
E 0.9x

User Manual

–preliminary version–

Stephan Schulz

July 19, 2005

Abstract

E is an equational theorem prover for full clausal logic, based on su-
perposition and rewriting. In this very preliminary manual we first give
a short introduction for impatient new users, and then cover calculus,
control, options and input/output of the prover in some more detail.

Contents

1 Introduction 2

2 Getting Started 2

3 Calculus and Proof Procedure 3
3.1 Calculus . 3
3.2 Proof Procedure . 7

4 Usage 9
4.1 Search Control Heuristics . 9

4.1.1 Priority functions . 9
4.1.2 Generic Weight Functions 12
4.1.3 Clause Evaluation Functions 13
4.1.4 Heuristics . 14

4.2 Term Orderings . 14
4.2.1 Precedence Generation Schemes 16
4.2.2 Weight Generation Schemes 17

4.3 Literal Selection Strategies . 18
4.4 The Watchlist Feature . 19
4.5 Learning Clause Evaluation Functions 20

4.5.1 Creating Knowledge Bases 20

1

4.5.2 Populating Knowledge Bases 21
4.5.3 Using Learned Knowledge 21

4.6 Other Options . 21

5 Input Language 21

6 Output. . . or how to interpret what you see 22
6.1 The Bare Essentials . 22
6.2 Impressing your Friends . 24
6.3 Detailed Reporting . 24
6.4 Requesting Specific Results . 24

A License 26

1 Introduction

This is a short and currently very sketchy documentation to the E equational
theorem prover. E is an purely equational theorem prover for first-order logic
with equality. It is based on paramodulation and rewriting. This means that
E reads a set of formulas and/or clauses and saturates it by systematically
applying a number of inference rules until either all possible inferences have
been performed or until the empty clause has been derived, i.e. the clause set
has been found to be unsatisfiable and thus a conjecture has been proved.

E is still a moving target, but most recent releases have been quite stable,
and the prover is being used productively by several independent groups of
people. This manual should enable you to experiment with the prover and to
use some of its more advanced features.

The manual assumes a working knowledge of refutational theorem proving,
which can be gained from e.g. [CL73]. For a short description of E including
performance data, see [Sch04]. A more detailed description has been published
as [Sch02]. Most papers on E and much more information is available at or a
few hops away from the E homepage, http://www.eprover.org.

Some other provers have influenced the design of E and may be refer-
enced in the course of this manual. These include SETHEO [MIL+97], Ot-
ter [McC94, MW97], SPASS [WGR96, WAB+99], DISCOUNT [DKS97], Wald-
meister [HBF96, HJL99] and Vampire [RV02, RV01].

2 Getting Started

Installation of E should be straightforward. The file README in the main direc-
tory of the distribution contains the necessary information. After building, you
will find the standalone executable E/PROVER/eprover.

E is controlled by a very wide range of parameters. However, if you do not
want to bother with the details, you can leave configuration for a problem to
the prover. To use this feature, use the following command line options:

2

-xAuto Select a literal selection strategy and a selection
heuristic automagically (based on problem fea-
tures).

-tAuto Select a term ordering automagically.
--memory-limit=xx Tell the prover how much memory (measured in

MB) to use at most. In automatic mode E will op-
timize its behaviour for this amount (20 MB will
work, 64 MB is reasonable, 192 MB is what I use.
More is better1, but if you go over your physical
memory, you will probably experience very heavy
swapping.).

Example: If you happen to have a workstation with 64 MB RAM2, the
following command is reasonable:

eprover -xAuto -tAuto --memory-limit=48 PUZ031-1+rm_eq_rstfp.lop

This documentation will probably lag behind the development of the latest
version of the prover for quite some time. To find out more about the options
available, type eprover --help (or consult the source code included with the
distribution).

3 Calculus and Proof Procedure

E is a purely equational theorem prover, based on ordered paramodulation and
rewriting. As such, it implements an instance of the superposition calculus de-
scribed in [BG94]. We have extended the calculus with some stronger contrac-
tion rules and more general approach to literal selection. The proof procedure
is a variant of the given-clause algorithm.

3.1 Calculus

Term(F, V) denotes the set of (first order) terms over a finite set of function
symbols F (with associated arities) and an enumerable set of variables V. We
write t|p to denote the subterm of t at a position p and write t[p ← t′] to
denote t with t|p replaced by t′. An equation s' t is an (implicitly symmetrical)
pair of terms. A positive literal is an equation s ' t, a negative literal is a
negated equation s 6' t. We write s'̇t to denote an arbitrary literal3. Literals

1Emphasis added for E 0.7 and up, which globally cache rewrite steps.
2Yes, this is outdated. If it still applies to you, get a new computer! It will still work ok,

though.
3Nonequational literals are encoded as equations or disequations P (t1, . . . , tn)'̇>. In this

case, we treat predicate symbols as special function symbols that can only occur at the top-
most positions and demand that atoms (terms formed with a top predicate symbol) cannot
be unified with a first-order variable from V , i.e. we treat normal terms and predicate terms
as two disjoint types.

3

can be represented as multi-sets of multi-sets of terms, with s' t represented
as {{s}, {t}} and s 6' t represented as {{s, t}}. A ground reduction ordering >
is a Noetherian partial ordering that is stable w.r.t. the term structure and
substitutions and total on ground terms. > can be extended to an ordering >l

on literals by comparing the multi-set representation of literals with >>>> (the
multi-set-multi-set extension of >).

Clauses are multi-sets of literals. They are usually represented as disjunc-
tions of literals, s1'̇t1∨s2'̇t2 . . .∨sn'̇tn. We write Clauses(F ,P ,V) to denote
the set of all clauses with function symbols F , predicate symbols P and variable
V . If C is a clause, we denote the (multi-)set of positive literals in C by C+ and
the (multi-)set of negative literals in C by C−

The introduction of an extended notion of literal selection has improved the
performance of E significantly. The necessary concepts are explained in the
following.

Definition 3.1 (Selection functions)
sel : Clauses(F ,P ,V) → Clauses(F ,P ,V) is a selection function, if it has the
following properties for all clauses C:

• sel(C) ⊆ C.

• If sel(C) ∩ C− = ∅, then sel(C) = ∅.

We say that a literal L is selected (with respect to a given selection function)
in a clause C if L ∈ sel(C). J

We will use two kinds of restrictions on deducing new clauses: One induced
by ordering constraints and the other by selection functions. We combine these
in the notion of eligible literals.

Definition 3.2 (Eligible literals)
Let C = L ∨ R be a clause, let σ be a substitution and let sel be a selection
function.

• We say σ(L) is eligible for resolution if either

– sel(C) = ∅ and σ(L) is >L-maximal in σ(C) or

– sel(C) 6= ∅ and σ(L) is >L-maximal in σ(selC) ∩ C−) or

– sel(C) 6= ∅ and σ(L) is >L-maximal in σ(sel(C) ∩ C+)).

• σ(L) is eligible for paramodulation if L is positive, sel(C) = ∅ and σ(L) is
strictly >L-maximal in σ(C).

J

The calculus is represented in the form of inference rules. For convenience, we
distinguish two types of inference rules. For generating inference rules, written
with a single line separating preconditions and results, the result is added to
the set of all clauses. For contracting inference rules, written with a double

4

line, the result clauses are substituted for the clauses in the precondition. In
the following, u, v, s and t are terms, σ is a substitution and R, S and T are
(partial) clauses. p is a position in a term and λ is the empty or top-position.
Different clauses are assumed to not share any common variables.

Definition 3.3 (The inference system SP)
Let > be a total simplification ordering (extended to orderings >L and >C on
literals and clauses) and let sel be a selection function. The inference system
SP consists of the following inference rules:

• Equality Resolution:

(ER)
u 6'v ∨R

σ(R)
if σ = mgu(u, v) and σ(u 6'
v) is eligible for resolution.

• Superposition into negative literals:

(SN)
s' t ∨ S u 6'v ∨R

σ(u[p← t] 6'v ∨ S ∨R)

if σ = mgu(u|p, s), σ(s) 6<
σ(t), σ(u) 6< σ(v), σ(s' t)
is eligible for paramodula-
tion, σ(u 6'v) is eligible for
resolution, and u|p /∈ V .

• Superposition into positive literals:

(SP)
s' t ∨ S u'v ∨R

σ(u[p← t]'v ∨ S ∨R)

if σ = mgu(u|p, s), σ(s) 6<
σ(t), σ(u) 6< σ(v), σ(s' t)
is eligible for paramodula-
tion, σ(u 6'v) is eligible for
resolution, and u|p /∈ V .

• Equality factoring :

(EF)
s' t ∨ u'v ∨R

σ(t 6'v ∨ u'v ∨R)

if σ = mgu(s, u), σ(s) 6>
σ(t) and σ(s' t) eligible for
paramodulation.

• Rewriting of negative literals:

(RN)
s' t u 6'v ∨R

s' t u[p← σ(t)] 6'v ∨R
if u|p = σ(s) and σ(s) > σ(t).

5

• Rewriting of positive literals4:

(RP)
s' t u'v ∨R

s' t u[p← σ(t)]'v ∨R

if u|p = σ(s), σ(s) > σ(t), and
if u'v is not eligible for reso-
lution or u 6> v or p 6= λ.

• Clause subsumption:

(CS)
C σ(C ∨R)

C

where C and R are arbitrary
(partial) clauses and σ is a
substitution.

• Equality subsumption:

(ES)
s' t u[p← σ(s)]'u[p← σ(t)] ∨R

s' t

• Positive simplify-reflect5:

(PS)
s' t u[p← σ(s)] 6'u[p← σ(t)] ∨R

s' t R

• Negative simplify-reflect

(NS)
s 6' t σ(s)'σ(t) ∨R

s' t R

• Contextual (top level) simplify-reflect

(CSR)
σ(C ∨R ∨ s

.= t) C ∨ s
.= t

σ(C ∨R) C ∨ s
.= t

where s
.
= t is the negation of

s
.
= t and σ is a substitution

4A stronger version of (RP) is proven to maintain completeness for Unit and Horn prob-
lems and is generally believed to maintain completeness for the general case as well [Bac98].
However, the proof of completeness for the general case seems to be rather involved, as it re-
quires a very different clause ordering than the one introduced [BG94], and we are not aware
of any existing proof in the literature. The variant rule allows rewriting of maximal terms of
maximal literals under certain circumstances:

(RP’)
s' t u'v ∨R

s' t u[p← σ(t)]'v ∨R

if u|p = σ(s), σ(s) > σ(t) and if
u'v is not eligible for resolution or
u 6> v or p 6= λ or σ is not a variable
renaming.

This stronger rule is implemented successfully by both E and SPASS [Wei99].
5In practice, this rule is only applied if σ(s) and σ(t) are >-incomparable – in all other

cases this rule is subsumed by (RN) and the deletion of resolved literals (DR).

6

• Tautology deletion:

(TD)
C

if C is a tautology6.

• Deletion of duplicate literals:

(DD)
s' t ∨ s' t ∨R

s' t ∨R

• Deletion of resolved literals:

(DR)
s 6's ∨R

R

• Destructive equality resolution:

(DE)
x 6'y ∨R

σ(R)
if x, y ∈ V, σ = mgu(x, y)

We write SP(N) to denote the set of all clauses that can be generated with one
generating inference from I on a set of clauses N , DSP to denote the set of all
SP-derivations, and DSP to denote the set of all finite SP-derivations.

J

As SP only removes clauses that are composite with respect to the remaining
set of clauses, the calculus is complete. For the case of unit clauses, it degener-
ates into unfailing completion [BDP89] as implemented in DISCOUNT. E can
also simulate the positive unit strategy for Horn clauses described in [Der91]
using appropriate selection functions.

Contrary to e.g. SPASS, E does not implement special rules for non-equa-
tional literals or sort theories, as we expect this part to be taken care of by
SETHEO in a later combined system. Instead, non-equation literals are encoded
as equations and dealt with accordingly.

3.2 Proof Procedure

Fig. 1 shows a (slightly simplified) pseudocode sketch of the quite straightfor-
ward proof procedure of E7. The set of all clauses is split into two sets, a set

6This rule can only be implemented approximately, as the problem of recognizing tautolo-
gies is only semi-decidable in equational logic. Current versions of E try to detect tautologies
by checking if the ground-completed negative literals imply at least one of the positive literals,
as suggested in [NN93].

7Note that the proof procedure has been further simplified for version 0.8 and up. The
pseudo-code describes the current version.

7

Input: Axioms in U, P is empty
while U 6= ∅ begin

c := select(U)
U := U \ c
Apply (RN), (RP), (NS), (PS), (CSR), (DR), (DD), (DE)
simplify(c,P)
Apply (CS), (ES), (TD)
if c is trivial or subsumed by P then

delete(c)
else if c is the empty clause then

Success: Proof found
stop

else
T := ∅ # Temporary clause set
foreach p ∈ P do

if c simplifies p
P := P \ p
T := T ∪ p

done
end
T := T ∪ e-resolvents(c) # (ER)
T := T ∪ e-factors(c) # (EF)
T := T ∪ paramodulants(c,P) # (SN), (SP)
foreach p ∈ T do

Apply efficiently implemented subset of (RN),
(RP), (NS), (PS), (CSR), (DR), (DD), (DE)
p := cheap simplify(p, P)
Apply (TD) or efficient approximation of it
if p is trivial

delete(p)
else

U := U ∪ cheap simplify(p, P)
fi

end
fi

end
Failure: Initial U is satisfiable, P describes model

Figure 1: Main proof procedure of E

8

P of processed clauses and a set U of unprocessed clauses. Initially, all input
clauses are in in U, and P is empty. The algorithm selects a new clause from U,
simplifies it w.r.t. to P, then uses it to back-simplify the clauses in P in turn. It
then performs equality factoring, equality resolution and superposition between
the selected clause and the set of processed clauses. The generated clauses are
added to the set of unprocessed clauses. The process stops when the empty
clause is derived or no further inferences are possible.

The proof search is controlled by three major parameters: The term ordering
(described in section 4.2), the literal selection function, and the order in which
the select operation selects the next clause to process.

E implements two different classes of term orderings, lexicographic term or-
derings and Knuth-Bendix orderings. A given ordering is determined by instan-
tiating one of the classes with a variety of parameters (described in section 4.2).

Literal selection currently is done according to one of more than 50 prede-
fined functions. Section 4.3 describes this feature.

Clause selection is determined by a heuristic evaluation function, which con-
ceptually sets up a set of priority queues and a weighted round robin scheme
that determines from which queue the next clause is to be picked. The order
within each queue is determined by a priority function (which partitions the
set of unprocessed clauses into one or more subsets) and a heuristic evaluation
function, which assigns a numerical rating to each clause. Section 4.1 describes
the user interface to this mechanism.

4 Usage

4.1 Search Control Heuristics

Search control heuristics define the order in which the prover considers newly
generated clauses. A heuristic is defined by a set of clause evaluation functions
and a selection scheme wich defines how many clauses are selected according
to each evaluation function. A clause evalution function consists of a priority
function and an instance of a generic weight function.

4.1.1 Priority functions

Priority functions define a partition on the set of clauses. A single clause evalu-
ation consists of a priority (which is the first selection criteria) and an evalution.
Priorities are usually not suitable to encode heuristical control knowledge, but
rather are used to express certain elements of a search strategy, or to restrict the
effect of heuristic evaluation functions to certain classes of clauses. It is quite
trivial to add a new priority function to E, so at any time there probably exist
a few not yet documented here.

Syntactically, a large subset of currently available priority functions is de-
scribed by the following rule:

<prio-fun> ::= PreferGroundGoals ||

9

PreferUnitGroundGoals ||
PreferGround ||
PreferNonGround ||
PreferProcessed ||
PreferNew ||
PreferGoals ||
PreferNonGoals ||
PreferUnits ||
PreferNonUnits ||
PreferHorn ||
PreferNonHorn ||
ConstPrio ||
ByLiteralNumber ||
ByDerivationDepth ||
ByDerivationSize ||
ByNegLitDist ||
ByGoalDifficulty ||
SimulateSOS||
PreferHorn||
PreferNonHorn||
PreferUnitAndNonEq||
DeferNonUnitMaxEq||
ByCreationDate||
PreferWatchlist||
DeferWatchlist

The priority functions are interpreted as follows:

PreferGroundGoals: Always prefer ground goals (all negative clauses without
variables), do not differentiate between all other clauses.

PreferUnitGroundGoals: Prefer unit ground goals.

PreferGround: Prefer clauses without variables.

PreferNonGround: Prefer clauses with variables.

PreferProcessed: Prefer clauses that have already been processed once and
have been eleminated from the set of processed clauses due to interreduc-
tion (forward contraction).

PreferNew: Prefer new clauses, i.e. clauses that are processed for the first time.

PreferGoals: Prefer goals (all negative clauses).

PreferNonGoals: Prefer non goals, i.e. facts with at least one positive literal.

PreferUnits: Prefer unit clauses (clauses with one literal).

PreferNonUnits: Prefer non-unit clauses.

10

PreferHorn: Prefer Horn clauses (clauses with no more than one positive liter-
als).

PreferNonHorn: Prefer non-Horn clauses.

ConstPrio: Assign the same priority to all clauses.

ByLiteralNumber: Give a priority according to the number of literals, i.e. al-
ways prefer a clause with fewer literals to one with more literals.

ByDerivationDepth: Prefer clauses which have a short derivation depth, i.e.
give a priority based on the length of the longest path from the clause to
an axiom in the derivation tree. Counts generating inferences only.

ByDerivationSize: Prefer clauses which have been derived with a small num-
ber of (generating) inferences.

ByNegLitDist: Prefer goals to non-goals. Among goals, prefer goals with fewer
literals and goals with ground literals (more exactly: the priority is in-
creased by 1 for a ground literal and by 3 for a non-ground literal. Clauses
with lower values are selected before clauses with higher values).

ByGoalDifficulty: Prefer goals to non-goals. Select goals based on a simple
estimate of their difficulty: First unit ground goals, then unit goals, then
ground goals, then other goals.

SimulateSOS: Use the priority system to simulate Set-Of-Support. This prefers
all initial clauses and all Set-Of-Support clauses. Some non-SOS-clauses
will be generated, but not selected for processing. This is neither well
tested nor a particularly good fit with E’s calculus, but can be used as
one among many heuristics. If you try a pure SOS strategy, you also should
set --restrict-literal-comparisons and run the prover without literal
selection enabled.

PreferHorn: Prefer Horn clauses (note: includes units).

PreferNonHorn: Prefer non-Horn clauses.

PreferUnitAndNonEq: Prefer all unit clauses and all clauses without equational
literal. This was an attempt to model some restricted calculi used e.g. in
Gandalf [Tam97], but did not quite work out.

DeferNonUnitMaxEq: Prefer everything except for non-unit clauses with a max-
imal equational literal (“Don’t paramodulate if its to expensive”). See
above, same result.

ByCreationDate: Return the creation date of the clause as priority. This im-
poses a FIFO equivalence class on clauses. Clauses generated from the
same given clause are grouped together (and can be ordered with any
evaluation function among each other).

11

PreferWatchlist Prefer clauses on the watchlist (see 4.4).

DeferWatchlist Defer clauses on the watchlist (see above).

Please note that careless use of certain priority functions can make the prover
incomplete for the general case.

4.1.2 Generic Weight Functions

Generic weight functions are templates for functions taking a clause and return-
ing a weight (i.e. an estimate of the usefulness) for it, where a lower weight
means that the corresponding clause should be processed before a clause with
a higher weight. A generic weight function is combined with a priority function
and instanciated with a set of parameters to yield a clause evaluation function.

You can specify an instantiated generic weight function as described in this
rule8:

<weight-fun> ::= Clauseweight ’(’ <prio-fun> ’, <int>, <int>,

<float> ’)’ ||

Refinedweight ’(’ <prio-fun> ’, <int>, <int>,

<float>, <float>, <float> ’)’ ||

Orientweight ’(’ <prio-fun>, <int>, <int>,

<float>, <float>, <float> ’)’ ||

Simweight ’(’ <prio-fun>, <float>, <float>,

<float>, <float> ’)’ ||

FIFOWeight ’(’ <prio-fun> ’)’ ||

LIFOWeight ’(’ <prio-fun> ’)’

Clauseweight(prio, fweight, vweight, pos mult): This is the basic sym-
bol counting heuristic. Variables are counted with weight fweight, function
symbols with weight vweight. The weight of positive literals is multiplied by
pos mult before being added into the final weight.

Refinedweight(prio, fweight, vweight, term pen, lit pen, pos mult):
This weight function is very similar to the first one. It differs only in that it
takes the effect of the term ordering into account. In particular, the weight of
a term that is maximal in its literal is multiplied by term pen, and the weight
of maximal literals is mutiplied by lit pen.

Orientweight(prio, fweight, vweight, term pen, lit pen, pos mult):
This weight function is a slight variation of Refinedweight(). In this case,
the weight of both terms of an unorientable literal is multiplied by a penalty
term pen.

Simweight(prio, equal weight, vv clash, vt clash, tt clash): This
weight function is intended to return a low weight for literals in which the
two terms ar very similar. It does not currently work very well even for unit
clauses – RTFS (in <che simweight.c>) to find out more.

8Note that there now are many additional generic weight functions not yet documented.

12

FIFOWeight(prio): This weight function assigns weights that increase in a
stricly monotonic manner, i.e. it realises a first-in/first-out strategy if used all
by itself. This is the most obviously fair strategy.

LIFOWeight(prio): This weight function assigns weights that decrease in a
stricly monotonic manner, i.e. it realises a last-in/first-out strategy if used all
by itself (which, of course, would be unfair and result in an extremely incomplete
prover).

4.1.3 Clause Evaluation Functions

A clause evaluation function is constructed by instantiating a generic weight
function. It can either be specified directly, or specified and given a name for
later reference at once:

<eval-fun> ::= <ident> ||
<weight-fun> ||
<eval-fun-def>

<eval-fun-def> ::= <ident> = <weight-fun>
<eval-fun-def-list> ::= <eval-fun-def>*

Of course a single identifier is only a valid evaluation function if it has been
previously defined in a <eval-fun-def>. It is possible to define the value of
an identifier more than once, in which case later definitions take precedence to
former ones.

Clause evaluation functions can be be defined on the command line with the
-D (--define-weight-function) option, followed by a <eval-fun-def-list>.

Example:

eprover -D"ex1=Clauseweight(ConstPrio,2,1,1) \
ex2=FIFOWeight(PreferGoals)" ...

sets up the prover to know about two evaluation function ex1 and ex2
(wich supposedly will be used later on the command line to define one or
more heuristics). The double quotes are necessary because the brackets
and the commata are special characters for most shells

There are a variety of clause evaluation functions predefined in the variable
DefaultWeightFunctions, which can be found in che proofcontrol.c. See
also sections 4.4 and 4.5, which cover some of the more complex weight functions
of E.

13

4.1.4 Heuristics

A heuristic defines how many selections are to be made according to one of
several clause evaluation functions. Syntactically,

<heu-element> ::= <int> ’*’ <eval-fun>
<heuristic> ::= ’(’ <heu-element> (,<heu-element>)* ’)’ ||

<ident>
<heuristic-def> ::= <ident> = <heuristic> ||

<heuristic>

As above, a single identifier is only a valid heuristic if it has been de-
fined in <heuristic-def> previously. A <heuristic-def> which degener-
ates to a simple heuristic defines a heuristic with name Default (which the
prover will automatically choose if no other heuristic is selected with the -x
(--expert-heuristic).

Example: To continue the above example,

eprover -D"ex1=Clauseweight(ConstPrio,2,1,1) \
ex2=FIFOWeight(PreferGoals)"

-H"new=(3*ex1,1*ex2)" \
-x new LUSK3.lop

will run the prover on a problem file named LUSK3.lop with a heuristic
that chooses 3 out of every 4 clauses according to a simple symbol count-
ing heuristic and the last clause first among goals and then among other
clauses, selecting by order of creation in each of these two classes.

4.2 Term Orderings

E currently supports two families of orderings: The Knuth-Bendix-Ordering
(KBO), which is used by default, and the Lexicographical Path Ordering (LPO).
The KBO is weight-based and uses a precedence on function symbols to break
ties. Consequently, to specify a concrete KBO, we need a weight function that
assigns a weight to all function symbols, and a precedence on those symbols.

The LPO is based on a lexicographic comparison of symbols and subterms,
and is fully specified by giving just a precedence.

Currently it is possible to explicitely specify an arbitrary (including incom-
plete or empty) precedence, or to use one of several precedence generating
schemes. Similarly, there is a number of predefined weight function. There
currently no way to specify weights for individual function symbols.

The most simple way to get a reasonable term ordering is to specify auto-
matic ordering selection using the -tAuto option.
Options controlling the choice of term ordering:

14

-term-ordering=<arg>
-t<arg> Select a term ordering class (or automatic selection). Sup-

ported arguments are LPO, KBO, and Auto. If Auto is selected,
all aspects of the term ordering are fixed, additional options
will be (or at least should be) silently ignored.

--order-precedence-generation=<arg>
-G <arg> Select a precedence generation scheme (see below).

--order-weight-generation=<arg>
-w <arg> Select a symbol weight function (see below).

--order-constant-weight=<arg>
-c <arg> Modify any symbol weight function by assigning a special

weight to constant function symbols.

--precedence[=<arg>]
Describe a (partial) precedence for the term ordering. The ar-
gument is a comma-separated list of precedence chains, where
a precedence chain is a list of function symbols (which all
have to appear in the proof problem), connected by >, <, or
= (to denote equivalent symbols). If this option is used in
connection with --order-precedence-generation, the par-
tial ordering will be completed using the selected method,
otherwise the prover runs with a non-ground-total ordering.
The option without the optional argument is equivalent to
--precedence= (the empty precedence). There is a drawback
to using --precedence: Normally, total precedences are rep-
resented by mapping symbols to a totally ordered set (small
integers) which can be compared using standard machine in-
structions. The used data structure is linear in the number n
of function symbols. However, if --precedence is used, the
prover allocates (and completes) a n × n lookup table to effi-
ciently represent an arbitrary partial ordering. If n is very big,
this matrix takes up significant space, and takes a long time
to compute in the first place. This is unlikely to be a problem
unless there are at least hundreds of symbols.

15

--lpo-recursion-limit[=<arg>]
Limits the recursion depth of LPO comparison. This is useful
in rare cases where very large term comparions can lead to
stack overflow issues. It does not change completeness, but
may lead to unnecessary inferences in rare cases (Note: By
default, recursion depth is limited to 1000. To get effectively
unlimed recursion depth, use this option with an outrageously
large argument. Don’t forget to increase process stack size
with limit/ulimit from your favourite shell).

4.2.1 Precedence Generation Schemes

Precedence generation schemes are based on syntactic features of the sym-
bol and the input clause set, like symbol arity or number of occurances in
the formula. At least the following options are supported as argument to
--order-precedence-generation:

unary first: Sort symbols by arity, with the exception that unary symbols
come first. Frequency is used as a tiebreaker (rarer symbols are greater).

unary freq: Sort symbols by frequency (rarer symbols are bigger), with the
exception that unary symbols come first. Yes, this should better be named
unary invfreq for consistency, but is not. . .

arity: Sort symbols by arity (symbols with higher arity are larger).

invarity: Sort symbols by arity (symbols with higher arity are smaller).

const max: Sort symbols by arity (symbols with higher arity are larger), but
make constants the largest symbols. This is allegedly used by SPASS [Wei01]
in some configurations.

const min: Sort symbols by arity (symbols with higher arity are smaller), but
make constants the smallest symbols. Provided for reasons of symmetry.

freq: Sort symbols by frequency (frequently occuring symbols are larger). Arity
is used as a tiebreaker.

invfreq: Sort symbols by frequency (frequently occuring symbols are smaller).
In our experience, this is one of the best general-purpose precedence gen-
eration schemes.

invfreqconstmin: Same as invfreq, but make constants always smaller than
everything else.

invfreqhack: As invfreqconstmin, but unary symbols with maximal frequency
become largest.

16

4.2.2 Weight Generation Schemes

Weight generation schemes are based on syntactic features of the symbol and
the input clause set, or on the predefined precedence. The following options are
available for --order-weight-generation.

firstmaximal0: Give the same arbitrary (positive) weight to all function sym-
bols except to the first maximal one encountered (order is arbitrary),
which is given weight 0.

arity: Weight of a function symbol f |n is n + 1, i.e. its arity plus one.

aritymax0: As arity, except that the first maximal symbol is given weight 0.

modarity: Weight of a function symbol f |n is n+c, where c is a positive constant
(W TO BASEWEIGHT, which has been 4 since the dawn of time).

modaritymax0: As modarity, except that the first maximal symbol is given
weight 0.

aritysquared: Weight of a symbol f |n is n2 + 1.

aritysquaredmax0: As aritysquared, except that the first maximal symbol is
given weight 0.

invarity: Let m be the largest arity of any symbol in the signature. Weight
of a symbol f |n is m− n + 1.

invaritymax0: As invarity, except that the first maximal symbol is given
weight 0.

invaritysquared: Let m be the largest arity of any symbol in the signature.
Weight of a symbol f |n is m2 − n2 + 1.

invaritysquaredmax0: As invaritysquared, except that the first maximal
symbol is given weight 0.

precedence: Let < be the (pre-determined) precedence on function symbols F
in the problem. Then the weight of f is given by |g|g < f |+1 (the number
of symbols smaller than f in the precedence increase by one).

invprecedence: Let < be the (pre-determined) precedence on function symbols
F in the problem. Then the weight of f is given by |g|f < g| + 1 (the
number of symbols larger than f in the precedence increase by one).

freqcount: Make the weight of a symbol the number of occurences of that
symbol in the (potentially preprocessed) input problem.

invfreqcount: Let m be the number of occurances of the most frequent symbol
in the input problem. The weight of f is m minus he number of occurences
of f in the input problem.

17

freqrank: Sort all function symbols by frequency of occurance (which induces a
total quasi-ordering). The weight of a symbol is the rank of it’s equivalence
class, with less frequent symbols getting lower weights.

invfreqrank: Sort all function symbols by frequency of occurance (which in-
duces a total quasi-ordering). The weight of a symbol is the rank of its
equivalence class, with less frequent symbols getting higher weights.

freqranksquare: As freqrank, but weight is the square of the rank.

invfreqranksquare: As invfreqrank, but weight is the square of the rank.

invmodfreqrank: Sort all function symbols by frequency of occurance (which
induces a total quasi-ordering). The weight of an equivalence class is the
sum of the cardinality of all smaller classes (+1). The weight of a symbol
is the weight of its equivalence classes. Less frequent symbols get higher
weights.

invmodfreqrankmax0: As invmodfreqrank, except that the first maximal sym-
bol is given weight 0.

constant: Give the same arbitrary positive weight to all function symbols.

4.3 Literal Selection Strategies

The superposition calculus allows the selection of arbitrary negative literals
in a clause and only requires generating inferences to be performed on these
literals. E supports this feature and implements it via manipulations of the
literal ordering. Additionally, E implements strategies that allow inferences into
maximal positive literals and selected negative literals. A selection strategy is
selected with the option --literal-selection-strategy. Currently, at least
the following strategies are implemented:

NoSelection: Perform ordinary superposition without selection.

NoGeneration: Do not perform any generating inferences. This strategy is not
complete, but applying it to a formula generates a normal form that does
not contain any tautologies or redundant clauses.

SelectNegativeLiterals: Select all negative literals. For Horn clauses, this
implements the maximal literal positive unit strateg [Der91] previously
realized separately in E.

SelectPureVarNegLiterals: Select the first negative literal of the form X'Y .

SelectLargestNegLit: Select the largest negative literal (by symbol counting,
function symbols count as 2, variables as 1).

SelectSmallestNegLit: As above, but select the smallest literal.

18

SelectDiffNegLit: Select the negative literal in which both terms have the
largest size difference.

SelectGroundNegLit: Select the first negative ground literal for which the size
difference between both terms is maximal.

SelectOptimalLit: If there is a ground negative literal, select as in the case of
SelectGroundNegLit, otherwise as in SelectDiffNegLit.

Each of the strategies that do actually select negative literals has a corre-
sponding counterpart starting with P that additionally allows paramodulation
into maximal positive literals9.

Example: Some problems become a lot simpler with the correct strategy. Try
e.g.

eprover --literal-selection-strategy=NoSelection \
GRP001-1+rm_eq_rstfp.lop

eprover --literal-selection-strategy=SelectLargestNegLit \
GRP001-1+rm_eq_rstfp.lop

You will find the file GRP001-1+rm eq rstfp.lop in the E/PROVER direc-
tory.

As we aim at replacing the vast number of individual literal selection func-
tions with a more abstract mechanism, we refrain from describing all of the cur-
rently implemented functions in detail. If you need information about the set
of implemented functions, run eprover -W none. The indiviual functions are
implemented and somewhat described in E/HEURISTICS/che litselection.h.

4.4 The Watchlist Feature

Since public release 0.81, E supports a watchlist. A watchlist is a user-defined
set of clauses. Whenever the prover encounters10 a clause that subsumes one or
more clauses from the watchlist, those clauses are removed from it. The satu-
ration process terminates if the watchlist is empty (or, of course, if a saturated
state or the empty clause have been reached).

There are two uses for a watchlist: To guide the proof search (using a heuris-
tic that prefers clauses on the watchlist), or to find purely constructive proofs
for clauses on the watchlist.

If you want to guide the proof search, place clauses you believe to be im-
portant lemmata onto the watchlist. Also include the empty clause to make

9Except for SelectOptimalLit, where the resulting strategy, PSelectOptimalLit will allow
paramodulation into positive literals only if no ground literal has been selected.

10Clauses are checked against the watchlist after normalization, both when they are inserted
into U or if they are selected for processing.

19

sure that the prover will not terminate prematurely. You can then use a clause
selection heuristic that will give special consideration to clauses on the watch-
list. This is currently supported via the priority functions PreferWatchlist
and DeferWatchlist. A clause evaluation function using PreferWatchlist
will always select clauses wich subsume watchlist clauses first. Similarly, using
DeferWatchlist can be used to put the processing of watchlist clauses off.

There is a predefined clause selection heuristic UseWatchlist (select it with
-xUseWatchlist) that will make sure that watchlist clauses are selected rela-
tively early. It is a strong general purpose heuristic, and will maintain com-
pleteness of the prover. This should allow easy access to the watchlist feature
even if you don’t yet feel comfortable with specifying your own heuristics.

To generate constructive proofs of clauses, just place them on the watch list
and select output level 4 or greater (see section 6.3). Steps effecting the watch
list will be marked in the PCL2 output file. If you use the eproof script for
proof output or run epclextract of your own, subproof for watchlist steps will be
automatically extracted.

Note that this forward reasoning is not complete, i.e. the prover may never
generate a given watchlist clause, even if it would be trivial to prove it via
refutation.

Options controlling the use of the watch list:
--watchlist=<arg> Select a file containing the watch list

clauses. Syntax should be the same
syntax as your proof problem (E-LOP,
TPTP or TSTP). Just write down a
list of clauses.

--no-watchlist-simplification By default, watch list clauses are sim-
plified with respect to the current set
P. Use this option to disable the fea-
ture.

4.5 Learning Clause Evaluation Functions

E can use a knowledge base generated by analysing many successful proof at-
tempts to guide its search, i.e. it can learn what kinds of clauses are likely to
be useful for a proof and which ones are likely superfluous. The details of the
learning mechanism can be found in [?, ?]. Essentially, an inference protocol
is analysed, useful and useless clauses are identified and generalized into clause
patterns, and the resulting information is stored in a knowedge base. Later, new
clauses that match a pattern are evaluated accordingly.

4.5.1 Creating Knowledge Bases

An E knowledge base is a directory containing a number of files, storing both
the knowledge and configuration information. Knowledge bases are generated
with the tool ekb create. If no argument is given, ekb create will create a
knowledge base called E KNOWLEDGE in the current directory.

20

You can run ekb create -h for more information about the configuration.
However, the defaults are usually quite sufficient.

4.5.2 Populating Knowledge Bases

The knowledge base contains information gained from clausal PCL2 protocols
of E. In a first step, information from the protocol is abstracted into a more
compact form. A number of clauses is selected as training examples, and anno-
tations about there role are computed. The result is a list of annotated clauses
and a list of the axioms (initial clauses) of the problem. This step can be
performed using the program direct examples11.

In a second step, the collected information is integrated into the knowledge
base. For this puropose, the program ekb insert can be used. However, it is
probably more convenient to use the single program ekb ginsert, which directly
extracts all pertinent information from a PCL2 protocol and inserts it into a
designated knowledge base.

The program ekb delete will delete an example from a knowledge base.
This process is not particularly efficient, as the whole knowledge base is first
parsed.

4.5.3 Using Learned Knowledge

The knowledge in a knowledge base can be ustilized by the two clause eval-
uation functions TSMWeight() and TSMRWeight(). Both compute a modifica-
tion weight based on the learned knowledge, and apply it to a conventional
symbol-counting base weight (similar to Clauseweight() for TSMWeight() and
Refinedweight() for TSMWeight().

eprover -x’(1*TSMWeight(ConstPrio, 1, 1, 2, flat, E KNOWLEDGE, 100000,1.0,1.0,Flat,IndexIdentity,100000,-20,20,-2,-1,0,2))’

4.6 Other Options

5 Input Language

E natively uses E-LOP, a dialect of the LOP languange designed for SETHEO.At
the moment, your best bet is to retrieve the LOP description from the E web
site [Sch99] and/or check out the examples available from it. LOP is very close
to Prolog, and E can usually read many fully declarative Prolog files if they do
not use arithmetic or rely on predefined symbols. Plain SETHEO files usually
also work very well. There are a couple of minor differences, however:

• equal() is an interpreted symbol for E. It normally does not carry any
meaning for SETHEO (unless equality axioms are added).

• SETHEO allows the same identifier to be used as a constant, a non-
constant function symbol and a predicate symbol. E encodes all of these

11The name is an historical accident and has no significance anymore

21

as ordinary function symbols, and hence will complain if a symbol is used
inconsistently.

• E allows the use of both = and => as infix symbols for equality. a=b is
equivalent to equal(a,b) for E.

• E does not support constraints or SETHEO build-in symbols. This should
not usually affect pure theorem proving tasks.

• E normally treats procedural clauses exactly as it treats declarative clauses.
Query clauses (clauses with an empty head and starting with ?-, e.g.
?-∼p(X), q(X). can optionally be used to define the a set of goal clauses
(by default, all negative clauses are considered to be goals). At the mo-
ment, this information is only used for the initial set of support (with
--sos-uses-input-types). Note that you can still specify arbitrary
clauses as query clauses, since LOP supports negated literals.

As an alternative, E also supports TPTP syntax [SS97] (if given the option
--tptp-in or --tptp-format) without includes and as far as it can be divined
from the TPTP manual. In TPTP format, clauses with TPTP type conjecture
are considered goal clauses for the --sos-uses-input-types option.

Finally, the latest versions of E also support (restricted) TSTP clause for-
mat [SZS03] (the restriction being that none of the optional parts are recognized)
with the option --tstp-in or --tstp-format.

6 Output. . . or how to interpret what you see

E has several different output levels, controlled by the option -l or --output-level.
Level 0 prints nearly no output except for the result. Level 1 is intended to give
humans a somewhat readable impression of what is going on inside the infer-
ence engine. Levels 3 to 6 output increasingly more information about the inside
processes in PCL2 format. At level 4 and above, a (large) superset of the proof
inferences is printed. You can use the epclextract utility in E/PROVER/ to
extract a simple proof object.

In Level 0 and 1, everything E prints is either a clause that is implied by the
original axioms, or a comment (or, very often, both).

6.1 The Bare Essentials

In silent mode (--output-level=0, -s or --silent), E will not print any output
during saturation. It will print a one-line comment documenting the state of
the proof search after termination. The following possibilities exist:

• The prover found a proof. This is denoted by the output string

Proof found!

22

• The problem does not have a proof, i.e. the specification is satisfiable (and
E can detect this):

No proof found!

Ensuring the completeness of a prover is much harder than ensuring cor-
rectness. Moreover, proofs can easily be checked by analysing the output
of the prover, while such a check for the absence of proofs is rarely possible.
I do believe that the current version of E is both correct and complete12

but my belief in the former is stronger than my beliefe in the later.

• A (hard) resource limit was hit. For memory this can be either due to a per
process limit (set with limit or the prover option --memory-limit), or
due to running out of virtual memory. For cpu time, this case is triggered
if the per process cpu time limit is reached and signalled to the prover via
a SIGXCPU signal. This limit can be set with limit or, more reliable, with
the option --cpu-limit. The output string is one of the following two,
depending on the exact reason for termination:

Failure: Resource limit exceeded (memory)
Failure: Resource limit exceeded (time)

• A user-defined limit was reached during saturation, and the saturation pro-
cess was stopped gracefully. Limits include number of processed clauses,
number of total clauses, and cpu time (as set with --soft-cpu-limit).
The output string is

Faiure: User resource limit exceeded!

. . . and the user is expected to know which limit he selected.

• Normally, E is complete. However, if the option --delete-bad-limit is
given or if automatic mode in connection with a memory limit is used, E
will periodically delete clauses it deems unlikely to be processed to avoid
running out of memory. In this case, completeness cannot be ensured any
more. This effect manifests itself extremely rarely. If it does, E will print
the following string:

Failure: Out of unprocessed clauses!

This is roughtly equivalent to Otter’s SOS empty message.

• Finally, it is possible to chose restricted calculi when starting E. This is
useful if E is used as a normalization tool or as a preprocessor or lemma
generator. In this case, E will print a corresponding message:

Clause set closed under restricted calculus!
12Unless the prover runs out of memory (see below), the user selects an unfair strategy (in

which case the prover may never terminate), or some strange and unexpected things happen.

23

6.2 Impressing your Friends

If you run E without selection an output level (or by setting it explicitly to
1), E will print each non-tautological, non-subsumed clause it processes as a
comment. It will also print a hash (’#’) for each clause it tries to process but
can prove to be superfluous.

This mode gives some indication of progress, and as the output is fairly
restricted, does not slow the prover down too much.

For any output level greater than 0, E will also print statistical information
about the proof search and final clause sets. The data should be fairly self-
explaining.

6.3 Detailed Reporting

At output levels greater that 1, E prints certain inferences in PCL2 format13.
At level 2, it only prints generating inferences. At level 4, it prints all generating
and modifying inferences, and at level 6 it also prints PCL steps giving a lot of
insight into the interal operation of the inference engine. This protocol is fairly
readable and, from level 4 on can be used to check the proof with the utility
checkproof provided with the distribution.

6.4 Requesting Specific Results

There are two additional kinds of information E can provide beyond the normal
output during proof search: Statistical information and final clause sets (with
additional information).

First, E can give you some technical information about the conditions it runs
under.

The option --print-pid will make E printing its process id as a comment,
in the format # Pid: XXX, where XXX is an integer number. This is useful if
you want to send signals to the prover (in particular, if you want to terminate
the prover) to control it from the outside.

The option -R (--resources-info) will make E print a summary of used
system resources after graceful termination:

User time : 0.010 s
System time : 0.020 s
Total time : 0.030 s
Maximum resident set size: 0 pages

Most operating systems do not provide a valid value for the resident set size
and other memory-related resources, so you should probably not depend on the
last value to carry any meaningful information. The time information is required
by most standards and should be useful for all tested operating systems.

13PCL2 is a proof output protocol language currently being designed by me as a successor
to PCL [DS94a, DS94b, DS96].

24

E can be used not only as a prover, but as a normalizer for formulae or as
a lemma generator. In this cases, you will not only want to know if E found a
proof, but also need some or all of the derived clauses, possibly with statistical
information for filtering. This is supported with the --print-saturated and
--print-sat-info options for E.

The option --print-saturated takes as its argument a string of letters,
each of which represents a part of the total set of clauses E knows about. The
following table contains the meaning of the individual letters:

e Processed positive unit clauses (Equations).
i Processed negative unit clauses (Inequations).
g Processed non-unit clauses (except for the empty clause,

which, if present, is printed separatly). The above three
sets are interreduced and all selected inferences between
them have been computed.

E Unprocessed positive unit clauses.
I Unprocessed negative unit clauses.
G Unprocessed non-unit clause (this set may contain the

empty clause in very rare cases).
a Print equality axioms (if equality is present in the prob-

lem). This letter prints axioms for reflexivity, symmetry,
and transitivity, and a set of substitutivity axioms, one for
each argument position of every function symbol and pred-
icate symbol.

A As a, but print a single substitutivity axiom covering all
positions for each symbol.

The short form, -S, is equivalent to --print-saturated=eigEIG. If the op-
tion --print-sat-info is set, then each of the clauses is followed by a comment
of the form # info(id, pd, pl, sc, cd, nl, no, nv). The following table
explains the meaning of these values:

id Clause ident (probably only useful internally)
pd Depth of the derivation graph for this clause
pl Number of nodes in the derivation grap
sc Symbol count (function symbols and variables)
cd Depth of the deepest term in the clause
nl Number of literals in the clause
no Number of variable occurences
nv Number of different variables

25

A License

The standard distribution of E is free software. You can use, modify and copy it
under the terms of the GNU General Public License. You may also have bought
a commercial version of E from Safelogic A.B. in Gothenburg, Sweden. In this
case, you are bound by whatever license you agreed to. If you are in doubt
about which version of E you have, run eprover -V or eprover -h.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General Public

License is intended to guarantee your freedom to share and change free

software--to make sure the software is free for all its users. This

General Public License applies to most of the Free Software

Foundation’s software and to any other program whose authors commit to

using it. (Some other Free Software Foundation software is covered by

the GNU Library General Public License instead.) You can apply it to

your programs, too.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you

have the freedom to distribute copies of free software (and charge for

this service if you wish), that you receive source code or can get it

if you want it, that you can change the software or use pieces of it

in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid

anyone to deny you these rights or to ask you to surrender the rights.

These restrictions translate to certain responsibilities for you if you

distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must give the recipients all the rights that

you have. You must make sure that they, too, receive or can get the

source code. And you must show them these terms so they know their

rights.

We protect your rights with two steps: (1) copyright the software, and

(2) offer you this license which gives you legal permission to copy,

distribute and/or modify the software.

26

Also, for each author’s protection and ours, we want to make certain

that everyone understands that there is no warranty for this free

software. If the software is modified by someone else and passed on, we

want its recipients to know that what they have is not the original, so

that any problems introduced by others will not reflect on the original

authors’ reputations.

Finally, any free program is threatened constantly by software

patents. We wish to avoid the danger that redistributors of a free

program will individually obtain patent licenses, in effect making the

program proprietary. To prevent this, we have made it clear that any

patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and

modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains

a notice placed by the copyright holder saying it may be distributed

under the terms of this General Public License. The "Program", below,

refers to any such program or work, and a "work based on the Program"

means either the Program or any derivative work under copyright law:

that is to say, a work containing the Program or a portion of it,

either verbatim or with modifications and/or translated into another

language. (Hereinafter, translation is included without limitation in

the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not

covered by this License; they are outside its scope. The act of

running the Program is not restricted, and the output from the Program

is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program).

Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s

source code as you receive it, in any medium, provided that you

conspicuously and appropriately publish on each copy an appropriate

copyright notice and disclaimer of warranty; keep intact all the

notices that refer to this License and to the absence of any warranty;

and give any other recipients of the Program a copy of this License

along with the Program.

You may charge a fee for the physical act of transferring a copy, and

you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion

of it, thus forming a work based on the Program, and copy and

27

distribute such modifications or work under the terms of Section 1

above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices

stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in

whole or in part contains or is derived from the Program or any

part thereof, to be licensed as a whole at no charge to all third

parties under the terms of this License.

c) If the modified program normally reads commands interactively

when run, you must cause it, when started running for such

interactive use in the most ordinary way, to print or display an

announcement including an appropriate copyright notice and a

notice that there is no warranty (or else, saying that you provide

a warranty) and that users may redistribute the program under

these conditions, and telling the user how to view a copy of this

License. (Exception: if the Program itself is interactive but

does not normally print such an announcement, your work based on

the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If

identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you

distribute the same sections as part of a whole which is a work based

on the Program, the distribution of the whole must be on the terms of

this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest

your rights to work written entirely by you; rather, the intent is to

exercise the right to control the distribution of derivative or

collective works based on the Program.

In addition, mere aggregation of another work not based on the Program

with the Program (or with a work based on the Program) on a volume of

a storage or distribution medium does not bring the other work under

the scope of this License.

3. You may copy and distribute the Program (or a work based on it,

under Section 2) in object code or executable form under the terms of

Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable

source code, which must be distributed under the terms of Sections

1 and 2 above on a medium customarily used for software interchange; or,

28

b) Accompany it with a written offer, valid for at least three

years, to give any third party, for a charge no more than your

cost of physically performing source distribution, a complete

machine-readable copy of the corresponding source code, to be

distributed under the terms of Sections 1 and 2 above on a medium

customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer

to distribute corresponding source code. (This alternative is

allowed only for noncommercial distribution and only if you

received the program in object code or executable form with such

an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for

making modifications to it. For an executable work, complete source

code means all the source code for all modules it contains, plus any

associated interface definition files, plus the scripts used to

control compilation and installation of the executable. However, as a

special exception, the source code distributed need not include

anything that is normally distributed (in either source or binary

form) with the major components (compiler, kernel, and so on) of the

operating system on which the executable runs, unless that component

itself accompanies the executable.

If distribution of executable or object code is made by offering

access to copy from a designated place, then offering equivalent

access to copy the source code from the same place counts as

distribution of the source code, even though third parties are not

compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program

except as expressly provided under this License. Any attempt

otherwise to copy, modify, sublicense or distribute the Program is

void, and will automatically terminate your rights under this License.

However, parties who have received copies, or rights, from you under

this License will not have their licenses terminated so long as such

parties remain in full compliance.

5. You are not required to accept this License, since you have not

signed it. However, nothing else grants you permission to modify or

distribute the Program or its derivative works. These actions are

prohibited by law if you do not accept this License. Therefore, by

modifying or distributing the Program (or any work based on the

Program), you indicate your acceptance of this License to do so, and

all its terms and conditions for copying, distributing or modifying

the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the

Program), the recipient automatically receives a license from the

original licensor to copy, distribute or modify the Program subject to

29

these terms and conditions. You may not impose any further

restrictions on the recipients’ exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties to

this License.

7. If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues),

conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot

distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you

may not distribute the Program at all. For example, if a patent

license would not permit royalty-free redistribution of the Program by

all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to

refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under

any particular circumstance, the balance of the section is intended to

apply and the section as a whole is intended to apply in other

circumstances.

It is not the purpose of this section to induce you to infringe any

patents or other property right claims or to contest validity of any

such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system, which is

implemented by public license practices. Many people have made

generous contributions to the wide range of software distributed

through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing

to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to

be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in

certain countries either by patents or by copyrighted interfaces, the

original copyright holder who places the Program under this License

may add an explicit geographical distribution limitation excluding

those countries, so that distribution is permitted only in or among

countries not thus excluded. In such case, this License incorporates

the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions

of the General Public License from time to time. Such new versions will

be similar in spirit to the present version, but may differ in detail to

address new problems or concerns.

30

Each version is given a distinguishing version number. If the Program

specifies a version number of this License which applies to it and "any

later version", you have the option of following the terms and conditions

either of that version or of any later version published by the Free

Software Foundation. If the Program does not specify a version number of

this License, you may choose any version ever published by the Free Software

Foundation.

10. If you wish to incorporate parts of the Program into other free

programs whose distribution conditions are different, write to the author

to ask for permission. For software which is copyrighted by the Free

Software Foundation, write to the Free Software Foundation; we sometimes

make exceptions for this. Our decision will be guided by the two goals

of preserving the free status of all derivatives of our free software and

of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES

PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS

TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,

REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,

INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER

PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it

free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest

to attach them to the start of each source file to most effectively

31

convey the exclusion of warranty; and each file should have at least

the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this

when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate

parts of the General Public License. Of course, the commands you use may

be called something other than ‘show w’ and ‘show c’; they could even be

mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your

school, if any, to sign a "copyright disclaimer" for the program, if

necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into

proprietary programs. If your program is a subroutine library, you may

consider it more useful to permit linking proprietary applications with the

library. If this is what you want to do, use the GNU Library General

Public License instead of this License.

32

References

[Bac98] L. Bachmair. Personal communication at CADE-15, Lindau. Un-
published, 1998.

[BDP89] L. Bachmair, N. Dershowitz, and D.A. Plaisted. Completion With-
out Failure. In H. Ait-Kaci and M. Nivat, editors, Resolution of
Equations in Algebraic Structures, volume 2, pages 1–30. Academic
Press, 1989.

[BG94] L. Bachmair and H. Ganzinger. Rewrite-Based Equational Theorem
Proving with Selection and Simplification. Journal of Logic and
Computation, 3(4):217–247, 1994.

[CL73] C. Chang and R.C. Lee. Symbolic Logic and Mechanical Theorem
Proving. Computer Science and Applied Mathematics. Academic
Press, 1973.

[Der91] N. Dershowitz. Ordering-Based Strategies for Horn Clauses. In
J. Mylopoulos, editor, Proc. of the 12th IJCAI, Sydney, volume 1,
pages 118–124. Morgan Kaufmann, 1991.

[DKS97] J. Denzinger, M. Kronenburg, and S. Schulz. DISCOUNT: A Dis-
tributed and Learning Equational Prover. Journal of Automated
Reasoning, 18(2):189–198, 1997. Special Issue on the CADE 13 ATP
System Competition.

[DS94a] J. Denzinger and S. Schulz. Analysis and Representation of Equa-
tional Proofs Generated by a Distributed Completion Based Proof
System. Seki-Report SR-94-05, Universität Kaiserslautern, 1994.

[DS94b] J. Denzinger and S. Schulz. Recording, Analyzing and Present-
ing Distributed Deduction Processes. In H. Hong, editor, Proc. 1st
PASCO, Hagenberg/Linz, volume 5 of Lecture Notes Series in Com-
puting, pages 114–123, Singapore, 1994. World Scientific Publishing.

[DS96] J. Denzinger and S. Schulz. Recording and Analysing Knowledge-
Based Distributed Deduction Processes. Journal of Symbolic Com-
putation, 21(4/5):523–541, 1996.

[HBF96] Th. Hillenbrand, A. Buch, and R. Fettig. On Gaining Efficiency
in Completion-Based Theorem Proving. In H. Ganzinger, editor,
Proc. of the 7th RTA, New Brunswick, volume 1103 of LNCS, pages
432–435. Springer, 1996.

33

[HJL99] Th. Hillenbrand, A. Jaeger, and B. Löchner. System Abstract:
Waldmeister – Improvements in Performance and Ease of Use. In
H. Ganzinger, editor, Proc. of the 16th CADE, Trento, volume 1632
of LNAI, pages 232–236. Springer, 1999.

[McC94] W.W. McCune. Otter 3.0 Reference Manual and Guide. Technical
Report ANL-94/6, Argonne National Laboratory, 1994.

[MIL+97] M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann,
and K. Mayr. SETHEO and E-SETHEO – The CADE-13 Systems.
Journal of Automated Reasoning, 18(2):237–246, 1997. Special Issue
on the CADE 13 ATP System Competition.

[MW97] W.W. McCune and L. Wos. Otter: The CADE-13 Competition
Incarnations. Journal of Automated Reasoning, 18(2):211–220, 1997.
Special Issue on the CADE 13 ATP System Competition.

[NN93] P. Nivela and R. Nieuwenhuis. Saturation of First-Order (Con-
strained) Clauses with the Saturate System. In C. Kirchner, edi-
tor, Proc. of the 5th RTA, Montreal, volume 690 of LNCS, pages
436–440. Springer, 1993.

[RV01] A. Riazanov and A. Voronkov. Vampire 1.1 (System Description). In
R. Goré, A. Leitsch, and T. Nipkow, editors, Proc. of the 1st IJCAR,
Siena, volume 2083 of LNAI, pages 376–380. Springer, 2001.

[RV02] A. Riazanov and A. Voronkov. The Design and Implementation of
VAMPIRE. Journal of AI Communications, 15(2/3):91–110, 2002.

[Sch99] S. Schulz. The E Web Site. http://www4.informatik.
tu-muenchen.de/\-\simschulz/\-WORK/\-eprover.h%tml,
1999.

[Sch02] S. Schulz. E – A Brainiac Theorem Prover. Journal of AI Commu-
nications, 15(2/3):111–126, 2002.

[Sch04] S. Schulz. System Description: E 0.81. In D. Basin and M. Rusinow-
itch, editors, Proc. of the 2nd IJCAR, Cork, Ireland, volume 3097
of LNAI, pages 223–228. Springer, 2004.

[SS97] C.B. Suttner and G. Sutcliffe. The TPTP Problem Library (TPTP
v2.1.0). Technical Report AR-97-01 (TUM), 97/04 (JCU), Insti-
tut für Informatik, Technische Universität München, Munich, Ger-
many/Department of Computer Science, James Cook University,
Townsville, Australia, 1997. Jointly published.

[SZS03] G. Suctcliffe, J. Zimmer, and S. Schulz. Communication For-
malisms for Automated Theorem Proving Tools. In V. Sorge,
S. Colton, M. Fisher, and J. Gow, editors, Proc. of the IJCAI-
18 Workshop on Agents and Automated Reasoning, pages 53–58,

34

2003. Available at http://www.cs.bham.ac.uk/~vxs/ijcai03/
index.html#program.

[Tam97] T. Tammet. Gandalf. Journal of Automated Reasoning, 18(2):199–
204, 1997. Special Issue on the CADE 13 ATP System Competition.

[WAB+99] C. Weidenbach, B. Afshordel, U. Brahm, C. Cohrs, T. Engel,
G. Jung, E. Keen, C. Theobalt, and D. Topic. System Abstract:
SPASS Version 1.0.0. In H. Ganzinger, editor, Proc. of the 16th
CADE, Trento, volume 1632 of LNAI, pages 378–382. Springer,
1999.

[Wei99] C. Weidenbach. Personal communication at CADE-16, Trento. Un-
published, 1999.

[Wei01] C. Weidenbach. SPASS: Combining Superposition, Sorts and Split-
ting. In A. Robinson and A. Voronkov, editors, Handbook of Auto-
mated Reasoning, number II, chapter 27, pages 1965–2013. Elsevier
Science and MIT Press, 2001.

[WGR96] C. Weidenbach, B. Gaede, and G. Rock. SPASS & FLOTTER Ver-
sion 0.42. In M.A. McRobbie and J.K. Slaney, editors, Proc. of the
13th CADE, New Brunswick, volume 1104 of LNAI, pages 141–145.
Springer, 1996.

35

