
Gliederung

Streams und Dateien

Dateioperationen

Präprozessor

Teil 7: Ein-/Ausgabe und Präprozessor

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.2

Streams und Dateien

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.3

Stream-Konzept

 Eingabe – Verarbeitung – Ausgabe (EVA-Prinzip)

 Streams: abstraktes Modell von Datenströmen

• geordnete Folge von Bytes

 Datenquelle → Datenstrom → Datenziel

• Quelle und Ziel: Zuordnung zu Datei oder Gerät

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.4

Standardkanäle (bzw. Standard-Streams)

 In jedem C-Programm sind 3 Standardkanäle vorhanden:

(1) stdin (Standardeingabe, Voreinstellung Tastatur)
(2) stdout (Standardausgabe, Voreinstellung Konsole)
(3) stderr (Standardfehlerausgabe, Voreinstellung Konsole)

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.5

Umleitung durch das Betriebssystem

 Umlenkung (Umleitung) der Ein- und Ausgabe

myprog > test.out

 Befehlsverknüpfung
(Pipelining)

prog1 | prog2 | prog3

 Umlenkung / Pipelining
sind für das Programm
transparent

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.7

Dateien und Dateisysteme

 Definition Datei: mit Namen versehener Datensatz beliebiger Länge

 Dateisystem als Struktureinheit kennt nur Bytes

 Programme, die über Dateien kommunizieren, müssen sich über das Format
verständigen

 Zugriffs durch entsprechende (Bibliotheks-) Funktionen

Dateizugriffsfunktionen
Dateisystem BDateisystem A

Sicht

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.8

Schichtenmodell (Unix)

Prozessverwaltung
(Scheduler, Memory
Management, IPC)

Treiber

Hardwaresteuerung (Behandlung der Interrupts
und Kommunikation mit der Hardware)

Dateisystem

Anwendungen/Shells/UNIX-Werkzeuge

Schnittstelle für Systemaufrufe

Bibliotheken

Hardware

Kernel-Modus

User-Modus

Kernel des
Betriebs-
systems

 Geräteabhängigkeit ist durch das Dateisystem verborgen

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.9

Eigene Streams (Dateien) in C-Programmen

 Bibliothek <stdio.h>

 Erzeugung: Erstellung einer Dateivariable (File-Pointer)

 Verknüpfung von Dateivariable und physikalischer Datei

fp = fopen("TEST.DAT", "w");

Arbeits-
speicher

Platte

Programm

Datei-
variable

 Datei

Kanal

Rechner-
bus

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.10

Informationen im File-Pointer

Pointer auf Dateipuffer
Akt. Datei-

positionszeiger

Anzahl Zeichen im
Puffer

Flags
.
.
.

Datei

Dateipuffer

File-Pointer (stream)

Struktur vom Typ FILE
Dateideskriptor

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.11

Dateioperationen

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.12

Dateizugriffsfunktionen in C

ferror
feof

clearerr

fseek
ftell

rewind

fopen

Fehler-
behandlung

Positionieren

Öffnen einer Datei

Schließen einer Datei

Ein-/Ausgabe fprintf
fscanf

putc, fputc
getc, fgetc

fputs
fgets

fwrite
fread

fclose

string-
weise

zeichen-
weise

formatiert binär

Pufferinhalt schreiben fflush

Dateioperationen

Löschen einer Datei remove

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.13

Öffnen einer Datei
FILE * fopen(const char *name, const char *mode);

*name Dateiname, z.B. "test.dat"
oder "/tmp/test.dat" oder auch "C:\\temp\\test.dat"

*mode Zugriffsmodus

r nur zum Lesen (Datei muss existieren)
w nur zum Schreiben (Datei wird überschrieben)
a nur zum anhängen (ggf. Datei anlegen)

r+ w+ a+ wie oben, jedoch immer zum Lesen und Schreiben

b Binärmodus, Datenaustausch ohne Interpretation
t Textmodus (Standard), '\n' wird interpretiert

Rückgabewert

Erfolg: gültiger File Pointer FILE *
Fehler: NULL

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.14

Schließen einer Datei
int fclose(FILE *pDatei);

 Schreibpuffer wird zwingend auf Medium geschrieben

 Verzeichniseintrag wird aktualisiert

• siehe auch fflush(FILE *pDatei);

 File-Pointer wird freigegeben

 Automatisches Schließen erfolgt am Programmende

 Empfehlung: Datei sofort nach Abschluss der Dateibearbeitung schließen

• verhindert evtl. Datenverlust bei einem späterem Programmabsturz

• Anzahl gleichzeitig geöffneter Dateien bleibt begrenzt

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.15

Ein-/Ausgabe Operationen

Verwendet
Standard-Stream

Erfordert einen
Stream-Namen Beschreibung

printf() fprintf() Formatierte Ausgabe

puts() fputs() String-Ausgabe

putchar() putc(), fputc() Zeichenausgabe

scanf() fscanf() Formatierte Eingabe

gets() fgets() String-Eingabe

getchar() getc(), fgetc() Zeicheneingabe

perror() String-Ausgabe an stderr

Datei-Operationen

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.16

#include <stdio.h>
#include <stdio.h>
#define STR_LEN 80

int main()
{

FILE *fp;
char *filename = "bsp.txt";

// Datei oeffnen und eine Zeile anhaengen
fp = fopen (filename, "a");
if (fp == NULL)
{

// Fehlerbehandlung
fprintf (stderr, "Fehler beim Oeffnen der Datei '%s'\n",

filename);
return EXIT_FAILURE;

}
fprintf(fp, "Noch eine Zeile anhaengen ...\n");

// Datei schliessen
fclose(fp);

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.17

...

// Datei wieder oeffnen und alle Zeilen ausgeben
if ((fp = fopen (filename, "r")) == NULL)
{

// Fehlerbehandlung
fprintf(stderr, "Fehler beim Öffnen der Datei '%s'\n",

filename);
return EXIT_FAILURE;

}

char str[STR_LEN];
while(fscanf(fp, "%s", str) != EOF)

printf ("%s", str);

// Datei schliessen
fclose (fp);

return EXIT_SUCCESS;
}

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.18

Formatierte Ein-/Ausgabe: fscanf() und fprintf()

int fscanf(pDatei, "Formatstring", ...);

Rückgabewert: Anzahl ausgelesener und abgespeicherter Parameter (Erfolg)
oder
EOF (Fehler)

int fprintf(pDatei, "Formatstring", ...);

Rückgabewert: Anzahl der geschriebenen Bytes (Erfolg)
oder
EOF (Fehler)

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.19

Strings lesen/schreiben: fputs() und fgets()
#include <string.h>
#include <stdio.h>
#define STR_LEN 80

int main()
{

FILE *pdatei;
char testString[] = "Das ist ein Teststring";
char puffer[STR_LEN];

pdatei = fopen("TEST.TXT", "w+");

fputs(testString, pdatei);

fseek(pdatei, 0, SEEK_SET); // Positionszeiger zurücksetzen

fgets(puffer, STR_LEN, pdatei);

printf("%s\n", puffer);

fclose(pdatei);
return EXIT_SUCCESS;

}

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.20

Zeichenweise Ein-/Ausgabe: getc() und putc()
FILE *quelle, *ziel;
char quelle[255], ziel[255];

printf("Name Quelldatei: ");
scanf("%s", quelle);
quelle = fopen(quelle, "rb");
if (quelle == NULL)
{

printf("Konnte %s nicht finden bzw. oeffnen!\n", quelle);
return EXIT_FAILURE;

}
printf("Name Zieldatei: ");
scanf("%s", ziel);
ziel = fopen(ziel,"w+b");
if (ziel == NULL)
{

printf("Konnte Zieldatei nicht erzeugen!\n");
return EXIT_FAILURE;

}

while ((c = getc(quelle)) != EOF) // zeichenweise kopieren
putc(c, ziel);

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.21

Lesen/Schreiben im Binärmodus: fread() und fwrite()

size_t fread(void *puffer, size_t blockgroesse,
size_t blockanz, FILE *stream);

blockanz Blöcke der Größe blockgroesse werden aus stream gelesen
und in puffer abgelegt

Rückgabewert: Anzahl gelesener Blöcke

size_t fwrite(const void *puffer, size_t blockgroesse,
size_t blockanz, FILE *pdatei);

blockanz Blöcke der Größe blockgroesse werden aus puffer gelesen
und nach stream geschrieben

Rückgabewert: Anzahl geschriebener Blöcke

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.22

#include <stdio.h>
#include <stdlib.h>

typedef struct
{

int day, month, year;
} DATE;

int main()
{

DATE datum1 = {27, 1, 2023};
DATE datum2;
FILE *fp;
char *filename = "EXAMPE.DAT";

fp = fopen(filename, "w+b");
if (fp == NULL)
{

fprintf(stderr, "Fehler beim \x99ffnen der Datei %s.", filename);
return EXIT_FAILURE;

}

// Datum in Datei schreiben
fwrite(&datum1, sizeof(DATE), 1, fp);

...

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.23

...

// Datei-Posistionszeiger wieder an den Anfang setzen
rewind(fp);

// Datum aus Datei lessen und ausgeben
fread(&datum2, sizeof(DATE), 1, fp);
printf("%d.%d.%d", datum2.day, datum2.month, datum2.year);

fclose(fp);

return EXIT_SUCCESS;
}

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.24

Wahlfreier Zugriff
void rewind(FILE *stream);

Dateipositions-Zeiger auf Stream-Anfang setzen

long ftell(FILE *stream);

ermittelt aktuelle Dateiposition (in Bytes bezogen auf Dateianfang)

int fseek(FILE *stream, long offset, int whence);

springt an beliebige Dateiposition, Markierung für nächste Operation

offset ist Zielposition, bezogen auf den Wert von whence:

#define SEEK_SET 0 offset bzgl. Dateianfang
#define SEEK_CUR 1 offset relativ zur aktuellen Dateiposition
#define SEEK_END 2 offset bzgl. Dateiende

int feof(FILE *stream);

Abfrage auf Dateiende (1 ≙ Dateiende erreicht, 0 sonst)

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.25

Weitere Dateifunktionen

int remove(const char *dateiname);
int rename(const char *altname, const char *neuname);
int fflush(FILE *stream);
int ungetc(int c, FILE *stream);

 Fehlerbehandlung:

extern int errno; // in errno.h
char * strerror(int errno); // in string.h
void perror(const char *message); // in stdio.h

• errno von Bibliotheksfunktionen im Fehlerfall gesetzt
• strerror() liefert Fehlerstring zur Fehlernummer errno

• perror() liefert eine Fehlermeldung an stderr,
(bezogen auf die letzte fehlgeschlagene
Bibliotheksfunktion) im folgenden Ausgabeformat:

<message>:<Fehlerstring der Bibliothek>

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.26

#include <stdio.h>
#include <stdlib.h>

int main()
{

FILE *fp;

fp = fopen("fehlendeDatei.dat", "r");
if (fp == NULL)
{

perror("FEHLER! Kann nicht aus Datei lesen");
return EXIT_FAILURE;

}
return EXIT_SUCCESS;

}

FEHLER! Kann nicht aus Datei lesen: No such file or directory

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.27

Präprozessor

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.28

Aufgaben des Präprozessors
 Einfügen von Bibliotheken und Modulen (#include <…>)

 Ersetzen von Text (Symbolische Konstanten, Makros)

 bedingte Kompilierung

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.29

Direktiven

• Präprozessoranweisungen = Direktiven
• Beginn mit Raute-Zeichen (#)
• zeilenorientiert, kein Semikolon zur Terminierung

#include Direktive

• Einbinden von ANSI-C Standard-Bibliotheken:

#include <dateiname>

• Eigene Headerdateien:

#include "dateiname"

• Absolute Pfadangaben sind Plattformabhängig:

#include "c:/myprog/header.h"

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.30

#define Direktive

 Symbolische Konstanten und Makros: "NAME"  "Ersatztext"

#define NAME Ersatztext

 Beispiel:

#define PI 3.14159

int main()
{

printf("Pi hat den Wert: %f", PI);
...

}

 Verschachtelung möglich

#define PI_MAL_2 (PI + PI)

Vorteil: Auswertung des Ausdrucks ggf. schon bei der Kompilierung

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.31

Makros

 Name enthält Parameterliste, Argumente werden im Ersatztext ebenfalls ersetzt

#define Makroname(Parameterliste) Ersatztext

 Beispiele:

#define SUM(n1, n2) (n1 + n2)

kann wie folgt benutzt werden:

n = SUM(17, 4); // liefert dem Compiler n = 21;

häufig verwendet:

#define MAX(x,y) ((x<y) ? y : x)

#define TAUSCHE_INT(x,y) { \
int j; \
j=x; x=y; y=j; \

}

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.32

Makros: Fehlerquellen (I)
#include <stdio.h>
#define PRODUKT(a, b) a * b

int main()
{
int x = 2, y = 3, z1, z2;

z1 = PRODUKT(x, y);
z2 = PRODUKT(x + 1, y - 1);

Makroauflösung durch Präprozessor liefert:

z1 = x * y;
z2 = x + 1 * y - 1;

korrekt wäre jedoch:

z2 = (x + 1) * (y - 1);

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.33

Makros: Fehlerquellen (II)

Abschluss des Makros mit einem Semikolon:

#define SUM(n1, n2) ((n1) + (n2));

Ĥier darf kein Semikolon stehen

Leerzeichen zwischen Makronamen und Parameterliste:

#define SUM (n1, n2) ((n1) + (n2))

Ĥier darf kein Leerzeichen stehen

Fazit: Makros Aufgrund von Seiteneffekten Makros mit Vorsicht einsetzen!

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.34

Vordefinierte Makros nach ANSI-C

Makro Bedeutung

__LINE__ Zeilennummer innerhalb der aktuellen
Quellcodedatei

__FILE__ Name der aktuellen Quellcodedatei

__DATE__ Datum, wann das Programm kompiliert wurde
(als Zeichenkette)

__TIME__ Uhrzeit, wann das Programm kompiliert wurde (als
Zeichenkette)

__STDC__ Liefert eine 1, wenn sich der Compiler nach dem
Standard-C richtet.

__STDC_VERSION__ Liefert die Zahl 199409L, wenn sich der Compiler
nach dem C95-Standard richtet;
die Zahl 199901L, wenn sich der Compiler nach dem
C99-Standard richtet. Ansonsten ist dieses Makro
nicht definiert (z.B. für C89-Standard)

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.35

Beispiel: Makros für erweitere Fehlerausgabe nutzen

#include <stdio.h>

int main()
{

fprintf(stderr, "Programm wurde compiliert am \
%s um %s.\n", __DATE__, __TIME__);

fprintf(stderr, "Diese Programmzeile steht in Zeile \
%d in der Datei %s.\n", __LINE__, __FILE__);

#ifdef __STDC__
fprintf(stderr, "Standard-C-Compiler!\n");

#else
fprintf(stderr, "Kein Standard-C-Compiler!\n");

#endif

return 0;
}

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.36

Bedingte Compilierung

 Kompilierung nur bestimmter Teile des Quelltextes

 Auswertungen wieder vor der Kompilierung, nicht zur Laufzeit

• Nicht verwechseln mit C-Kontrollstrukturen!

 verwendbare Direktiven: #define
#undef
#if
#elif
#ifdef
#if defined
#ifndef
#else
#endif

 Anwendung:
• Pflege mehrerer (paralleler) Programmversionen
• hardware- oder betriebssystemspezifische Unterschiede behandeln
• Fehlersuche vereinfachen

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.37

Bedingte Compilierung

#define definiert symbolische Konstante
#undef hebt Definitionen auf

#define NAME
// NAME ist nun ein gueltiges Praeprozessor-Symbol

#undef NAME
// NAME ist nun kein gueltiges Praeprozessor-Symbol mehr

Beispiel 1 Beispiel 2 Beispiel 3

#ifdef NAME
 Programmteil 1
#endif

...

#ifndef NAME
 Programmteil 2
#endif

#ifdef NAME
 Programmteil 1

#else
 Programmteil 2

#endif

#if ConstAusdruck1
 Programmteil 1

#elif ConstAusdruck2
 Programmteil 2

#else
 Programmteil 3

#endif

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.38

Beispiel: Fehlersuche

#include <stdio.h>

int main()
{

int a, b, c;

scanf("%d %d", &a, &b);
c = a * b;
printf("Summe von a und b: %d\n", c);

return 0;
}

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.39

Beispiel: Fehlersuche

#include <stdio.h>

int main()
{

int a, b, c;

scanf("%d %d", &a, &b);
c = a * b;

printf("Variableninhalte:");
printf("a = %d, b = %d, c = %d\n", a, b, c);

printf("Summe von a und b: %d\n", c);

return 0;
}

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.40

Beispiel: Fehlersuche

#include <stdio.h>

int main()
{

int a, b, c;

scanf("%d %d", &a, &b);
c = a + b;

// printf("Variableninhalte:");
// printf("a = %d, b = %d, c = %d\n", a, b, c);

printf("Summe von a und b: %d\n", c);

return 0;
}

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.41

Beispiel: Fehlersuche

#include <stdio.h>
#define TEST

int main()
{

int a, b, c;

scanf("%d %d", &a, &b);
c = a * b;

#ifdef TEST
printf(“Variableninhalte:");
printf(“a = %d b = %d c = %d\n", a, b, c);

#endif

printf("Summe von a und b: %d\n", c);

return 0;
}

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.42

Beispiel: Hardware / Betriebssystem Spezifika
#include <stdio.h>

int main()
{
#ifdef WINDOWS

printf("Programmteil fuer Windows OS\n");
printf("...\n");

#else
printf("Programmteil fuer andere OS\n");
printf("...\n");

#endif

#if CPU == AMD
printf("Optimierter Programmteil für AMD Prozessoren\n");
printf("...\n");

#elif CPU == INTEL
printf("Optimierter Programmteil fuer Intel Prozessoren\n");
printf("...\n");

#else
printf("Programmteil fuer alle anderen Prozessoren\n");
printf("...\n");

#endif
return 0;

}

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.43

#include <stdio.h>
#define LINUX
#define CPU AMD

int main()
{
#ifdef WINDOWS

printf("Programmteil fuer Windows OS\n");
printf("...\n");

#else
printf("Programmteil fuer andere OS\n");
printf("...\n");

#endif

#if CPU == AMD
printf("Optimierter Programmteil für AMD Prozessoren\n");
printf("...\n");

#elif CPU == INTEL
printf("Optimierter Programmteil fuer Intel Prozessoren\n");
printf("...\n");

#else
printf("Programmteil fuer alle anderen Prozessoren\n");
printf("...\n");

#endif
return 0;

}

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.44

#include <stdio.h>
#define WINDOWS
#define CPU INTEL

int main()
{
#ifdef WINDOWS

printf("Programmteil fuer Windows OS\n");
printf("...\n");

#else
printf("Programmteil fuer andere OS\n");
printf("...\n");

#endif

#if CPU == AMD
printf("Optimierter Programmteil für AMD Prozessoren\n");
printf("...\n");

#elif CPU == INTEL
printf("Optimierter Programmteil fuer Intel Prozessoren\n");
printf("...\n");

#else
printf("Programmteil fuer alle anderen Prozessoren\n");
printf("...\n");

#endif
return 0;

}

Kapitel 7: Ein-/Ausgabe und Präprozessor

Streams und Dateien Dateioperationen Präprozessor

7.45

 resultierender Quellcode für die eigentliche Kompilierung:

int main()
{

printf("Programmteil für Windows OS\n");
printf("...\n");

printf(" Optimierter Programmteil für Intel Prozessoren\n ");
printf("...\n");
return 0;

}

 Weitere Anwendung z.B. als "Include Guard"
https://en.wikipedia.org/wiki/Include_guard

