Teil 7: Ein-/Ausgabe und Praprozessor

B Gliederung

Streams und Dateien
Dateioperationen

Praprozessor

Streams und Dateien

Streams und Dateien

Is -1 | tee file.txt | less

stdout stdin

file .txt

Streams und Dateien

B Stream-Konzept

= Eingabe — Verarbeitung — Ausgabe (EVA-Prinzip)
= Streams: abstraktes Modell von Datenstromen

« geordnete Folge von Bytes
= Datenquelle — Datenstrom — Datenziel

* Quelle und Ziel: Zuordnung zu Datei oder Gerat

OO EEE B0
TECLLTET LT _B'_...

e ey
L E | — J
=ink | - - EE:]

0 CoEGD GG CORG ERDEs F |

Tastatur \
Bildschirm
Stream
0 =— ° 6 — ©
o [¢]

Laufwerk Festplatte

B Standardkanale (bzw. Standard-Streams)
* |njedem C-Programm sind 3 Standardkanale vorhanden:

(1) stdin (Standardeingabe, Voreinstellung Tastatur)
(2) stdout (Standardausgabe, Voreinstellung Konsole)
(3) stderr (Standardfehlerausgabe, Voreinstellung Konsole)

Text terminal
[Keyboard

@ stdin

@ stderr

[Display

Streams und Dateien

F Umleitung durch das Betriebssystem

* Umlenkung (Umleitung) der Ein- und Ausgabe

myprog > test.out _
Text terminal

= Befehlsverknupfung
(Pipelining) [Keyboard

progl | prog2 | prog3

Program 1

= Umlenkung / Pipelining
sind fur das Programm
transparent

stderr _
stdout/stdin

h stdout/stdin

tdout
o Program 3

[Display

B Dateien und Dateisysteme

= Definition Datei: mit Namen versehener Datensatz beliebiger Lange
» Dateisystem als Struktureinheit kennt nur Bytes

» Programme, die Uber Dateien kommunizieren, mussen sich uber das Format
verstandigen

= Zugriffs durch entsprechende (Bibliotheks-) Funktionen

Sicht

U

Dateizugriffsfunktionen

Dateisystem A | Dateisystem B

Schichtenmodell (Unix)

» Gerateabhangigkeit ist durch das Dateisystem verborgen

Anwendungen/Shells/UNIX-Werkzeuge

A A

A

Bibliotheken

-

User-Modus

A 4 A 4

Schnittstelle fur Systemaufrufe

Kernel-Modus

i !
Prozessverwaltung Dateisystem
(Scheduler, Memory f Kernel des
Management, IPC) x Betriebs-
Treiber
_ . systems

Hardwaresteuerung (Behandlung der Interrupts
und Kommunikation mit der Hardware)

Hardware

Streams und Dateien

B Eigene Streams (Dateien) in C-Programmen

= Bibliothek <stdio.h>

= Erzeugung: Erstellung einer Dateivariable (File-Pointer)

» Verknupfung von Dateivariable und physikalischer Datei
fp = fopen("TEST.DAT", "w");

Arbeits-
speicher

Programm

Datei-
variable - 4

P Informationen im File-Pointer

File-Pointer (stream)

Struktur vom Typ FILE

Dateideskriptor

Pointer auf Dateipuffer —

Anzahl Zeichen im
Puffer

Flags

Akt. Datei-
positionszeiger \

Dateipuffer

T~

\ A

Datei

Dateioperationen

B Dateizugriffsfunktionen in C

Offnen einer Datei

Ein-/Ausgabe

Pufferinhalt schreiben

Schlief3en einer Datei

Loschen einer Datei

fopen

fprintf
fscanf

putc, fputc
getc, fgetc

fputs
fgets

fwrite
fread

formatiert

zeichen-
weise

string-
weise

fflush

fclose

remove

Dateioperationen

binar

fseek ferror
ftell feof
rewind clearerr
Positionieren Fehler-
behandlung

Offnen einer Datei

FILE * fopen(const char *name, const char *mode);

*name Dateiname, z.B. ""test.dat"
oder "/tmp/test.dat™ oder auch "C:\\temp\\test.dat"

*mode Zugriffsmodus

r nur zum Lesen (Datei muss existieren)

W nur zum Schreiben (Datei wird Uberschrieben)

a nur zum anhangen (ggf. Datei anlegen)

r+ w+ a+ wie oben, jedoch immer zum Lesen und Schreiben
b Binarmodus, Datenaustausch ohne Interpretation
t Textmodus (Standard), '\n' wird interpretiert

Rickgabewert

Erfolg: gultiger File Pointer FILE *
Fehler: NULL

B SchlieBen einer Datei

int fclose(FILE *pDatei);

Schreibpuffer wird zwingend auf Medium geschrieben
= Verzeichniseintrag wird aktualisiert
 siehe auch Ffflush(FILE *pDatei);
» File-Pointer wird freigegeben
= Automatisches Schliel3en erfolgt am Programmende
» Empfehlung: Datei sofort nach Abschluss der Dateibearbeitung schliel3en
« verhindert evtl. Datenverlust bei einem spaterem Programmabsturz

* Anzahl gleichzeitig geodffneter Dateien bleibt begrenzt

Dateioperationen

B Ein-/Ausgabe Operationen

Verwendet Erfordert einen Beschreibung
Standard-Stream Stream-Namen

printf() fprintf () Formatierte Ausgabe
puts(Q fputs () String-Ausgabe

putchar() putc (), fputc() Zeichenausgabe
scant() fscanf () Formatierte Eingabe
gets() fgets () String-Eingabe

getchar() getc (), fgetc() Zeicheneingabe

perror() String-Ausgabe an stderr

Datei-Operationen

Dateioperationen

#include <stdio.h>
#include <stdio.h>
#define STR_LEN 80

int main()
{
FILE *fp;
char *filename = "bsp.txt';

// Datei oeffnen und eine Zeile anhaengen
fp = fopen (filename, "a");
1T (fp == NULL)

{
// Fehlerbehandlung
fprintf (stderr, "Fehler beim Oeffnen der Datei "%s"\n",
filename);
return EXIT_FAILURE;
+

fprintf(fp, ""Noch eine Zeile anhaengen ...\n"");

// Dateil schliessen
fclose(fp);

Dateioperationen

// Dateil wieder oeffnen und alle Zeilen ausgeben
it ((fp = fopen (filename, "'r')) == NULL)

{
// Fehlerbehandlung
fprintf(stderr, "Fehler beim Offnen der Datei "%s"\n",
filename);
return EXIT_FAILURE;
+

char str[STR_LEN];
while(fscant(fp, "%s", str) != EOF)
printf ("'%s'", str);

// Dateil schliessen
fclose (fp);

return EXIT_SUCCESS;

Formatierte Ein-/Ausgabe: fscanf() und fprintf()

int fscanf(pDateir, "Formatstring', ...);

Ruckgabewert: Anzahl ausgelesener und abgespeicherter Parameter (Erfolg)

oder
EOF (Fehler)

int fprintf(pDatei, "Formatstring', ...);

Ruckgabewert: Anzahl der geschriebenen Bytes (Erfolg)

oder
EOF (Fehler)

Dateioperationen

Strings lesen/schreiben: fputs() und fgets()
#include <string.h>

#include <stdio.h>

#define STR_LEN 80

int main(Q)

{
FILE *pdatei;

char testString[] = "Das ist ein Teststring';

char puffer[STR _LEN];

pdateir = fopen("TEST.TXT", "w+'");

fputs(testString, pdatei);

Tseek(pdateir, 0, SEEK SET); // Positionszeiger zurucksetzen
fgets(puffer, STR _LEN, pdatet);

printf(""%s\n", puffer);

fclose(pdatel);
return EXIT_SUCCESS;

Dateioperationen

B Zeichenweise Ein-/Ausgabe: getc() und putc()

FILE *quelle, *ziel;
char quelle[255], ziel[255];

printf("'Name Quelldatei: ");

scant("%s", quelle);

quelle = fopen(quelle, "rb™);

iIT (quelle == NULL)

{
printf("'Konnte %s nicht finden bzw. oeffnen!\n', quelle);
return EXIT_FAILURE;

+

printf("'Name Zieldatei: ");

scanf('%s", ziel);

ziel = fopen(ziel,"w+b™);

1T (ziel == NULL)

{
printf("'Konnte Zieldatei nicht erzeugen!\n');
return EXIT_FAILURE;

}

whille ((c = getc(quelle)) = EOF) // zeichenweise kopieren
putc(c, ziel);

Lesen/Schreiben im Binarmodus: fread() und fwrite()

size_t fread(void *puffer, size t blockgroesse,
size_t blockanz, FILE *stream);

blockanz Blocke der Groe blockgroesse werden aus stream gelesen
und in puffer abgelegt

Ruckgabewert: Anzahl gelesener Blocke

size_t fwrite(const void *puffer, size t blockgroesse,
size_t blockanz, FILE *pdatetn);

blockanz Blocke der GrolRe blockgroesse werden aus puffer gelesen
und nach stream geschrieben

Ruckgabewert: Anzahl geschriebener Blocke

Dateioperationen

#include <stdio.h>
#include <stdlib.h>

typedef struct

{
int day, month, year;
} DATE;

int main()
{
DATE datuml = {27, 1, 2023};
DATE datum2;
FILE *fp;
char *filename = "EXAMPE.DAT";

fp = fopen(filename, "w+b'™);

1T (fp == NULL)

{
fprintf(stderr, "Fehler beim \x99ffnen der Dateir %s.', filename);
return EXIT_FAILURE;

}

// Datum In Datei schreiben
fwrite(&datuml, sizeof(DATE), 1, fp);

Dateioperationen

// Datei-Posistionszeiger wieder an den Anfang setzen
rewind(fp);

// Datum aus Datei lessen und ausgeben

fread(&datum2, sizeof(DATE), 1, fp);

printf("'%d.%d.%d", datum2.day, datum2.month, datum2.year);
fclose(fp);

return EXIT_SUCCESS;

Wahlfreier Zugriff

void rewind(FILE *stream);

Dateipositions-Zeiger auf Stream-Anfang setzen
long ftell(FILE *stream);

ermittelt aktuelle Dateiposition (in Bytes bezogen auf Dateianfang)
int fseek(FILE *stream, long offset, iInt whence);

springt an beliebige Dateiposition, Markierung fur nachste Operation

offset ist Zielposition, bezogen auf den Wert von whence:

#define SEEK _SET O offset bzgl. Dateianfang
#define SEEK CUR 1 offset relativ zur aktuellen Dateiposition
#define SEEK END 2 offset bzgl. Dateiende

int feof(FILE *stream);

Abfrage auf Dateiende (1 £ Dateiende erreicht, 0 sonst)

B Weitere Dateifunktionen

Int remove(const char *dateiname);

int rename(const char *altname, const char *neuname);
int FFflush(FILE *stream);

int ungetc(int c, FILE *stream);

= Fehlerbehandlung:

extern int errno; // 1n errno.h
char * strerror(int errno); // 1in string.h
voild perror(const char *message); // in stdio.h

* errno von Bibliotheksfunktionen im Fehlerfall gesetzt
« strerror() liefert Fehlerstring zur Fehlernummer errno
« perror() liefert eine Fehlermeldung an stderr,

(bezogen auf die letzte fehlgeschlagene
Bibliotheksfunktion) im folgenden Ausgabeformat:

<message>:<Fehlerstring der Bibliothek>

#include <stdio.h>
#include <stdlib.h>

int main(Q)

{
FILE *fp;
fp = fopen(‘'fehlendeDatei .dat', ''r'');
1T (fp == NULL)
{
perror(""FEHLER! Kann nicht aus Datei lesen');
return EXIT_FAILURE;
+
return EXIT_SUCCESS;
}

FEHLER! Kann nicht aus Datei lesen: No such file or directory

Praprozessor

#tdefine [|

cut aud faqote

B Aufgaben des Praprozessors

= Einfugen von Bibliotheken und Modulen (#include <..>)

_ (Bibliotheks-)
Quelltext-Datei

im Editor ll (*h)
(.c) C-P réprozess&i‘*-..._u
S l =
C-Compiler ;
|

" vorcompilierte

Ausfuhrbares Programm

» Ersetzen von Text (Symbolische Konstanten, Makros)

» bedingte Kompilierung

Header-Dateien

. Linker == giplistheksdateien (*.0)

B Direktiven

« Praprozessoranweisungen = Direktiven

« Beginn mit Raute-Zeichen (#)

» zeilenorientiert, kein Semikolon zur Terminierung
B #include Direktive

 Einbinden von ANSI-C Standard-Bibliotheken:

#include <dateiname>
« Eigene Headerdateien:
#include ''dateiname"
« Absolute Pfadangaben sind Plattformabhangig:

#include "c:/myprog/header.h"

#define Direktive
= Symbolische Konstanten und Makros: "NAME" - "Ersatztext"
#define NAME Ersatztext
= Beispiel:
#define PI1 3.14159
int main()
{
printf("'P1 hat den Wert: %f", Pl);
, .-

» Verschachtelung moglich

#define PI_MAL 2 (PI + PI)

Vorteil: Auswertung des Ausdrucks ggf. schon bei der Kompilierung

F Makros
= Name enthalt Parameterliste, Argumente werden im Ersatztext ebenfalls ersetzt
#define Makroname(Parameterliste) Ersatztext
= Beispiele:
#define SUM(n1l, n2) (n1 + n2)

kann wie folgt benutzt werden:

n = SUM(17, 4); // liefert dem Compiler n 21;

haufig verwendet:
#define MAX(X,Y) ((X<y) ? vy - X)

#define TAUSCHE_INT(X,y) {

7 77

B Makros: Fehlerquellen (l)

#include <stdio.h>
#define PRODUKT(a, b) a * b

int main()

{
int x =2,y =3, z1, z2;

z1
z2

PRODUKT(X, VY);
PRODUKT(x + 1, y - 1);

Makroauflosung durch Praprozessor liefert:

z1
z2

X *vy;
X+ 1*y -1;

korrekt ware jedoch:

z2 = (x+ 1) * (y - 1);

B Makros: Fehlerquellen (lII)

Abschluss des Makros mit einem Semikolon:

#define SUM(n1l, n2) ((n1) + (n2)),
/\
Hier darf kein Semikolon stehen

Leerzeichen zwischen Makronamen und Parameterliste:

#define SUM (n1, n2) ((h1) + (n2))
N\

Hier darf kein Leerzeichen stehen

Fazit: Makros Aufgrund von Seiteneffekten Makros mit Vorsicht einsetzen!

B Vordefinierte Makros nach ANSI-C

Makro

__LINE__
__FILE__
__DATE___

_ TIME__

__STDC___

__STDC_VERSION___

Bedeutung

Zeilennummer 1nnerhalb der aktuellen
Quel lcodedatei
Name der aktuellen Quellcodedatei

Datum, wann das Programm kompiliert wurde

(als Zeichenkette)

Uhrzeit, wann das Programm kompiliert wurde (als
Zeichenkette)

Liefert eine 1, wenn sich der Compiler nach dem
Standard-C richtet.

Liefert die Zahl 199409L, wenn sich der Compiler
nach dem C95-Standard richtet;

die Zahl 199901L, wenn sich der Compiler nach dem
C99-Standard richtet. Ansonsten i1st dieses Makro
nicht definiert (z.B. flur C89-Standard)

Beispiel: Makros fur erweitere Fehlerausgabe nutzen

#include <stdio.h>

int main()
{
fprintf(stderr, "Programm wurde compiliert am \
%s um %s.\n", _ DATE__ , _ TIME_);

fprintf(stderr, "Diese Programmzeile steht in Zeile \
%d 1n der Datei %s.\n'", LINE , FILE);

#ifdef _ STDC

fprintf(stderr, "Standard-C-Compiler!\n");
#else

fprintf(stderr, "Kein Standard-C-Compiler!\n');
#endif

return O;

}

B Bedingte Compilierung

= Kompilierung nur bestimmter Teile des Quelltextes

= Auswertungen wieder vor der Kompilierung, nicht zur Laufzeit

 Nicht verwechseln mit C-Kontrollstrukturen!

= verwendbare Direktiven: #define
#undef
#if
#elif
#ifdef
#if defined
#ifndef
#else
#endif

= Anwendung:
» Pflege mehrerer (paralleler) Programmversionen
« hardware- oder betriebssystemspezifische Unterschiede behandeln
» Fehlersuche vereinfachen

Bedingte Compilierung

#define definiert symbolische Konstante

#undef

#define NAME

hebt Definitionen auf

// NAME ist nun ein gueltiges Praeprozessor-Symbol

#undef NAME

// NAME ist nun kein gueltiges Praeprozessor-Symbol mehr

Beispiel 1

#i1fdef NAME
Programmteil 1
#endit

#1ftndet NAME
Programmteil 2
#Hendi T

Beispiel 2

#1fdeft NAME
Programmteil 1

#else
Programmteil 2

Hendi T

Beispiel 3

#i1T ConstAusdruckl
Programmteil 1

#elif ConstAusdruck?2
Programmteil 2

#else
Programmteil 3

#Hendi T

Praprozessor

Beispiel: Fehlersuche

#include <stdio.h>

int main()

{

int a, b, c;

scant("'%d %d', &a, &b);

c =a?* b;

printf(*'Summe von a und b: %d\n", c);

return O;

'R

AR)
i)

%
=N

L J/
o/

Praprozessor

Beispiel: Fehlersuche

#include <stdio.h>
int main()
{

int a, b, c;

scant("'%d %d', &a, &b);
C =a* b;

printf('vVariableninhalte:");
pl’intf("a = %d, b = %d’ cC = %d\n", a.

printf(""Summe von a und b: %d\n", c);

return O;

Praprozessor

Beispiel: Fehlersuche

#include <stdio.h>
int main(Q)
{

int a, b, c;

scant("'%d %d', &a, &b);
cC = a+ b;

// printf('Variableninhalte:"); -E}
// printf("a = %d, b = %d, ¢ = %d\n", a, b, c); ~

printf("'Summe von a und b: %d\n", c);

return O;

Praprozessor

Beispiel: Fehlersuche

#include <stdio.h>
#define TEST

int main()

{

int a, b, c;

scanft("'%d %d'", &a, &b);
cC =a?* b;

#ifdef TEST

printf(““Variableninhalte:"");

printf(“a = %d b = %d ¢ = %d\n", a, b, c); ~
#endi T

printf("'Summe von a und b: %d\n', c);

return O;

}

Beispiel: Hardware / Betriebssystem Spezifika

#include <stdio.h>

int main()

{

#ifdef WINDOWS
printf("'Programmteil fuer Windows 0S\n'");
printf("'...\n");

#else
printf("'Programmteil fuer andere 0OS\n");
printf("...\n");

#endift

#i1f CPU == AMD
printf("'Optimierter Programmteil fiur AMD Prozessoren\n');
printf("'...\n"");

#elit CPU == INTEL
printf("'Optimierter Programmteil fuer Intel Prozessoren\n');
printf("...\n");

#else
printf(""Programmteil fuer alle anderen Prozessoren\n');
printf("'...\n");

#endit
return O;

}

#include <stdio.h>
#define LINUX
#define CPU AMD

int main(Q)

{

#ifdef WINDOWS
printf("'"Programmteil fuer Windows 0OS\n");
printf("'...\n");

#else
printf(""Programmteil fuer andere 0OS\n');
printf("'...\n"");

#endif

#if CPU == AMD
printf(""Optimierter Programmteil fur AMD Prozessoren\n');
printf("'...\n"");

#elif CPU == INTEL
printf("'Optimierter Programmteil fuer Intel Prozessoren\n');
printf("'...\n"");

#else
printf(""Programmteil fuer alle anderen Prozessoren\n');
printf("...\n");

#endit
return O;

}

#include <stdio.h>
#define WINDOWS
#define CPU INTEL

int main(Q)

{

#ifdef WINDOWS
printf("'"Programmteil fuer Windows 0OS\n");
printf("'...\n");

#else
printf(""Programmteil fuer andere 0OS\n');
printf("'...\n"");

#endif

#if CPU == AMD
printf(""Optimierter Programmteil fur AMD Prozessoren\n');
printf("'...\n"");

#elif CPU == INTEL
printf("'Optimierter Programmteil fuer Intel Prozessoren\n');
printf("'...\n"");

#else
printf(""Programmteil fuer alle anderen Prozessoren\n');
printf("...\n");

#endit
return O;

}

Praprozessor

» resultierender Quellcode fur die eigentliche Kompilierung:

int main()

{
printf(""Programmteil fur Windows OS\n");
printf(...\n"");
printf(*" Optimierter Programmteil fir Intel Prozessoren\n ');
printf(C'...\n");
return O;
+

= Weitere Anwendung z.B. als "Include Guard"
https://en._wikipedia.org/wiki/Include guard

