N_String arg2)

{
size_t len = strlen(argl) + strlen(arg2) + 1;
char *res = malloc(len);

strcpy(res, argl);
strcat(res, arg2);
return res;

[..]



nanolLang and its translation (2)

String testfun(Integer count, N_String n_testfun(N_Integer n_count,
String message) N_String n_message)
{ {
Integer i; N_Integer n_.i = 0;
String res; N_String n_res = 0;
n.i = (0);
i=0; NANO_STRASSIGN( n_res , (NANO.MAKESTR("")));
res=""; n_res = (NANO-MAKESTR(""));
while ((n.i) < (n_count)) {
while (i<count) printf("%s”, NANOSTRVAL ((
NANO_MAKESTR(” Schleifendurchlauf_"))));
print " Schleifendurchlauf."; printf("%Ild”, (n_.i));
print i; printf("%s”, NANOSTRVAL((NANOMAKESTR(”\n" ))));
print "\n"; NANO_STRASSIGN(n_res , (n_.StrCat((n-res),
res = StrCat(res, message); (n-message))));
i=i+1; n_res = (n_StrCat((n_res), (n_message)));
nii= ((n-i) + (1));
return res; }
} return (n_res);
}
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nanolLang and its translation (2)

Integer main(String argl,
String arg2)
{

Integer limit;
limit 10;

if(Strlsint(argl)=1)

limit=StrTolnt(argl);

}

print testfun(limit, arg2);

print "\n";

return 0;

N_Integer n_main(N_String n_argl,

{

N_Integer

N_String n_arg2)

n_limit = 0;
n_limit = (10);
if ((n-Strisint((n-argl))) = (1)) {
n_limit = (n_StrTolnt((n-.argl)));

printf("%s"

printf("%s"”
return (0);

, NANOSTRVAL(( n_testfun ((n_limit),

(n.arg2)))));
, NANO_STRVAL ((NANO_MAKESTR("\n" ))));
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nanolLang C main

/+* C main function x/
int main (int argc, char xargv(])

{

N_String argl = NANOMAKESTR("" );

if (1 < argc) {
argl = NANO_MAKESTR(argv [1]);
}

N_String arg2 = NANO_MAKESTR("");

if (2 < arge) {
arg2 = NANO_MAKESTR(argv [2]);
}

n_main(argl, arg2);
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Basic Idea of Recursive Descent

» One parsing function per non-terminal

» Initial function corresponds to start symbol
» Each function:

Uses an oracle to pick the correct production
Processes the right hand side against the input as follows:
> If the next symbol is a terminal, it consumes that terminal from the
input (if it's not in the input: error)
» If the next symbol is a non-terminal, it calls the corresponding
function
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Basic Idea of Recursive Descent

» One parsing function per non-terminal

» Initial function corresponds to start symbol
» Each function:

Uses an oracle to pick the correct production
Processes the right hand side against the input as follows:
> If the next symbol is a terminal, it consumes that terminal from the
input (if it's not in the input: error)
» If the next symbol is a non-terminal, it calls the corresponding
function

Oracle: Based on next character to be read!
Good case: Every production can be clearly identified
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Basic Idea of Recursive Descent

» One parsing function per non-terminal

» Initial function corresponds to start symbol
» Each function:

Uses an oracle to pick the correct production
Processes the right hand side against the input as follows:
> If the next symbol is a terminal, it consumes that terminal from the
input (if it's not in the input: error)
» If the next symbol is a non-terminal, it calls the corresponding
function

Oracle: Based on next character to be read!

Good case: Every production can be clearly identified
Bad case: Common initial parts of right hand sides — ?

231



Example/Exercise

» Consider the following productions from G;:
S — aA
A — Bb
B — aA
B —e¢
» What is the language produced?

» How can we parse aabb?
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Example/Exercise

» Consider the following productions from G;:
S — aA
A — Bb
B — aA
B —e¢
» What is the language produced?

» How can we parse aabb?

» What happens if we use the following productions from G?
S — aSh
S—ab
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Example/Exercise

» Consider the following productions from G;:
S — aA
A — Bb
B — aA
B —e¢

v

What is the language produced?

v

How can we parse aabb?

What happens if we use the following productions from G,?
S — aSh
S—ab

Productions in G, have common prefixes

v

v
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Example/Exercise

» Consider the following productions from G;:
S — aA
A — Bb
B — aA
B —e¢

v

What is the language produced?

v

How can we parse aabb?
What happens if we use the following productions from G,?
S — aSh
S—ab
Productions in G, have common prefixes
Common prefixes make the oracle work hard(er)
How can we get G; from G,7

v

v
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Example/Exercise

» Consider the following productions from G;:
S — aA
A — Bb
B — aA
B —e¢

v

What is the language produced?

v

How can we parse aabb?
What happens if we use the following productions from G,?
S — aSh
S—ab
Productions in G, have common prefixes
Common prefixes make the oracle work hard(er)
How can we get G; from G,7

v

v

Left factoring!
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Example/Exercise

» Consider the following productions from G;:
S — aA
A — Bb
B — aA
B —e¢

v

What is the language produced?

v

How can we parse aabb?
What happens if we use the following productions from G,?
S — aSh
S—ab
Productions in G, have common prefixes
Common prefixes make the oracle work hard(er)
How can we get G; from G,7

v

v

Left factoring! Plus. ..
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» Left recursion leads to infinite loops in recursive descent parsers
» To parse A, we first need to parse A ...

» Solution: Reformulate grammar

233



Our Running Example

» We will again consider the set of well-formed expressions over
x,+,*.(,) as an example, i.e. L(G) for G as follows
Vv ={E}
VT = {(7 )7 =+, *7X}
Start symbol is E
Productions:
1. E—x
E — (E)
E—-E+E
E—ExE

HwnN



Our Running Example (unambiguous)

» We will again consider the set of well-formed expressions over
x,+,*.(,) as an example, i.e. L(G) for G as follows
VN = {E7 Ta F}
Vi ={(,), % x}
Start symbol is E
Productions:
1. E-E+T
E—-T
T—TxF
T—F
F — (E)
F—x

ocoar~wN



Our Running Example (unambiguous)

» We will again consider the set of well-formed expressions over
x,+,*.(,) as an example, i.e. L(G) for G as follows
VN = {E7 Ta F}
Vi ={(,), % x}
Start symbol is E
Productions:
1. E-E+T
E—-T
T—TxF
T—F
F — (E)
F—x

ocoar~wN

What happens if we want to parse this using recursive descent?




Exercise: Recursive Descent for Expressions

» Consider the following productions:

1.

o0

6.

» Can we find an equivalent grammar that can be top-down parsed?

E—-E+T
E—T
T—TxF
T—F
F — (E)
F — x

» How?
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Grading Exercise 7

Extend your compiler project to generate a basic C programm
» Finish the basic nanoLang compiler

Your program should produce a correct C program that compiles and
implements the nanolLang semantics
A testprogram ( “testprog3.nano”) is on the web site.

» Bonus: Implement full string functionality (including automatic
memory management and garbage collection)
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Feedback round

» What was the best part of todays lecture?

» What part of todays lecture has the most potential for
improvement?

Optional: how would you improve it?
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Goals for Today

» Training exam

» Solution discussion
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Review: Goals for Today

» Training exam

» Solution discussion
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Feedback round

» What was the best part of the course?

» Suggestions for improvements?
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