

List of Topics for DHBW Program Design papers in the area of Data Warehouse / Business Intelligence (without Points)

- Team Size/Effort/Pages: group work (2 members); ~10-12 hours/~15-20 pages
- Language/Deadline/Details: English/26.04.2025/ Examination Info Program Design
- Evaluation: Dr. Hermann Völlinger (send paper to 22D-Moodle: Kurs: T3INF4304 3 22).
- **References**: As a source of information and further references to the respective themes, it is recommended to refer to the instructions in the corresponding slides of the lecture.

No	Торіс	Details	Students/Points (max=100)
DW- PD01	KG tool - Healthcare and Life Sciences (ex. E1.4b)	Give a program design and detailed description of the creation of a KG tool in the area of Healthcare and Life Sciences (Modeling biological pathways, drug discovery, and patient data). See also exercise (E1.4b) and see YouTube "Building Knowledge Graphs in 10 Steps": <u>https://www.youtube.com/watch?v=lUc0woFX16M</u> . See also Google- /IBM HealthCare KG in [DHBW-Moodle], Category1: "KG4HealthCare-Google_Info/IBM_Info.pdf"; "Warum FHIR_ – HL7Deutschland.pdf"	von dem Berge & Hutzel: x / Dehm & Teller: x / Bierbaum& Rakoczy: x
DW- PD02	First Experiences with KNIME Analytics (ex. E1.5)	 First Experiences with KNIME Analytics Platform: Install the tool and report about your first experiences and insights. 1. What can be done with the tool? 2. Features for Data-Management (DM)? PD**: Show a concrete simple KNIME DM example/workflows? 3. Features for Analytics and Data Science (DC)? PD**: Show a concrete simple KNIME DC workflows? Information source is the KNIME Homepage KNIME Open for Innovation and the three mentioned documents in the lesson DW01 (see lesson notes). See also exercise E1.5 	- / -: x
DW- PD03	Data Manipul. & Aggregation in KNIME (ex. E6.3)	Rebuild the KNIME Workflow (use given solution) for Data Manipulation & Aggregation and give technical explanations to the solution steps. See images in the exercise E6.3.	Süral & Kugler: x / Milde & Redel: x / Faiß & Kulig: x
DW- PD04	Run &Compare 3 KNIME Data Mining solutions (ex. E9.5)	Run and compare the three KNIME-Basics workflow of exercise E9.5. Give technical explanations to the solution steps (use given workflows). See the KNIME documentation from the lecture. See also exercise E9.5	- / -: x
DW- PD05	K-means Clusters of IRIS Dataset (ex. E10.3)	The Iris dataset contains the data for 50 Iris flowers from each of the 3 species - Setosa, Versicolor and Virginica. http://www.lac.inpe.br/~rafael.santos/Docs/CAP394/WholeStory- Iris.html Develop a Python-Pgm. using Scikit-learn library: https://github.com/bhattbhavesh91/k_means_iris_dataset/blob/master /K_in_K_means_Clustering.ipynb Describe the solution steps of the python program. See exercise E10.3	Pfeifer& Bleicher: x / Lagner& Bürner: x / Braun & Walz: x
DW- PD06	Image-Classif. with MNIST Data using KNIME (ex. E10.4)	Rebuild the complete KNIME Workflow (use given workflow) of Exercise E10.4 for Image-Classification and give technical explanations to the solution steps. Use the information from the KNIME documentation. Formulate and explain your own insights. See also exercise E10.4	- / -: x