
L ✓ ⌃⇤

Formal Languages and Automata

Stephan Schulz & Jan Hladik
stephan.schulz@dhbw-stuttgart.de
jan.hladik@dhbw-stuttgart.de

with contributions from David Suendermann

Introduction

I Stephan Schulz
I Dipl.-Inform., U. Kaiserslautern, 1995
I Dr. rer. nat., TU München, 2000
I Visiting professor, U. Miami, 2002
I Visiting professor, U. West Indies, 2005
I Lecturer (Hildesheim, Offenburg, . . .) since 2009
I Industry experience: Building Air Traffic Control systems

I System engineer, 2005
I Project manager, 2007
I Product Manager, 2013

I Professor, DHBW Stuttgart, 2014

Research: Logic & Automated Reasoning

2

Introduction

I Stephan Schulz
I Dipl.-Inform., U. Kaiserslautern, 1995
I Dr. rer. nat., TU München, 2000
I Visiting professor, U. Miami, 2002
I Visiting professor, U. West Indies, 2005
I Lecturer (Hildesheim, Offenburg, . . .) since 2009
I Industry experience: Building Air Traffic Control systems

I System engineer, 2005
I Project manager, 2007
I Product Manager, 2013

I Professor, DHBW Stuttgart, 2014

Research: Logic & Automated Reasoning

2

Introduction

I Jan Hladik
I Dipl.-Inform.: RWTH Aachen, 2001
I Dr. rer. nat.: TU Dresden, 2007
I Industry experience: SAP Research

I Work in publicly funded research projects
I Collaboration with SAP product groups
I Supervision of Bachelor, Master, and PhD students

I Professor: DHBW Stuttgart, 2014

Research: Semantic Web, Semantic Technologies,
Automated Reasoning

3

Introduction

I Jan Hladik
I Dipl.-Inform.: RWTH Aachen, 2001
I Dr. rer. nat.: TU Dresden, 2007
I Industry experience: SAP Research

I Work in publicly funded research projects
I Collaboration with SAP product groups
I Supervision of Bachelor, Master, and PhD students

I Professor: DHBW Stuttgart, 2014

Research: Semantic Web, Semantic Technologies,
Automated Reasoning

3

Goals for Today

I Getting acquainted
I Practical issues
I Course outline and motivation
I Basics of formal languages
I Regular expressions

4

Practical Issues

I One lecture per week
I Wednesday, 8:45-12:15
I 10 minute break around 10:15
I I’ll try to keep it entertaining. . .

I Exceptions
I 24.9. (T2000 examination)
I 19.11. (Tag der Informatik)

I This is the review class, need to reschedule
I Written examn
I Calender week 48 (24.11.–28.11.)

5

Literature

I Scripts
I The most up-to-date version of this document as well as auxiliary

material will be made available online at
http://wwwlehre.dhbw-stuttgart.de/

˜sschulz/fla2014.html

I A comprehensive (though German) script by Karl Stroetmann
covers many of the topics discussed in this lecture:
http://wwwlehre.dhbw-stuttgart.de/˜stroetma/
Formal-Languages/formal-languages.pdf

I Books
I John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman: Introduction

to Automata Theory, Languages, and Computation
I Michael Sipser: Introduction to the Theory of Computation
I Dirk W. Hoffmann: Theoretische Informatik
I Ulrich Hedtstück: Einführung in die theoretische Informatik

6

http://wwwlehre.dhbw-stuttgart.de/~sschulz/fla2014.html
http://wwwlehre.dhbw-stuttgart.de/~sschulz/fla2014.html
http://wwwlehre.dhbw-stuttgart.de/~stroetma/Formal-Languages/formal-languages.pdf
http://wwwlehre.dhbw-stuttgart.de/~stroetma/Formal-Languages/formal-languages.pdf

Computing Environment

I For practical exercises, you will need a complete Linux/UNIX
environment. If you do not run one natively, there are several
options:
I You can install VirtualBox (https://www.virtualbox.org)

and then install e.g. Ubuntu (http://www.ubuntu.com/) on a
virtual machine

I For Windows, you can install the complete UNIX emulation
package Cygwin from http://cygwin.com

I For MacOS, you can install fink
(http://fink.sourceforge.net/) or MacPorts
(https://www.macports.org/) and the necessary tools

I You will need at least flex, bison, gcc, grep, sed, AWK,
make, and a good text editor

7

https://www.virtualbox.org
http://www.ubuntu.com/
http://cygwin.com
http://fink.sourceforge.net/
https://www.macports.org/

Your expectations?

I Phase 1 (individual)
I 3 minutes
I List at least 3 topics/results you want/expect from this course

I Phase 2 (partners)
I 3 minutes
I Condense to “top 3” choices

I Phase 3
I Presentation

8

Outline

Introduction

Regular Languages and Finite State Automata

9

Formal languages

I Sets of words (strings) over a finite alphabet
I Examples
I All names in a phone directory
I All phone numbers in a phone directory
I All legal C identifiers
I All legal C programms
I All legal HTML 4.01 Transitional documents
I The empty set
I The set of all ASCII strings
I The set of all Unicode strings

More?

10

Formal languages

I Sets of words (strings) over a finite alphabet
I Examples
I All names in a phone directory
I All phone numbers in a phone directory
I All legal C identifiers
I All legal C programms
I All legal HTML 4.01 Transitional documents
I The empty set
I The set of all ASCII strings
I The set of all Unicode strings

More?

10

Questions on languages

I Language description?
I What are the legal word in a language?
I What are syntactically correct LISP programs?
I How can we describe languages in general?

Formal grammars – regular expressions

I Language recognition/understanding?
I Is this a legal word in a language?
I How is this JAVA program constructed?
I How should I translate this C program/render this HTML page?

Finite state machines – Push-down automata –
Syntax trees – Universal computers

11

Questions on languages

I Language description?
I What are the legal word in a language?
I What are syntactically correct LISP programs?
I How can we describe languages in general?

Formal grammars – regular expressions

I Language recognition/understanding?
I Is this a legal word in a language?
I How is this JAVA program constructed?
I How should I translate this C program/render this HTML page?

Finite state machines – Push-down automata –
Syntax trees – Universal computers

11

Questions on languages

I Language description?
I What are the legal word in a language?
I What are syntactically correct LISP programs?
I How can we describe languages in general?

Formal grammars – regular expressions

I Language recognition/understanding?
I Is this a legal word in a language?
I How is this JAVA program constructed?
I How should I translate this C program/render this HTML page?

Finite state machines – Push-down automata –
Syntax trees – Universal computers

11

Questions on languages

I Language description?
I What are the legal word in a language?
I What are syntactically correct LISP programs?
I How can we describe languages in general?

Formal grammars – regular expressions

I Language recognition/understanding?
I Is this a legal word in a language?
I How is this JAVA program constructed?
I How should I translate this C program/render this HTML page?

Finite state machines – Push-down automata –
Syntax trees – Universal computers

11

More questions on languages

I For a given language, can I decide if a word is in the language?
I . . . with a finite and fast machine?
I . . . with a simple but infinite machine?
I . . . with arbitrary but known resources?
I . . . at all?

12

Abandon all hope. . .

13

Finite Automata - Example

Off On
click

click

14

Finite Automata - Example

Off On
click

click

States

14

Finite Automata - Example

Off On
click

click

States

Initial state

14

Finite Automata - Example

Off On
click

click

States

Initial state Transitions

14

Finite Automata - Example

I Formally:
I Q = {Off,On} is the set of states
I Σ = {click} is the alphabet
I The transistion function δ is given by

δ click
Off On
On Off

I The initial state is Off
I There are no accepting states

Off On
click

click

States

Initial state Transitions

15

ATC scenario
•

Theoretische Grundlagen des Software Engineering

•

Stephan Schulz

3

ATC Center
(controllers)

Aggregator

16

ATC redundancy
•

Theoretische Grundlagen des Software Engineering

•

Stephan Schulz

4

ATC

Sensors

Ser-
ver
B

Aktive server:
- Accepts sensor data
- Provides ASP
- Sends “alive”

messages

Ser-
ver
A

Passive server
- Ignores sensor data
- Monitors “alive”

messages
- Takes over in case of

failure

17

DFA to the rescue
•

Theoretische Grundlagen des Software Engineering

•

Stephan Schulz

Zustandsdiagramm

5

q0

q1

q3

q2

timeout

timeout

timeout

alive

alive

Zwei Eingaben (“Buchstaben”)!

‣ timeout: 0.1 Sekunden sind
vergangen!

‣ alive: Andere Server ist aktiv!

‣ q0, q1, q2: Server ist passiv!

• Keine Verarbeitung, keine
alives!

‣ Wenn q3 erreicht wird:!

• Übername als aktiver
Server (schicke alives)

alive

timeout

I Two events (“letters”)
I timeout: 0.1 seconds have passed
I alive: message from active server

I States q0,q1,q2: Server is passive
I No processing of input
I No sending of alive messages

I State q3: Server becomes active
I Process input, provide output to ATC
I Send alive messages every 0.1

seconds

18

Turing Machines

I “Universal computer”
I Very simple model of a computer

I Infinite tape, one read/write head
I Tape can store letters from a alphabet
I FSM controls read/write and movement

operations
I Very powerful model of a computer

I Can compute anything any real computer
can compute

I Can compute anything an “ideal” real
computer can compute

I Can compute everything a human can
compute (?)

19

Example applications for formal languages and
automata

I HTML and web browsers
I Speech recognition and understanding grammars
I Dialog systems and AI (Siri, Watson)
I Regular expression matching
I Compilers and interpreters of programming languages

20

Your expectations? (revisited)

I Phase 1 (individual)
I 3 minutes
I List at least 3 topics/results you want/expect from this course

I Phase 2 (different partners)
I 3 minutes
I Condense to “top 3” choices

I Phase 3
I Presentation

21

Basics of formal languages

22

Alphabets

I An alphabet Σ is a finite, non-empty set of characters (symbols,
letters):

Σ = {c1, · · · , cn}. (1)

I Examples:
1. The alphabet Σbin = {0,1} can express integers in the binary

system.
2. The English language is based on the alphabet

Σen = {a, · · · ,z,A, · · · ,Z}.
3. The alphabet ΣASCII = {0, · · · ,127} represents the set of ASCII

characters [American Standard Code for Information Interchange]
coding letters, digits, and special and control characters.

23

Alphabets: ASCII code chart

24

Words

I A word of the alphabet Σ is a sequence (list) of characters of Σ:

w = c1 · · · cn with c1, . . . , cn ∈ Σ. (2)
I The empty word is written as

w = ε. (3)

I The set of all words of an alphabet Σ is represented by Σ∗.
I In programming languages, words are also referred to as strings.
I Examples:

1. Using the aforementioned set Σbin, we can define the words

w1 = 01100 and w2 = 11001 with w1,w2 ∈ Σ∗bin. (4)

2. Using the aforementioned set Σen, we can define the word

w = example with w ∈ Σ∗en. (5)

25

Length, character access

I We refer to the length of a word w as |w |, e.g.:

w = example with w ∈ Σ∗en −→ |w | = 7. (6)

I We refer to the number of occurances of a symbol l in w as |w |l ,
e.g.

|example|e = 2 (7)

and
|example|k = 0 (8)

I We access individual characters within words using the
terminology w [i] with i ∈ {1,2, · · · , |w |}, e.g.

example[4] = m (9)

26

Concatenation

I We define the concatenation of the words w1,w2, ...,wn as

w = w1w2 · · ·wn. (10)

I Concatenation example:

w1 = 01 and w2 = 10

−→
w1w2 = 0110 and w2w1 = 1001. (11)

27

Iterated concatenation – power of a word

I In the following, we will be frequently using the set of natural
numbers

N = {0,1, · · · }. (12)

I The nth power of a word w concatenates the same word n times:

wn = wn−1w with w0 = ε and n ∈ N,n 6= 0. (13)

28

Formal languages

I Given the alphabet Σ, we refer to a subset L ⊆ Σ∗ as a formal
language.

29

Formal languages - examples (1)

I We define
LN = {1w |w ∈ Σ∗bin} ∪ {0}. (14)

Then, LN is the set of all those words that represent integers
using the binary system (all words starting with 1 and the word
0. Hence, we have

100 ∈ LN but 010 6∈ LN. (15)

30

Formal languages - examples (2)

I We define the function

d : LN → N (16)

as the function returning the numeric value of a word in the
language LN. This gives us
(a) d(0) = 0,
(b) d(1) = 1,
(c) d(w0) = 2d(w) for |w | > 0,
(d) d(w1) = 2d(w) + 1 for |w | > 0.

31

Formal languages - examples (3)

I We define the language LP as the language representing prime
numbers in the binary system:

LP = {w ∈ LN|d(w) ∈ P}. (17)

One way to formally express the set of all prime numbers is

P = {p ∈ N|{t ∈ N|∃k ∈ N : kt = p} = {1,p}}. (18)

32

Formal languages - examples (4)

I We define the language LC ⊂ Σ∗ASCII as the set of all C functions
with a declaration of the form

char∗ f (char∗ x); (19)

that is, LC contains the ASCII code of all those C functions
processing and returning a string.

33

Formal languages - examples (5)

I Using the alphabet ΣASCII+ = ΣASCII ∪ {†}, we define the
universal language

Lu = {f †x†y} with (20)

(a) f ∈ LC ,
(b) x , y ∈ Σ∗ASCII,
(c) applying f to x terminates and returns y .

I These examples show that formal languages have a wide scope.
I Testing whether a word belongs to LN is straightforward whereas

the same test for LP or LC is more complicated.
I Later, we will see that there is no algorithm to do this test for Lu.

34

Abandon all hope. . .

35

Product of a formal language

I Given an alphabet Σ and the formal languages L1,L2 ⊆ Σ∗, we
define the product

L1 · L2 = {w1w2|w1 ∈ L1,w2 ∈ L2}. (21)

I Example:
Using the alphabet Σen, we define the languages

L1 = {ab,bc} and L2 = {ac,cb}. (22)

The product is

L1 · L2 = {abac,abcb,bcac,bccb}. (23)

36

Power of a language

I Given an alphabet Σ, the formal language L ⊆ Σ∗, and the
integer n ∈ N, we define the nth power of L (recursively) as

Ln = Ln−1 · L with L0 = {ε}. (24)

I Using the alphabet Σen, we define the language

L = {ab,ba}. (25)

This gives us
L0 = {ε},

L1 = {ε} · {ab,ba} = {ab,ba},
L2 = {ab,ba} · {ab,ba} = {abab,abba,baab,baba}. (26)

37

The Kleene Star

I Given an alphabet Σ and a formal language L ⊆ Σ∗, we define
the Kleene star as

L∗ =
⋃
n∈N

Ln. (27)

I Example:
Using the alphabet Σen, we define the language

L = {a}. (28)

This gives us
L∗ = {an|n ∈ N}. (29)

38

Formal languages: exercise

I Given the alphabet Σbin and the language

L = {1}. (30)

a) Formally describe the language

L′ = L∗\{ε}. (31)

b) Formally describe the set

D = {d(w)|w ∈ L′}. (32)

c) Formally describe the language

L′− = {w |d(w)− 1 ∈ D}. (33)

d) Formally describe the language

L′+ = {w |d(w) + 1 ∈ D}. (34)

39

Think!

40

Regular Expressions

41

Regular expressions

I Regular expressions
I Compact way to represent a set of strings
I Convenient way to represent a set of strings

I Widely used, e.g.
I Characterize tokens for compilers
I Describe search terms for a data base
I Filter through genomic data
I Extract URLs from web pages
I Extract email addresses from web pages

The set of all regular expressions (over an alphabet) is a formal
language

Each single regular expression describes a formal language

42

Regular expressions

I Regular expressions
I Compact way to represent a set of strings
I Convenient way to represent a set of strings

I Widely used, e.g.
I Characterize tokens for compilers
I Describe search terms for a data base
I Filter through genomic data
I Extract URLs from web pages
I Extract email addresses from web pages

The set of all regular expressions (over an alphabet) is a formal
language

Each single regular expression describes a formal language

42

Regular expressions and formal languages

I Using the alphabet Σ, we refer to the set of all regular
expressions as R.

I We introduce a function

L : R → 2Σ∗
(35)

assigning a formal language L(r) ⊆ Σ∗ to each regular
expression r .

I Here, 2S denotes the power set of a set S.
I E.g.,

2Σbin = 2{0,1} = {∅, {0}, {1}, {0,1}}, (36)

and

2Σ∗
bin = 2{ε,0,1,00,01,...} (37)

= {∅, {ε}, {0}, {1}, {00}, {01}, . . .
. . . {ε,0}, {ε,1}, {ε,00}, {ε,01}, . . .
. . . {010,1110,10101}, . . .}.

43

The set of regular expressions

I The set of regular expressions (R) is defined as follows:
1. The regular expression ∅ is associated with the empty language:

L(∅) = {} with ∅ ∈ R. (38)

2. The regular expression ε is associated with the language
containing only the empty word:

L(ε) = {ε} with ε ∈ R. (39)

3. Each symbol in the alphabet Σ is also a regular expression:

c ∈ Σ −→ c ∈ R;

L(c) = {c}. (40)
4. We define the infix operator “+” generating new regular

expressions by merging the languages of the regular expressions
r1 and r2:

r1 ∈ R, r2 ∈ R −→ r1 + r2 ∈ R;

L(r1 + r2) = L(r1) ∪ L(r2). (41)

44

The set of regular expressions (cont.)

5. We define the infix operator “·” generating new regular
expressions using the product of the languages representing the
regular expressions r1 and r2:

r1 ∈ R, r2 ∈ R −→ r1 · r2 ∈ R;

L(r1 · r2) = L(r1) · L(r2). (42)

6. We define the Kleene star of the language representing a regular
expression r :

r ∈ R −→ r∗ ∈ R;

L(r∗) = L∗(r). (43)

7. Brackets can be used to group regular expressions without
changing them:

r ∈ R −→ (r) ∈ R;

L((r)) = L(r). (44)

45

Operator precedences

I To save brackets, we introduce the following operator
precedences:

I. “(”, “)” (strongest)
II. “∗”

III. “·”
IV. “+” (weakest)

I Example:
a + b · c∗ = a + (b · (c∗)). (45)

I For the sake of further simplicity, the product operator “·” can
also be omitted, e.g.:

a + b · c∗ = a + bc∗. (46)

I Note: Some authors (and tools) use | instead of + to denote
alternatives

46

Regular expressions: examples

I For all the following examples, we are using the alphabet

Σabc = {a,b,c}. (47)

1. The regular expression

r1 = (a + b + c)(a + b + c) (48)

describes all the words of exactly two symbols:

L(r1) = {w ∈ Σ∗abc

∣∣|w | = 2}. (49)

2. The regular expression

r2 = (a + b + c)(a + b + c)∗ (50)

describes all the words of one or more symbols:

L(r1) = {w ∈ Σ∗abc

∣∣|w | ≥ 1}. (51)

47

Regular expressions: exercises

a) Using the alphabet Σabc = {a,b,c}, give a regular expression ra
for all the words w ∈ Σ∗abc containing exactly one a or exactly one
b.

b) Which language is expressed by ra?
c) Using the alphabet Σabc = {a,b,c}, give a regular expression rb

for all the words containing at least one a and one b.
d) Using the alphabet Σbin = {0,1}, give a regular expression for all

the words whose third last symbol is 1.
e) Using the alphabet Σbin, give a regular expression for all the

words not containing the string 110.
f) Which language is expressed by the regular expression

rf = (1 + ε)(00∗1)∗0∗? (52)

48

Think!

49

Homework assignment

I Install an operational UNIX/Linux environment (per slide 7) on
your computer.

I To test you installation, download and execute the program
miu.py from the course web page http://wwwlehre.
dhbw-stuttgart.de/˜sschulz/fla2014.html

I Read the source code of the program. What does it do? Try
different parameter combinations.

50

http://wwwlehre.dhbw-stuttgart.de/~sschulz/fla2014.html
http://wwwlehre.dhbw-stuttgart.de/~sschulz/fla2014.html

Review of Goals

I Getting acquainted
I Practical issues
I Course outline and motivation
I Basics of formal languages
I Regular expressions

51

Feedback round

I What was the best part of todays lecture?
I What part of todays lecture has the most potential for

improvement?
I Optional: how would you improve it?

52

Introduction Review

53

Goals for Today

I Review and mental warm-up
I Proofs
I Regular expression algebra
I Deterministic finite automata

54

Formal languages: Basics

I Alphabet Σ: Finite, nonempty set of characters (symbols/letters)
I Words: Finite sequences of characters
I ε is the empty word (|ε| = 0)
I abcab[3] = c
I |abcab|a = 2

I Σ∗: Set of all words over Σ

I A formal language L over Σ is a (finite or infinite) set of words
L ⊆ Σ∗

55

Formal languages: Warm-up

I Give 5 examples each of formal languages with a suitable
alphabet from the areas of
I Computer programming
I Human communication
I Data/knowledge collections

I Formally describe the following languages (if they are
languages):
I The set of all square numbers in decimal representation
I The set of all square roots of natural numbers in decimal

representation

56

Regular expressions: Basics

I Elementary REs (over a given alphabet Σ)
I L(∅) = {}
I L(ε) = {ε}
I L(a) = {a} for a ∈ Σ

I Composite REs (with existing REs r , r1, r2):
I L(r1 + r2) = L(r1) ∪ L(r2)
I L(r1 · r2) = L(r1) · L(r2)
I L(r∗) = L∗(r)(= ∪i∈NLi (r1))

I Parentheses can be used to group subexpressions
I Operator precedence: () > ∗ > · > +

57

Regular expressions: Warm-up

I Characterise the languages described by the following REs over
Σ = {0,1}:
I (0 + 1)∗111(0 + 1)(0 + 1)
I (ba)∗(a + b)∗(ab)∗

I Find regular expressions for the following languages over
Σ = {a,b} (if possible):
I {w ∈ Σ∗ | w contains ab}
I {w ∈ Σ∗ | |w | ≥ 3 and w [3] = a}
I {w ∈ Σ∗ | |w | < 3 or w [2] = w [|w | − 2] = a}
I {anbm | n,m ∈ N}
I {anbn | n ∈ N}
I {anan | n ∈ N}

58

Excursion: proofs

A proof is a (semi-)formal argument that necessarily convinces
an open-minded, rational, educated being of the truth of a

statement.

I argument – a chain of logically connected steps
I necessarily – the argument is sound and complete
I open-minded – the recipient must be willing to consider the

argument
I rational – the recipient must be able to follow the logic
I educated – the recipient must understand the concepts involved

Corollary: The form of a (semi-formal) proof depends on the
audience!

59

Excursion: proofs

A proof is a (semi-)formal argument that necessarily convinces
an open-minded, rational, educated being of the truth of a

statement.

I argument – a chain of logically connected steps

I necessarily – the argument is sound and complete
I open-minded – the recipient must be willing to consider the

argument
I rational – the recipient must be able to follow the logic
I educated – the recipient must understand the concepts involved

Corollary: The form of a (semi-formal) proof depends on the
audience!

59

Excursion: proofs

A proof is a (semi-)formal argument that necessarily convinces
an open-minded, rational, educated being of the truth of a

statement.

I argument – a chain of logically connected steps
I necessarily – the argument is sound and complete

I open-minded – the recipient must be willing to consider the
argument

I rational – the recipient must be able to follow the logic
I educated – the recipient must understand the concepts involved

Corollary: The form of a (semi-formal) proof depends on the
audience!

59

Excursion: proofs

A proof is a (semi-)formal argument that necessarily convinces
an open-minded, rational, educated being of the truth of a

statement.

I argument – a chain of logically connected steps
I necessarily – the argument is sound and complete
I open-minded – the recipient must be willing to consider the

argument

I rational – the recipient must be able to follow the logic
I educated – the recipient must understand the concepts involved

Corollary: The form of a (semi-formal) proof depends on the
audience!

59

Excursion: proofs

A proof is a (semi-)formal argument that necessarily convinces
an open-minded, rational, educated being of the truth of a

statement.

I argument – a chain of logically connected steps
I necessarily – the argument is sound and complete
I open-minded – the recipient must be willing to consider the

argument
I rational – the recipient must be able to follow the logic

I educated – the recipient must understand the concepts involved

Corollary: The form of a (semi-formal) proof depends on the
audience!

59

Excursion: proofs

A proof is a (semi-)formal argument that necessarily convinces
an open-minded, rational, educated being of the truth of a

statement.

I argument – a chain of logically connected steps
I necessarily – the argument is sound and complete
I open-minded – the recipient must be willing to consider the

argument
I rational – the recipient must be able to follow the logic
I educated – the recipient must understand the concepts involved

Corollary: The form of a (semi-formal) proof depends on the
audience!

59

Excursion: proofs

A proof is a (semi-)formal argument that necessarily convinces
an open-minded, rational, educated being of the truth of a

statement.

I argument – a chain of logically connected steps
I necessarily – the argument is sound and complete
I open-minded – the recipient must be willing to consider the

argument
I rational – the recipient must be able to follow the logic
I educated – the recipient must understand the concepts involved

Corollary: The form of a (semi-formal) proof depends on the
audience!

59

More on Regular Expressions

60

Equivalence of regular expressions

I We define two regular expressions r1 and r2 as equivalent, if
L(r1) = L(r2).

I In that case, we write r1
.

= r2.
I Formally:

r1
.

= r2 if and only if L(r1) = L(r2) (53)

61

Algebraic operations on regular expressions

1. r1 + r2
.

= r2 + r1 (commutative law)
This equivalence can be proven using the commutativity of set
union:

L(r1 + r2) = L(r1) ∪ L(r2) = L(r2) ∪ L(r1) = L(r2 + r1). (54)

2. (r1 + r2) + r3
.

= r1 + (r2 + r3) (associative law)
3. (r1r2)r3

.
= r1(r2r3) (associative law)

4. ∅r .
= ∅

5. εr .
= r

6. ∅+ r .
= r

7. (r1 + r2)r3
.

= r1r3 + r2r3 (distributive law)
8. r1(r2 + r3)

.
= r1r2 + r1r3 (distributive law)

62

Algebraic operations on regular expressions: proof of
Rule 4

I We want to prove that
∅r .

= ∅. (55)
I According to Equation 53, to prove Equation 55, we have to

show that
L(∅r) = L(∅). (56)

One way to do so is:

L(∅r)
Eq.42

= L(∅) · L(r) (57)
Eq.38

= ∅ · L(r)
Eq.21

= {w1w2|w1 ∈ ∅,w2 ∈ L(r)}
= ∅

Eq.38
= L(∅) �

63

Algebraic operations on regular expressions (cont.)

9. r + r .
= r

10. (r∗)∗ .= r∗

11. ∅∗ .= ε

12. ε∗ .= ε

13. r∗ .= ε+ r∗r
14. r∗ .= (ε+ r)∗

15. ε 6∈ L(s) and r .
= rs + t −→ r .

= ts∗

(proof by Arto Salomaa)
16. a∗a .

= aa∗ (see Lemma: Kleene Star below)
17. ε 6∈ L(s) and r .

= sr + t −→ r .
= s∗t (Arden’s Lemma)

64

Algebraic operations on regular expressions: exercise

a) Simplify the following regular expression:

r = 0(ε+ 0 + 1)∗ + (ε+ 1)(1 + 0)∗ + ε. (58)

b) Prove the equivalence using only algebraic operations

r∗ .= ε+ r∗. (59)

c) Prove the equivalence using only algebraic operations

10(10)∗
.

= 1(01)∗0. (60)

65

Group exercise: being Arto Salomaa

I Prove: ε 6∈ L(s) and r .
= rs + t −→ r .

= ts∗

I Group phase (groups of 3-4, 5-10 minutes)
I Discussion
I Group phase (5-10 minutes)
I Proof assembly

66

Finite Automata/Finite State Machines

67

Finite Automata: Motivation

I Simple model of computation
I Can recognize/identify regular languages
I Equivalent to regular expressions
I We can automatically generate a FA from a RE
I We can automatically generate an RE from an FA

I Deterministic (DFA, now) and non-deterministic (NFA, later)
variants

I Easy to implement in actual programs

68

Deterministic Finite Automata: Idea

I Automaton is in one of a finite number of states
I Words processed letter by letter
I State transitions triggered by letters read
I Words are accepted or rejected based on final state reached

69

DFA: Example

I A simple DFA recognizing the regular expression a∗ba∗

0 1

a

b

a

I This DFA has two states, 0 and 1.
I 0 is the initial state (with an arrow “pointing at it from anywhere”

(Sipser, 2006))
I 1 is an accepting state (represented as a double circle)

70

DFA: formal definition

I A deterministic finite automaton (DFA) is a quintuple

A = 〈Q,Σ, δ,q0,F 〉 (61)

with the following components
1. Q is the finite set of states.
2. Σ is the input alphabet.
3. δ : Q × Σ→ Q ∪ {Ω} is the state-transition function. If δ(q, c) = Ω,

the DFA announces an error, i.e. rejects the input.
4. q0 ∈ Q is the initial state.
5. F ⊆ Q is the set of final (or accepting) states.

71

DFA: formal definition: example

I Using the previous example, the DFA
is expressed as

A = 〈Q,Σ, δ,q0,F 〉 (62)

with
1. Q = {0,1}
2. Σ = {a,b}
3. δ(0,a) = 0; δ(0,b) = 1;

δ(1,a) = 1; δ(1,b) = Ω
4. q0 = 0
5. F = {1}

0 1

a

b

a

72

Language accepted by an DFA

I In order to formally define the language accepted by an DFA, we
generalize the state transition function δ to a function

δ′ : Q × Σ∗ → Q ∪ {Ω} (63)

whose second argument is a string.
I We define
I δ′(q, ε) = q

I δ′(q,w) =

{
δ′(δ(q, c), v) if δ(q, c) 6= Ω

Ω otherwise

with w = cv ; c ∈ Σ; v ∈ Σ∗ for |w | > 0
I The language accepted by a DFA A = 〈Q,Σ, δ,q0,F 〉 is defined

as
L(A) = {w ∈ Σ∗|δ′(q0,w) ∈ F}. (64)

73

DFA: exercise (1)

1. We are given this graphical representation of a DFA A:

0

2

b

3

b

1
a

a

b

a) Give a regular expression describing L(A).
b) Give a formal definition of A.

74

DFA: exercise (2)

2. Give
I a regular expression,
I a graphical representation, and
I a formal definition

of a DFA A whose language L(A) ⊂ {a,b}∗ contains all those
words featuring the substring ab

a) at the beginning,
b) at arbitrary position,
c) at the end.

75

DFA: another example

q0 q3 0,1q1
0

q4

1

q2
0

1

1

0

0,1

I Which language is recognized by the DFA?

76

DFA: Tabular representation

q0 q3 0,1q1
0

q4

1

q2
0

1

1

0

0,1

I A = 〈Q,Σ, δ,q0,F 〉
I Q = {q0,q1,q2,q3,q4}
I Σ = {0,1}
I Initial state: q0

I F = {q3}

δ 0 1

→

q0 q1 q4

q1 q2 q4

q2 q4 q3

∗

q3 q3 q3

q4 q4 q4

77

DFA: Tabular representation

q0 q3 0,1q1
0

q4

1

q2
0

1

1

0

0,1

I A = 〈Q,Σ, δ,q0,F 〉
I Q = {q0,q1,q2,q3,q4}
I Σ = {0,1}
I Initial state: q0

I F = {q3}

δ 0 1

→

q0 q1 q4

q1 q2 q4

q2 q4 q3

∗

q3 q3 q3

q4 q4 q4

77

DFA: Tabular representation

q0 q3 0,1q1
0

q4

1

q2
0

1

1

0

0,1

I A = 〈Q,Σ, δ,q0,F 〉
I Q = {q0,q1,q2,q3,q4}
I Σ = {0,1}
I Initial state: q0

I F = {q3}

δ 0 1

→

q0 q1 q4

q1 q2 q4

q2 q4 q3

∗

q3 q3 q3

q4 q4 q4

77

DFA: Tabular representation

q0 q3 0,1q1
0

q4

1

q2
0

1

1

0

0,1

I A = 〈Q,Σ, δ,q0,F 〉
I Q = {q0,q1,q2,q3,q4}
I Σ = {0,1}
I Initial state: q0

I F = {q3}

δ 0 1
→ q0 q1 q4

q1 q2 q4

q2 q4 q3

∗ q3 q3 q3

q4 q4 q4

77

DFA: Tabular representation

q0 q3 0,1q1
0

q4

1

q2
0

1

1

0

0,1

I A = 〈Q,Σ, δ,q0,F 〉
I Q = {q0,q1,q2,q3,q4}
I Σ = {0,1}
I Initial state: q0

I F = {q3}

δ 0 1
→ q0 q1 q4

q1 q2 q4

q2 q4 q3

∗ q3 q3 q3

q4 q4 q4

77

DFA: Tabular representation

q0 q3 0,1q1
0

q4

1

q2
0

1

1

0

0,1

I A = 〈Q,Σ, δ,q0,F 〉
I Q = {q0,q1,q2,q3,q4}
I Σ = {0,1}
I Initial state: q0

I F = {q3}

δ 0 1
→ q0 q1 q4

q1 q2 q4

q2 q4 q3

∗ q3 q3 q3

q4 q4 q4

77

DFA: Tabular representation in practice

Delta | 0 1

-> q0 | q1 q4

q1 | q2 q4
q2 | q4 q3

* q3 | q3 q3
q4 | q4 q4

> easim.py fsa001.txt 10101
Processing: 10101
q0 :: 1 -> q4
q4 :: 0 -> q4
q4 :: 1 -> q4
q4 :: 0 -> q4
q4 :: 1 -> q4
Rejected

> easim.py fsa001.txt 101
Processing: 101
q0 :: 1 -> q4
q4 :: 0 -> q4
q4 :: 1 -> q4
Rejected

78

DFA: Tabular representation in practice

Delta | 0 1

-> q0 | q1 q4

q1 | q2 q4
q2 | q4 q3

* q3 | q3 q3
q4 | q4 q4

> easim.py fsa001.txt 10101
Processing: 10101
q0 :: 1 -> q4
q4 :: 0 -> q4
q4 :: 1 -> q4
q4 :: 0 -> q4
q4 :: 1 -> q4
Rejected

> easim.py fsa001.txt 101
Processing: 101
q0 :: 1 -> q4
q4 :: 0 -> q4
q4 :: 1 -> q4
Rejected

78

DFA: Tabular representation in practice

Delta | 0 1

-> q0 | q1 q4

q1 | q2 q4
q2 | q4 q3

* q3 | q3 q3
q4 | q4 q4

> easim.py fsa001.txt 10101
Processing: 10101
q0 :: 1 -> q4
q4 :: 0 -> q4
q4 :: 1 -> q4
q4 :: 0 -> q4
q4 :: 1 -> q4
Rejected

> easim.py fsa001.txt 101
Processing: 101
q0 :: 1 -> q4
q4 :: 0 -> q4
q4 :: 1 -> q4
Rejected

78

DFAs in tabular form: exercise

I Give the following DFA . . .
I as a formal 5-tuple
I as a diagram

parity | 0 1

-> even | even odd

* odd | odd even

I Characterize the language accepted by the DFA

79

Homework assignment

I Write (in a language of your choice) a program that reads a finite
automaton in tabular form from a file (name given on the
command line) and simulates its processing of a word (also
given on the command line). Example files for input and output
are given on the course web site, http://wwwlehre.
dhbw-stuttgart.de/˜sschulz/fla2014.html

I Deadline: Next session (2014-10-01!)

80

http://wwwlehre.dhbw-stuttgart.de/~sschulz/fla2014.html
http://wwwlehre.dhbw-stuttgart.de/~sschulz/fla2014.html

Review of Goals

I Review and mental warm-up
I Proofs
I Regular expression algebra
I Deterministic finite automata

81

Feedback round

I What was the best part of todays lecture?
I What part of todays lecture has the most potential for

improvement?
I Optional: how would you improve it?

82

Goals for Today

I Refresh Deterministic Finite Automata
I Discuss homework and open points
I Non-determinstic FAs

83

Regular expression algebra

Definition: r1
.

= r2 iff L(r1) = L(r2)

1. r1 + r2
.

= r2 + r1

2. (r1 + r2) + r3
.

= r1 + (r2 + r3)

3. (r1r2)r3
.

= r1(r2r3)

4. ∅r .
= ∅

5. εr .
= r

6. ∅+ r .
= r

7. (r1 + r2)r3
.

= r1r3 + r2r3

8. r1(r2 + r3)
.

= r1r2 + r1r3

9. r + r .
= r

10. (r∗)∗ .= r∗

11. ∅∗ .= ε

12. ε∗ .= ε

13. r∗ .= ε+ r∗r
14. r∗ .= (ε+ r)∗

15. ε 6∈ L(s) and r .
= rs + t −→

r .
= ts∗

84

Open exercise

Simplify the following regular expression:

r = 0(ε+ 0 + 1)∗ + (ε+ 1)(1 + 0)∗ + ε

85

Lemma: Kleene Star

Lemma:
a∗a .

= aa∗ (65)

Proof: By case distinction.
Case 1: ε ∈ L(a). We show L(a∗a) = L(a∗) = L(aa∗)

a. L(a∗a) ⊆ L(a∗) by definition
b. L(a∗a) = {uv |u ∈ L(a∗), v ∈ L(a)}
⊇ {uv |u ∈ L(a∗), v = ε}
= {u|u ∈ L(a∗)}
= L(a∗)

I a. und b. imply L(a∗a) = L(a∗)
I L(aa∗) = L(a∗): Strictly analoguous
I Hence case 1 holds.

86

Lemma: Kleene Star

Case 2: ε /∈ L(a). Then
a∗a .

= (ε+ a∗a)a (by 13. a∗ .= ε+ a∗a)
.

= (a∗a + ε)a (by 1. r1 + r2
.

= r2 + r1)
.

= a∗aa + a (by 7. (r1 + r2)r3
.

= r1r3 + r2r3)
.

= aa∗ (by 15. with r = a∗a, s = a, t = a)
Since cases 1 and 2 hold, the lemma holds. q.e.d.

87

Solution to open exercise

r = 0(ε+ 0 + 1)∗ + (ε+ 1)(1 + 0)∗ + ε
14,1.
= 0(0 + 1)∗ + (ε+ 1)(0 + 1)∗ + ε
7.
= 0(0 + 1)∗ + ε(0 + 1)∗ + 1(0 + 1)∗ + ε
5.
= 0(0 + 1)∗ + (0 + 1)∗ + 1(0 + 1)∗ + ε
1,7.
= ε+ (0 + 1)(0 + 1)∗ + (0 + 1)∗

Eq.65.
= ε+ (0 + 1)∗(0 + 1) + (0 + 1)∗

13.
= (0 + 1)∗ + (0 + 1)∗

9.
= (0 + 1)∗.

88

DFAs

I A = 〈Q,Σ, δ,q0,F 〉 with
1. Q = {0,1}
2. Σ = {a,b}
3. δ(0,a) = 0; δ(0,b) = 1;

δ(1,a) = 1; δ(1,b) = Ω
4. q0 = 0
5. F = {1}

I L(A) = {w ∈ Σ∗|δ′(q0,w) ∈ F}

0 1

a

b

a

δ a b
→ 0 0 1
∗1 1 Ω

89

DFA warmup exercise

I Assume
I Σ = {a,b, c}
I L1 = {ubw |u ∈ Σ∗,w ∈ Σ}
I L2 = {ubw |u ∈ Σ,w ∈ Σ∗}

I Group 1 (your family name starts with A-M):
Find a DFA A with L(A) = L1

I Group 2 (your family name does not start with A-M):
Find a DFA A with L(A) = L2

90

Homework Assignment

I Write (in a language of your choice) a program that reads a finite
automaton in tabular form from a file (name given on the
command line) and simulates its processing of a word (also
given on the command line).

A3 | 0 1

-> * q0 | q1 q2

q1 | q0 q3
q2 | q3 q0
q3 | q2 q1

> ./easim.py ea03.txt 100010
Processing: 100010
q0 :: 1 -> q2
q2 :: 0 -> q3
q3 :: 0 -> q2
q2 :: 0 -> q3
q3 :: 1 -> q1
q1 :: 0 -> q0
Accepted

91

Homework Assignment

I Write (in a language of your choice) a program that reads a finite
automaton in tabular form from a file (name given on the
command line) and simulates its processing of a word (also
given on the command line).

A3 | 0 1

-> * q0 | q1 q2

q1 | q0 q3
q2 | q3 q0
q3 | q2 q1

> ./easim.py ea03.txt 100010
Processing: 100010
q0 :: 1 -> q2
q2 :: 0 -> q3
q3 :: 0 -> q2
q2 :: 0 -> q3
q3 :: 1 -> q1
q1 :: 0 -> q0
Accepted

91

Student Experiences?

92

Language of (my) choice: Python

I Modern scripting language, widely used
I Good collection of built-in abstract data types
I Lists/arrays/stacks/queues
I Dictionaries/hashes
I Sets

I Object-oriented features
I Classes, objects
I Inheritance

I Functional features
I Functions as first-class members
I map and lambda

I Good library support
I Strings and regexps
I “All of UNIX/POSIX”

93

Python peculiarities

I Statement blocks marked by indentation

for c in s t r i n g :
newstate = s e l f . d e l t a f u n (s ta te , c)
pr in t s ta te , ” : : ” , c , ”−>” , newstate
s ta te =newstate

I Methods use explicit self parameter

def d e l t a f u n (s e l f , s ta te , l e t t e r) :
return s e l f . de l t a [(s ta te , l e t t e r)]

. . .
newstate = s e l f . d e l t a f u n (s ta te , c)

94

DFAs in Python

I DFA is a class
I Individual DFAs are objects/instances
I Class constructor extracts DFA from string table

I Direkt mapping of A = 〈Q,Σ, δ,q0,F 〉
I Q: Python set states
I Σ: Python list sigma
I δ: Python dictionary delta mapping (q, c) onto successor

state
I Also exposed as a method delta fun

I q0: Python variable start
I F : Python set accept

95

DFAs in Python – structure

class DFA(ob jec t) :
” ” ”
Object rep resen t ing a (d e t e r m i n i s t i c) f i n i t e automaton .
” ” ”

def i n i t (s e l f , spec) :
. . .

def d e l t a f u n (s e l f , s ta te , l e t t e r) :
. . .

def p r o c s t r i n g (s e l f , s t r i n g) :
. . .

def parse (s e l f , spec) :
. . .

def s t r (s e l f) :
. . .

def d o t i f y (s e l f) :
. . .

96

DFAs in Python – constructor

def i n i t (s e l f , spec) :
s e l f . s ta tes = set ()
s e l f . sigma = []
s e l f . de l t a = {}
s e l f . s t a r t = None
s e l f . accept = set ()
s e l f . parse (spec)

97

DFAs in Python – processing

def d e l t a f u n (s e l f , s ta te , l e t t e r) :
return s e l f . de l t a [(s ta te , l e t t e r)]

def p r o c s t r i n g (s e l f , s t r i n g) :
pr in t ” Processing : ” , s t r i n g

s ta te = s e l f . s t a r t
for c in s t r i n g :

newstate = s e l f . d e l t a f u n (s ta te , c)
pr in t s ta te , ” : : ” , c , ”−>” , newstate
s ta te =newstate

i f s ta te in s e l f . accept :
pr in t ” Accepted\n ”

else :
pr in t ” Rejected\n ”

98

DFAs in Python – main

i f name == ’ ma in ’ :
opts , args = getopt . gnu getopt (sys . argv [1 :] , ” hdp ” , [” help ” , ” dot ” , ” p r i n t ”])
Options and er ro r−handl ing omi t ted
f i l e = open (args [0] , ” r ”)
s t r = f i l e . read ()
f i l e . c lose ()

ea = DFA(s t r)

. . . .

for arg in args [1 :] :
ea . p r o c s t r i n g (arg)

99

DFAs in Python – parsing (1)

def parse (s e l f , spec) :
l i n e s = spec . s p l i t (” \n ”)
Find sigma
while True :

i = l i n e s . pop (0)
l = i . s t r i p ()
i f l :

s igmast r = l . s p l i t (” | ”) [1]
s e l f . sigma = sigmast r . s p l i t ()
break

Skip −−−−−−−−−
while True :

i = l i n e s . pop (0)
l = i . s t r i p ()
i f l :

break
. . .

100

DFAs in Python – parsing (2)

Process the r e s t − ”(−>)?(∗)? s ta te | s ta te1 . . . s ta ten ”
while l i n e s :

i = l i n e s . pop (0)
l = i . s t r i p ()
i f l :

s ta te , values = l . s p l i t (” | ”)
s t a t e = s ta te . s t r i p ()
s t a r t = False
accept = False
i f s ta te . s t a r t s w i t h (”−>”) :

s t a r t = True
s ta te = s ta te [2 :] . s t r i p ()

i f s ta te . s t a r t s w i t h (” ∗ ”) :
accept = True
s ta te = s ta te [1 :] . s t r i p ()

101

DFAs in Python – parsing (3)

. . .
s e l f . s ta tes . add (s ta te)
i f s t a r t :

s e l f . s t a r t = s ta te
i f accept :

s e l f . accept . add (s ta te)
dvals = values . s p l i t ()
for i in xrange (len (s e l f . sigma)) :

s e l f . de l t a [(s ta te , s e l f . sigma [i])] = dvals [i]

102

Non-determinism

103

Non-Deterministic FAs – motivation (1)

I So far, we have discussed deterministic FAs, i.e. every state has
exactly one transition for every possible input.

I Often, DFAs can be rather complex as in the following example
accepting a language specified by the regular expression

(a + b)∗b(a + b)(a + b) (66)

104

Non-Deterministic FAs – motivation (2)

q0

q3

a

q1

b

q5
q2

a
q4b

q6

a

b

q7

a
b

a

b

a

b

a

b

a

b

105

Non-Deterministic FAs – motivation (3)

I We can simplify such an FA if we permit that an input can lead to
I one transition,
I multiple transitions, or
I no transition.

I That is, an FA selects its next state from a set of states where
the set depends on the current state and the input.

I We call this a non-deterministic finite automaton (NFA)
I For the same example with the regular expression

(a + b)∗b(a + b)(a + b) (67)

...

106

Non-Deterministic FAs – motivation (4)

q0 q3

a,b

q1
b q2

a,b a,b

I This FA is non-deterministic, since, in state q0 with the input b,
the FA has to “guess” the next state.

I An example string abab can be read in three ways:

1. q0
a7→ q0

b7→ q0
a7→ q0

b7→ q0 (failure)
2. q0

a7→ q0
b7→ q0

a7→ q0
b7→ q1 (failure)

3. q0
a7→ q0

b7→ q1
a7→ q2

b7→ q3 (success)

I An NFA accepts a string, if one of the possible computations
leads to an accepting state!

107

Non-Deterministic FAs – motivation (4)

q0 q3

a,b

q1
b q2

a,b a,b

I This FA is non-deterministic, since, in state q0 with the input b,
the FA has to “guess” the next state.

I An example string abab can be read in three ways:

1. q0
a7→ q0

b7→ q0
a7→ q0

b7→ q0 (failure)
2. q0

a7→ q0
b7→ q0

a7→ q0
b7→ q1 (failure)

3. q0
a7→ q0

b7→ q1
a7→ q2

b7→ q3 (success)
I An NFA accepts a string, if one of the possible computations

leads to an accepting state!

107

NFA: non-deterministic transitions and ε-transitions

I Non-deterministic transitions allow an NFA to go to more than
one successor state
I δ is a transition relation, not a transition function

I In addition to allow the automaton to go to more than one state
on a given symbol, we also allow it to change state without
reading a symbol:

q1
ε7→ q2. (68)

I This is called the spontaneous transition or ε-transition
I Thus, δ is a relation on Q × (Σ ∪ {ε})×Q

108

NFA remark

I Even though NFAs seem to be based on guessing, in the
following, we will see that they are exactly as powerful as DFAs.
We can generate an equivalent DFA from any NFA!

109

NFA: Formal definition

I An NFA is a quintuple

A = 〈Q,Σ, δ,q0,F 〉 (69)

with the following components
1. Q is the finite set of states.
2. Σ is the input alphabet.
3. δ is a relation on Q × (Σ ∪ {ε})×Q. I.e.,

δ ⊆ Q × (Σ∪{ε})×Q (70)

4. q0 ∈ Q is the initial state.
5. F ⊆ Q is the set of final states.

110

NFA: formal definition: example

I The above mentioned NFA example is expressed as

A = 〈Q,Σ, δ,q0,F 〉 (71)

with
1. Q = {q0,q1,q2,q3}
2. Σ = {a,b}
3. δ =
{〈q0,a,q0〉, 〈q0,b,q0〉, 〈q0,b,q1〉,
〈q1,a,q2〉, 〈q1,b,q2〉,
〈q2,a,q3〉, 〈q2,b,q3〉}

4. Initial state q0
5. F = {q3}

111

NFA: exercise

I Develop an NFA A whose language L(A) ⊂ {a,b}∗ contains all
those words featuring the substring aba. Give:
I a regular expression representing L(A),
I a graphical representation of A,
I a formal definition of A

112

Equivalence of DFA and NFA

I Now we want to show that an NFA A can be transformed to a
DFA det(A) sharing the same language, i.e.

L(A) = L(det(A)) (72)

I The core idea is that the states of det(A) are sets of states of A
I Deterministic transistions in det(A) simulate transistions in A
I A set M of states of A is a final state of det(A) if M contains a

final state of A.
I To show this, we define three auxiliary functions.
I ε closure
I Successor states function δ∗

I Extended transition function ∆∗ for NFAs

113

NFA: ε closure

I The ε closure
ec : Q → 2Q (73)

returns the set of all states the NFA can change to by means of
an ε transition coming from state q.

I Formal definition: ec is the smallest function with the properties:

q ∈ ec(q); (74)

p ∈ ec(q) ∧ 〈p, ε, r〉 ∈ δ → r ∈ ec(q). (75)

114

NFA: ε closure example (1)

q0 q7

ε

q1
ε

q2

ε

q3
b

q4
a

q5
a

q6
b

ε

ε

115

NFA: ε closure example (2)

q0 q7

ε

q1
ε

q2

ε

q3
b

q4
a

q5
a

q6
b

ε

ε

I calculating the ε closure for all states:
I ec(q0) =

{q0,q1,q2},
I ec(q1) = {q1},
I ec(q2) = {q2},
I ec(q3) = {q3},
I ec(q4) = {q4},
I ec(q5) = {q5,q7,q0,q1,q2},
I ec(q6) = {q6,q7,q0,q1,q2}.
I ec(q7) = {q7,q0,q1,q2}.

116

NFA: ε closure example (2)

q0 q7

ε

q1
ε

q2

ε

q3
b

q4
a

q5
a

q6
b

ε

ε

I calculating the ε closure for all states:
I ec(q0) = {q0,q1,q2},
I ec(q1) =

{q1},
I ec(q2) = {q2},
I ec(q3) = {q3},
I ec(q4) = {q4},
I ec(q5) = {q5,q7,q0,q1,q2},
I ec(q6) = {q6,q7,q0,q1,q2}.
I ec(q7) = {q7,q0,q1,q2}.

116

NFA: ε closure example (2)

q0 q7

ε

q1
ε

q2

ε

q3
b

q4
a

q5
a

q6
b

ε

ε

I calculating the ε closure for all states:
I ec(q0) = {q0,q1,q2},
I ec(q1) = {q1},
I ec(q2) =

{q2},
I ec(q3) = {q3},
I ec(q4) = {q4},
I ec(q5) = {q5,q7,q0,q1,q2},
I ec(q6) = {q6,q7,q0,q1,q2}.
I ec(q7) = {q7,q0,q1,q2}.

116

NFA: ε closure example (2)

q0 q7

ε

q1
ε

q2

ε

q3
b

q4
a

q5
a

q6
b

ε

ε

I calculating the ε closure for all states:
I ec(q0) = {q0,q1,q2},
I ec(q1) = {q1},
I ec(q2) = {q2},
I ec(q3) =

{q3},
I ec(q4) = {q4},
I ec(q5) = {q5,q7,q0,q1,q2},
I ec(q6) = {q6,q7,q0,q1,q2}.
I ec(q7) = {q7,q0,q1,q2}.

116

NFA: ε closure example (2)

q0 q7

ε

q1
ε

q2

ε

q3
b

q4
a

q5
a

q6
b

ε

ε

I calculating the ε closure for all states:
I ec(q0) = {q0,q1,q2},
I ec(q1) = {q1},
I ec(q2) = {q2},
I ec(q3) = {q3},
I ec(q4) =

{q4},
I ec(q5) = {q5,q7,q0,q1,q2},
I ec(q6) = {q6,q7,q0,q1,q2}.
I ec(q7) = {q7,q0,q1,q2}.

116

NFA: ε closure example (2)

q0 q7

ε

q1
ε

q2

ε

q3
b

q4
a

q5
a

q6
b

ε

ε

I calculating the ε closure for all states:
I ec(q0) = {q0,q1,q2},
I ec(q1) = {q1},
I ec(q2) = {q2},
I ec(q3) = {q3},
I ec(q4) = {q4},
I ec(q5) =

{q5,q7,q0,q1,q2},
I ec(q6) = {q6,q7,q0,q1,q2}.
I ec(q7) = {q7,q0,q1,q2}.

116

NFA: ε closure example (2)

q0 q7

ε

q1
ε

q2

ε

q3
b

q4
a

q5
a

q6
b

ε

ε

I calculating the ε closure for all states:
I ec(q0) = {q0,q1,q2},
I ec(q1) = {q1},
I ec(q2) = {q2},
I ec(q3) = {q3},
I ec(q4) = {q4},
I ec(q5) = {q5,q7,q0,q1,q2},
I ec(q6) =

{q6,q7,q0,q1,q2}.
I ec(q7) = {q7,q0,q1,q2}.

116

NFA: ε closure example (2)

q0 q7

ε

q1
ε

q2

ε

q3
b

q4
a

q5
a

q6
b

ε

ε

I calculating the ε closure for all states:
I ec(q0) = {q0,q1,q2},
I ec(q1) = {q1},
I ec(q2) = {q2},
I ec(q3) = {q3},
I ec(q4) = {q4},
I ec(q5) = {q5,q7,q0,q1,q2},
I ec(q6) = {q6,q7,q0,q1,q2}.
I ec(q7) =

{q7,q0,q1,q2}.

116

NFA: ε closure example (2)

q0 q7

ε

q1
ε

q2

ε

q3
b

q4
a

q5
a

q6
b

ε

ε

I calculating the ε closure for all states:
I ec(q0) = {q0,q1,q2},
I ec(q1) = {q1},
I ec(q2) = {q2},
I ec(q3) = {q3},
I ec(q4) = {q4},
I ec(q5) = {q5,q7,q0,q1,q2},
I ec(q6) = {q6,q7,q0,q1,q2}.
I ec(q7) = {q7,q0,q1,q2}.

116

Successor state function for NFAs (1)

I Second, we transform the relation δ into a function

δ∗ : Q × Σ→ 2Q. (76)

I Here, δ∗(q, c) returns the set of all states the NFA can change to
coming from state q reading the symbol c followed by any
number of ε transitions.

I Formally, we have

δ∗(q1, c) =
⋃

q2∈Q : 〈q1,c,q2〉∈δ

ec(q2). (77)

117

Successor state function for NFAs (2)

q0 q7

ε

q1
ε

q2

ε

q3
b

q4
a

q5
a

q6
b

ε

ε

δ∗(q1, c) =
⋃

q2∈Q : 〈q1,c,q2〉∈δ

ec(q2)

I examples (based on the above NFA):
1. δ∗(q0,a) =

{},
2. δ∗(q1,b) = {q3},
3. δ∗(q3,a) = {q5,q7,q0,q1,q2}.

118

Successor state function for NFAs (2)

q0 q7

ε

q1
ε

q2

ε

q3
b

q4
a

q5
a

q6
b

ε

ε

δ∗(q1, c) =
⋃

q2∈Q : 〈q1,c,q2〉∈δ

ec(q2)

I examples (based on the above NFA):
1. δ∗(q0,a) = {},
2. δ∗(q1,b) =

{q3},
3. δ∗(q3,a) = {q5,q7,q0,q1,q2}.

118

Successor state function for NFAs (2)

q0 q7

ε

q1
ε

q2

ε

q3
b

q4
a

q5
a

q6
b

ε

ε

δ∗(q1, c) =
⋃

q2∈Q : 〈q1,c,q2〉∈δ

ec(q2)

I examples (based on the above NFA):
1. δ∗(q0,a) = {},
2. δ∗(q1,b) = {q3},
3. δ∗(q3,a) =

{q5,q7,q0,q1,q2}.

118

Successor state function for NFAs (2)

q0 q7

ε

q1
ε

q2

ε

q3
b

q4
a

q5
a

q6
b

ε

ε

δ∗(q1, c) =
⋃

q2∈Q : 〈q1,c,q2〉∈δ

ec(q2)

I examples (based on the above NFA):
1. δ∗(q0,a) = {},
2. δ∗(q1,b) = {q3},
3. δ∗(q3,a) = {q5,q7,q0,q1,q2}.

118

Extended transition function ∆∗

I Third, we transform the function δ∗ into a function

∆∗ : 2Q × Σ→ 2Q. (78)

I Here, ∆∗(M, c) returns the set of all states the NFA can change
to coming from a set of states M reading the symbol c followed
by any number of ε transitions.

I Formally, we have

∆∗(M, c) =
⋃

q∈M

δ∗(q, c). (79)

I examples (based on the above NFA):
1. ∆∗({q0,q1,q2},a) = {q4},
2. ∆∗({q3},a) = {q5,q7,q0,q1,q2},
3. ∆∗({q3},b) = {},

119

Equivalence of DFA and NFA: formal definition

I We are now ready to transform an NFA A into a DFA:

det(A) = 〈2Q,Σ,∆∗,ec(q0), F̂ 〉 (80)

with
F̂ = {M ∈ 2Q|M ∩ F 6= {}}. (81)

I That is, the set of final states F̂ is the set of all subsets of Q
containing a final state.

120

Equivalence of DFA and NFA: example (1)

I returning to the example FSM expressing the regular expression

(a + b)∗b(a + b)(a + b) (82)

q0 q3

a,b

q1
b q2

a,b a,b

I The initial state:
S0 = ec(q0) = {q0}. (83)

I The state transition function: Starting with the initial state...
I ∆∗({q0},a) = {q0} = S0.

121

Equivalence of DFA and NFA: example (2)

I exploring the set of states...
I S1 = ∆∗({q0},b) = {q0,q1}.
I S2 = ∆∗({q0,q1},a) = {q0,q2}.
I S4 = ∆∗({q0,q1},b) = {q0,q1,q2}
I S3 = ∆∗({q0,q2},a) = {q0,q3}.
I S5 = ∆∗({q0,q2},b) = {q0,q1,q3}.
I S6 = ∆∗({q0,q1,q2},a) = {q0,q2,q3}.
I S7 = ∆∗({q0,q1,q2},b) = {q0,q1,q2,q3}.

122

Equivalence of DFA and NFA: example (3)

I transitions with repetitive states...
I ∆∗({q0,q3},a) = {q0} = S0.
I ∆∗({q0,q3},b) = {q0,q1} = S1.
I ∆∗({q0,q1,q3},a) = {q0,q2} = S2.
I ∆∗({q0,q1,q3},b) = {q0,q1,q2} = S4.
I ∆∗({q0,q2,q3},a) = {q0,q3} = S3.
I ∆∗({q0,q2,q3},b) = {q0,q1,q3} = S5.
I ∆∗({q0,q1,q2,q3},a) = {q0,q2,q3} = S6.
I ∆∗({q0,q1,q2,q3},b) = {q0,q1,q2,q3} = S7.

123

Equivalence of DFA and NFA: example (4)

I Now, we can define the DFA

det(A) = 〈Q̂,Σ,∆∗,S0, F̂ 〉 (84)

with
I the set of states

Q̂ = {S0, · · · ,S7}, (85)

I the state transition function ∆∗ as summarized as follows:

∆∗ S0 S1 S2 S3 S4 S5 S6 S7

a S0 S2 S3 S0 S6 S2 S3 S6

b S1 S4 S5 S1 S7 S4 S5 S7

I and the set of final states (each DFA state containing the NFA
final state q3)

F̂ = {S3,S5,S6,S7}. (86)

124

Equivalence of DFA and NFA: example (5)

S0

S3

a

S1

b

S5
S2

a
S4b

S6

a

b

S7

a
b

a

b

a

b

a

b

a

b

125

Equivalence of DFA and NFA: example (5)

q0

q3

a

q1

b

q5
q2

a
q4b

q6

a

b

q7

a
b

a

b

a

b

a

b

a

b

125

Equivalence of DFA and NFA: exercise

I We are given the following NFA A:

q0 q7

ε

q1
ε

q2

ε

q3
b

q4
a

q5
a

q6
b

ε

ε

a) Determine det(A).
b) Draw det(A)’s graphical representation
c) Give a regular expression representing the same language as A.

126

Solution to exercise (1)

I Incremental computation of Q̂ and ∆∗:
I Initial state S0 = ec(q0) = {q0,q1,q2}
I ∆∗(S0,a) = δ∗(q0,a) ∪ δ∗(q1,a) ∪ δ∗(q2,a) = {} ∪ {} ∪ {q4} =
{q4} = S1

I ∆∗(S0,b) = {q3} = S2
I ∆∗(S1,a) = {} = S3
I ∆∗(S1,b) = ec(q6) = {q6,q7,q0,q1,q2} = S4
I ∆∗(S2,a) = {q5,q7,q0,q1,q2} = S5
I ∆∗(S2,b) = {} = S3
I ∆∗(S3,a) = {} = S3
I ∆∗(S3,b) = {} = S3
I ∆∗(S4,a) = {q4} = S1
I ∆∗(S4,b) = {q3} = S2
I ∆∗(S5,a) = {q4} = S1
I ∆∗(S5,b) = {q3} = S2

I F̂ = {S4,S5} (since q7 ∈ S4,q7 ∈ S5)

127

Solution to exercise (2)

I det(A) = 〈Q̂,Σ,∆∗,S0, F̂ 〉
I Q̂ = {S0,S1,S2,S3,S4,S5}
I F̂ = 〈S4,S5}
I ∆∗ given by the table below

∆∗ a b
→ S0 S1 S2

S1 S3 S4
S2 S5 S3
S3 S3 S3
∗S4 S1 S2
∗S5 S1 S2

I RE:
L(A) = L((ab + ba)(ab + ba)∗)

S0

S4

S1

a

S2

b

S5

a

b

a

b

b

S3

a

a

b

a,b

128

Review of Goals

I Refresh Deterministic Finite Automata
I Discuss homework and open points
I Non-determinstic FAs

129

Feedback round

I What was the best part of todays lecture?
I What part of todays lecture has the most potential for

improvement?
I Optional: how would you improve it?

130

Goals for Today

I Refresh and warm-up
I Completing the circle
I REs can be simulated by NFAs
I DFAs can be simulated by REs

I Minimization of DFAs

131

Refresher: NFAs

I NFA A = 〈Q,Σ, δ,q0,F 〉
1. Q is the finite set of states.
2. Σ is the input alphabet.
3. δ is a relation on Q × (Σ ∪ {ε})×Q
4. q0 ∈ Q is the initial state.
5. F ⊆ Q is the set of final states.

I Significant differences to DFAs:
I δ is a relation - the automaton can change to multiple successor

states
I δ allows for ε-transistion - it can change states spontaneously

I NFAs can be simulared by DFAs
I States of det(A) are sets of states of A
I ∆∗ goes from sets of A-states to sets of A

I . . . by combining the transistion of the individual states
I . . . and taking the ε-closure

132

Warmup: NFA to DFA transformation

I Convert the following NFA (over Σ = {a,b}) into an equivalent
DFA:

q0 q4

a,ba,b

q1
ε q2

a q3
b a

133

Regular expressions and NFAs

134

Regular expressions and Finite Automata

I Regular expressions describe regular languages
I For each regular language L, there is an regular expression r with

L(r) = L
I For every regular expression r , L(r) is a regular language

I Finite automata describe regular languages
I For each regular language L, there is a FA A with L(A) = L
I For every finite automaton A, L(A) is a regular language

I We will now (constructively) show this equivalence between REs
and FAs
I We already know that DFAs and NFAs are equivalent
I Now: Equivalence of NFAs and REs

135

Transformation of regular expressions into NFAs

I Given a regular expression r , we want to derive an NFA A(r)
accepting the same language:

L(A(r)) = L(r). (87)

I Ideas:
I We construct NFAs for the elementary REs (∅, ε, c ∈ Σ)
I We combine NFAs for subexpressions to generate NFAs for

composite regular expressions
I All NFAs we construct have a number of special properties:
I There are no transitions to the initial state.
I There is only a single final state.
I There are no transitions from the final state.

We can easily achieve this with ε-transitions!

136

Transformation of regular expressions into NFAs

I Given a regular expression r , we want to derive an NFA A(r)
accepting the same language:

L(A(r)) = L(r). (87)

I Ideas:
I We construct NFAs for the elementary REs (∅, ε, c ∈ Σ)
I We combine NFAs for subexpressions to generate NFAs for

composite regular expressions
I All NFAs we construct have a number of special properties:
I There are no transitions to the initial state.
I There is only a single final state.
I There are no transitions from the final state.

We can easily achieve this with ε-transitions!

136

Reminder: Regular Expression

Let Σ be an alphabet.
I The elementary regular expressions over Σ are:
I ∅ with L(∅) = ∅
I ε with L(ε) = {ε}
I c ∈ Σ with L(c) = {c}

I Assume r1 and r2 are regular expressions over Σ. Then the
following are also regular expressions over Σ:
I r1 + r2 with L(r1 + r2) = L(r1) ∪ L(r2)
I r1 · r2 with L(r1 · r2) = L(r1) · L(r2)
I r∗1 with L(r∗1) = L(r1)∗

137

NFAs for elementary REs

I Assuming Σ is the alphabet which r is based on, we define
1. A(∅) = 〈{q0,q1},Σ, {},q0, {q1}〉

q0 q1

2. A(ε) = 〈{q0,q1},Σ, {〈q0, ε,q1〉},q0, {q1}〉

q0 q1
ε

3. A(c) = 〈{q0,q1},Σ, {〈q0, c,q1〉},q0, {q1}〉 for all c ∈ Σ

q0 q1
c

138

NFAs for elementary REs

I Assuming Σ is the alphabet which r is based on, we define
1. A(∅) = 〈{q0,q1},Σ, {},q0, {q1}〉

q0 q1

2. A(ε) = 〈{q0,q1},Σ, {〈q0, ε,q1〉},q0, {q1}〉

q0 q1
ε

3. A(c) = 〈{q0,q1},Σ, {〈q0, c,q1〉},q0, {q1}〉 for all c ∈ Σ

q0 q1
c

138

NFAs for elementary REs

I Assuming Σ is the alphabet which r is based on, we define
1. A(∅) = 〈{q0,q1},Σ, {},q0, {q1}〉

q0 q1

2. A(ε) = 〈{q0,q1},Σ, {〈q0, ε,q1〉},q0, {q1}〉

q0 q1
ε

3. A(c) = 〈{q0,q1},Σ, {〈q0, c,q1〉},q0, {q1}〉 for all c ∈ Σ

q0 q1
c

138

NFAs for composite REs (general)

I In the following we assume:
I A(r1) = 〈Q1,Σ, δ1,q1, {q2}〉
I A(r2) = 〈Q2,Σ, δ2,q3, {q4}〉
I Q1 ∩Q2 = ∅
I q0,q5 /∈ Q1 ∪Q2

I We visualise an NFA for RE r1 by a square box with two explicit
states
I The initial state is on the left
I The unique accepting state on the right
I All other states and transitions are implicit
I We mark initial/accepting states only for the composite automaton

A(r1)

q1 q2

139

NFAs for composite REs (concatenation)

4. A(r1r2) = 〈Q1 ∪Q2,Σ, {〈q2, ε,q3〉} ∪ δ1 ∪ δ2,q1, {q4}〉
A(r1)

A(r2)

q1 q2 q3
ε q4

Reminder:
I A(r1) = 〈Q1,Σ, δ1,q1, {q2}〉
I A(r2) = 〈Q2,Σ, δ2,q3, {q4}〉

140

NFAs for composite REs (alternatives)

5. A(r1 + r2) = 〈{q0,q5} ∪Q1 ∪Q2,Σ,
{〈q0, ε,q1〉, 〈q0, ε,q3〉, 〈q2, ε,q5〉, 〈q4, ε,q5〉} ∪ δ1 ∪ δ2,q0, {q5}〉

A(r1)

A(r2)
q0

q1
ε

q3

ε

q2

q5

ε

q4

ε

Reminder:
I A(r1) = 〈Q1,Σ, δ1,q1, {q2}〉
I A(r2) = 〈Q2,Σ, δ2,q3, {q4}〉

141

NFAs for composite REs (Kleene Star)

6. A(r∗1) = 〈{q0,q5} ∪Q1,Σ,
{〈q0, ε,q1〉, 〈q2, ε,q1〉, 〈q0, ε,q5〉, 〈q2, ε,q5〉} ∪ δ1,q0, {q5}〉

A(r1)

q0

q1ε

q5ε

q2
ε

ε

Reminder:
I A(r1) = 〈Q1,Σ, δ1,q1, {q2}〉

142

Fact: NFAs can simulate REs

I The previous construction produces for each regular expression
r an NFA A with L(A) = L(r)

Corollary: Every language described by a regular expression
can be accepted by a non-deterministic finite automaton

143

Transformation of regular expressions into NFAs:
exercise

I Determine an NFA accepting the same language as the regular
expression

(a + b)a∗b (88)

144

DFAs and Regular expressions

145

Overview and orientation

I We have claimed that NFAs, DFAs and REs all describe the same
class of regular languages

I We have learned how to convert
I regular expressions to equivalent

NFAs
I NFAs to equivalent DFAs

I (DFAs to equivalent NFAs)

Todo: convert DFA to equivalent RE

I Given an DFA A, we want to derive a
regular expression r(A) accepting
the same language:

L(r(A)) = L(A) (89)

NFADFA

RE

146

Overview and orientation

I We have claimed that NFAs, DFAs and REs all describe the same
class of regular languages

I We have learned how to convert
I regular expressions to equivalent

NFAs
I NFAs to equivalent DFAs
I (DFAs to equivalent NFAs)

Todo: convert DFA to equivalent RE

I Given an DFA A, we want to derive a
regular expression r(A) accepting
the same language:

L(r(A)) = L(A) (89)

NFADFA

RE

146

Overview and orientation

I We have claimed that NFAs, DFAs and REs all describe the same
class of regular languages

I We have learned how to convert
I regular expressions to equivalent

NFAs
I NFAs to equivalent DFAs
I (DFAs to equivalent NFAs)

Todo: convert DFA to equivalent RE

I Given an DFA A, we want to derive a
regular expression r(A) accepting
the same language:

L(r(A)) = L(A) (89)

NFADFA

RE

146

Overview and orientation

I We have claimed that NFAs, DFAs and REs all describe the same
class of regular languages

I We have learned how to convert
I regular expressions to equivalent

NFAs
I NFAs to equivalent DFAs
I (DFAs to equivalent NFAs)

Todo: convert DFA to equivalent RE

I Given an DFA A, we want to derive a
regular expression r(A) accepting
the same language:

L(r(A)) = L(A) (89)

NFADFA

RE

146

Convert DFA into RE

I Given: DFA A = 〈Q,Σ, δ,q0,F 〉
I Goal: RE r(A) with L(r(A)) = L(A)
I Idea: For each state q, generate an equation describing the

language L(q) that is accepted from that state, depending on the
languages accepted at neighboring states
I For each transition with c to q′: c · L(q′)
I Accepting states: ε

I Solve the resulting system for L(q0)

I Result: RE describing L(q0) = L(A)

I Convention:
I States are named {0,1, . . . ,n}
I Start state is 0
I We write Lk instead of L(k) to describe the language accepted at

state k

147

Convert DFA into RE

I Given: DFA A = 〈Q,Σ, δ,q0,F 〉
I Goal: RE r(A) with L(r(A)) = L(A)
I Idea: For each state q, generate an equation describing the

language L(q) that is accepted from that state, depending on the
languages accepted at neighboring states
I For each transition with c to q′: c · L(q′)
I Accepting states: ε

I Solve the resulting system for L(q0)

I Result: RE describing L(q0) = L(A)

I Convention:
I States are named {0,1, . . . ,n}
I Start state is 0
I We write Lk instead of L(k) to describe the language accepted at

state k

147

Convert DFA to RE: Example

�

�

��

�
�

�

�

I L0 =

aL1 + bL2

I L1 = aL1 + bL2

I L2 = bL0 + ε

3 equations, 3 unknowns

What now?

148

Convert DFA to RE: Example

�

�

��

�
�

�

�

I L0 = aL1 + bL2

I L1 =

aL1 + bL2

I L2 = bL0 + ε

3 equations, 3 unknowns

What now?

148

Convert DFA to RE: Example

�

�

��

�
�

�

�

I L0 = aL1 + bL2

I L1 = aL1 + bL2

I L2 =

bL0 + ε

3 equations, 3 unknowns

What now?

148

Convert DFA to RE: Example

�

�

��

�
�

�

�

I L0 = aL1 + bL2

I L1 = aL1 + bL2

I L2 = bL0 + ε

3 equations, 3 unknowns

What now?

148

Convert DFA to RE: Example

�

�

��

�
�

�

�

I L0 = aL1 + bL2

I L1 = aL1 + bL2

I L2 = bL0 + ε

3 equations, 3 unknowns

What now?

148

Insert: Arden’s Lemma

Lemma:

ε 6∈ L(s) and r .
= sr + t −→ r .

= s∗t (90)

Compare Arto Salomaa:

ε 6∈ L(s) and r .
= rs + t −→ r .

= ts∗

Arden, Dean N.:
Delayed-logic
and finite-state
machines,
Proceedings of
the Second
Annual
Symposium on
Switching
Circuit Theory
and Logical
Design, 1961,
pp. 133–151,
IEEE

149

Insert: Arden’s Lemma

Lemma:

ε 6∈ L(s) and r .
= sr + t −→ r .

= s∗t (90)

Compare Arto Salomaa:

ε 6∈ L(s) and r .
= rs + t −→ r .

= ts∗

Arden, Dean N.:
Delayed-logic
and finite-state
machines,
Proceedings of
the Second
Annual
Symposium on
Switching
Circuit Theory
and Logical
Design, 1961,
pp. 133–151,
IEEE

149

Convert DFA to RE: Example

�

�

��

�
�

�

� I L0 = aL1 + bL2

I L1 = aL1 + bL2

I L2 = bL0 + ε

L1
.

= aL1 + b(bL0 + ε)
.

= a∗b(bL0 + ε) [Arden]
L0

.
= a(a∗b(bL0 + ε)) + b(bL0 + ε)
.

= aa∗bbL0 + aa∗b + bbL0 + b [Dist.]
.

= (aa∗bb + bb)L0 + aa∗b + b [Comm.,Dist.]
.

= (aa∗bb + bb)∗(aa∗b + b) [Arden]
.

= ((aa∗ + ε)bb)∗((aa∗ + ε)b) [Dist.]
.

= (a∗bb)∗(a∗b) [rr∗ + ε
.

= r∗] (91)

150

Convert DFA to RE: Example

�

�

��

�
�

�

� I L0 = aL1 + bL2

I L1 = aL1 + bL2

I L2 = bL0 + ε

L1
.

= aL1 + b(bL0 + ε)
.

= a∗b(bL0 + ε) [Arden]

L0
.

= a(a∗b(bL0 + ε)) + b(bL0 + ε)
.

= aa∗bbL0 + aa∗b + bbL0 + b [Dist.]
.

= (aa∗bb + bb)L0 + aa∗b + b [Comm.,Dist.]
.

= (aa∗bb + bb)∗(aa∗b + b) [Arden]
.

= ((aa∗ + ε)bb)∗((aa∗ + ε)b) [Dist.]
.

= (a∗bb)∗(a∗b) [rr∗ + ε
.

= r∗] (91)

150

Convert DFA to RE: Example

�

�

��

�
�

�

� I L0 = aL1 + bL2

I L1 = aL1 + bL2

I L2 = bL0 + ε

L1
.

= aL1 + b(bL0 + ε)
.

= a∗b(bL0 + ε) [Arden]
L0

.
= a(a∗b(bL0 + ε)) + b(bL0 + ε)
.

= aa∗bbL0 + aa∗b + bbL0 + b [Dist.]
.

= (aa∗bb + bb)L0 + aa∗b + b [Comm.,Dist.]
.

= (aa∗bb + bb)∗(aa∗b + b) [Arden]
.

= ((aa∗ + ε)bb)∗((aa∗ + ε)b) [Dist.]
.

= (a∗bb)∗(a∗b) [rr∗ + ε
.

= r∗] (91)

150

Convert DFA to RE: Example (continued)

�

�

��

�
�

�

�

L0
.

= . . .
.

= (a∗bb)∗(a∗b)

I Ergo: L(A) = L((a∗bb)∗(a∗b))

151

Resume: Finite automata and regular expressions

I We have learned how to convert
I regular expressions to equivalent

NFAs
I NFAs to equivalent DFAs
I (DFAs to equivalent NFAs)

I DFAs to equivalent REs

REs, NFAs and DFAs describe the
same class of languages – regular

languages!

NFADFA

RE

152

Resume: Finite automata and regular expressions

I We have learned how to convert
I regular expressions to equivalent

NFAs
I NFAs to equivalent DFAs
I (DFAs to equivalent NFAs)
I DFAs to equivalent REs

REs, NFAs and DFAs describe the
same class of languages – regular

languages!

NFADFA

RE

152

Resume: Finite automata and regular expressions

I We have learned how to convert
I regular expressions to equivalent

NFAs
I NFAs to equivalent DFAs
I (DFAs to equivalent NFAs)
I DFAs to equivalent REs

REs, NFAs and DFAs describe the
same class of languages – regular

languages!

NFADFA

RE

152

153

Minimization of DFAs

Given the DFA
A = 〈Q,Σ, δ,q0,F 〉, (92)

we want to derive a DFA

A− = 〈Q−,Σ, δ−,q0,F−〉, (93)

accepting the same language, i.e.,

L(A) = L(A−) (94)

for which the number of states (elements of Q−) is minimal.

154

Minimization of DFAs: example/exercise

q0

q1a

q2

b

q3
a,b

q4
a,b

a,b

a,b

I How small can we make it?

155

Minimization of DFAs

Assume the DFA A = 〈Q,Σ, δ,q0,F 〉
I The idea is to identify the set V comprising all the pairs of

necessarily distinct states
I Base case: Two states p,q are necessarily distinct if one of them

is accepting, the other is not accepting
I Inductive case: Two states p,q are necessarily distinct if there is a

c ∈ Σ such that δ(p, c) = p′, δ(q, c) = q′ and p′,q′ are already
necessarily distinct

I Formally: V is the smallest set of tuples with
I {〈p,q〉|p ∈ F ,q /∈ F} ⊂ V
I {〈p,q〉|p /∈ F ,q ∈ F} ⊂ V
I δ(p, c) = p′, δ(q, c) = q′, 〈p′,q′〉 ∈ V for some c ∈ Σ→ 〈p,q〉 ∈ V

156

Minimization of DFAs: the algorithm

1. We initialize V with all those pairs for which one member is a
final state and the other is not:

V = {〈p,q〉 ∈ Q ×Q|(p ∈ F ∧ q 6∈ F) ∨ (p 6∈ F ∧ q ∈ F)}. (95)

2. While we can find a pair of states 〈p,q〉 and a symbol c such that
the states δ(p, c) and δ(q, c) are necessarily distinct, we keep
adding this pair and its inverse to V :

while(∃〈p,q〉 ∈ Q ×Q ∃c ∈ Σ |
〈δ(p, c), δ(q, c)〉 ∈ V ∧ 〈p,q〉 6∈ V) (96)

{
V = V ∪ {〈p,q〉, 〈q,p〉}

}

157

Minimization of DFAs: the algorithm

1. We initialize V with all those pairs for which one member is a
final state and the other is not:

V = {〈p,q〉 ∈ Q ×Q|(p ∈ F ∧ q 6∈ F) ∨ (p 6∈ F ∧ q ∈ F)}. (95)

2. While we can find a pair of states 〈p,q〉 and a symbol c such that
the states δ(p, c) and δ(q, c) are necessarily distinct, we keep
adding this pair and its inverse to V :

while(∃〈p,q〉 ∈ Q ×Q ∃c ∈ Σ |
〈δ(p, c), δ(q, c)〉 ∈ V ∧ 〈p,q〉 6∈ V) (96)
{

V = V ∪ {〈p,q〉, 〈q,p〉}
}

157

Minimization of DFAs: Merging States

I If we have a pair of states 〈p,q〉 and reading all possible symbols
c ∈ Σ results the same successor states, then p and q are
indistinguishable:

∀c ∈ Σ : δ(p, c) = δ(q, c)→ 〈p,q〉, 〈q,p〉 6∈ V . (97)

I Indistinguishable states p,q can be merged
I Replace all transitions to p by transitions to q
I Remove p

I This process can be iterated to identify and merge all
indistinguishable pairs of states

158

Minimization of DFAs: example

We want to minimize this DFA with 5 states:

q0

q1a

q2

b

q3
a,b

q4
a,b

a,b

a,b

159

Minimization of DFAs: example (cont.)

This is the formal definition of the DFA:

A = 〈Q,Σ, δ,q0,F 〉 (98)

with
1. Q = {q0,q1,q2,q3,q4}
2. Σ = {a,b}
3. δ = . . . (skipped to save space, see graph)
4. q0 = q0

5. F = {q3,q4}

I For the sake of practicality, we represent the set V by means of a
two-dimensional table with the elements of Q as columns and
rows and V ’s elements as cells featuring the symbol ×.

I Analogously, we represent state pairs that are definitely not
members of V using the symbol ◦.

160

Minimization of DFAs: example (cont.)

This is the formal definition of the DFA:

A = 〈Q,Σ, δ,q0,F 〉 (98)

with
1. Q = {q0,q1,q2,q3,q4}
2. Σ = {a,b}
3. δ = . . . (skipped to save space, see graph)
4. q0 = q0

5. F = {q3,q4}
I For the sake of practicality, we represent the set V by means of a

two-dimensional table with the elements of Q as columns and
rows and V ’s elements as cells featuring the symbol ×.

I Analogously, we represent state pairs that are definitely not
members of V using the symbol ◦.

160

Minimization of DFAs: example (cont.)

This is the formal definition of the DFA:

A = 〈Q,Σ, δ,q0,F 〉 (98)

with
1. Q = {q0,q1,q2,q3,q4}
2. Σ = {a,b}
3. δ = . . . (skipped to save space, see graph)
4. q0 = q0

5. F = {q3,q4}
I For the sake of practicality, we represent the set V by means of a

two-dimensional table with the elements of Q as columns and
rows and V ’s elements as cells featuring the symbol ×.

I Analogously, we represent state pairs that are definitely not
members of V using the symbol ◦.

160

Minimization of DFAs: example (cont.)

1. By determining all combinations of states in F = {q3,q4} and
Q\F = {q0,q1,q2}, we get the following initial state of V :

q0 q1 q2 q3 q4

q0 × ×
q1 × ×
q2 × ×
q3 × × ×
q4 × × ×

q0

q1a

q2

b

q3
a,b

q4
a,b

a,b

a,b

161

Minimization of DFAs: example (cont.)

2. Furthermore, the cases 〈qi ,qi〉|i ∈ {0, · · · ,4} are naturally
indistinguishable since they are identical:

q0 q1 q2 q3 q4

q0 ◦ × ×
q1 ◦ × ×
q2 ◦ × ×
q3 × × × ◦
q4 × × × ◦

q0

q1a

q2

b

q3
a,b

q4
a,b

a,b

a,b

162

Minimization of DFAs: example (cont.)

3. Now, we iterate over all the
remaining state-pairs and symbols.
In doing so, we can skip the cases
〈qi ,qj〉|i , j ∈ {0, · · · ,4}; j < i due to
the symmetry of the distinguishability
of states.

q0

q1a

q2

b

q3
a,b

q4
a,b

a,b

a,b

I δ(q0,a) = q1; δ(q1,a) = q3; 〈q1,q3〉 ∈ V → 〈q0,q1〉, 〈q1,q0〉 ∈ V
δ(q0,a) = q1; δ(q2,a) = q4; 〈q1,q4〉 ∈ V → 〈q0,q2〉, 〈q2,q0〉 ∈ V

I δ(q1,a) = q3; δ(q2,a) = q4; 〈q3,q4〉 6∈ V (as of yet)
δ(q1,b) = q3; δ(q2,b) = q4; 〈q3,q4〉 6∈ V (as of yet)

I δ(q3,a) = q1; δ(q4,a) = q2; 〈q1,q2〉 6∈ V (as of yet)
δ(q3,b) = q1; δ(q4,b) = q2; 〈q1,q2〉 6∈ V (as of yet)

163

Minimization of DFAs: example (cont.)

3. Now, we iterate over all the
remaining state-pairs and symbols.
In doing so, we can skip the cases
〈qi ,qj〉|i , j ∈ {0, · · · ,4}; j < i due to
the symmetry of the distinguishability
of states.

q0

q1a

q2

b

q3
a,b

q4
a,b

a,b

a,b

I δ(q0,a) = q1; δ(q1,a) = q3; 〈q1,q3〉 ∈ V → 〈q0,q1〉, 〈q1,q0〉 ∈ V

δ(q0,a) = q1; δ(q2,a) = q4; 〈q1,q4〉 ∈ V → 〈q0,q2〉, 〈q2,q0〉 ∈ V
I δ(q1,a) = q3; δ(q2,a) = q4; 〈q3,q4〉 6∈ V (as of yet)

δ(q1,b) = q3; δ(q2,b) = q4; 〈q3,q4〉 6∈ V (as of yet)
I δ(q3,a) = q1; δ(q4,a) = q2; 〈q1,q2〉 6∈ V (as of yet)

δ(q3,b) = q1; δ(q4,b) = q2; 〈q1,q2〉 6∈ V (as of yet)

163

Minimization of DFAs: example (cont.)

3. Now, we iterate over all the
remaining state-pairs and symbols.
In doing so, we can skip the cases
〈qi ,qj〉|i , j ∈ {0, · · · ,4}; j < i due to
the symmetry of the distinguishability
of states.

q0

q1a

q2

b

q3
a,b

q4
a,b

a,b

a,b

I δ(q0,a) = q1; δ(q1,a) = q3; 〈q1,q3〉 ∈ V → 〈q0,q1〉, 〈q1,q0〉 ∈ V
δ(q0,a) = q1; δ(q2,a) = q4; 〈q1,q4〉 ∈ V → 〈q0,q2〉, 〈q2,q0〉 ∈ V

I δ(q1,a) = q3; δ(q2,a) = q4; 〈q3,q4〉 6∈ V (as of yet)
δ(q1,b) = q3; δ(q2,b) = q4; 〈q3,q4〉 6∈ V (as of yet)

I δ(q3,a) = q1; δ(q4,a) = q2; 〈q1,q2〉 6∈ V (as of yet)
δ(q3,b) = q1; δ(q4,b) = q2; 〈q1,q2〉 6∈ V (as of yet)

163

Minimization of DFAs: example (cont.)

3. Now, we iterate over all the
remaining state-pairs and symbols.
In doing so, we can skip the cases
〈qi ,qj〉|i , j ∈ {0, · · · ,4}; j < i due to
the symmetry of the distinguishability
of states.

q0

q1a

q2

b

q3
a,b

q4
a,b

a,b

a,b

I δ(q0,a) = q1; δ(q1,a) = q3; 〈q1,q3〉 ∈ V → 〈q0,q1〉, 〈q1,q0〉 ∈ V
δ(q0,a) = q1; δ(q2,a) = q4; 〈q1,q4〉 ∈ V → 〈q0,q2〉, 〈q2,q0〉 ∈ V

I δ(q1,a) = q3; δ(q2,a) = q4; 〈q3,q4〉 6∈ V (as of yet)
δ(q1,b) = q3; δ(q2,b) = q4; 〈q3,q4〉 6∈ V (as of yet)

I δ(q3,a) = q1; δ(q4,a) = q2; 〈q1,q2〉 6∈ V (as of yet)
δ(q3,b) = q1; δ(q4,b) = q2; 〈q1,q2〉 6∈ V (as of yet)

163

Minimization of DFAs: example (cont.)

3. Now, we iterate over all the
remaining state-pairs and symbols.
In doing so, we can skip the cases
〈qi ,qj〉|i , j ∈ {0, · · · ,4}; j < i due to
the symmetry of the distinguishability
of states.

q0

q1a

q2

b

q3
a,b

q4
a,b

a,b

a,b

I δ(q0,a) = q1; δ(q1,a) = q3; 〈q1,q3〉 ∈ V → 〈q0,q1〉, 〈q1,q0〉 ∈ V
δ(q0,a) = q1; δ(q2,a) = q4; 〈q1,q4〉 ∈ V → 〈q0,q2〉, 〈q2,q0〉 ∈ V

I δ(q1,a) = q3; δ(q2,a) = q4; 〈q3,q4〉 6∈ V (as of yet)
δ(q1,b) = q3; δ(q2,b) = q4; 〈q3,q4〉 6∈ V (as of yet)

I δ(q3,a) = q1; δ(q4,a) = q2; 〈q1,q2〉 6∈ V (as of yet)
δ(q3,b) = q1; δ(q4,b) = q2; 〈q1,q2〉 6∈ V (as of yet)

163

Minimization of DFAs: example (cont.)

Since no other distinguishable state pairs could be found, we fill
empty cells with ◦:

q0 q1 q2 q3 q4

q0 ◦ × × × ×
q1 × ◦ ◦ × ×
q2 × ◦ ◦ × ×
q3 × × × ◦ ◦
q4 × × × ◦ ◦

From the table, we can derive the following (non-diagonal,
non-symmetrical) indistinguishable state pairs:

a) 〈q1,q2〉,
b) 〈q3,q4〉.

164

Minimization of DFAs: example (cont.)

Since no other distinguishable state pairs could be found, we fill
empty cells with ◦:

q0 q1 q2 q3 q4

q0 ◦ × × × ×
q1 × ◦ ◦ × ×
q2 × ◦ ◦ × ×
q3 × × × ◦ ◦
q4 × × × ◦ ◦

From the table, we can derive the following (non-diagonal,
non-symmetrical) indistinguishable state pairs:

a) 〈q1,q2〉,
b) 〈q3,q4〉.

164

Minimization of DFAs: example (cont.)

I This is the minimized DFA after merging indistinguishable states:

q0 q1
a,b q3

a,b

a,b

165

Handling Ω

I The algorithm does not handle
missing transitions/Ω-transitions
I A rejection due to a a missing

transition is indistinguiable from a
rejection due to reachung a junk
state

I Solution: If the automaton has a
missing transition, add an explicit
junk state and complete the
transition function

q0

q3

q1

a

q2

b

a

q4

b a

a,b

166

Handling Ω

I The algorithm does not handle
missing transitions/Ω-transitions
I A rejection due to a a missing

transition is indistinguiable from a
rejection due to reachung a junk
state

I Solution: If the automaton has a
missing transition, add an explicit
junk state and complete the
transition function

q0

q3 jk
a,b

q1

a

q2

b

a

q4

b a b

a,b a,b

166

Minimization of DFAs: exercise

Derive a minimal DFA accepting the language

L(a(ba)∗). (99)

Solve the exercise in three steps:
1. Derive an NFA accepting L.
2. Transform the NFA into a DFA.
3. Minimize the DFA.

167

Homework assignment

I Consider Σ = {a,b} and L = {aba,bab} ∪ {wbb|w ∈ Σ∗}
I Find an RE for this language
I Convert the RE into an NFA
I Convert the NFA to a DFA
I Minimize the DFA
I Convert the minimal DFA back into an RE

I Give a graphical representation of the 3 automata (NFA, DFA,
minimized DFA)

168

Review of Goals

I Completing the circle
I REs can be simulated by NFAs
I DFAs can be simulated by REs

I Minimization of DFAs

169

Feedback round

I What was the best part of todays lecture?
I What part of todays lecture has the most potential for

improvement?
I Optional: how would you improve it?

170

Goals for Today

I Refresher & Homework
I Equivalence of regular expressions
I Properties of regular languages
I Closure properties
I Decision problems

I Non-regular languages and the pumping lemma

171

Refresher

I Simulation of REs via NFAs: Composition of NFAs
I Simulation of DFAs via REs: Solve system of equations
I May need Arden’s Lemma to handle loops!

I Important: NFAs, DFAs, REs are all equivalent!
I Minimization of DFAs:
I Compute necessarily distinct states
I Merge indistinguishable states

172

Homework assignment

I Consider Σ = {a,b} and L = {aba,bab} ∪ {wbb|w ∈ Σ∗}
I Find an RE for this language
I Convert the RE into an NFA
I Convert the NFA to a DFA
I Minimize the DFA
I Convert the minimal DFA back into an RE

I Give a graphical representation of the 3 automata (NFA, DFA,
minimized DFA)

I’ve underestimated the effort!

173

Homework assignment

I Consider Σ = {a,b} and L = {aba,bab} ∪ {wbb|w ∈ Σ∗}
I Find an RE for this language
I Convert the RE into an NFA
I Convert the NFA to a DFA
I Minimize the DFA
I Convert the minimal DFA back into an RE

I Give a graphical representation of the 3 automata (NFA, DFA,
minimized DFA)

I’ve underestimated the effort!

173

Homework: RE

I Consider Σ = {a,b} and L = {aba,bab} ∪ {wbb|w ∈ Σ∗}
I An RE R with L(R) = L is:

R = (aba + bab) + (a + b)∗bb

174

Homework: RE

I Consider Σ = {a,b} and L = {aba,bab} ∪ {wbb|w ∈ Σ∗}
I An RE R with L(R) = L is:

R = (aba + bab) + (a + b)∗bb

174

Homework: NFA

q6

q7

q0 q1
a p0

ε

q2 q3
b p2

εq4

ε

ε q5 ε
ε

s6

ε

p1
b

r0
ε

p3
a r2

ε

r1
a

ε

r3
b ε

s0 s1
a

s5

ε

s2 s3
b εs4

ε

ε

ε

s7
εε

ε

t2ε

t3b
u2ε u3

b
ε

I Straightforward construction
I 28 states (ouch!)

175

Homework: NFA

q6

q7

q0 q1
a p0

ε

q2 q3
b p2

εq4

ε

ε q5 ε
ε

s6

ε

p1
b

r0
ε

p3
a r2

ε

r1
a

ε

r3
b ε

s0 s1
a

s5

ε

s2 s3
b εs4

ε

ε

ε

s7
εε

ε

t2ε

t3b
u2ε u3

b
ε

I Straightforward construction
I 28 states (ouch!)

175

Homework: DFA

Image credit: Randal Munroe, http://xkcd.com/1205/

176

http://xkcd.com/1205/

Homework: DFA

Image credit: Randal Munroe, http://xkcd.com/1205/

176

http://xkcd.com/1205/

Homework: DFA (1)

S0 = frozenset([’q0’, ’q2’, ’q4’, ’q6’, ’s2’, ’s0’, ’s7’, ’s6’, ’s4’, ’t2’])
Delta(S0, a) = frozenset([’q1’, ’p0’, ’s2’, ’s1’, ’s0’, ’t2’, ’s5’, ’s4’, ’s7’])
S1 = frozenset([’q1’, ’p0’, ’s2’, ’s1’, ’s0’, ’t2’, ’s5’, ’s4’, ’s7’])
Delta(S0, b) = frozenset([’p2’, ’q3’, ’s3’, ’s2’, ’s7’, ’s0’, ’t2’, ’t3’, ’s5’, ’u2’, ’s4’])
S2 = frozenset([’p2’, ’q3’, ’s3’, ’s2’, ’s7’, ’s0’, ’t2’, ’t3’, ’s5’, ’u2’, ’s4’])
Delta(S1, a) = frozenset([’s2’, ’s1’, ’s0’, ’t2’, ’s7’, ’s5’, ’s4’])
S3 = frozenset([’s2’, ’s1’, ’s0’, ’t2’, ’s7’, ’s5’, ’s4’])
Delta(S1, b) = frozenset([’p1’, ’r0’, ’s3’, ’s2’, ’s7’, ’s0’, ’t2’, ’t3’, ’s5’, ’u2’, ’s4’])
S4 = frozenset([’p1’, ’r0’, ’s3’, ’s2’, ’s7’, ’s0’, ’t2’, ’t3’, ’s5’, ’u2’, ’s4’])
Delta(S2, a) = frozenset([’p3’, ’r2’, ’s2’, ’s1’, ’s0’, ’t2’, ’s5’, ’s4’, ’s7’])
S5 = frozenset([’p3’, ’r2’, ’s2’, ’s1’, ’s0’, ’t2’, ’s5’, ’s4’, ’s7’])
Delta(S2, b) = frozenset([’q7’, ’s3’, ’s2’, ’s0’, ’s7’, ’t3’, ’s5’, ’u2’, ’t2’, ’u3’, ’s4’])
S6 = frozenset([’q7’, ’s3’, ’s2’, ’s0’, ’s7’, ’t3’, ’s5’, ’u2’, ’t2’, ’u3’, ’s4’])
Delta(S3, a) = frozenset([’s2’, ’s1’, ’s0’, ’t2’, ’s7’, ’s5’, ’s4’])
State is equal to S3
Delta(S3, b) = frozenset([’s3’, ’s2’, ’s0’, ’s7’, ’t3’, ’s5’, ’u2’, ’t2’, ’s4’])
S7 = frozenset([’s3’, ’s2’, ’s0’, ’s7’, ’t3’, ’s5’, ’u2’, ’t2’, ’s4’])
Delta(S4, a) = frozenset([’q5’, ’r1’, ’q7’, ’s2’, ’s1’, ’s0’, ’t2’, ’s5’, ’s4’, ’s7’])
S8 = frozenset([’q5’, ’r1’, ’q7’, ’s2’, ’s1’, ’s0’, ’t2’, ’s5’, ’s4’, ’s7’])
Delta(S4, b) = frozenset([’q7’, ’s3’, ’s2’, ’s0’, ’s7’, ’t3’, ’s5’, ’u2’, ’t2’, ’u3’, ’s4’])
State is equal to S6
Delta(S5, a) = frozenset([’s2’, ’s1’, ’s0’, ’t2’, ’s7’, ’s5’, ’s4’])
State is equal to S3
Delta(S5, b) = frozenset([’q5’, ’q7’, ’r3’, ’s3’, ’s2’, ’s7’, ’s0’,

’t2’, ’t3’, ’s5’, ’u2’, ’s4’])
...

177

Homework: DFA (2)

...
S9 = frozenset([’q5’, ’q7’, ’r3’, ’s3’, ’s2’, ’s7’, ’s0’, ’t2’, ’t3’, ’s5’, ’u2’, ’s4’])
Delta(S6, a) = frozenset([’s2’, ’s1’, ’s0’, ’t2’, ’s7’, ’s5’, ’s4’])
State is equal to S3
Delta(S6, b) = frozenset([’q7’, ’s3’, ’s2’, ’s0’, ’s7’, ’t3’, ’u3’, ’s4’, ’t2’, ’s5’, ’u2’])
State is equal to S6
Delta(S7, a) = frozenset([’s2’, ’s1’, ’s0’, ’t2’, ’s7’, ’s5’, ’s4’])
State is equal to S3
Delta(S7, b) = frozenset([’q7’, ’s3’, ’s2’, ’s0’, ’s7’, ’t3’, ’u3’, ’s4’, ’t2’, ’s5’, ’u2’])
State is equal to S6
Delta(S8, a) = frozenset([’s2’, ’s1’, ’s0’, ’t2’, ’s7’, ’s5’, ’s4’])
State is equal to S3
Delta(S8, b) = frozenset([’s3’, ’s2’, ’s0’, ’s7’, ’t3’, ’s5’, ’u2’, ’t2’, ’s4’])
State is equal to S7
Delta(S9, a) = frozenset([’s2’, ’s1’, ’s0’, ’t2’, ’s7’, ’s5’, ’s4’])
State is equal to S3
Delta(S9, b) = frozenset([’q7’, ’s3’, ’s2’, ’s0’, ’s7’, ’t3’, ’s5’, ’u2’, ’t2’, ’u3’, ’s4’])
State is equal to S6

178

Homework: DFA (3)

S0

S9

S6

b S3

a

S8

a
S7

b

b a

a

b

S2

b

S5

a

S1

a

S4

b

b

a

b

a

b

a

a

b

179

Homework: DFA minimisation

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9
S0 o
S1 o
S2 o
S3 o
S4 o
S5 o
S6 o
S7 o
S8 o
S9 o

180

Homework: DFA minimisation

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9
S0 o
S1 o
S2 x o
S3 o
S4 x o
S5 x o
S6 x o
S7 x o
S8 o
S9 x o o

181

Homework: DFA minimisation

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9
S0 o x x x x x x x x x
S1 x o x x x x x x x x
S2 x x o x x x x x x x
S3 x x x o x x x x x x
S4 x x x x o x x x x x
S5 x x x x x o x o x x
S6 x x x x x x o x x o
S7 x x x x x o x o x x
S8 x x x x x x x x o x
S9 x x x x x x o x x o

I S6 und S9 sind ununterscheidbar
I S5 und S7 sind ununterscheidbar

182

Homework: DFA (minimised)

S0

S8
S3a

S5
b

S6

b

a

a

b

S2
b

a

S1

a

S4
b

b

a

b

aa

b

183

Homework: System of equations

S0

S8
S3a

S5
b

S6

b

a

a

b

S2
b

a

S1

a

S4
b

b

a

b

aa

b

I L0
.

= aL1 + bL2

I L1
.

= aL3 + bL4

I L2
.

= aL5 + bL6

I L3
.

= aL3 + bL5
.

= a∗bL5

I L4
.

= aL8 + bL6

I L5
.

= aL3 + bL6

I L6
.

= aL3 + bL6 + ε
.

=
b∗(aL3 + ε)

I L8
.

= aL3 + bL5 + ε

If someone has solved this, I’d
like the solution. . .

184

Homework: System of equations

S0

S8
S3a

S5
b

S6

b

a

a

b

S2
b

a

S1

a

S4
b

b

a

b

aa

b

I L0
.

= aL1 + bL2

I L1
.

= aL3 + bL4

I L2
.

= aL5 + bL6

I L3
.

= aL3 + bL5
.

= a∗bL5

I L4
.

= aL8 + bL6

I L5
.

= aL3 + bL6

I L6
.

= aL3 + bL6 + ε
.

=
b∗(aL3 + ε)

I L8
.

= aL3 + bL5 + ε

If someone has solved this, I’d
like the solution. . .

184

Equivalence of regular expressions

185

Equivalence of regular expressions

I Earlier in this lecture, we have seen that there can be multiple
regular expressions describing the same language.

I We have also learned that using algebraic transformation rules
to prove equivalence of regular expressions can be very difficult
or even impossible.

I In the following, we will learn a straight-forward algorithm proving
equivalence of regular expressions based on FSMs.

I The algorithm involves four steps and is described in the
textbook by John E. Hopcroft, Rajeev Motwani, Jeffrey D.
Ullman: Introduction to Automata Theory, Languages, and
Computation (3rd edition), 2007 (and earlier editions)

186

Equivalence of regular expressions

I Earlier in this lecture, we have seen that there can be multiple
regular expressions describing the same language.

I We have also learned that using algebraic transformation rules
to prove equivalence of regular expressions can be very difficult
or even impossible.

I In the following, we will learn a straight-forward algorithm proving
equivalence of regular expressions based on FSMs.

I The algorithm involves four steps and is described in the
textbook by John E. Hopcroft, Rajeev Motwani, Jeffrey D.
Ullman: Introduction to Automata Theory, Languages, and
Computation (3rd edition), 2007 (and earlier editions)

186

Equivalence of regular expressions

I Earlier in this lecture, we have seen that there can be multiple
regular expressions describing the same language.

I We have also learned that using algebraic transformation rules
to prove equivalence of regular expressions can be very difficult
or even impossible.

I In the following, we will learn a straight-forward algorithm proving
equivalence of regular expressions based on FSMs.

I The algorithm involves four steps and is described in the
textbook by John E. Hopcroft, Rajeev Motwani, Jeffrey D.
Ullman: Introduction to Automata Theory, Languages, and
Computation (3rd edition), 2007 (and earlier editions)

186

Equivalence of regular expressions: algorithm

1. Given the regular expressions r1 and r2, derive NFAs A1 and A2
accepting their respective languages:

L(r1) = L(A1) and L(r2) = L(A2). (100)

2. Transform the NFAs A1 and A2 into the DFAs D1 and D2.
3. Minimize the DFAs D1 and D2 yielding the DFAs M1 and M2.
4. If r1

.
= r2, then M1 and M2 must be identical modulo renaming of

states

Note: If you can show equivalence in any intermediate stage of the
algorithm, this is enough to prove r1

.
= r2 (e.g. if A1 = A2).

187

Equivalence of regular expressions: exercise

Reusing an exercise from an earlier section, prove the following
equivalence (by conversion to minimal DFAs):

10(10)∗
.

= 1(01)∗0

Homework

188

Equivalence of regular expressions: exercise

Reusing an exercise from an earlier section, prove the following
equivalence (by conversion to minimal DFAs):

10(10)∗
.

= 1(01)∗0

Homework

188

Properties of regular languages

189

Regular languages: Closure properties

I Reminders:
I Formal languages are sets of words (over a finite alphabet)
I A formal language L is a regular language if any of the following

holds:
I There exists an NFA A with L(A) = L
I There exists a DFA A with L(A) = L
I There exists a regular expression R with L(R) = L
I There exists a regular grammar G with L(G) = L

I Fact: Not all languages are regular
I Proof later today

Question
What can we do to regular languages
and be sure the result is still regular?

190

Regular languages: Closure properties

I Reminders:
I Formal languages are sets of words (over a finite alphabet)
I A formal language L is a regular language if any of the following

holds:
I There exists an NFA A with L(A) = L
I There exists a DFA A with L(A) = L
I There exists a regular expression R with L(R) = L
I There exists a regular grammar G with L(G) = L

I Fact: Not all languages are regular
I Proof later today

Question
What can we do to regular languages
and be sure the result is still regular?

190

Closure properties (Question)

Question: If L1 and L2 are regular languages, does the same hold for
I L1 ∪ L2?
I L1 ∩ L2?
I L1 · L2?
I L1, i.e. Σ∗ \ L?
I L∗1?

Are regular languages closed under union, intersection,
concatenation, complement, and Kleene-star?

191

Closure properties (Theorem)

Theorem: Let L1 and L2 be regular languages. Then the following
langages are all regular:
I L1 ∪ L2

I L1 ∩ L2

I L1 · L2

I L1, i.e. Σ∗ \ L
I L∗1?

Proof?

I Idea: We postulate (disjoint) finite automata for L1 and L2 and
construct an automaton for the different languages above.

192

Closure properties (Theorem)

Theorem: Let L1 and L2 be regular languages. Then the following
langages are all regular:
I L1 ∪ L2

I L1 ∩ L2

I L1 · L2

I L1, i.e. Σ∗ \ L
I L∗1?

Proof?

I Idea: We postulate (disjoint) finite automata for L1 and L2 and
construct an automaton for the different languages above.

192

Closure properties (Theorem)

Theorem: Let L1 and L2 be regular languages. Then the following
langages are all regular:
I L1 ∪ L2

I L1 ∩ L2

I L1 · L2

I L1, i.e. Σ∗ \ L
I L∗1?

Proof?

I Idea: We postulate (disjoint) finite automata for L1 and L2 and
construct an automaton for the different languages above.

192

Closure under union, concatenation, and Kleene-star

We use the same construction that was used to generate NFAs for
regular expressions:
Let AL1 and AL2 be automata for L1 and L2.

L1 ∪ L2 : new initial state, ε-transitions to the initial states of AL1

and AL2

L1 · L2 : ε-transition from the final state(s) of AL1 to the initial
state of AL2

(L1)∗ :
I new initial and final states,
I ε-transitions from the original final states to the

original initial state,
I ε-transition from the new initial to the new final state.

193

Visual refresher

L1 ∪ L2

AL1

AL2
q0

q1
ε

q3

ε

q2

q5

ε

q4

ε

L1 ◦ L2

AL1
AL2

q1 q2 q3
ε q4

L∗1

AL1

q0

q1ε

q5ε

q2
ε

ε

194

Closure under intersection

Let AL1 = (Q1,Σ, δ1,q01 ,F1) and AL2 = (Q2,Σ, δ2,q02 ,F2) be DFAs for
L1 and L2.

An automaton L = (Q,Σ, δ,q0,F) for AL1 ∩ AL2 can be generated as
follows:
I Q = Q1 ×Q2

I δ((q1,q2),a) = (δ1(q1,a), δ2(q2,a)) for all q1 ∈ Q1,q2 ∈ Q2,a ∈ Σ

I q0 = (q01 ,q02)

I F = F1 × F2

This so-called product automaton
I starts in a state that corresponds to the initial states of AL1 and

AL2 ,
I simulates simultaneous processing in both automata
I accepts if both AL1 and AL2 accept.

195

Product automaton: exercise

Generate automata for
I L1 = {w ∈ {0,1}∗ | |w |1 is divisible by 2}
I L2 = {w ∈ {0,1}∗ | |w |1 is divisible by 3}

Then generate an automaton for L1 ∩ L2.

196

Closure under complement

Let AL be an DFA for the language L.
(including a junk state, i.e. there is a transition from
every state for every alphabet symbol, no Ω
transitions)

Then AL = 〈Q,Σ,q0, δ,Q \ F 〉 is an automaton
accepting L:
I if w ∈ L(A) then δ′(q0,w) ∈ F , i.e.
δ′(q0,w) /∈ Q \ F , which implies w /∈ L(AL).

I if w /∈ L(A) then δ′(q0,w) /∈ F , i.e.
δ′(q0,w) ∈ Q \ F , which implies w ∈ L(AL).

All we have to do is exchange final and non-final
states.

Reminder:

δ′ : Q × Σ∗ → Q

δ′(q0,w) is the final
state of the automaton
after processing w

197

Closure under complement

Let AL be an DFA for the language L.
(including a junk state, i.e. there is a transition from
every state for every alphabet symbol, no Ω
transitions)

Then AL = 〈Q,Σ,q0, δ,Q \ F 〉 is an automaton
accepting L:
I if w ∈ L(A) then δ′(q0,w) ∈ F , i.e.
δ′(q0,w) /∈ Q \ F , which implies w /∈ L(AL).

I if w /∈ L(A) then δ′(q0,w) /∈ F , i.e.
δ′(q0,w) ∈ Q \ F , which implies w ∈ L(AL).

All we have to do is exchange final and non-final
states.

Reminder:

δ′ : Q × Σ∗ → Q

δ′(q0,w) is the final
state of the automaton
after processing w

197

Closure properties: exercise CPNR

Show that L = {w ∈ {0,1}∗ | |w |0 = |w |1} is not regular.

Hint: Use the following:
I 0n1n is not regular.
I 0∗1∗ is regular.
I (one of) the closure properties shown before.

198

Finite languages

Regularity of finite languages
Every finite language, i.e. every language containing only a finite
number of words, is regular.
Proof: Let L = {w1, . . . ,wn}.
I For each wi , generate an automaton Ai with initial state q0i and

final state qfi .
I Let q0 be a new state, from which there is an ε-transition to each

q0i .
Then the resulting automaton, with q0 as initial state and all qfi as
final states accepts L.

199

Finite languages: Example

I Assume L =
{if , then,else,while,goto, for}
over Σascii

q0

_i

ε

_t

ε

_e

ε

_w

ε

_g

ε

_f

ε

i

i

if

f

t

th

h

t

the

e

then

n

e

e

el

l

els

s

else

e

w

w

wh

h

whi

i

whil

l

while

e

g

g

go

o

got

t

goto

o

f

f

fo

o

for

r

200

Decision problems

For regular languages L1 and L2 and a word w , answer the following
questions:
I Is there a word in L1? emptiness problem

I Is w an element of L1? word problem
I Is L1 equal to L2? equivalence problem
I Is L1 finite? finiteness problem

201

Decision problems

For regular languages L1 and L2 and a word w , answer the following
questions:
I Is there a word in L1? emptiness problem
I Is w an element of L1? word problem

I Is L1 equal to L2? equivalence problem
I Is L1 finite? finiteness problem

201

Decision problems

For regular languages L1 and L2 and a word w , answer the following
questions:
I Is there a word in L1? emptiness problem
I Is w an element of L1? word problem
I Is L1 equal to L2? equivalence problem

I Is L1 finite? finiteness problem

201

Decision problems

For regular languages L1 and L2 and a word w , answer the following
questions:
I Is there a word in L1? emptiness problem
I Is w an element of L1? word problem
I Is L1 equal to L2? equivalence problem
I Is L1 finite? finiteness problem

201

Emptiness problem

Emptiness problem
The emptiness problem for regular languages is decidable.

Algorithm: Let A be an automaton accepting the language L.
I Starting with the initial state q0, mark all states to which there is

a transition from q0 as reachable.
I Continue with transitions from states which are already marked

as reachable until either a final state is reached or no further
states are reachable.

I If a final state is reachable, then L 6= ∅ holds.

202

Emptiness problem

Emptiness problem
The emptiness problem for regular languages is decidable.
Algorithm: Let A be an automaton accepting the language L.
I Starting with the initial state q0, mark all states to which there is

a transition from q0 as reachable.

I Continue with transitions from states which are already marked
as reachable until either a final state is reached or no further
states are reachable.

I If a final state is reachable, then L 6= ∅ holds.

202

Emptiness problem

Emptiness problem
The emptiness problem for regular languages is decidable.
Algorithm: Let A be an automaton accepting the language L.
I Starting with the initial state q0, mark all states to which there is

a transition from q0 as reachable.
I Continue with transitions from states which are already marked

as reachable until either a final state is reached or no further
states are reachable.

I If a final state is reachable, then L 6= ∅ holds.

202

Emptiness problem

Emptiness problem
The emptiness problem for regular languages is decidable.
Algorithm: Let A be an automaton accepting the language L.
I Starting with the initial state q0, mark all states to which there is

a transition from q0 as reachable.
I Continue with transitions from states which are already marked

as reachable until either a final state is reached or no further
states are reachable.

I If a final state is reachable, then L 6= ∅ holds.

202

Word problem

Word problem
The word problem for regular languages is decidable.

Algorithm: Let A be an NFA accepting the language L and
w = c1c2 . . . cn.
I Let Q1 be the set of all states of A for which there is a transition

from (q0, c1)

I Let Q′1 = ec(Q1)

I Let Q2 be the set of all states for which there is a transition
(q, c2) from a state q ∈ Q′1.

I Continue until Q′n is computed.
I If Q′n contains a final state, A accepts w .

All we have to do is simulate the run of A on w .

203

Word problem

Word problem
The word problem for regular languages is decidable.

Algorithm: Let A be an NFA accepting the language L and
w = c1c2 . . . cn.
I Let Q1 be the set of all states of A for which there is a transition

from (q0, c1)

I Let Q′1 = ec(Q1)

I Let Q2 be the set of all states for which there is a transition
(q, c2) from a state q ∈ Q′1.

I Continue until Q′n is computed.
I If Q′n contains a final state, A accepts w .

All we have to do is simulate the run of A on w .

203

Word problem

Word problem
The word problem for regular languages is decidable.

Algorithm: Let A be an NFA accepting the language L and
w = c1c2 . . . cn.
I Let Q1 be the set of all states of A for which there is a transition

from (q0, c1)

I Let Q′1 = ec(Q1)

I Let Q2 be the set of all states for which there is a transition
(q, c2) from a state q ∈ Q′1.

I Continue until Q′n is computed.
I If Q′n contains a final state, A accepts w .

All we have to do is simulate the run of A on w .

203

Word problem

Word problem
The word problem for regular languages is decidable.

Algorithm: Let A be an NFA accepting the language L and
w = c1c2 . . . cn.
I Let Q1 be the set of all states of A for which there is a transition

from (q0, c1)

I Let Q′1 = ec(Q1)

I Let Q2 be the set of all states for which there is a transition
(q, c2) from a state q ∈ Q′1.

I Continue until Q′n is computed.

I If Q′n contains a final state, A accepts w .

All we have to do is simulate the run of A on w .

203

Word problem

Word problem
The word problem for regular languages is decidable.

Algorithm: Let A be an NFA accepting the language L and
w = c1c2 . . . cn.
I Let Q1 be the set of all states of A for which there is a transition

from (q0, c1)

I Let Q′1 = ec(Q1)

I Let Q2 be the set of all states for which there is a transition
(q, c2) from a state q ∈ Q′1.

I Continue until Q′n is computed.
I If Q′n contains a final state, A accepts w .

All we have to do is simulate the run of A on w .

203

Word problem

Word problem
The word problem for regular languages is decidable.

Algorithm: Let A be an NFA accepting the language L and
w = c1c2 . . . cn.
I Let Q1 be the set of all states of A for which there is a transition

from (q0, c1)

I Let Q′1 = ec(Q1)

I Let Q2 be the set of all states for which there is a transition
(q, c2) from a state q ∈ Q′1.

I Continue until Q′n is computed.
I If Q′n contains a final state, A accepts w .

All we have to do is simulate the run of A on w .

203

Equivalence problem

Equivalence problem
The equivalence problem for regular languages is decidable.

We have already shown how to prove this using minimised DFAs for
L1 and L2.

Alternative proof using closure properties and decidability of the
emptiness problem:

L1 = L2 iff (L1 ∩ L2)︸ ︷︷ ︸
words that are in L1, but not in L2

∪ (L1 ∩ L2)︸ ︷︷ ︸
words that are not in L1, but in L2

= ∅

204

Equivalence problem

Equivalence problem
The equivalence problem for regular languages is decidable.

We have already shown how to prove this using minimised DFAs for
L1 and L2.

Alternative proof using closure properties and decidability of the
emptiness problem:

L1 = L2 iff (L1 ∩ L2)︸ ︷︷ ︸
words that are in L1, but not in L2

∪ (L1 ∩ L2)︸ ︷︷ ︸
words that are not in L1, but in L2

= ∅

204

Equivalence problem

Equivalence problem
The equivalence problem for regular languages is decidable.

We have already shown how to prove this using minimised DFAs for
L1 and L2.

Alternative proof using closure properties and decidability of the
emptiness problem:

L1 = L2 iff (L1 ∩ L2)︸ ︷︷ ︸
words that are in L1, but not in L2

∪ (L1 ∩ L2)︸ ︷︷ ︸
words that are not in L1, but in L2

= ∅

204

Finiteness problem

We have already seen that every finite language is regular. Now we
want to find out if a given regular language L is finite.

Finiteness problem
The Finiteness problem for regular languages is decidable.

If there is a loop in an accepting run, words of arbitrary length are
accepted.

Let A be a DFA accepting L.
I Eliminate from A all states that are not reachable from the initial

state, obtaining Ar .
I Eliminate from Ar all states from which no final state is

reachable, obtaining Af .
I Af contains a loop iff L is infinite.

205

Finiteness problem

We have already seen that every finite language is regular. Now we
want to find out if a given regular language L is finite.

Finiteness problem
The Finiteness problem for regular languages is decidable.

If there is a loop in an accepting run, words of arbitrary length are
accepted.

Let A be a DFA accepting L.
I Eliminate from A all states that are not reachable from the initial

state, obtaining Ar .
I Eliminate from Ar all states from which no final state is

reachable, obtaining Af .
I Af contains a loop iff L is infinite.

205

Finiteness problem

We have already seen that every finite language is regular. Now we
want to find out if a given regular language L is finite.

Finiteness problem
The Finiteness problem for regular languages is decidable.

If there is a loop in an accepting run, words of arbitrary length are
accepted.

Let A be a DFA accepting L.
I Eliminate from A all states that are not reachable from the initial

state, obtaining Ar .

I Eliminate from Ar all states from which no final state is
reachable, obtaining Af .

I Af contains a loop iff L is infinite.

205

Finiteness problem

We have already seen that every finite language is regular. Now we
want to find out if a given regular language L is finite.

Finiteness problem
The Finiteness problem for regular languages is decidable.

If there is a loop in an accepting run, words of arbitrary length are
accepted.

Let A be a DFA accepting L.
I Eliminate from A all states that are not reachable from the initial

state, obtaining Ar .
I Eliminate from Ar all states from which no final state is

reachable, obtaining Af .

I Af contains a loop iff L is infinite.

205

Finiteness problem

We have already seen that every finite language is regular. Now we
want to find out if a given regular language L is finite.

Finiteness problem
The Finiteness problem for regular languages is decidable.

If there is a loop in an accepting run, words of arbitrary length are
accepted.

Let A be a DFA accepting L.
I Eliminate from A all states that are not reachable from the initial

state, obtaining Ar .
I Eliminate from Ar all states from which no final state is

reachable, obtaining Af .
I Af contains a loop iff L is infinite.

205

Disproving regularity: the pumping lemma

I Given a language L, the pumping lemma is a way to disprove the
regularity of L.

I Informally, it says that sufficiently long words in L may be
pumped to produce a new word within L.

I Here, pumping refers to the repetition of the middle section of the
word.

I Formally, we have:
I L is a regular language.
I Then, there exists an integer n ∈ N such that all words s ∈ L with

a length greater than or equal to n can be split into three parts u,
v , and w satisfying the following conditions:

1. s = uvw ,
2. v 6= ε,
3. |uv | ≤ n,
4. ∀h ∈ N(uvhw ∈ L).

206

Disproving regularity: the pumping lemma

I Given a language L, the pumping lemma is a way to disprove the
regularity of L.

I Informally, it says that sufficiently long words in L may be
pumped to produce a new word within L.

I Here, pumping refers to the repetition of the middle section of the
word.

I Formally, we have:
I L is a regular language.
I Then, there exists an integer n ∈ N such that all words s ∈ L with

a length greater than or equal to n can be split into three parts u,
v , and w satisfying the following conditions:

1. s = uvw ,
2. v 6= ε,
3. |uv | ≤ n,
4. ∀h ∈ N(uvhw ∈ L).

206

Disproving regularity: the pumping lemma

I Given a language L, the pumping lemma is a way to disprove the
regularity of L.

I Informally, it says that sufficiently long words in L may be
pumped to produce a new word within L.

I Here, pumping refers to the repetition of the middle section of the
word.

I Formally, we have:
I L is a regular language.
I Then, there exists an integer n ∈ N such that all words s ∈ L with

a length greater than or equal to n can be split into three parts u,
v , and w satisfying the following conditions:

1. s = uvw ,
2. v 6= ε,
3. |uv | ≤ n,
4. ∀h ∈ N(uvhw ∈ L).

206

Disproving regularity: the pumping lemma

I Given a language L, the pumping lemma is a way to disprove the
regularity of L.

I Informally, it says that sufficiently long words in L may be
pumped to produce a new word within L.

I Here, pumping refers to the repetition of the middle section of the
word.

I Formally, we have:
I L is a regular language.
I Then, there exists an integer n ∈ N such that all words s ∈ L with

a length greater than or equal to n can be split into three parts u,
v , and w satisfying the following conditions:

1. s = uvw ,

2. v 6= ε,
3. |uv | ≤ n,
4. ∀h ∈ N(uvhw ∈ L).

206

Disproving regularity: the pumping lemma

I Given a language L, the pumping lemma is a way to disprove the
regularity of L.

I Informally, it says that sufficiently long words in L may be
pumped to produce a new word within L.

I Here, pumping refers to the repetition of the middle section of the
word.

I Formally, we have:
I L is a regular language.
I Then, there exists an integer n ∈ N such that all words s ∈ L with

a length greater than or equal to n can be split into three parts u,
v , and w satisfying the following conditions:

1. s = uvw ,
2. v 6= ε,

3. |uv | ≤ n,
4. ∀h ∈ N(uvhw ∈ L).

206

Disproving regularity: the pumping lemma

I Given a language L, the pumping lemma is a way to disprove the
regularity of L.

I Informally, it says that sufficiently long words in L may be
pumped to produce a new word within L.

I Here, pumping refers to the repetition of the middle section of the
word.

I Formally, we have:
I L is a regular language.
I Then, there exists an integer n ∈ N such that all words s ∈ L with

a length greater than or equal to n can be split into three parts u,
v , and w satisfying the following conditions:

1. s = uvw ,
2. v 6= ε,
3. |uv | ≤ n,

4. ∀h ∈ N(uvhw ∈ L).

206

Disproving regularity: the pumping lemma

I Given a language L, the pumping lemma is a way to disprove the
regularity of L.

I Informally, it says that sufficiently long words in L may be
pumped to produce a new word within L.

I Here, pumping refers to the repetition of the middle section of the
word.

I Formally, we have:
I L is a regular language.
I Then, there exists an integer n ∈ N such that all words s ∈ L with

a length greater than or equal to n can be split into three parts u,
v , and w satisfying the following conditions:

1. s = uvw ,
2. v 6= ε,
3. |uv | ≤ n,
4. ∀h ∈ N(uvhw ∈ L).

206

Pumping lemma - intuition

I Case 1: L is finite
I Then there exists a longest word w ∈ L
I Then n = |w |+ 1 works trivially

I Case 2: L is infinite
I There is a DFA A with L(A) = A (because L is regular)
I A has at most m states (it’s a finite automaton)
I When accepting a word w with more than m letters, A has to visit

at least one state q more than once
I Ergo there is a loop from q to q . . .
I . . . and we can go through this loop any number of times!

207

Pumping lemma - intuition

I Case 1: L is finite
I Then there exists a longest word w ∈ L
I Then n = |w |+ 1 works trivially

I Case 2: L is infinite
I There is a DFA A with L(A) = A (because L is regular)
I A has at most m states (it’s a finite automaton)
I When accepting a word w with more than m letters, A has to visit

at least one state q more than once
I Ergo there is a loop from q to q . . .
I . . . and we can go through this loop any number of times!

207

The pumping lemma (cont.)

The pumping lemma can be written in a single formula as follows:

reg(L) → ∃n ∈ N ∀s ∈ L(|s| ≥ n→ ∃u, v ,w ∈ Σ∗

(s = uvw ∧ v 6= ε ∧ |uv | ≤ n ∧
∀h ∈ N(uvhw ∈ L))) (101)

In order to disprove regularity of languages, this formula can be
transformed into

∀n ∈ N ∃s ∈ L(|s| ≥ n ∧ ∀u, v ,w ∈ Σ∗∃h ∈ N
(¬(s = uvw ∧ v 6= ε ∧ |uv | ≤ n ∧

uvhw ∈ L))) → ¬reg(L)

(102)

208

The pumping lemma: example

Given the alphabet Σ = {(,)}, we define a language L consisting of
k opening brackets followed by k closing brackets:

L = {(k)k |k ∈ N}. (103)

According to Eq. 102, for all possible integers n, we need to find an
s ∈ L whose length is greater than or equal to n, e.g.

s = (n)n. (104)

Now, we just have to show that there is no way to satisfy Conditions 1
to 4 with this s.

209

The pumping lemma: example (cont.)

Considering that s = uvw (1), |uv | ≤ n (3), and v 6= ε (2), we know
that

u = (l , v = (m, w = (p)n (105)

with
l + m + p = n; m ≥ 1 (106)

i.e.
l + p ≤ n − 1. (107)

Now, if we are able to show that Condition 4 cannot be fulfilled, we
are done.

210

The pumping lemma: example (cont.)

We need to show that

¬∀h ∈ N(uvhw ∈ L) or ∃h ∈ N(uvhw 6∈ L). (108)

For h = 0, we would obtain the word

uw = (l+p)n (109)

According to Eq. 107, l + p 6= n, hence uw 6∈ L which completes the
proof that

¬reg(L). (110)

211

The pumping lemma: example (cont.)

In conclusion, we see that the language

L = {(k)k |k ∈ N}. (111)

is not regular. This means that

I regular languages are not capable of counting brackets;
I for most common programming languages, regular

languages/grammars/expressions are not powerful enough.

In the following, we will learn more about context-free languages
which are able to cope with most common programming languages.

212

The pumping lemma: exercise

We are given the language L comprising all the words of the form ap

where p is a prime number:

L = {ap|p ∈ P}. (112)

Prove that L is not a regular language.

Hint: let h = p + 1

213

Homework

I Assume L1 = {anbm|n,m ∈ N,n > m} and
L2 = {anbm|n,m ∈ N}
I Is L1 regular?
I Is L2 regular?
I Prove your claims!

I Solve the exercise on page 86
I Bonus: Solve the equations on page 82

214

Review of Goals

I Refresher & Homework
I Equivalence of regular expressions
I Properties of regular languages
I Closure properties
I Decision problems

I Non-regular languages and the pumping lemma

215

Feedback round

I What was the best part of todays lecture?
I What part of todays lecture has the most potential for

improvement?
I Optional: how would you improve it?

216

Goals for Today

I ERASMUS+
I Refresher & Homework
I Real-world scanner
I Compiler structure
I Flex
I Regular expressions - theory and practice

217

ERASMUS+

I ERASMUS+ fördert Praxisphasen im europäischen Ausland
I Mindestens 60 Tage
I Selbst gesuchte Praktika ok
I Praktika bei Dualen Partnern oder Partnerfirmen ok

I Anmeldung bei geplanten Aufenthalten bis Juli 2015:
I Ab sofort
I Spätestens 15.12.2014!

I Weitere Information:
I https://eu.daad.de/neu/studierende/

studierendenmobilitaet/de/
14998-studierendenmobilitaet/

I Auslandsamt DHBW-Stuttgart, Frau Dorte Süchting

218

https://eu.daad.de/neu/studierende/studierendenmobilitaet/de/14998-studierendenmobilitaet/
https://eu.daad.de/neu/studierende/studierendenmobilitaet/de/14998-studierendenmobilitaet/
https://eu.daad.de/neu/studierende/studierendenmobilitaet/de/14998-studierendenmobilitaet/

Refresher

I Equivalence of REs
I RE⇒NFA⇒DFA⇒Unique Minimal DFA

I If L1,L2 are regular, then L1 ∪ L2, L1 ∩ L2, L1 ◦ L2, L1, L∗1 are all
regular
I Proof: Construction of NFSs as per REs (∪, ◦, ∗)
I Proof: Product automaton (∩,∪)
I Proof: Swap accepting/non-acceping states ()

I Finite languages are regular (tree-like NFA)
I The following are decidable for regular languages:
I Emptiness (reachbility analyis of DFA/NFA)
I Word problem (just run automaton)
I Equivalence (as per above)
I Finiteness (check for loops in DFA)

I Pumping lemma
I Regular languages can be pumped
I Normally used to show that languages are not regular

219

Homework Discussion

I Assume L1 = {anbm|n,m ∈ N,n > m} and
L2 = {anbm|n,m ∈ N}
I Is L1 regular?
I Is L2 regular?

I Solution?

I L1 not regular, proof later
I L2 regular. E.g. L2 = L(a∗b∗)

I Pumping lemma: Given a regular language L, there exists an
integer n ∈ N such that all words s ∈ L with |s| ≥ n can be split
into three parts u, v , and w satisfying the following conditions:

1. s = uvw ,
2. v 6= ε,
3. |uv | ≤ n,
4. ∀h ∈ N(uvhw ∈ L).

220

Homework Discussion

I Assume L1 = {anbm|n,m ∈ N,n > m} and
L2 = {anbm|n,m ∈ N}
I Is L1 regular?
I Is L2 regular?

I Solution?
I L1 not regular, proof later

I L2 regular. E.g. L2 = L(a∗b∗)
I Pumping lemma: Given a regular language L, there exists an

integer n ∈ N such that all words s ∈ L with |s| ≥ n can be split
into three parts u, v , and w satisfying the following conditions:

1. s = uvw ,
2. v 6= ε,
3. |uv | ≤ n,
4. ∀h ∈ N(uvhw ∈ L).

220

Homework Discussion

I Assume L1 = {anbm|n,m ∈ N,n > m} and
L2 = {anbm|n,m ∈ N}
I Is L1 regular?
I Is L2 regular?

I Solution?
I L1 not regular, proof later
I L2 regular. E.g. L2 = L(a∗b∗)

I Pumping lemma: Given a regular language L, there exists an
integer n ∈ N such that all words s ∈ L with |s| ≥ n can be split
into three parts u, v , and w satisfying the following conditions:

1. s = uvw ,
2. v 6= ε,
3. |uv | ≤ n,
4. ∀h ∈ N(uvhw ∈ L).

220

Homework Discussion

I Assume L1 = {anbm|n,m ∈ N,n > m} and
L2 = {anbm|n,m ∈ N}
I Is L1 regular?
I Is L2 regular?

I Solution?
I L1 not regular, proof later
I L2 regular. E.g. L2 = L(a∗b∗)

I Pumping lemma: Given a regular language L, there exists an
integer n ∈ N such that all words s ∈ L with |s| ≥ n can be split
into three parts u, v , and w satisfying the following conditions:

1. s = uvw ,
2. v 6= ε,
3. |uv | ≤ n,
4. ∀h ∈ N(uvhw ∈ L).

220

Homework: L1 = {anbm|n,m ∈ N,n > m} is not regular

I Proof: By contradiction (using the pumping lemma).
I Assumption: L1 is regular.
I Then: ∃n ∈ N such that ∀s ∈ L1 with |s| ≥ n ∃u, v ,w ∈ Σ∗ with

1. s = uvw ,
2. v 6= ε,
3. |uv | ≤ n,
4. ∀h ∈ N(uvhw ∈ L1).

I Consider s = anbn−1 ∈ L1
I We know |uv | ≤ n. Hence u = ai , v = aj ,w = ak bn−1 and

i + j + k = n, and j ≥ 1 (because v 6= ε)
I Now consider s′ = uv0w = aiak bn−1 = ai+k bn−1. Per

pumping-lemma, s′ ∈ L2, and per definition of L2 then
i + k > n − 1, hence i + k + 1 > n

I But i + j + k = n and j ≥ 1. Hence i + k + 1 ≤ n
I In summary: i + k + 1 > n and i + k + 1 ≤ n

I The assumption leads to a contradiction, hence the assumption
is wrong. Ergo: L1 is not regular. q.e.d.

221

Lexical Analysis in Practice/Flex

222

Syntactic Structure of Computer Languages

I Most computer languages are mostly context-free
I Regular: vocabulary

I Keywords, operators, identifiers
I Described by regular expressions or regular grammar
I Handled by (generated or hand-written) scanner/tokenizer/lexer

I Context-free: program structure
I Matching parenthesis, block structure, algebraic expressions, . . .
I Described by context-free grammar
I Handled by (generated or hand-written) parser

I Context-sensitive: e.g. declarations
I Described by human-readable constraints
I Handled in an ad-hoc fashion (e.g. symbol table)

Cautionary tale: ALGOL-68

223

Syntactic Structure of Computer Languages

I Most computer languages are mostly context-free
I Regular: vocabulary

I Keywords, operators, identifiers
I Described by regular expressions or regular grammar
I Handled by (generated or hand-written) scanner/tokenizer/lexer

I Context-free: program structure
I Matching parenthesis, block structure, algebraic expressions, . . .
I Described by context-free grammar
I Handled by (generated or hand-written) parser

I Context-sensitive: e.g. declarations
I Described by human-readable constraints
I Handled in an ad-hoc fashion (e.g. symbol table)

Cautionary tale: ALGOL-68

223

Syntactic Structure of Computer Languages

I Most computer languages are mostly context-free
I Regular: vocabulary

I Keywords, operators, identifiers
I Described by regular expressions or regular grammar
I Handled by (generated or hand-written) scanner/tokenizer/lexer

I Context-free: program structure
I Matching parenthesis, block structure, algebraic expressions, . . .
I Described by context-free grammar
I Handled by (generated or hand-written) parser

I Context-sensitive: e.g. declarations
I Described by human-readable constraints
I Handled in an ad-hoc fashion (e.g. symbol table)

Cautionary tale: ALGOL-68

223

Conway’s Law

Organizations which design systems are constrained to
produce designs which are copies of the communication
structures of these organizations.

Melvin Conway, 1968

If you have four groups working on a compiler, you’ll get
a 4-pass compiler.

The Jargon File

If a group of N persons implements a COBOL compiler,
there will be N-1 passes. Someone in the group has to be
the manager.

Tom Cheatham

224

Conway’s Law

Organizations which design systems are constrained to
produce designs which are copies of the communication
structures of these organizations.

Melvin Conway, 1968

If you have four groups working on a compiler, you’ll get
a 4-pass compiler.

The Jargon File

If a group of N persons implements a COBOL compiler,
there will be N-1 passes. Someone in the group has to be
the manager.

Tom Cheatham

224

Conway’s Law

Organizations which design systems are constrained to
produce designs which are copies of the communication
structures of these organizations.

Melvin Conway, 1968

If you have four groups working on a compiler, you’ll get
a 4-pass compiler.

The Jargon File

If a group of N persons implements a COBOL compiler,
there will be N-1 passes. Someone in the group has to be
the manager.

Tom Cheatham

224

Compiler

Variable Type
a int
b int

Source handler

Lexical analysis
(tokeniser)

Syntactic analysis
(parser)

Semantic analysis

Code generation
(several optimisation passes)

Sequence of characters:
i,n,t, ⏘, a,,, b, ;, a, =, b, +, 1, ;

Sequence of tokens:
(id, “int”), (id, “a”), (id, “b”), (semicolon), (id, “a”), (eq), (id, “b”), (plus), (int, “1”), (semicolon)

e.g. Abstract syntax tree

e.g. AST+symbol table

e.g. assembler code

����
���

���
�

���
�

���
�

���
�

���
�

�

����

���� �����

���� ����������

ld a,b
ld c, 1
add c
...

���
�

���
�

���
�

�

����

�����

����������

225

Compiler

Variable Type
a int
b int

Source handler

Lexical analysis
(tokeniser)

Syntactic analysis
(parser)

Semantic analysis

Code generation
(several optimisation passes)

Sequence of characters:
i,n,t, ⏘, a,,, b, ;, a, =, b, +, 1, ;

Sequence of tokens:
(id, “int”), (id, “a”), (id, “b”), (semicolon), (id, “a”), (eq), (id, “b”), (plus), (int, “1”), (semicolon)

e.g. Abstract syntax tree

e.g. AST+symbol table

e.g. assembler code

Flex

����
���

���
�

���
�

���
�

���
�

���
�

�

����

���� �����

���� ����������

ld a,b
ld c, 1
add c
...

���
�

���
�

���
�

�

����

�����

����������

225

Flex Overview

I Flex is a scanner generator
I Input: Specification of a regular language and what to do with it
I Definitions - named regular expressions
I Rules - patters+actions
I (miscellaneous support code)

I Output: Source code of scanner
I Scans input for patterns
I Executes associated actions
I Default action: Copy input to output
I Interface for higher-level processing: yylex() function

226

Flex Overview

!
Definitions
Rules
Miscellanous code

flex+gcc

scanner
!

!
Input

!
!

Tokenized/
processed

output

227

Flex Overview

Development time

 Execution time

!
Definitions
Rules
Miscellanous code

flex+gcc

scanner
!

!
Input

!
!

Tokenized/
processed

output

227

Flex Example Task

I (Artificial) goal: Sum up all numbers in a file, separately for ints
and floats

I Given: A file with numbers and commands
I Ints: Non-empty sequences of digits
I Floats: Non-empty sequences of digits, followed by decimal dot,

followed by (potentially empty) sequence of digits
I Command print: Print current sums
I Command reset: Reset sums to 0.

I At end of file, print sums

228

Flex Example Output

Input

12 3.1415
0.33333
print reset
2 11
1.5 2.5 print
1
print 1.0

Output

int: 12 ("12")
float: 3.141500 ("3.1415")
float: 0.333330 ("0.33333")
Current: 12 : 3.474830
Reset
int: 2 ("2")
int: 11 ("11")
float: 1.500000 ("1.5")
float: 2.500000 ("2.5")
Current: 13 : 4.000000
int: 1 ("1")
Current: 14 : 4.000000
float: 1.000000 ("1.0")
Final 14 : 5.000000

229

Flex Facts & Opinions

I Flex: Fast Lexical Analyser
I Original: lex (described 1975)
I flex is lex compatible

I Flex input syntax seems wonky. . .
I Basics are 40 years old!
I Represents regular expressions and C code with the same

alphabet in the same file

I On the other hand: It would not have survived 40 years if it didn’t
work!

230

Flex Facts & Opinions

I Flex: Fast Lexical Analyser
I Original: lex (described 1975)
I flex is lex compatible

I Flex input syntax seems wonky. . .
I Basics are 40 years old!
I Represents regular expressions and C code with the same

alphabet in the same file
I On the other hand: It would not have survived 40 years if it didn’t

work!

230

Basic Structure of Flex Files

I Flex files have 3 sections
I Definitions
I Rules
I User Code

I Sections are separated by %%
I Flex files traditionally use the suffix .l

231

Example Code (definition section)

%%option noyywrap

DIGIT [0-9]

%{
int intval = 0;
double floatval = 0.0;

%}

%%

232

Example Code (rule section)

{DIGIT}+ {
printf("int: %d (\"%s\")\n", atoi(yytext), yytext);
intval += atoi(yytext);

}
{DIGIT}+"."{DIGIT}* {

printf("float: %f (\"%s\")\n", atof(yytext),yytext);
floatval += atof(yytext);
}

reset {
intval = 0;
floatval = 0;
printf("Reset\n");

}
print {

printf("Current: %d : %f\n", intval, floatval);
}

\n|. {
/* Skip */

}

233

Example Code (user code section)

%%
int main(int argc, char **argv)
{

++argv, --argc; /* skip over program name */
if (argc > 0)

yyin = fopen(argv[0], "r");
else

yyin = stdin;

yylex();

printf("Final %d : %f\n", intval, floatval);
}

234

Generating a scanner

> flex -t numbers.l > numbers.c
> gcc -c -o numbers.o numbers.c
> gcc numbers.o -o scan_numbers
> ./scan_numbers Numbers.txt
int: 12 ("12")
float: 3.141500 ("3.1415")
float: 0.333330 ("0.33333")
Current: 12 : 3.474830
Reset
int: 2 ("2")
int: 11 ("11")
float: 1.500000 ("1.5")
float: 2.500000 ("2.5")
...

235

Flexing in detail

> flex -tv numbers.l > numbers.c
scanner options: -tvI8 -Cem
37/2000 NFA states
18/1000 DFA states (50 words)
5 rules
Compressed tables always back-up
1/40 start conditions
20 epsilon states, 11 double epsilon states
6/100 character classes needed 31/500 words

of storage, 0 reused
36 state/nextstate pairs created
24/12 unique/duplicate transitions
...
381 total table entries needed

236

Definition Section

I Can contain flex options
I Can contain (C) initialization code
I Typically #include() directives
I Global variable defintions
I Macros and type definitions
I Initialization code is embeded in %{ and %}

I Can contain definitions of regular expressions
I Format: NAME RE
I Defined NAMES can be referenced later

237

Regular Expressions in Practice (1)

I The minimal syntax of regular expressions as discussed before
was introduced to be able to show their equivalence to finite
state machines

I Practical implementations of regular expressions (e.g. in Flex)
use a richer and more powerful syntax.

I Regular expressions in Flex are based on the ASCII alphabet.
I We distinguish between the set of operator symbols

O = {.,*,+,?,-,˜,|,(,),[,], {, },<,>,/,\,ˆ,$,"} (113)

and the set of regular expressions
1. c ∈ ΣASCII\O −→ c ∈ R

2. “.”∈ R
any character but newline (\n)

238

Regular Expressions in Practice (1)

I The minimal syntax of regular expressions as discussed before
was introduced to be able to show their equivalence to finite
state machines

I Practical implementations of regular expressions (e.g. in Flex)
use a richer and more powerful syntax.

I Regular expressions in Flex are based on the ASCII alphabet.
I We distinguish between the set of operator symbols

O = {.,*,+,?,-,˜,|,(,),[,], {, },<,>,/,\,ˆ,$,"} (113)

and the set of regular expressions
1. c ∈ ΣASCII\O −→ c ∈ R
2. “.”∈ R

any character but newline (\n)

238

Regular Expressions in Practice (2)

3. x ∈ {a,b,f,n,r,t,v} −→ \x ∈ R
defines the following control characters

\a (alert)
\b (backspace)
\f (form feed)
\n (newline)
\r (carriage return)
\t (tabulator)
\v (vertical tabulator)

a,b, c ∈ {0, · · · ,7} −→ \abc ∈ R octal representation of a
character’s ASCII code (e.g. \040 represents the empty space “ ”)

4.
239

Regular Expressions in Practice (2)

3. x ∈ {a,b,f,n,r,t,v} −→ \x ∈ R
defines the following control characters

\a (alert)

\b (backspace)
\f (form feed)
\n (newline)
\r (carriage return)
\t (tabulator)
\v (vertical tabulator)

a,b, c ∈ {0, · · · ,7} −→ \abc ∈ R octal representation of a
character’s ASCII code (e.g. \040 represents the empty space “ ”)

4.
239

Regular Expressions in Practice (2)

3. x ∈ {a,b,f,n,r,t,v} −→ \x ∈ R
defines the following control characters

\a (alert)
\b (backspace)

\f (form feed)
\n (newline)
\r (carriage return)
\t (tabulator)
\v (vertical tabulator)

a,b, c ∈ {0, · · · ,7} −→ \abc ∈ R octal representation of a
character’s ASCII code (e.g. \040 represents the empty space “ ”)

4.
239

Regular Expressions in Practice (2)

3. x ∈ {a,b,f,n,r,t,v} −→ \x ∈ R
defines the following control characters

\a (alert)
\b (backspace)
\f (form feed)

\n (newline)
\r (carriage return)
\t (tabulator)
\v (vertical tabulator)

a,b, c ∈ {0, · · · ,7} −→ \abc ∈ R octal representation of a
character’s ASCII code (e.g. \040 represents the empty space “ ”)

4.
239

Regular Expressions in Practice (2)

3. x ∈ {a,b,f,n,r,t,v} −→ \x ∈ R
defines the following control characters

\a (alert)
\b (backspace)
\f (form feed)
\n (newline)

\r (carriage return)
\t (tabulator)
\v (vertical tabulator)

a,b, c ∈ {0, · · · ,7} −→ \abc ∈ R octal representation of a
character’s ASCII code (e.g. \040 represents the empty space “ ”)

4.
239

Regular Expressions in Practice (2)

3. x ∈ {a,b,f,n,r,t,v} −→ \x ∈ R
defines the following control characters

\a (alert)
\b (backspace)
\f (form feed)
\n (newline)
\r (carriage return)

\t (tabulator)
\v (vertical tabulator)

a,b, c ∈ {0, · · · ,7} −→ \abc ∈ R octal representation of a
character’s ASCII code (e.g. \040 represents the empty space “ ”)

4.
239

Regular Expressions in Practice (2)

3. x ∈ {a,b,f,n,r,t,v} −→ \x ∈ R
defines the following control characters

\a (alert)
\b (backspace)
\f (form feed)
\n (newline)
\r (carriage return)
\t (tabulator)

\v (vertical tabulator)

a,b, c ∈ {0, · · · ,7} −→ \abc ∈ R octal representation of a
character’s ASCII code (e.g. \040 represents the empty space “ ”)

4.
239

Regular Expressions in Practice (2)

3. x ∈ {a,b,f,n,r,t,v} −→ \x ∈ R
defines the following control characters

\a (alert)
\b (backspace)
\f (form feed)
\n (newline)
\r (carriage return)
\t (tabulator)
\v (vertical tabulator)

a,b, c ∈ {0, · · · ,7} −→ \abc ∈ R octal representation of a
character’s ASCII code (e.g. \040 represents the empty space “ ”)

4.
239

Regular Expressions in Practice (2)

3. x ∈ {a,b,f,n,r,t,v} −→ \x ∈ R
defines the following control characters

\a (alert)
\b (backspace)
\f (form feed)
\n (newline)
\r (carriage return)
\t (tabulator)
\v (vertical tabulator)

a,b, c ∈ {0, · · · ,7} −→ \abc ∈ R octal representation of a
character’s ASCII code (e.g. \040 represents the empty space “ ”)

4.
239

Regular Expressions in Practice (3)

5. c ∈ O −→ \c ∈ R
escaping operator symbols

r1, r2 ∈ R −→ r1r2 ∈ R
concatenation
r1, r2 ∈ R −→ r1|r2 ∈ R
infix operation using “|” rather than “+”
r ∈ R −→ r* ∈ R
Kleene star
r ∈ R −→ r+ ∈ R
(one or more or r)
r ∈ R −→ r? ∈ R
optional presence (zero or one r)

6. 7. 8. 9. 10.
240

Regular Expressions in Practice (3)

5. c ∈ O −→ \c ∈ R
escaping operator symbols
r1, r2 ∈ R −→ r1r2 ∈ R
concatenation

r1, r2 ∈ R −→ r1|r2 ∈ R
infix operation using “|” rather than “+”
r ∈ R −→ r* ∈ R
Kleene star
r ∈ R −→ r+ ∈ R
(one or more or r)
r ∈ R −→ r? ∈ R
optional presence (zero or one r)

6. 7. 8. 9. 10.
240

Regular Expressions in Practice (3)

5. c ∈ O −→ \c ∈ R
escaping operator symbols
r1, r2 ∈ R −→ r1r2 ∈ R
concatenation
r1, r2 ∈ R −→ r1|r2 ∈ R
infix operation using “|” rather than “+”

r ∈ R −→ r* ∈ R
Kleene star
r ∈ R −→ r+ ∈ R
(one or more or r)
r ∈ R −→ r? ∈ R
optional presence (zero or one r)

6. 7. 8. 9. 10.
240

Regular Expressions in Practice (3)

5. c ∈ O −→ \c ∈ R
escaping operator symbols
r1, r2 ∈ R −→ r1r2 ∈ R
concatenation
r1, r2 ∈ R −→ r1|r2 ∈ R
infix operation using “|” rather than “+”
r ∈ R −→ r* ∈ R
Kleene star

r ∈ R −→ r+ ∈ R
(one or more or r)
r ∈ R −→ r? ∈ R
optional presence (zero or one r)

6. 7. 8. 9. 10.
240

Regular Expressions in Practice (3)

5. c ∈ O −→ \c ∈ R
escaping operator symbols
r1, r2 ∈ R −→ r1r2 ∈ R
concatenation
r1, r2 ∈ R −→ r1|r2 ∈ R
infix operation using “|” rather than “+”
r ∈ R −→ r* ∈ R
Kleene star
r ∈ R −→ r+ ∈ R
(one or more or r)

r ∈ R −→ r? ∈ R
optional presence (zero or one r)

6. 7. 8. 9. 10.
240

Regular Expressions in Practice (3)

5. c ∈ O −→ \c ∈ R
escaping operator symbols
r1, r2 ∈ R −→ r1r2 ∈ R
concatenation
r1, r2 ∈ R −→ r1|r2 ∈ R
infix operation using “|” rather than “+”
r ∈ R −→ r* ∈ R
Kleene star
r ∈ R −→ r+ ∈ R
(one or more or r)
r ∈ R −→ r? ∈ R
optional presence (zero or one r)

6. 7. 8. 9. 10.
240

Regular Expressions in Practice (4)

11. r ∈ R,n ∈ N −→ r{n} ∈ R
concatenation of n times r

r ∈ R; m,n ∈ N; m ≤ n −→ r{m,n} ∈ R
concatenation of between m and n times r
r ∈ R −→ ˆr ∈ R
r has to be at the beginning of line
r ∈ R −→ r$ ∈ R
r has to be at the end of line
r1, r2 ∈ R −→ r1/r2 ∈ R
The same as r1r2, however, only the contents of r1 is consumed.
The trailing context r2 can be processed by the next rule.
r ∈ R −→ (r) ∈ R
Grouping regular expressions with brackets.

12. 13. 14. 15. 16.
241

Regular Expressions in Practice (4)

11. r ∈ R,n ∈ N −→ r{n} ∈ R
concatenation of n times r
r ∈ R; m,n ∈ N; m ≤ n −→ r{m,n} ∈ R
concatenation of between m and n times r

r ∈ R −→ ˆr ∈ R
r has to be at the beginning of line
r ∈ R −→ r$ ∈ R
r has to be at the end of line
r1, r2 ∈ R −→ r1/r2 ∈ R
The same as r1r2, however, only the contents of r1 is consumed.
The trailing context r2 can be processed by the next rule.
r ∈ R −→ (r) ∈ R
Grouping regular expressions with brackets.

12. 13. 14. 15. 16.
241

Regular Expressions in Practice (4)

11. r ∈ R,n ∈ N −→ r{n} ∈ R
concatenation of n times r
r ∈ R; m,n ∈ N; m ≤ n −→ r{m,n} ∈ R
concatenation of between m and n times r
r ∈ R −→ ˆr ∈ R
r has to be at the beginning of line

r ∈ R −→ r$ ∈ R
r has to be at the end of line
r1, r2 ∈ R −→ r1/r2 ∈ R
The same as r1r2, however, only the contents of r1 is consumed.
The trailing context r2 can be processed by the next rule.
r ∈ R −→ (r) ∈ R
Grouping regular expressions with brackets.

12. 13. 14. 15. 16.
241

Regular Expressions in Practice (4)

11. r ∈ R,n ∈ N −→ r{n} ∈ R
concatenation of n times r
r ∈ R; m,n ∈ N; m ≤ n −→ r{m,n} ∈ R
concatenation of between m and n times r
r ∈ R −→ ˆr ∈ R
r has to be at the beginning of line
r ∈ R −→ r$ ∈ R
r has to be at the end of line

r1, r2 ∈ R −→ r1/r2 ∈ R
The same as r1r2, however, only the contents of r1 is consumed.
The trailing context r2 can be processed by the next rule.
r ∈ R −→ (r) ∈ R
Grouping regular expressions with brackets.

12. 13. 14. 15. 16.
241

Regular Expressions in Practice (4)

11. r ∈ R,n ∈ N −→ r{n} ∈ R
concatenation of n times r
r ∈ R; m,n ∈ N; m ≤ n −→ r{m,n} ∈ R
concatenation of between m and n times r
r ∈ R −→ ˆr ∈ R
r has to be at the beginning of line
r ∈ R −→ r$ ∈ R
r has to be at the end of line
r1, r2 ∈ R −→ r1/r2 ∈ R
The same as r1r2, however, only the contents of r1 is consumed.
The trailing context r2 can be processed by the next rule.

r ∈ R −→ (r) ∈ R
Grouping regular expressions with brackets.

12. 13. 14. 15. 16.
241

Regular Expressions in Practice (4)

11. r ∈ R,n ∈ N −→ r{n} ∈ R
concatenation of n times r
r ∈ R; m,n ∈ N; m ≤ n −→ r{m,n} ∈ R
concatenation of between m and n times r
r ∈ R −→ ˆr ∈ R
r has to be at the beginning of line
r ∈ R −→ r$ ∈ R
r has to be at the end of line
r1, r2 ∈ R −→ r1/r2 ∈ R
The same as r1r2, however, only the contents of r1 is consumed.
The trailing context r2 can be processed by the next rule.
r ∈ R −→ (r) ∈ R
Grouping regular expressions with brackets.

12. 13. 14. 15. 16.
241

Regular Expressions in Practice (5)

17. Ranges

– [aeiou]
.
= a|e|i|o|u

– [a-z]
.
= a|b|c| · · ·|z

– [a-zA-Z0-9]: alphanumeric characters
– [ˆ0-9]: all ASCII characters w/o digits

[] ∈ R
empty space
w ∈ {ΣASCII\{\,"}}∗ −→ "w" ∈ R
verbatim text (no escape sequences)

18. 19.
242

Regular Expressions in Practice (5)

17. Ranges
– [aeiou]

.
= a|e|i|o|u

– [a-z]
.
= a|b|c| · · ·|z

– [a-zA-Z0-9]: alphanumeric characters
– [ˆ0-9]: all ASCII characters w/o digits

[] ∈ R
empty space
w ∈ {ΣASCII\{\,"}}∗ −→ "w" ∈ R
verbatim text (no escape sequences)

18. 19.
242

Regular Expressions in Practice (5)

17. Ranges
– [aeiou]

.
= a|e|i|o|u

– [a-z]
.
= a|b|c| · · ·|z

– [a-zA-Z0-9]: alphanumeric characters
– [ˆ0-9]: all ASCII characters w/o digits

[] ∈ R
empty space
w ∈ {ΣASCII\{\,"}}∗ −→ "w" ∈ R
verbatim text (no escape sequences)

18. 19.
242

Regular Expressions in Practice (5)

17. Ranges
– [aeiou]

.
= a|e|i|o|u

– [a-z]
.
= a|b|c| · · ·|z

– [a-zA-Z0-9]: alphanumeric characters

– [ˆ0-9]: all ASCII characters w/o digits

[] ∈ R
empty space
w ∈ {ΣASCII\{\,"}}∗ −→ "w" ∈ R
verbatim text (no escape sequences)

18. 19.
242

Regular Expressions in Practice (5)

17. Ranges
– [aeiou]

.
= a|e|i|o|u

– [a-z]
.
= a|b|c| · · ·|z

– [a-zA-Z0-9]: alphanumeric characters
– [ˆ0-9]: all ASCII characters w/o digits

[] ∈ R
empty space
w ∈ {ΣASCII\{\,"}}∗ −→ "w" ∈ R
verbatim text (no escape sequences)

18. 19.
242

Regular Expressions in Practice (5)

17. Ranges
– [aeiou]

.
= a|e|i|o|u

– [a-z]
.
= a|b|c| · · ·|z

– [a-zA-Z0-9]: alphanumeric characters
– [ˆ0-9]: all ASCII characters w/o digits

[] ∈ R
empty space

w ∈ {ΣASCII\{\,"}}∗ −→ "w" ∈ R
verbatim text (no escape sequences)

18. 19.
242

Regular Expressions in Practice (5)

17. Ranges
– [aeiou]

.
= a|e|i|o|u

– [a-z]
.
= a|b|c| · · ·|z

– [a-zA-Z0-9]: alphanumeric characters
– [ˆ0-9]: all ASCII characters w/o digits

[] ∈ R
empty space
w ∈ {ΣASCII\{\,"}}∗ −→ "w" ∈ R
verbatim text (no escape sequences)

18. 19.
242

Regular Expressions in Practice (6)

21. r ∈ R −→ ˜r ∈ R
The upto operator matches the shortest string ending with r .

predefined character classes

22.I [:alnum:] [:alpha:] [:blank:]
I [:cntrl:] [:digit:] [:graph:]
I [:lower:] [:print:] [:punct:]
I [:space:] [:upper:] [:xdigit:]

243

Regular Expressions in Practice (6)

21. r ∈ R −→ ˜r ∈ R
The upto operator matches the shortest string ending with r .
predefined character classes

22.I [:alnum:] [:alpha:] [:blank:]
I [:cntrl:] [:digit:] [:graph:]
I [:lower:] [:print:] [:punct:]
I [:space:] [:upper:] [:xdigit:]

243

Regular Expressions in Practice (6)

21. r ∈ R −→ ˜r ∈ R
The upto operator matches the shortest string ending with r .
predefined character classes
22.I [:alnum:] [:alpha:] [:blank:]

I [:cntrl:] [:digit:] [:graph:]
I [:lower:] [:print:] [:punct:]
I [:space:] [:upper:] [:xdigit:]

243

Regular Expressions in Practice (6)

21. r ∈ R −→ ˜r ∈ R
The upto operator matches the shortest string ending with r .
predefined character classes
22.I [:alnum:] [:alpha:] [:blank:]

I [:cntrl:] [:digit:] [:graph:]

I [:lower:] [:print:] [:punct:]
I [:space:] [:upper:] [:xdigit:]

243

Regular Expressions in Practice (6)

21. r ∈ R −→ ˜r ∈ R
The upto operator matches the shortest string ending with r .
predefined character classes
22.I [:alnum:] [:alpha:] [:blank:]

I [:cntrl:] [:digit:] [:graph:]
I [:lower:] [:print:] [:punct:]

I [:space:] [:upper:] [:xdigit:]

243

Regular Expressions in Practice (6)

21. r ∈ R −→ ˜r ∈ R
The upto operator matches the shortest string ending with r .
predefined character classes
22.I [:alnum:] [:alpha:] [:blank:]

I [:cntrl:] [:digit:] [:graph:]
I [:lower:] [:print:] [:punct:]
I [:space:] [:upper:] [:xdigit:]

243

Regular Expressions in Practice (precedences)

I. “(”, “)” (strongest)
II. “*”, “+”, “?”

III. concatenation
IV. “|” (weakest)

Example:
a*b|c+de

.
= ((a*)b)|(((c+)d)e)

Rule of thumb: *,+,? bind the smallest possible RE.
Use () if in doubt!

244

Regular Expressions in Practice (precedences)

I. “(”, “)” (strongest)
II. “*”, “+”, “?”

III. concatenation
IV. “|” (weakest)

Example:
a*b|c+de

.
= ((a*)b)|(((c+)d)e)

Rule of thumb: *,+,? bind the smallest possible RE.
Use () if in doubt!

244

Regular Expressions in Practice (definitions)

I Assume definiton NAME DEF
I In later REs. {NAME} is expanded to (DEF)

I Example:
DIGIT [0-9]
INTEGER {DIGIT}+
PAIR \({INTEGER},{INTEGER}\)

245

Example Code (definition section) (revisited)

%%option noyywrap

DIGIT [0-9]

%{
int intval = 0;
double floatval = 0.0;

%}

%%

246

Exercise FLRE

I Assume we work over Σascii
I How would you express the following practical REs using only

the simple REs we have used so far?
I [a-z]
I [∧0-9]
I (r)+
I (r){3}
I (r){3,7}
I (r)?

247

Rule Section

I This is the core of the scanner!
I Rules have the form PATTERN ACTION
I Patterns are regular expressions
I Typically use previous definitions

I THERE IS WHITE SPACE BETWEEN PATTERN AND ACTION!
I Actions are C code
I Can be embedded in { and }
I Can be simple C statements
I For a token-by-token scanner, must include return statement
I Inside the action, the variable yytext contains the text matched

by the pattern
I Otherwise: Full input file is processed

248

Example Code (rule section) (revisited)

{DIGIT}+ {
printf("int: %d (\"%s\")\n", atoi(yytext), yytext);
intval += atoi(yytext);

}
{DIGIT}+"."{DIGIT}* {

printf("float: %f (\"%s\")\n", atof(yytext),yytext);
floatval += atof(yytext);
}

reset {
intval = 0;
floatval = 0;
printf("Reset\n");

}
print {

printf("Current: %d : %f\n", intval, floatval);
}

\n|. {
/* Skip */

}

249

User code section

I Can contain all kinds of code
I For stand-alone scanner: must include main()

I In main(), the function yylex() will invoke the scanner
I yylex() will read data from the file pointer yyin (so main()

must set it up reasonably

250

Example Code (user code section) (revisited)

%%
int main(int argc, char **argv)
{

++argv, --argc; /* skip over program name */
if (argc > 0)

yyin = fopen(argv[0], "r");
else

yyin = stdin;

yylex();

printf("Final %d : %f\n", intval, floatval);
}

251

A comment on comments

I Comments in Flex are complicated
I . . . because nearly everything can be a pattern

I Simple rules:
I Use old-style C comments /* This is a comment */
I Never start them in the first column
I Comments are copied into the generated code
I Read the manual if you want the dirty details

252

Flex Miscellany

I Flex online:
I http://flex.sourceforge.net/
I Manual: http://flex.sourceforge.net/manual/
I REs:

http://flex.sourceforge.net/manual/Patterns.html

I make knows flex
I Make will automatically generate file.o from file.l
I Be sure to set LEX=flex to enable flex extensions
I Makefile example:

LEX=flex
all: scan_numbers
numbers.o: numbers.l

scan_numbers: numbers.o
gcc numbers.o -o scan_numbers

253

http://flex.sourceforge.net/
http://flex.sourceforge.net/manual/
http://flex.sourceforge.net/manual/Patterns.html

Flex Homework (1)

I A security audit firm needs a tool that scans documents for the
following:
I Email addesses

I Fomat: String over [A-Za-z0-9 .∼-], followed by @, followed by a
domain name according to RFC-1034,
https://tools.ietf.org/html/rfc1034, Section 3.5 (we
only consider the case that the domain name is not empty)

I (simplified) Web addresses
I http:// followed by an RFC-1034 domain name, optionally

followed by :<port> (where <port> is a non-empty sequence of
digits), optionally followed by one or several parts of the form
/<str>, where <str> is a non-empty sequence over
[A-Za-z0-9 .∼-]

254

https://tools.ietf.org/html/rfc1034

Flex Homework (2)

I Bank account numbers
I Old-style bank account numbers start with an identifying string,

optionally followed by ., optionally followed by :, optionally followed
by spaces, followed by a non-empty sequence of up to 10 digits.
Identifying strings are Konto, Kto, KNr, Ktonr,
Kontonummer

I (German) IBANs are strings starting with DE, followed by exactly 20
digits. Human-readable IBANs have spaces after every 4 characters
(the last group has only 2 characters)

I Examples:
I Rosenda@gidwd-39.at.z8o3rw2.zhv
I http://jzl.j51g.m-x95.vi5/oj1g_i1/72zz_gt68f
I http://iefbottw99.v4gy.zslu9q.zrc2es01nr.dy:8004
I Ktonr. 241524
I DE26959558703965641174
I DE27 0192 8222 4741 4694 55

255

Rosenda@gidwd-39.at.z8o3rw2.zhv
http://jzl.j51g.m-x95.vi5/oj1g_i1/72zz_gt68f
http://iefbottw99.v4gy.zslu9q.zrc2es01nr.dy:8004

Flex Homework (3)

I Erstellen Sie ein solches Programm
I Würde Sie so ein Auftrag nachdenklich machen? Warum oder

warum nicht?
I Beispieldateien zum Testen gibt es auf der Kurswebseite
http://wwwlehre.dhbw-stuttgart.de/˜sschulz/
fla2014.html

256

http://wwwlehre.dhbw-stuttgart.de/~sschulz/fla2014.html
http://wwwlehre.dhbw-stuttgart.de/~sschulz/fla2014.html

Review of Goals

I ERASMUS+
I Refresher & Homework
I Real-world scanner
I Compiler structure
I Flex
I Regular expressions - theory and practice

257

Feedback round

I What was the best part of todays lecture?
I What part of todays lecture has the most potential for

improvement?
I Optional: how would you improve it?

258

Goals for Today

I Refresher & Homework
I Formal Grammars
I Definition
I The Chomsky Hierarchy
I Regular languages and right-linear grammars
I Context-free grammars

I Normal forms

259

Refresher

I Structure of programming languages and compilers
I Regular vocabulary/Scanner
I Context-free program structure/Parser
I Context-sensitive constraints/Special hacks ;-)
I . . . and then code generation

I Flex overview
I Input: Patters (REs)+Actions(C code)
I Output: Scanner in C
I Flex workflow

I Example: Scanning and adding numbers
I Practical regular expressions
I Ranges [...], +, repetitions, . . .

260

Flex Homework discussion

I A security audit firm needs a tool that scans documents for the
following:
I Email addesses
I Web addresses
I Bank account numbers

I Develop the required program
I Would such an request make you think? Why or why not?

261

Formal Grammars: Motivation

So far, we have seen
I regular expressions: compact description of regular languages
I finite automata: recognise words of a regular language

Another, more powerful formalism: formal grammars
I generate words of a language
I contain a set of rules allowing to replace symbols with different

symbols

262

Formal Grammars: Motivation

So far, we have seen
I regular expressions: compact description of regular languages
I finite automata: recognise words of a regular language

Another, more powerful formalism: formal grammars
I generate words of a language
I contain a set of rules allowing to replace symbols with different

symbols

262

Grammars: examples

S → aA, A→ bB, B → ε

generates ab (starting from S): S → aA→ abB → ab

S → ε, S → aSb
generates anbn

263

Grammars: examples

S → aA, A→ bB, B → ε
generates ab (starting from S): S → aA→ abB → ab

S → ε, S → aSb
generates anbn

263

Grammars: examples

S → aA, A→ bB, B → ε
generates ab (starting from S): S → aA→ abB → ab

S → ε, S → aSb

generates anbn

263

Grammars: examples

S → aA, A→ bB, B → ε
generates ab (starting from S): S → aA→ abB → ab

S → ε, S → aSb
generates anbn

263

Grammars: definition

Noam Chomsky defined a grammar as a quadruple

G = 〈VN ,VT ,P,S〉 (114)

with
1. the set of non-terminal symbols VN ,
2. the set of terminal symbols VT ,
3. the set of production rules P of the form

α→ β (115)

with α ∈ V ∗VNV ∗, β ∈ V ∗,V = VN ∪ VT

4. the distinguished start symbol S ∈ VN .

264

Noam Chomsky (*1928)

I Linguist, philosopher, logician, . . .
I BA, MA, PhD (1955) at the Univeristy of

Pennsylvania
I Mainly teaching at MIT (since 1955)
I Also Harvard, Columbia University, Institute

of Advanced Studie (Princeton), UC
Berkely, . . .

I Opposition to Vietnam War, Essay The
Responsibility of Intellectuals

I Most cited academic (1980-1992)
I “World’s top public intellectual” (2005)
I More than 40 honorary degrees

265

Grammars: Shorthand

For the sake of simplicity, we will be using the short form

α→ β1| · · · |βn replacing α→ β1 (116)
...
α→ βn

266

Example: C identifiers

We want to define a grammar

G = 〈VN ,VT ,P,S〉 (117)

to describe identifiers of the C programming language:
I alpha-numeric words
I which must not start with a digit
I and may contain an underscore ()

VN = {I,R,L,D} (identifier, rest, letter, digit),
VT = {a, · · · ,z,A, · · · ,Z,0, · · · ,9, },
P = { I → LR| R|L|

R → LR|DR| R|L|D|
L → a| · · · |z|A| · · · |Z
D → 0| · · · |9}

S = I.

267

Example: C identifiers

We want to define a grammar

G = 〈VN ,VT ,P,S〉 (117)

to describe identifiers of the C programming language:
I alpha-numeric words
I which must not start with a digit
I and may contain an underscore ()

VN = {I,R,L,D} (identifier, rest, letter, digit),
VT = {a, · · · ,z,A, · · · ,Z,0, · · · ,9, },
P = { I → LR| R|L|

R → LR|DR| R|L|D|
L → a| · · · |z|A| · · · |Z
D → 0| · · · |9}

S = I.

267

Formal grammars: derivation

Derivation: description of operation of grammars
Given the grammar

G = 〈VN ,VT ,P,S〉, (118)

we define the relation

x ⇒G y (119)
iff ∃u, v ,p,q ∈ V ∗ : (x = upv) ∧ (p → q ∈ P) ∧ (y = uqv) (120)

pronounced as “G derives y from x in one step”.

We also define the relation

x ⇒∗G y iff ∃w0, . . . ,wn (121)

with w0 = x ,wn = y ,wi−1 ⇒G wi for i ∈ {1, · · · ,n}
pronounced as “G derives y from x (in zero or more steps)”.

268

Formal grammars: derivation

Derivation: description of operation of grammars
Given the grammar

G = 〈VN ,VT ,P,S〉, (118)

we define the relation

x ⇒G y (119)
iff ∃u, v ,p,q ∈ V ∗ : (x = upv) ∧ (p → q ∈ P) ∧ (y = uqv) (120)

pronounced as “G derives y from x in one step”.
We also define the relation

x ⇒∗G y iff ∃w0, . . . ,wn (121)

with w0 = x ,wn = y ,wi−1 ⇒G wi for i ∈ {1, · · · ,n}
pronounced as “G derives y from x (in zero or more steps)”.

268

Formal grammars: derivation example I

G = 〈VN ,VT ,P,S〉 (122)

with
1. VN = {S},
2. VT = {0},
3. P = {S → 0S, S → 0},
4. S = S.

Derivations of G have the general form

S ⇒ 0S ⇒ 00S ⇒ · · · ⇒ 0n−1S ⇒ 0n (123)

Apparently, the language produced by G (or the language of G) is

L(G) = {0n|n ∈ N; n > 0}. (124)

269

Formal grammars: derivation example I

G = 〈VN ,VT ,P,S〉 (122)

with
1. VN = {S},
2. VT = {0},
3. P = {S → 0S, S → 0},
4. S = S.

Derivations of G have the general form

S ⇒ 0S ⇒ 00S ⇒ · · · ⇒ 0n−1S ⇒ 0n (123)

Apparently, the language produced by G (or the language of G) is

L(G) = {0n|n ∈ N; n > 0}. (124)

269

Formal grammars: derivation example I

G = 〈VN ,VT ,P,S〉 (122)

with
1. VN = {S},
2. VT = {0},
3. P = {S → 0S, S → 0},
4. S = S.

Derivations of G have the general form

S ⇒ 0S ⇒ 00S ⇒ · · · ⇒ 0n−1S ⇒ 0n (123)

Apparently, the language produced by G (or the language of G) is

L(G) = {0n|n ∈ N; n > 0}. (124)

269

Formal grammars: derivation example II

G = 〈VN ,VT ,P,S〉 (125)

with
1. VN = {S},
2. VT = {0,1},
3. P = {S → 0S1, S → 01},
4. S = S.

Derivations of G have the general form

S ⇒ 0S1⇒ 00S11⇒ · · · ⇒ 0n−1S1n−1 ⇒ 0n1n. (126)

The language of G is

L(G) = {0n1n|n ∈ N; n > 0}. (127)

Reminder: L(G) is not regular!

270

Formal grammars: derivation example II

G = 〈VN ,VT ,P,S〉 (125)

with
1. VN = {S},
2. VT = {0,1},
3. P = {S → 0S1, S → 01},
4. S = S.

Derivations of G have the general form

S ⇒ 0S1⇒ 00S11⇒ · · · ⇒ 0n−1S1n−1 ⇒ 0n1n. (126)

The language of G is

L(G) = {0n1n|n ∈ N; n > 0}. (127)

Reminder: L(G) is not regular!

270

Formal grammars: derivation example II

G = 〈VN ,VT ,P,S〉 (125)

with
1. VN = {S},
2. VT = {0,1},
3. P = {S → 0S1, S → 01},
4. S = S.

Derivations of G have the general form

S ⇒ 0S1⇒ 00S11⇒ · · · ⇒ 0n−1S1n−1 ⇒ 0n1n. (126)

The language of G is

L(G) = {0n1n|n ∈ N; n > 0}. (127)

Reminder: L(G) is not regular!

270

Formal grammars: derivation example II

G = 〈VN ,VT ,P,S〉 (125)

with
1. VN = {S},
2. VT = {0,1},
3. P = {S → 0S1, S → 01},
4. S = S.

Derivations of G have the general form

S ⇒ 0S1⇒ 00S11⇒ · · · ⇒ 0n−1S1n−1 ⇒ 0n1n. (126)

The language of G is

L(G) = {0n1n|n ∈ N; n > 0}. (127)

Reminder: L(G) is not regular!

270

Formal grammars: derivation example III

G = 〈VN ,VT ,P,S〉 (128)

with
1. VN = {S,B,C},
2. VT = {0,1,2},
3. P: S → 0SBC 1

S → 0BC 2

CB → BC 3

0B → 01 4

1B → 11 5

1C → 12 6

2C → 22 7

4. S = S.

271

Formal grammars: derivation example III (cont.)

Derivations of G have the general form

S ⇒1 0SBC ⇒1 00SBCBC ⇒1 · · · ⇒1 0
n−1S(BC)n−1 ⇒2 0

n(BC)n

S ⇒∗3 0nBnCn ⇒∗4,5 0n1nCn ⇒∗6,7 0n1n2n (129)

The language of G is

L(G) = {0n1n2n|n ∈ N; n > 0}. (130)

I These three derivation examples represent different classes of
grammars or languages characterized by different properties.

I A widely used classification scheme of formal grammars and
languages is the Chomsky hierarchy (1956).

272

Formal grammars: derivation example III (cont.)

Derivations of G have the general form

S ⇒1 0SBC ⇒1 00SBCBC ⇒1 · · · ⇒1 0
n−1S(BC)n−1 ⇒2 0

n(BC)n

S ⇒∗3 0nBnCn ⇒∗4,5 0n1nCn ⇒∗6,7 0n1n2n (129)

The language of G is

L(G) = {0n1n2n|n ∈ N; n > 0}. (130)

I These three derivation examples represent different classes of
grammars or languages characterized by different properties.

I A widely used classification scheme of formal grammars and
languages is the Chomsky hierarchy (1956).

272

Formal grammars: derivation example III (cont.)

Derivations of G have the general form

S ⇒1 0SBC ⇒1 00SBCBC ⇒1 · · · ⇒1 0
n−1S(BC)n−1 ⇒2 0

n(BC)n

S ⇒∗3 0nBnCn ⇒∗4,5 0n1nCn ⇒∗6,7 0n1n2n (129)

The language of G is

L(G) = {0n1n2n|n ∈ N; n > 0}. (130)

I These three derivation examples represent different classes of
grammars or languages characterized by different properties.

I A widely used classification scheme of formal grammars and
languages is the Chomsky hierarchy (1956).

272

The Chomsky hierarchy (0)

Given the grammar
G = 〈VN ,VT ,P,S〉, (131)

we define the following grammar/language classes
I G is of Type 0 or unrestricted

All grammars are Type 0!

273

The Chomsky hierarchy (0)

Given the grammar
G = 〈VN ,VT ,P,S〉, (131)

we define the following grammar/language classes
I G is of Type 0 or unrestricted

All grammars are Type 0!

273

The Chomsky hierarchy (1)

G = 〈VN ,VT ,P,S〉, (132)

I G is Type 1 or context-sensitive
if all productions are of the form

α1Aα2 → α1βα2 with A ∈ VN ;α1, α2 ∈ V ∗, β ∈ VV ∗ (133)

Exception:
S → ε ∈ P is allowed if

α1, α2 ∈ (V\{S})∗ and β ∈ (V\{S})(V\{S})∗ (134)

I If S → ε ∈ P, then S is not allowed in any right hand side
I Consequence: Rules (almost) never derive shorter words

274

The Chomsky hierarchy (1)

G = 〈VN ,VT ,P,S〉, (132)

I G is Type 1 or context-sensitive
if all productions are of the form

α1Aα2 → α1βα2 with A ∈ VN ;α1, α2 ∈ V ∗, β ∈ VV ∗ (133)

Exception:
S → ε ∈ P is allowed if

α1, α2 ∈ (V\{S})∗ and β ∈ (V\{S})(V\{S})∗ (134)

I If S → ε ∈ P, then S is not allowed in any right hand side
I Consequence: Rules (almost) never derive shorter words

274

The Chomsky hierarchy (2)

G = 〈VN ,VT ,P,S〉 (135)

I G is of Type 2 or context-free
if all productions are of the form

A→ β with A ∈ VN ;β ∈ VV ∗ (136)

Exception:

S → ε ∈ P is allowed, if β ∈ (V\{S})(V\{S})∗ (137)

I Only single non-terminals are replaced
I If S → ε ∈ P, then S is not allowed in any right hand side

275

The Chomsky hierarchy (2)

G = 〈VN ,VT ,P,S〉 (135)

I G is of Type 2 or context-free
if all productions are of the form

A→ β with A ∈ VN ;β ∈ VV ∗ (136)

Exception:

S → ε ∈ P is allowed, if β ∈ (V\{S})(V\{S})∗ (137)

I Only single non-terminals are replaced
I If S → ε ∈ P, then S is not allowed in any right hand side

275

The Chomsky hierarchy (3)

G = 〈VN ,VT ,P,S〉 (138)

I G is of Type 3 or right-linear (regular) if all productions are of the
form

A→ aB or (139)

A→ a with A,B ∈ VN ; a ∈ VT

Exception:

S → ε ∈ P is allowed, if B ∈ VN\{S} (140)

276

Formal grammars vs. formal languages vs. machines

For each grammar/language type, there is a corresponding type of
machine model:

grammar language machine
Type 0 unrestricted Turing machine
Type 1 context-sensitive linear-bounded non-deterministic

Turing machine
Type 2 context-free non-deterministic

pushdown automaton
Type 3 regular finite automaton

277

The Chomsky hierarchy

Type 0

Type 1

Type 2

Type 3

278

The Chomsky hierarchy: examples

Returning to our example with identifiers of the C programming
language:

P : I → LR| R|L|
R → LR|DR| R|L|D|
L → a| · · · |z|A| · · · |Z
D → 0| · · · |9

This grammar is context-free but not regular.

An equivalent regular grammar could have the following productions:

P : I → A| · · · |Z|a| · · · |z| |
AR| · · · |ZR|aR| · · · |zR| R

R → A| · · · |Z|a| · · · |z| |0| · · · |9|
AR| · · · |ZR|aR| · · · |zR| R|0R| · · · |9R

279

The Chomsky hierarchy: examples

Returning to our example with identifiers of the C programming
language:

P : I → LR| R|L|
R → LR|DR| R|L|D|
L → a| · · · |z|A| · · · |Z
D → 0| · · · |9

This grammar is context-free but not regular.
An equivalent regular grammar could have the following productions:

P : I → A| · · · |Z|a| · · · |z| |
AR| · · · |ZR|aR| · · · |zR| R

R → A| · · · |Z|a| · · · |z| |0| · · · |9|
AR| · · · |ZR|aR| · · · |zR| R|0R| · · · |9R

279

The Chomsky hierarchy: examples (cont.)

Returning to the three derivation examples:

I .
– The grammar with P = {〈S → 0S〉, 〈S → 0〉} is regular.
– So is the produced language L = {0n|n ∈ N; n > 0}.

II .
– The grammar with P = {〈S → 0S1〉, 〈S → 01〉} is context-free.
– So is the produced language L = {0n1n|n ∈ N; n > 0}.

280

The Chomsky hierarchy: examples (cont.)

III .
– The last grammar is unrestricted.
– The only production preventing the grammar from being

context-sensitive is CB → BC.
– We can, however, replace this production by the three

context-sensitive productions

CB → CX (141)
CX → BX
BX → BC

without changing the grammar’s behavior.
– The resulting grammar is context-sensitive.
– So is the language L = {0n1n2n|n ∈ N; n > 0}.

281

The Chomsky hierarchy: exercises CHOZ

G = 〈VN ,VT ,P,S〉 (142)

with
1. VN = {S,A,B},
2. VT = {0},
3. P : S → ε 1

S → ABA 2

AB → 00 3

0A→ 000A 4

A→ 0 5

4. S = S.

a) What is G’s highest type?
b) Show how G derives the word 00000.
c) Formally describe the language L(G).
d) Define a regular grammar G′ equivalent to G.

282

The Chomsky hierarchy: exercises CHOZ

G = 〈VN ,VT ,P,S〉 (142)

with
1. VN = {S,A,B},
2. VT = {0},
3. P : S → ε 1

S → ABA 2

AB → 00 3

0A→ 000A 4

A→ 0 5

4. S = S.
a) What is G’s highest type?
b) Show how G derives the word 00000.
c) Formally describe the language L(G).
d) Define a regular grammar G′ equivalent to G.

282

The Chomsky hierarchy: exercises (cont.) CHOC

An octal constant is a finite sequence of digits starting with 0 followed
by at least one digit ranging from 0 to 7. Define a regular grammar
encoding exactly the set of possible octal constants.

283

The Chomsky hierarchy: exercises (cont.) CHDW

G = 〈VN ,VT ,P,S〉 (143)

with
1. VN = {S,N,E},
2. VT = {0,1,t},
3. P : S → 0NS 1

S → 1ES 2

S → t 3

Nt→ t0 4

Et→ t1 5

N0→ 0N 6

N1→ 1N 7

E0→ 0E 8

E1→ 1E 9

4. S = S.

a) What is G’s highest type?
b) Formally describe the language L(G).

284

Regular languages and regular grammars

Equivalence of regular languages and regular grammars

The class of regular languages (generated by regular expressions,
accepted by finite automata) is exactly the class of languages
generated by regular grammars.

I Idea for proof?
I Convert DFA to regular grammar
I Convert regular grammar to NFA

285

Regular languages and regular grammars

Equivalence of regular languages and regular grammars

The class of regular languages (generated by regular expressions,
accepted by finite automata) is exactly the class of languages
generated by regular grammars.

I Idea for proof?

I Convert DFA to regular grammar
I Convert regular grammar to NFA

285

Regular languages and regular grammars

Equivalence of regular languages and regular grammars

The class of regular languages (generated by regular expressions,
accepted by finite automata) is exactly the class of languages
generated by regular grammars.

I Idea for proof?
I Convert DFA to regular grammar
I Convert regular grammar to NFA

285

DFA=⇒regular grammar

Algorithm for transforming a DFA A = (Q,Σ, δ,q0,F) into a grammar
VN ,VT ,P,S:
I VN = Q
I VT = Σ

I S = q0

I P = {p → aq | (p,a,q) ∈ δ} ∪
P ={p → a | (p,a,q) ∈ δ for any q ∈ F}

286

DFA=⇒regular grammar

Algorithm for transforming a DFA A = (Q,Σ, δ,q0,F) into a grammar
VN ,VT ,P,S:
I VN = Q
I VT = Σ

I S = q0

I P = {p → aq | (p,a,q) ∈ δ} ∪
P ={p → a | (p,a,q) ∈ δ for any q ∈ F}

286

Regular grammars and FAs: exercise

I Consider the following DFA A:

�

�

��

�
�

�

�

I Give a formal definition of A
I Generate a regular grammar G with L(G) = L(A)

287

Regular grammar=⇒NFA

Algorithm for transforming a grammar VN ,VT ,P,S into an NFA
A = (Q,Σ, δ,q0,F):
I Q = VN ∪ {qf} (qf /∈ VN)

I Σ = VT

I q0 = S
I F = {qf}
I δ = {(A, c,B) | A→ cB ∈ P} ∪
δ ={(A, c,qf) | A→ c ∈ P}

288

Context-free grammars

I Reminder: G = 〈VN ,VT ,P,S〉 is context-free, if all l → r ∈ P are
of the form A→ β with
I A ∈ VN and β ∈ VV ∗

I (special case: S → ε ∈ P, then S is not allowed in any β)
I Context-free languages/grammars are highly relevant
I Core of most programming languages
I Algebraic expressions
I XML
I Many aspects of human language

289

Context-free grammars: equivalency and normal forms

As for automata / regular expressions, two context-free grammars are
called (weakly) equivalent if they generate the same language.

We will now compute grammars that are equivalent to some given G
but have “nicer” properties
I Reduced grammars contain no unproductive symbols
I Grammars in Chomsky normal form support efficient (and very

efficient) solution of the word problen

290

Context-free grammars: equivalency and normal forms

As for automata / regular expressions, two context-free grammars are
called (weakly) equivalent if they generate the same language.

We will now compute grammars that are equivalent to some given G
but have “nicer” properties
I Reduced grammars contain no unproductive symbols
I Grammars in Chomsky normal form support efficient (and very

efficient) solution of the word problen

290

Context-free grammars: Reduced grammars

For a context-free grammar G, Gr is the equivalent reduced grammar,
which contains only reachable and terminating symbols.

The reachable symbols can be computed as follows:
I R := {S}
I for every N ∈ R, add all symbols M for which there is a rule

N → V ∗MV ∗

I when no further symbols can be added, R contains exactly the
reachable symbols

291

Context-free grammars: Reduced grammars

For a context-free grammar G, Gr is the equivalent reduced grammar,
which contains only reachable and terminating symbols.

The reachable symbols can be computed as follows:
I R := {S}
I for every N ∈ R, add all symbols M for which there is a rule

N → V ∗MV ∗

I when no further symbols can be added, R contains exactly the
reachable symbols

291

Context-free grammars: Reduced grammars (cont.)

The terminating symbols can be computed as follows:
I T := {N ∈ VT | ∃w ∈ V ∗T : N → w ∈ P}
I add all symbols M to T for which there exists a rule M → D and

all non-terminal symbols in D are also contained in T
I when no further symbols can be added, R contains exactly the

reachable symbols

Removal of (a) non-terminating and (b) unreachable symbols (and the
corresponding production rules) generates the reduced grammar Gr :
I generate the grammar GT by removing all non-terminating

symbols (and rules containing them) from G
I generate the grammar Gr by removing all unreachable symbols

(and rules containing them) from GT

Sequence is important: symbols can become unreachable through
removal of non-terminating symbols.

292

Context-free grammars: Reduced grammars (cont.)

The terminating symbols can be computed as follows:
I T := {N ∈ VT | ∃w ∈ V ∗T : N → w ∈ P}
I add all symbols M to T for which there exists a rule M → D and

all non-terminal symbols in D are also contained in T
I when no further symbols can be added, R contains exactly the

reachable symbols

Removal of (a) non-terminating and (b) unreachable symbols (and the
corresponding production rules) generates the reduced grammar Gr :
I generate the grammar GT by removing all non-terminating

symbols (and rules containing them) from G
I generate the grammar Gr by removing all unreachable symbols

(and rules containing them) from GT

Sequence is important: symbols can become unreachable through
removal of non-terminating symbols.

292

Context-free grammars: Reduced grammars (cont.)

The terminating symbols can be computed as follows:
I T := {N ∈ VT | ∃w ∈ V ∗T : N → w ∈ P}
I add all symbols M to T for which there exists a rule M → D and

all non-terminal symbols in D are also contained in T
I when no further symbols can be added, R contains exactly the

reachable symbols

Removal of (a) non-terminating and (b) unreachable symbols (and the
corresponding production rules) generates the reduced grammar Gr :
I generate the grammar GT by removing all non-terminating

symbols (and rules containing them) from G
I generate the grammar Gr by removing all unreachable symbols

(and rules containing them) from GT

Sequence is important: symbols can become unreachable through
removal of non-terminating symbols.

292

Reachable and terminating symbols: example

G = 〈VN ,VT ,P,S〉 (144)

with
1. VN = {S,A,B,C},
2. VT = {a,b},
3. P :

S → A|aS|C
A → a
B → aa
C → aCb

4. S = S.

I B is not reachable.
I C does not terminate.

293

Reachable and terminating symbols: example

G = 〈VN ,VT ,P,S〉 (144)

with
1. VN = {S,A,B,C},
2. VT = {a,b},
3. P :

S → A|aS|C
A → a
B → aa
C → aCb

4. S = S.
I B is not reachable.

I C does not terminate.

293

Reachable and terminating symbols: example

G = 〈VN ,VT ,P,S〉 (144)

with
1. VN = {S,A,B,C},
2. VT = {a,b},
3. P :

S → A|aS|C
A → a
B → aa
C → aCb

4. S = S.
I B is not reachable.
I C does not terminate.

293

Reachable and terminating symbols: exercise CHTR

Compute the reduced grammar G = (VN ,VT ,P,S) for the following
grammar G′ = (V ′N ,V

′
T ,P

′,S′):

1. V ′N = {S,A,B,C,D},
2. V ′T = {a,b},
3. P ′ :

S → A|aS|B
A → a
A → AS
A → Ba

B → Ba
C → Da
D → Cb
D → a

4. S′ = S.

294

Removal of rules of the kind A→ B

Rules of the kind A→ B can be eliminated:
I for every A ∈ VN , compute the set N(A) = {B ∈ VN | A⇒∗G B}
I add production rules
{A→ w | w /∈ VN and B → w ∈ P and B ∈ N(A)}.

I Remove A→ B

Example
A→ a|B; B → bb|C; C → ccc
is equivalent to
A→ a|bb|ccc; B → bb|ccc; C → ccc

295

Removal of rules of the kind A→ B

Rules of the kind A→ B can be eliminated:
I for every A ∈ VN , compute the set N(A) = {B ∈ VN | A⇒∗G B}
I add production rules
{A→ w | w /∈ VN and B → w ∈ P and B ∈ N(A)}.

I Remove A→ B

Example
A→ a|B; B → bb|C; C → ccc
is equivalent to
A→ a|bb|ccc; B → bb|ccc; C → ccc

295

Chomsky normal form

Chomsky normal form
A context free grammar G is in Chomsky normal form if all production
rules are of the kind
I A→ a with a ∈ VT or
I A→ BC with {B,C} ⊆ VN .

Theorem: Transformation into Chomsky normal form
Every context free grammar (that does not contain S → ε) can be
transformed into an equivalent grammar in Chomsky normal form.

296

Chomsky normal form

Chomsky normal form
A context free grammar G is in Chomsky normal form if all production
rules are of the kind
I A→ a with a ∈ VT or
I A→ BC with {B,C} ⊆ VN .

Theorem: Transformation into Chomsky normal form
Every context free grammar (that does not contain S → ε) can be
transformed into an equivalent grammar in Chomsky normal form.

296

Algorithm for computing Chomsky normal form

1. remove A→ B rules

2. compute reduced grammar (remove non-terminating and
unreachable symbols)

3. in all rules A→ w with w /∈ VT , replace all occurrences of a with
Xa for all a ∈ VT

4. add rules Xa → a
5. replace rules A→ B1B2 . . .Bn for n > 2 with

A → B1C1

C1 → B2C2
...

Cn−2 → Bn−1Bn

297

Algorithm for computing Chomsky normal form

1. remove A→ B rules
2. compute reduced grammar (remove non-terminating and

unreachable symbols)

3. in all rules A→ w with w /∈ VT , replace all occurrences of a with
Xa for all a ∈ VT

4. add rules Xa → a
5. replace rules A→ B1B2 . . .Bn for n > 2 with

A → B1C1

C1 → B2C2
...

Cn−2 → Bn−1Bn

297

Algorithm for computing Chomsky normal form

1. remove A→ B rules
2. compute reduced grammar (remove non-terminating and

unreachable symbols)
3. in all rules A→ w with w /∈ VT , replace all occurrences of a with

Xa for all a ∈ VT

4. add rules Xa → a
5. replace rules A→ B1B2 . . .Bn for n > 2 with

A → B1C1

C1 → B2C2
...

Cn−2 → Bn−1Bn

297

Algorithm for computing Chomsky normal form

1. remove A→ B rules
2. compute reduced grammar (remove non-terminating and

unreachable symbols)
3. in all rules A→ w with w /∈ VT , replace all occurrences of a with

Xa for all a ∈ VT

4. add rules Xa → a

5. replace rules A→ B1B2 . . .Bn for n > 2 with

A → B1C1

C1 → B2C2
...

Cn−2 → Bn−1Bn

297

Algorithm for computing Chomsky normal form

1. remove A→ B rules
2. compute reduced grammar (remove non-terminating and

unreachable symbols)
3. in all rules A→ w with w /∈ VT , replace all occurrences of a with

Xa for all a ∈ VT

4. add rules Xa → a
5. replace rules A→ B1B2 . . .Bn for n > 2 with

A → B1C1

C1 → B2C2
...

Cn−2 → Bn−1Bn

297

Chomsky normal form: exercise CNF

Compute the Chomsky normal form of the following grammar:

G = (VN ,VT ,P,S)

1. VN = {S,A,B,C},
2. VT = {a,b},
3. P :

S → AB|SB|B
A → Aa
B → bB

C → SB
B → BaB
B → ab

4. S = S.

298

Chomsky NF: purpose

Why transform G into Chomsky NF?
I in a context-free grammar, derivations can have arbitrary length

C → B; B → C

I word problem is difficult to decide
I if G is in Chomsky NF, for a word of length n, a derivation has

2n − 1 steps:

I n − 1 rule applications A→ BC
I n rule applications A→ a

I word problem can be decided by checking all derivations of
length 2n − 1

I That’s still plenty of derivations!

More efficient algorithm: Cocke-Younger-Kasami (CYK)

299

Chomsky NF: purpose

Why transform G into Chomsky NF?
I in a context-free grammar, derivations can have arbitrary length

C → B; B → C
I word problem is difficult to decide

I if G is in Chomsky NF, for a word of length n, a derivation has
2n − 1 steps:

I n − 1 rule applications A→ BC
I n rule applications A→ a

I word problem can be decided by checking all derivations of
length 2n − 1

I That’s still plenty of derivations!

More efficient algorithm: Cocke-Younger-Kasami (CYK)

299

Chomsky NF: purpose

Why transform G into Chomsky NF?
I in a context-free grammar, derivations can have arbitrary length

C → B; B → C
I word problem is difficult to decide
I if G is in Chomsky NF, for a word of length n, a derivation has

2n − 1 steps:

I n − 1 rule applications A→ BC
I n rule applications A→ a

I word problem can be decided by checking all derivations of
length 2n − 1

I That’s still plenty of derivations!

More efficient algorithm: Cocke-Younger-Kasami (CYK)

299

Chomsky NF: purpose

Why transform G into Chomsky NF?
I in a context-free grammar, derivations can have arbitrary length

C → B; B → C
I word problem is difficult to decide
I if G is in Chomsky NF, for a word of length n, a derivation has

2n − 1 steps:
I n − 1 rule applications A→ BC

I n rule applications A→ a
I word problem can be decided by checking all derivations of

length 2n − 1

I That’s still plenty of derivations!

More efficient algorithm: Cocke-Younger-Kasami (CYK)

299

Chomsky NF: purpose

Why transform G into Chomsky NF?
I in a context-free grammar, derivations can have arbitrary length

C → B; B → C
I word problem is difficult to decide
I if G is in Chomsky NF, for a word of length n, a derivation has

2n − 1 steps:
I n − 1 rule applications A→ BC
I n rule applications A→ a

I word problem can be decided by checking all derivations of
length 2n − 1

I That’s still plenty of derivations!

More efficient algorithm: Cocke-Younger-Kasami (CYK)

299

Chomsky NF: purpose

Why transform G into Chomsky NF?
I in a context-free grammar, derivations can have arbitrary length

C → B; B → C
I word problem is difficult to decide
I if G is in Chomsky NF, for a word of length n, a derivation has

2n − 1 steps:
I n − 1 rule applications A→ BC
I n rule applications A→ a

I word problem can be decided by checking all derivations of
length 2n − 1

I That’s still plenty of derivations!

More efficient algorithm: Cocke-Younger-Kasami (CYK)

299

Chomsky NF: purpose

Why transform G into Chomsky NF?
I in a context-free grammar, derivations can have arbitrary length

C → B; B → C
I word problem is difficult to decide
I if G is in Chomsky NF, for a word of length n, a derivation has

2n − 1 steps:
I n − 1 rule applications A→ BC
I n rule applications A→ a

I word problem can be decided by checking all derivations of
length 2n − 1

I That’s still plenty of derivations!

More efficient algorithm: Cocke-Younger-Kasami (CYK)

299

Chomsky NF: purpose

Why transform G into Chomsky NF?
I in a context-free grammar, derivations can have arbitrary length

C → B; B → C
I word problem is difficult to decide
I if G is in Chomsky NF, for a word of length n, a derivation has

2n − 1 steps:
I n − 1 rule applications A→ BC
I n rule applications A→ a

I word problem can be decided by checking all derivations of
length 2n − 1

I That’s still plenty of derivations!

More efficient algorithm: Cocke-Younger-Kasami (CYK)

299

Chomsky NF: purpose

Why transform G into Chomsky NF?
I in a context-free grammar, derivations can have arbitrary length

C → B; B → C
I word problem is difficult to decide
I if G is in Chomsky NF, for a word of length n, a derivation has

2n − 1 steps:
I n − 1 rule applications A→ BC
I n rule applications A→ a

I word problem can be decided by checking all derivations of
length 2n − 1

I That’s still plenty of derivations!

More efficient algorithm: Cocke-Younger-Kasami (CYK)

299

Chomsky NF: purpose

Why transform G into Chomsky NF?
I in a context-free grammar, derivations can have arbitrary length

C → B; B → C
I word problem is difficult to decide
I if G is in Chomsky NF, for a word of length n, a derivation has

2n − 1 steps:
I n − 1 rule applications A→ BC
I n rule applications A→ a

I word problem can be decided by checking all derivations of
length 2n − 1

I That’s still plenty of derivations!

More efficient algorithm: Cocke-Younger-Kasami (CYK)

299

Homework

I Consider the following DFA

q0

q1a

q2

b

q3
a,b

q4
a,b

a,b

a,b

I Compute the corresponding regular grammar G
I Compute the reduced grammar Gr

I Convert Gr into Chomsky normal form

300

Review of Goals

I Refresher & Homework
I Formal Grammars
I Definition
I The Chomsky Hierarchy
I Regular languages and right-linear grammars
I Context-free grammars

I Normal forms

301

Feedback round

I What was the best part of todays lecture?
I What part of todays lecture has the most potential for

improvement?
I Optional: how would you improve it?

302

Goals for Today

I Refresher
I Chomsky Normal Form (again)
I Cocke-Younger-Kasami (CYK) parsing
I Pushdown automata and context-free grammars

303

Refresher: Grammars

I Grammar: G = 〈VN ,VT ,P,S〉
I ulv ⇒G urv if l → r ∈ P
I L(G) = {w ∈ V ∗T |S ⇒∗G w}

I Chomsky-Hierarchy
I Type 0: No restrictions
I Type 1: α1Aα2 → α1βα2, A ∈ VN , α1, α2 ∈ V ∗, β ∈ VV ∗

I Type 2: A→ VV ∗, A ∈ VN
I Type 3: A→ aB or A→ a, A,B ∈ VN ,a ∈ Vt
I Exception for types 1-3: S → ε is allowed if S does not occur in

any right-hand-side
I L is type X, if there is a type X grammar G with L(G) = L

I Every type 3 language is a type 2 language
I Every type 2 language is a type 1 language
I Every type 1 language is a type 0 language

304

Refresher: Grammars

I Grammar: G = 〈VN ,VT ,P,S〉
I ulv ⇒G urv if l → r ∈ P
I L(G) = {w ∈ V ∗T |S ⇒∗G w}

I Chomsky-Hierarchy
I Type 0: No restrictions
I Type 1: α1Aα2 → α1βα2, A ∈ VN , α1, α2 ∈ V ∗, β ∈ VV ∗

I Type 2: A→ VV ∗, A ∈ VN
I Type 3: A→ aB or A→ a, A,B ∈ VN ,a ∈ Vt
I Exception for types 1-3: S → ε is allowed if S does not occur in

any right-hand-side
I L is type X, if there is a type X grammar G with L(G) = L
I Every type 3 language is a type 2 language
I Every type 2 language is a type 1 language
I Every type 1 language is a type 0 language

304

Refresher: Type 3 grammars and regular languages

I Type 3 languages are exactly regular languages!
I Proof:
I Generate NFA from grammar
I Generate grammar from DFA
I Idea:

I The non-terminal (at most one) in a derived word corresponds to
the state of the FA

I The letter in the transistion corresponds to the terminal (at most
one!) in a rule

305

Chomsky Normal Form

I G = 〈VN ,VT ,P,S〉 is in CNF, if for all p ∈ P:
I p is of the form A→ a with A ∈ VN ,a ∈ VT or
I p is of the form A→ BC with A,B,C ∈ VN

I Algorithm:
1. Remove A→ B

I for every A ∈ VN , compute the set N(A) = {B ∈ VN | A⇒∗
G B}

I add production rules
{A→ w | w /∈ VN and B → w ∈ P and B ∈ N(A)}.

I Remove A→ B

2. Find terminating symbols, remove non-terminating ones
3. Find reachable symbols, remove non-reachable
4. Add Xa → a if necessary, replace terminals in compound RHSs
5. Expand A→ B1B2 . . .Bn to A→ B1C1,C1 → B2 . . .Bn, repeat until

no RHS has more than 2 non-terminals

306

Chomsky normal form: exercise CNF

Compute the Chomsky normal form of the following grammar:

G = 〈VN ,VT ,P,S〉

1. VN = {S,A,B,C},
2. VT = {a,b},
3. P :

S → AB|SB|B
A → Aa
B → bB

C → SB
B → BaB
B → ab

4. S = S.

307

CYK algorithm: idea

Decide the word problem for a context-free grammar G in Chomsky
NF and a word w .
I find out which NTS are needed in the end to produce the TS for

w (using production rules A→ a).
I iteratively find all NTS that can generate the required sequence

of NTS (using production rules A→ BC).
I if S can produce the required sequence, w ∈ L(G) holds.

Mechanism:
I operates on a table.
I field in row i and column j contains all NTS that can generate

words from character i through j .

Example of dynamic programming!

308

CYK algorithm: idea

Decide the word problem for a context-free grammar G in Chomsky
NF and a word w .
I find out which NTS are needed in the end to produce the TS for

w (using production rules A→ a).
I iteratively find all NTS that can generate the required sequence

of NTS (using production rules A→ BC).
I if S can produce the required sequence, w ∈ L(G) holds.

Mechanism:
I operates on a table.
I field in row i and column j contains all NTS that can generate

words from character i through j .

Example of dynamic programming!

308

CYK algorithm: idea

Decide the word problem for a context-free grammar G in Chomsky
NF and a word w .
I find out which NTS are needed in the end to produce the TS for

w (using production rules A→ a).
I iteratively find all NTS that can generate the required sequence

of NTS (using production rules A→ BC).
I if S can produce the required sequence, w ∈ L(G) holds.

Mechanism:
I operates on a table.
I field in row i and column j contains all NTS that can generate

words from character i through j .

Example of dynamic programming!

308

CYK algorithm: example

S → a
B → b
B → c
S → SA
A → BS
B → BB
B → BS

w = abacba

i \ j 1 2 3 4 5 6
1

S ∅ S ∅ ∅ S

2

B A,B B B A,B

3

S ∅ ∅ S

4

B B A,B

5

B A,B

6

S

w = a b a c b a

309

CYK algorithm: example

S → a
B → b
B → c
S → SA
A → BS
B → BB
B → BS

w = abacba

i \ j 1 2 3 4 5 6
1 S

∅ S ∅ ∅ S

2

B A,B B B A,B

3

S ∅ ∅ S

4

B B A,B

5

B A,B

6

S

w = a b a c b a

309

CYK algorithm: example

S → a
B → b
B → c
S → SA
A → BS
B → BB
B → BS

w = abacba

i \ j 1 2 3 4 5 6
1 S

∅ S ∅ ∅ S

2 B

A,B B B A,B

3

S ∅ ∅ S

4

B B A,B

5

B A,B

6

S

w = a b a c b a

309

CYK algorithm: example

S → a
B → b
B → c
S → SA
A → BS
B → BB
B → BS

w = abacba

i \ j 1 2 3 4 5 6
1 S

∅ S ∅ ∅ S

2 B

A,B B B A,B

3 S

∅ ∅ S

4

B B A,B

5

B A,B

6

S

w = a b a c b a

309

CYK algorithm: example

S → a
B → b
B → c
S → SA
A → BS
B → BB
B → BS

w = abacba

i \ j 1 2 3 4 5 6
1 S

∅ S ∅ ∅ S

2 B

A,B B B A,B

3 S

∅ ∅ S

4 B

B A,B

5

B A,B

6

S

w = a b a c b a

309

CYK algorithm: example

S → a
B → b
B → c
S → SA
A → BS
B → BB
B → BS

w = abacba

i \ j 1 2 3 4 5 6
1 S

∅ S ∅ ∅ S

2 B

A,B B B A,B

3 S

∅ ∅ S

4 B

B A,B

5 B

A,B

6

S

w = a b a c b a

309

CYK algorithm: example

S → a
B → b
B → c
S → SA
A → BS
B → BB
B → BS

w = abacba

i \ j 1 2 3 4 5 6
1 S

∅ S ∅ ∅ S

2 B

A,B B B A,B

3 S

∅ ∅ S

4 B

B A,B

5 B

A,B

6 S
w = a b a c b a

309

CYK algorithm: example

S → a
B → b
B → c
S → SA
A → BS
B → BB
B → BS

w = abacba

i \ j 1 2 3 4 5 6
1 S ∅

S ∅ ∅ S

2 B

A,B B B A,B

3 S

∅ ∅ S

4 B

B A,B

5 B

A,B

6 S
w = a b a c b a

309

CYK algorithm: example

S → a
B → b
B → c
S → SA
A → BS
B → BB
B → BS

w = abacba

i \ j 1 2 3 4 5 6
1 S ∅

S ∅ ∅ S

2 B A,B

B B A,B

3 S

∅ ∅ S

4 B

B A,B

5 B

A,B

6 S
w = a b a c b a

309

CYK algorithm: example

S → a
B → b
B → c
S → SA
A → BS
B → BB
B → BS

w = abacba

i \ j 1 2 3 4 5 6
1 S ∅

S ∅ ∅ S

2 B A,B

B B A,B

3 S ∅

∅ S

4 B

B A,B

5 B

A,B

6 S
w = a b a c b a

309

CYK algorithm: example

S → a
B → b
B → c
S → SA
A → BS
B → BB
B → BS

w = abacba

i \ j 1 2 3 4 5 6
1 S ∅

S ∅ ∅ S

2 B A,B

B B A,B

3 S ∅

∅ S

4 B B

A,B

5 B

A,B

6 S
w = a b a c b a

309

CYK algorithm: example

S → a
B → b
B → c
S → SA
A → BS
B → BB
B → BS

w = abacba

i \ j 1 2 3 4 5 6
1 S ∅

S ∅ ∅ S

2 B A,B

B B A,B

3 S ∅

∅ S

4 B B

A,B

5 B A,B
6 S

w = a b a c b a

309

CYK algorithm: example

S → a
B → b
B → c
S → SA
A → BS
B → BB
B → BS

w = abacba

i \ j 1 2 3 4 5 6
1 S ∅ S

∅ ∅ S

2 B A,B

B B A,B

3 S ∅

∅ S

4 B B

A,B

5 B A,B
6 S

w = a b a c b a

309

CYK algorithm: example

S → a
B → b
B → c
S → SA
A → BS
B → BB
B → BS

w = abacba

i \ j 1 2 3 4 5 6
1 S ∅ S

∅ ∅ S

2 B A,B B

B A,B

3 S ∅

∅ S

4 B B

A,B

5 B A,B
6 S

w = a b a c b a

309

CYK algorithm: example

S → a
B → b
B → c
S → SA
A → BS
B → BB
B → BS

w = abacba

i \ j 1 2 3 4 5 6
1 S ∅ S

∅ ∅ S

2 B A,B B

B A,B

3 S ∅ ∅

S

4 B B

A,B

5 B A,B
6 S

w = a b a c b a

309

CYK algorithm: example

S → a
B → b
B → c
S → SA
A → BS
B → BB
B → BS

w = abacba

i \ j 1 2 3 4 5 6
1 S ∅ S

∅ ∅ S

2 B A,B B

B A,B

3 S ∅ ∅

S

4 B B A,B
5 B A,B
6 S

w = a b a c b a

309

CYK algorithm: example

S → a
B → b
B → c
S → SA
A → BS
B → BB
B → BS

w = abacba

i \ j 1 2 3 4 5 6
1 S ∅ S ∅

∅ S

2 B A,B B

B A,B

3 S ∅ ∅

S

4 B B A,B
5 B A,B
6 S

w = a b a c b a

309

CYK algorithm: example

S → a
B → b
B → c
S → SA
A → BS
B → BB
B → BS

w = abacba

i \ j 1 2 3 4 5 6
1 S ∅ S ∅

∅ S

2 B A,B B B

A,B

3 S ∅ ∅

S

4 B B A,B
5 B A,B
6 S

w = a b a c b a

309

CYK algorithm: example

S → a
B → b
B → c
S → SA
A → BS
B → BB
B → BS

w = abacba

i \ j 1 2 3 4 5 6
1 S ∅ S ∅

∅ S

2 B A,B B B

A,B

3 S ∅ ∅ S
4 B B A,B
5 B A,B
6 S

w = a b a c b a

309

CYK algorithm: example

S → a
B → b
B → c
S → SA
A → BS
B → BB
B → BS

w = abacba

i \ j 1 2 3 4 5 6
1 S ∅ S ∅ ∅

S

2 B A,B B B

A,B

3 S ∅ ∅ S
4 B B A,B
5 B A,B
6 S

w = a b a c b a

309

CYK algorithm: example

S → a
B → b
B → c
S → SA
A → BS
B → BB
B → BS

w = abacba

i \ j 1 2 3 4 5 6
1 S ∅ S ∅ ∅

S

2 B A,B B B A,B
3 S ∅ ∅ S
4 B B A,B
5 B A,B
6 S

w = a b a c b a

309

CYK algorithm: example

S → a
B → b
B → c
S → SA
A → BS
B → BB
B → BS

w = abacba

i \ j 1 2 3 4 5 6
1 S ∅ S ∅ ∅ S
2 B A,B B B A,B
3 S ∅ ∅ S
4 B B A,B
5 B A,B
6 S

w = a b a c b a

309

CYK: formal algorithm

for i := 1 to n do
Nii := {A | A→ ai ∈ P}

for d := 1 to n − 1 do
for i := 1 to n − d do

j := i + d
Nij := ∅
for k := i to j − 1 do

Nij := Nij ∪ {A | A→ BC ∈ P; B ∈ Nik ; C ∈ N(k+1)j}

310

CYK: formal algorithm

for i := 1 to n do
Nii := {A | A→ ai ∈ P}

for d := 1 to n − 1 do

for i := 1 to n − d do
j := i + d
Nij := ∅
for k := i to j − 1 do

Nij := Nij ∪ {A | A→ BC ∈ P; B ∈ Nik ; C ∈ N(k+1)j}

310

CYK: formal algorithm

for i := 1 to n do
Nii := {A | A→ ai ∈ P}

for d := 1 to n − 1 do
for i := 1 to n − d do

j := i + d
Nij := ∅

for k := i to j − 1 do
Nij := Nij ∪ {A | A→ BC ∈ P; B ∈ Nik ; C ∈ N(k+1)j}

310

CYK: formal algorithm

for i := 1 to n do
Nii := {A | A→ ai ∈ P}

for d := 1 to n − 1 do
for i := 1 to n − d do

j := i + d
Nij := ∅
for k := i to j − 1 do

Nij := Nij ∪ {A | A→ BC ∈ P; B ∈ Nik ; C ∈ N(k+1)j}

310

CYK algorithm: exercise CYKE

Consider the grammar
G = 〈VN ,VT ,P,S〉 from the
previous exercise CNF
I VN = {S,A,B,C}
I VT = {a,b}

P : S → AB|SB|B
A → Aa
B → bB
C → SB
B → BaB
B → ab

Use the CYK algorithm to determine if the following words can be
generated by G:
a) w1 = babaab
b) w2 = abba

311

CYK algorithm: exercise CYKE

Consider the grammar
G = 〈VN ,VT ,P,S〉 from the
previous exercise CNF
I VN = {S,A,B,C1,Xa,Xb}
I VT = {a,b}

P : S → SB|BC1|XbB|XaXb

B → BC1|XbB|XaXb

C1 → XaB
Xa → a
Xb → b

Use the CYK algorithm to determine if the following words can be
generated by G:
a) w1 = babaab
b) w2 = abba

311

CYK algorithm: exercise CYKE

Consider the grammar
G = 〈VN ,VT ,P,S〉 from the
previous exercise CNF
I VN = {S,A,B,D,X ,Y}
I VT = {a,b}

P : S → SB|BD|YB|XY
B → BD|YB|XY
D → XB
X → a
Y → b

Use the CYK algorithm to determine if the following words can be
generated by G:
a) w1 = babaab
b) w2 = abba

311

Pushdown automata: motivation

I DFAs/NFAs are weaker than context-free grammars
I to accept languages like anbn, an unlimited storage component

is needed
I Pushdown automata have an unlimited stack
I LIFO: last in, first out
I only top symbol can be read
I arbitrary amount of symbols can be added to the top

312

PDA: conceptual model

I N P U T T A P E

q
T
A
C
K

S

read head

δ
current state

finite transition
function

I Input is read left-to-right
I Stack is processed LIFO
I Transition is triggered by:
I State
I Current input symbol
I Current top-of-stack

I Transition
I can consume input

character (ε transition are
possible)

I must consume top-of-stack
I can write several characters

onto stack
I Acceptance
I PDA is in accepting state

after processing word w
313

Pushdown automata: definition

Pushdown automaton
A pushdown automaton (PDA) is a 7-tuple (Q,Σ, Γ, δ,q0,Z0,F) where

I Q,Σ,q0,F are defined as for NFAs.

I Γ is the stack alphabet
I Z0 is the initial stack symbol
I δ ⊆ Q × Σ ∪ {ε} × Γ× Γ∗ ×Q is the transition relation

Intuitively, a transition (p,a,R,STU,q) means:
I if the PDA is in state p,
I the next input character is a,
I and the top stack symbol is R,
I then write STU on top of the stack
I and switch to state q
I We can write this as paR → STUq

314

Pushdown automata: definition

Pushdown automaton
A pushdown automaton (PDA) is a 7-tuple (Q,Σ, Γ, δ,q0,Z0,F) where

I Q,Σ,q0,F are defined as for NFAs.
I Γ is the stack alphabet

I Z0 is the initial stack symbol
I δ ⊆ Q × Σ ∪ {ε} × Γ× Γ∗ ×Q is the transition relation

Intuitively, a transition (p,a,R,STU,q) means:
I if the PDA is in state p,
I the next input character is a,
I and the top stack symbol is R,
I then write STU on top of the stack
I and switch to state q
I We can write this as paR → STUq

314

Pushdown automata: definition

Pushdown automaton
A pushdown automaton (PDA) is a 7-tuple (Q,Σ, Γ, δ,q0,Z0,F) where

I Q,Σ,q0,F are defined as for NFAs.
I Γ is the stack alphabet
I Z0 is the initial stack symbol

I δ ⊆ Q × Σ ∪ {ε} × Γ× Γ∗ ×Q is the transition relation

Intuitively, a transition (p,a,R,STU,q) means:
I if the PDA is in state p,
I the next input character is a,
I and the top stack symbol is R,
I then write STU on top of the stack
I and switch to state q
I We can write this as paR → STUq

314

Pushdown automata: definition

Pushdown automaton
A pushdown automaton (PDA) is a 7-tuple (Q,Σ, Γ, δ,q0,Z0,F) where

I Q,Σ,q0,F are defined as for NFAs.
I Γ is the stack alphabet
I Z0 is the initial stack symbol
I δ ⊆ Q × Σ ∪ {ε} × Γ× Γ∗ ×Q is the transition relation

Intuitively, a transition (p,a,R,STU,q) means:
I if the PDA is in state p,
I the next input character is a,
I and the top stack symbol is R,
I then write STU on top of the stack
I and switch to state q
I We can write this as paR → STUq

314

Pushdown automata: definition

Pushdown automaton
A pushdown automaton (PDA) is a 7-tuple (Q,Σ, Γ, δ,q0,Z0,F) where

I Q,Σ,q0,F are defined as for NFAs.
I Γ is the stack alphabet
I Z0 is the initial stack symbol
I δ ⊆ Q × Σ ∪ {ε} × Γ× Γ∗ ×Q is the transition relation

Intuitively, a transition (p,a,R,STU,q) means:
I if the PDA is in state p,
I the next input character is a,
I and the top stack symbol is R,
I then write STU on top of the stack
I and switch to state q
I We can write this as paR → STUq

314

Pushdown automata: definition

Pushdown automaton
A pushdown automaton (PDA) is a 7-tuple (Q,Σ, Γ, δ,q0,Z0,F) where

I Q,Σ,q0,F are defined as for NFAs.
I Γ is the stack alphabet
I Z0 is the initial stack symbol
I δ ⊆ Q × Σ ∪ {ε} × Γ× Γ∗ ×Q is the transition relation

Intuitively, a transition (p,a,R,STU,q) means:
I if the PDA is in state p,
I the next input character is a,
I and the top stack symbol is R,
I then write STU on top of the stack
I and switch to state q
I We can write this as paR → STUq

314

PDAs: important properties

I PDAs defined above are non-deterministic
I deterministic PDAs are weaker
I ε transitions are possible

Configuration
A configuration is a tuple (q,w , γ) where
I q is the current state
I w is the input yet unread
I γ is the current stack content

A accepts a word w if after reading w , a is in a final state.

315

PDAs: important properties

I PDAs defined above are non-deterministic
I deterministic PDAs are weaker
I ε transitions are possible

Configuration
A configuration is a tuple (q,w , γ) where
I q is the current state
I w is the input yet unread
I γ is the current stack content

A accepts a word w if after reading w , a is in a final state.

315

PDAs: important properties

I PDAs defined above are non-deterministic
I deterministic PDAs are weaker
I ε transitions are possible

Configuration
A configuration is a tuple (q,w , γ) where
I q is the current state
I w is the input yet unread
I γ is the current stack content

A accepts a word w if after reading w , a is in a final state.

315

PDA: example (1)

The PDA a = (Q,Σ, Γ, δ,q0,Z0,F) accepts anbn:
I Q = {q0,q1,qf};
I Σ = {a,b};
I Γ = {Z ,Z0};
I F = {qf};
I δ :

q0 ε Z0 → ε qf accept empty word
q0 a Z0 → ZZ0 q0 read first a, store Z
q0 a Z → ZZ q0 read further a, store Z
q0 b Z → ε q1 read first b, delete Z
q1 b Z → ε q1 read further b, delete Z
q1 ε Z0 → ε qf go to final state if input has been read

and all Zs have been deleted

316

PDA: example (2)

q0 ε Z0 → ε qf
q0 a Z0 → ZZ0 q0
q0 a Z → ZZ q0
q0 b Z → ε q1
q1 b Z → ε q1
q1 ε Z0 → ε qf

I Process aabb:

1. (q0,aabb,Z0)
2. (q0,abb,ZZ0)
3. (q0,bb,ZZZ0)
4. (q1,b,ZZ0)
5. (q1, ε,Z0)
6. (qf , ε, ε)

I Process abb
1. (q0,abb,Z0)
2. (q0,bb,ZZ0)
3. (q1,b,Z0)
4. No rule applicable

317

PDA: example (2)

q0 ε Z0 → ε qf
q0 a Z0 → ZZ0 q0
q0 a Z → ZZ q0
q0 b Z → ε q1
q1 b Z → ε q1
q1 ε Z0 → ε qf

I Process aabb:
1. (q0,aabb,Z0)

2. (q0,abb,ZZ0)
3. (q0,bb,ZZZ0)
4. (q1,b,ZZ0)
5. (q1, ε,Z0)
6. (qf , ε, ε)

I Process abb
1. (q0,abb,Z0)
2. (q0,bb,ZZ0)
3. (q1,b,Z0)
4. No rule applicable

317

PDA: example (2)

q0 ε Z0 → ε qf
q0 a Z0 → ZZ0 q0
q0 a Z → ZZ q0
q0 b Z → ε q1
q1 b Z → ε q1
q1 ε Z0 → ε qf

I Process aabb:
1. (q0,aabb,Z0)
2. (q0,abb,ZZ0)

3. (q0,bb,ZZZ0)
4. (q1,b,ZZ0)
5. (q1, ε,Z0)
6. (qf , ε, ε)

I Process abb
1. (q0,abb,Z0)
2. (q0,bb,ZZ0)
3. (q1,b,Z0)
4. No rule applicable

317

PDA: example (2)

q0 ε Z0 → ε qf
q0 a Z0 → ZZ0 q0
q0 a Z → ZZ q0
q0 b Z → ε q1
q1 b Z → ε q1
q1 ε Z0 → ε qf

I Process aabb:
1. (q0,aabb,Z0)
2. (q0,abb,ZZ0)
3. (q0,bb,ZZZ0)

4. (q1,b,ZZ0)
5. (q1, ε,Z0)
6. (qf , ε, ε)

I Process abb
1. (q0,abb,Z0)
2. (q0,bb,ZZ0)
3. (q1,b,Z0)
4. No rule applicable

317

PDA: example (2)

q0 ε Z0 → ε qf
q0 a Z0 → ZZ0 q0
q0 a Z → ZZ q0
q0 b Z → ε q1
q1 b Z → ε q1
q1 ε Z0 → ε qf

I Process aabb:
1. (q0,aabb,Z0)
2. (q0,abb,ZZ0)
3. (q0,bb,ZZZ0)
4. (q1,b,ZZ0)

5. (q1, ε,Z0)
6. (qf , ε, ε)

I Process abb
1. (q0,abb,Z0)
2. (q0,bb,ZZ0)
3. (q1,b,Z0)
4. No rule applicable

317

PDA: example (2)

q0 ε Z0 → ε qf
q0 a Z0 → ZZ0 q0
q0 a Z → ZZ q0
q0 b Z → ε q1
q1 b Z → ε q1
q1 ε Z0 → ε qf

I Process aabb:
1. (q0,aabb,Z0)
2. (q0,abb,ZZ0)
3. (q0,bb,ZZZ0)
4. (q1,b,ZZ0)
5. (q1, ε,Z0)

6. (qf , ε, ε)

I Process abb
1. (q0,abb,Z0)
2. (q0,bb,ZZ0)
3. (q1,b,Z0)
4. No rule applicable

317

PDA: example (2)

q0 ε Z0 → ε qf
q0 a Z0 → ZZ0 q0
q0 a Z → ZZ q0
q0 b Z → ε q1
q1 b Z → ε q1
q1 ε Z0 → ε qf

I Process aabb:
1. (q0,aabb,Z0)
2. (q0,abb,ZZ0)
3. (q0,bb,ZZZ0)
4. (q1,b,ZZ0)
5. (q1, ε,Z0)
6. (qf , ε, ε)

I Process abb
1. (q0,abb,Z0)
2. (q0,bb,ZZ0)
3. (q1,b,Z0)
4. No rule applicable

317

PDA: example (2)

q0 ε Z0 → ε qf
q0 a Z0 → ZZ0 q0
q0 a Z → ZZ q0
q0 b Z → ε q1
q1 b Z → ε q1
q1 ε Z0 → ε qf

I Process aabb:
1. (q0,aabb,Z0)
2. (q0,abb,ZZ0)
3. (q0,bb,ZZZ0)
4. (q1,b,ZZ0)
5. (q1, ε,Z0)
6. (qf , ε, ε)

I Process abb

1. (q0,abb,Z0)
2. (q0,bb,ZZ0)
3. (q1,b,Z0)
4. No rule applicable

317

PDA: example (2)

q0 ε Z0 → ε qf
q0 a Z0 → ZZ0 q0
q0 a Z → ZZ q0
q0 b Z → ε q1
q1 b Z → ε q1
q1 ε Z0 → ε qf

I Process aabb:
1. (q0,aabb,Z0)
2. (q0,abb,ZZ0)
3. (q0,bb,ZZZ0)
4. (q1,b,ZZ0)
5. (q1, ε,Z0)
6. (qf , ε, ε)

I Process abb
1. (q0,abb,Z0)

2. (q0,bb,ZZ0)
3. (q1,b,Z0)
4. No rule applicable

317

PDA: example (2)

q0 ε Z0 → ε qf
q0 a Z0 → ZZ0 q0
q0 a Z → ZZ q0
q0 b Z → ε q1
q1 b Z → ε q1
q1 ε Z0 → ε qf

I Process aabb:
1. (q0,aabb,Z0)
2. (q0,abb,ZZ0)
3. (q0,bb,ZZZ0)
4. (q1,b,ZZ0)
5. (q1, ε,Z0)
6. (qf , ε, ε)

I Process abb
1. (q0,abb,Z0)
2. (q0,bb,ZZ0)

3. (q1,b,Z0)
4. No rule applicable

317

PDA: example (2)

q0 ε Z0 → ε qf
q0 a Z0 → ZZ0 q0
q0 a Z → ZZ q0
q0 b Z → ε q1
q1 b Z → ε q1
q1 ε Z0 → ε qf

I Process aabb:
1. (q0,aabb,Z0)
2. (q0,abb,ZZ0)
3. (q0,bb,ZZZ0)
4. (q1,b,ZZ0)
5. (q1, ε,Z0)
6. (qf , ε, ε)

I Process abb
1. (q0,abb,Z0)
2. (q0,bb,ZZ0)
3. (q1,b,Z0)

4. No rule applicable

317

PDA: example (2)

q0 ε Z0 → ε qf
q0 a Z0 → ZZ0 q0
q0 a Z → ZZ q0
q0 b Z → ε q1
q1 b Z → ε q1
q1 ε Z0 → ε qf

I Process aabb:
1. (q0,aabb,Z0)
2. (q0,abb,ZZ0)
3. (q0,bb,ZZZ0)
4. (q1,b,ZZ0)
5. (q1, ε,Z0)
6. (qf , ε, ε)

I Process abb
1. (q0,abb,Z0)
2. (q0,bb,ZZ0)
3. (q1,b,Z0)
4. No rule applicable

317

PDA: example (2)

q0 ε Z0 → ε qf
q0 a Z0 → ZZ0 q0
q0 a Z → ZZ q0
q0 b Z → ε q1
q1 b Z → ε q1
q1 ε Z0 → ε qf

I Process aabb:
1. (q0,aabb,Z0)
2. (q0,abb,ZZ0)
3. (q0,bb,ZZZ0)
4. (q1,b,ZZ0)
5. (q1, ε,Z0)
6. (qf , ε, ε)

I Process abb
1. (q0,abb,Z0)
2. (q0,bb,ZZ0)
3. (q1,b,Z0)
4. No rule applicable

317

PDA: exercise PPAL

Define a PDA detecting all palindromes, i.e. all words
{w · ←−w | w ∈ {a,b}} where←−w = an . . . a1 if w = a1 . . . an.

Can you define a deterministic automaton?

318

Equivalency of PDAs and Context-Free Grammars

Theorem: The languages accepted by a PDA are exactly the
languages produced by any context-free grammar!
I If L is context-free, there is a context-free grammar G with

L(G) = L
I If L is context-free, there is a push-down automaton A with

L(A) = L

Proof (idea):
I Generate G from A
I Generate A from G

319

Equivalency of PDAs and Context-Free Grammars

Theorem: The languages accepted by a PDA are exactly the
languages produced by any context-free grammar!
I If L is context-free, there is a context-free grammar G with

L(G) = L
I If L is context-free, there is a push-down automaton A with

L(A) = L
Proof (idea):
I Generate G from A
I Generate A from G

319

From context-free grammars to PDAs

For a grammar G = (VN ,VT ,P,S), an equivalent PDA
A = ({q0,q,qf},Σ,Σ ∪ VN ∪ {Z0}, δ,q0,Z0, {qf}) can be produced as
follows:

δ = {(q0, ε,Z0,SZ0,q)} ∪
{(q, ε,A, γ, q) | A→ γ ∈ P} ∪
{(q,a,a, ε,q) | a ∈ Σ} ∪
{(q, ε,Z0, ε,qf)}

This PDA simulates the productions of G in the following way:

I start by pushing S onto the stack
I a production rule is applied to the top stack symbol if it is an NTS
I a TS is removed from the stack if it corresponds to the input
I if only Z0 is on the stack and the entire input is read, accept.

320

From context-free grammars to PDAs

For a grammar G = (VN ,VT ,P,S), an equivalent PDA
A = ({q0,q,qf},Σ,Σ ∪ VN ∪ {Z0}, δ,q0,Z0, {qf}) can be produced as
follows:

δ = {(q0, ε,Z0,SZ0,q)} ∪
{(q, ε,A, γ, q) | A→ γ ∈ P} ∪
{(q,a,a, ε,q) | a ∈ Σ} ∪
{(q, ε,Z0, ε,qf)}

This PDA simulates the productions of G in the following way:
I start by pushing S onto the stack

I a production rule is applied to the top stack symbol if it is an NTS
I a TS is removed from the stack if it corresponds to the input
I if only Z0 is on the stack and the entire input is read, accept.

320

From context-free grammars to PDAs

For a grammar G = (VN ,VT ,P,S), an equivalent PDA
A = ({q0,q,qf},Σ,Σ ∪ VN ∪ {Z0}, δ,q0,Z0, {qf}) can be produced as
follows:

δ = {(q0, ε,Z0,SZ0,q)} ∪
{(q, ε,A, γ, q) | A→ γ ∈ P} ∪
{(q,a,a, ε,q) | a ∈ Σ} ∪
{(q, ε,Z0, ε,qf)}

This PDA simulates the productions of G in the following way:
I start by pushing S onto the stack
I a production rule is applied to the top stack symbol if it is an NTS

I a TS is removed from the stack if it corresponds to the input
I if only Z0 is on the stack and the entire input is read, accept.

320

From context-free grammars to PDAs

For a grammar G = (VN ,VT ,P,S), an equivalent PDA
A = ({q0,q,qf},Σ,Σ ∪ VN ∪ {Z0}, δ,q0,Z0, {qf}) can be produced as
follows:

δ = {(q0, ε,Z0,SZ0,q)} ∪
{(q, ε,A, γ, q) | A→ γ ∈ P} ∪
{(q,a,a, ε,q) | a ∈ Σ} ∪
{(q, ε,Z0, ε,qf)}

This PDA simulates the productions of G in the following way:
I start by pushing S onto the stack
I a production rule is applied to the top stack symbol if it is an NTS
I a TS is removed from the stack if it corresponds to the input

I if only Z0 is on the stack and the entire input is read, accept.

320

From context-free grammars to PDAs

For a grammar G = (VN ,VT ,P,S), an equivalent PDA
A = ({q0,q,qf},Σ,Σ ∪ VN ∪ {Z0}, δ,q0,Z0, {qf}) can be produced as
follows:

δ = {(q0, ε,Z0,SZ0,q)} ∪
{(q, ε,A, γ, q) | A→ γ ∈ P} ∪
{(q,a,a, ε,q) | a ∈ Σ} ∪
{(q, ε,Z0, ε,qf)}

This PDA simulates the productions of G in the following way:
I start by pushing S onto the stack
I a production rule is applied to the top stack symbol if it is an NTS
I a TS is removed from the stack if it corresponds to the input
I if only Z0 is on the stack and the entire input is read, accept.

320

From context-free grammars to PDAs: exercise EQPG

For the grammar G = ({S}, {a,b},P,S) with

P = {S → aSa
S → bSb
S → aa
S → bb}

create an equivalent PDA A and show how A processes the input
abba.

321

From PDAs to context-free grammars

Transforming a PDA A = (Q,Σ, Γ, δ,q0,Z0,F) into a grammar
G = (VN ,VT ,P,S) is more involved:
I VN contains symbols [pZq], meaning

I A must go from p to q deleting Z from the stack
I for a transition (p,a,Z , ε,q):

I A can switch from p to q and delete Z by reading input a
I this can be expressed by a production rule [pZq]→ a.

I for transitions (p,a,Z ,ABC,q) that produce stack symbols:

I test all possible transitions for removing these symbols
I [p,Z , t]→ a[qAr][rBs][sCt] for all states r , s, t
I intuitive meaning: in order to go from p to t and delete Z , you can

read the input a and go to q and then find states r , s through which
you can go from q to t and delete A,B, and C from the stack.

322

From PDAs to context-free grammars

Transforming a PDA A = (Q,Σ, Γ, δ,q0,Z0,F) into a grammar
G = (VN ,VT ,P,S) is more involved:
I VN contains symbols [pZq], meaning
I A must go from p to q deleting Z from the stack

I for a transition (p,a,Z , ε,q):

I A can switch from p to q and delete Z by reading input a
I this can be expressed by a production rule [pZq]→ a.

I for transitions (p,a,Z ,ABC,q) that produce stack symbols:

I test all possible transitions for removing these symbols
I [p,Z , t]→ a[qAr][rBs][sCt] for all states r , s, t
I intuitive meaning: in order to go from p to t and delete Z , you can

read the input a and go to q and then find states r , s through which
you can go from q to t and delete A,B, and C from the stack.

322

From PDAs to context-free grammars

Transforming a PDA A = (Q,Σ, Γ, δ,q0,Z0,F) into a grammar
G = (VN ,VT ,P,S) is more involved:
I VN contains symbols [pZq], meaning
I A must go from p to q deleting Z from the stack

I for a transition (p,a,Z , ε,q):

I A can switch from p to q and delete Z by reading input a
I this can be expressed by a production rule [pZq]→ a.

I for transitions (p,a,Z ,ABC,q) that produce stack symbols:

I test all possible transitions for removing these symbols
I [p,Z , t]→ a[qAr][rBs][sCt] for all states r , s, t
I intuitive meaning: in order to go from p to t and delete Z , you can

read the input a and go to q and then find states r , s through which
you can go from q to t and delete A,B, and C from the stack.

322

From PDAs to context-free grammars

Transforming a PDA A = (Q,Σ, Γ, δ,q0,Z0,F) into a grammar
G = (VN ,VT ,P,S) is more involved:
I VN contains symbols [pZq], meaning
I A must go from p to q deleting Z from the stack

I for a transition (p,a,Z , ε,q):
I A can switch from p to q and delete Z by reading input a

I this can be expressed by a production rule [pZq]→ a.
I for transitions (p,a,Z ,ABC,q) that produce stack symbols:

I test all possible transitions for removing these symbols
I [p,Z , t]→ a[qAr][rBs][sCt] for all states r , s, t
I intuitive meaning: in order to go from p to t and delete Z , you can

read the input a and go to q and then find states r , s through which
you can go from q to t and delete A,B, and C from the stack.

322

From PDAs to context-free grammars

Transforming a PDA A = (Q,Σ, Γ, δ,q0,Z0,F) into a grammar
G = (VN ,VT ,P,S) is more involved:
I VN contains symbols [pZq], meaning
I A must go from p to q deleting Z from the stack

I for a transition (p,a,Z , ε,q):
I A can switch from p to q and delete Z by reading input a
I this can be expressed by a production rule [pZq]→ a.

I for transitions (p,a,Z ,ABC,q) that produce stack symbols:

I test all possible transitions for removing these symbols
I [p,Z , t]→ a[qAr][rBs][sCt] for all states r , s, t
I intuitive meaning: in order to go from p to t and delete Z , you can

read the input a and go to q and then find states r , s through which
you can go from q to t and delete A,B, and C from the stack.

322

From PDAs to context-free grammars

Transforming a PDA A = (Q,Σ, Γ, δ,q0,Z0,F) into a grammar
G = (VN ,VT ,P,S) is more involved:
I VN contains symbols [pZq], meaning
I A must go from p to q deleting Z from the stack

I for a transition (p,a,Z , ε,q):
I A can switch from p to q and delete Z by reading input a
I this can be expressed by a production rule [pZq]→ a.

I for transitions (p,a,Z ,ABC,q) that produce stack symbols:

I test all possible transitions for removing these symbols
I [p,Z , t]→ a[qAr][rBs][sCt] for all states r , s, t
I intuitive meaning: in order to go from p to t and delete Z , you can

read the input a and go to q and then find states r , s through which
you can go from q to t and delete A,B, and C from the stack.

322

From PDAs to context-free grammars

Transforming a PDA A = (Q,Σ, Γ, δ,q0,Z0,F) into a grammar
G = (VN ,VT ,P,S) is more involved:
I VN contains symbols [pZq], meaning
I A must go from p to q deleting Z from the stack

I for a transition (p,a,Z , ε,q):
I A can switch from p to q and delete Z by reading input a
I this can be expressed by a production rule [pZq]→ a.

I for transitions (p,a,Z ,ABC,q) that produce stack symbols:
I test all possible transitions for removing these symbols

I [p,Z , t]→ a[qAr][rBs][sCt] for all states r , s, t
I intuitive meaning: in order to go from p to t and delete Z , you can

read the input a and go to q and then find states r , s through which
you can go from q to t and delete A,B, and C from the stack.

322

From PDAs to context-free grammars

Transforming a PDA A = (Q,Σ, Γ, δ,q0,Z0,F) into a grammar
G = (VN ,VT ,P,S) is more involved:
I VN contains symbols [pZq], meaning
I A must go from p to q deleting Z from the stack

I for a transition (p,a,Z , ε,q):
I A can switch from p to q and delete Z by reading input a
I this can be expressed by a production rule [pZq]→ a.

I for transitions (p,a,Z ,ABC,q) that produce stack symbols:
I test all possible transitions for removing these symbols
I [p,Z , t]→ a[qAr][rBs][sCt] for all states r , s, t

I intuitive meaning: in order to go from p to t and delete Z , you can
read the input a and go to q and then find states r , s through which
you can go from q to t and delete A,B, and C from the stack.

322

From PDAs to context-free grammars

Transforming a PDA A = (Q,Σ, Γ, δ,q0,Z0,F) into a grammar
G = (VN ,VT ,P,S) is more involved:
I VN contains symbols [pZq], meaning
I A must go from p to q deleting Z from the stack

I for a transition (p,a,Z , ε,q):
I A can switch from p to q and delete Z by reading input a
I this can be expressed by a production rule [pZq]→ a.

I for transitions (p,a,Z ,ABC,q) that produce stack symbols:
I test all possible transitions for removing these symbols
I [p,Z , t]→ a[qAr][rBs][sCt] for all states r , s, t
I intuitive meaning: in order to go from p to t and delete Z , you can

read the input a and go to q and then find states r , s through which
you can go from q to t and delete A,B, and C from the stack.

322

Step 1: Accept with empty stack

Problem:
I NTSs represent stack symbols

I when there are not NTSs left, the word belongs to L(G)

I when the stack is empty before a final state is reached, the word
does not belong to L(A)

Solution: transform A into a PDA
A′ = (Q ∪ {p0,pf},Σ, Γ ∪ {X0}, δ′,X0,p0,F ∪ {pf}) where the stack is
empty iff A reaches a final state.

I empty the stack if a final state is reached
add transitions (qf , ε, γ, ε,pf) for all qf ∈ F , γ ∈ Γ

I add a new initial stack symbol that can only be deleted in pf
add transition (p0, ε,X0,Z0X0,q0)

323

Step 1: Accept with empty stack

Problem:
I NTSs represent stack symbols
I when there are not NTSs left, the word belongs to L(G)

I when the stack is empty before a final state is reached, the word
does not belong to L(A)

Solution: transform A into a PDA
A′ = (Q ∪ {p0,pf},Σ, Γ ∪ {X0}, δ′,X0,p0,F ∪ {pf}) where the stack is
empty iff A reaches a final state.

I empty the stack if a final state is reached
add transitions (qf , ε, γ, ε,pf) for all qf ∈ F , γ ∈ Γ

I add a new initial stack symbol that can only be deleted in pf
add transition (p0, ε,X0,Z0X0,q0)

323

Step 1: Accept with empty stack

Problem:
I NTSs represent stack symbols
I when there are not NTSs left, the word belongs to L(G)

I when the stack is empty before a final state is reached, the word
does not belong to L(A)

Solution: transform A into a PDA
A′ = (Q ∪ {p0,pf},Σ, Γ ∪ {X0}, δ′,X0,p0,F ∪ {pf}) where the stack is
empty iff A reaches a final state.

I empty the stack if a final state is reached
add transitions (qf , ε, γ, ε,pf) for all qf ∈ F , γ ∈ Γ

I add a new initial stack symbol that can only be deleted in pf
add transition (p0, ε,X0,Z0X0,q0)

323

Step 1: Accept with empty stack

Problem:
I NTSs represent stack symbols
I when there are not NTSs left, the word belongs to L(G)

I when the stack is empty before a final state is reached, the word
does not belong to L(A)

Solution: transform A into a PDA
A′ = (Q ∪ {p0,pf},Σ, Γ ∪ {X0}, δ′,X0,p0,F ∪ {pf}) where the stack is
empty iff A reaches a final state.

I empty the stack if a final state is reached
add transitions (qf , ε, γ, ε,pf) for all qf ∈ F , γ ∈ Γ

I add a new initial stack symbol that can only be deleted in pf
add transition (p0, ε,X0,Z0X0,q0)

323

Step 1: Accept with empty stack

Problem:
I NTSs represent stack symbols
I when there are not NTSs left, the word belongs to L(G)

I when the stack is empty before a final state is reached, the word
does not belong to L(A)

Solution: transform A into a PDA
A′ = (Q ∪ {p0,pf},Σ, Γ ∪ {X0}, δ′,X0,p0,F ∪ {pf}) where the stack is
empty iff A reaches a final state.
I empty the stack if a final state is reached

add transitions (qf , ε, γ, ε,pf) for all qf ∈ F , γ ∈ Γ

I add a new initial stack symbol that can only be deleted in pf
add transition (p0, ε,X0,Z0X0,q0)

323

Step 1: Accept with empty stack

Problem:
I NTSs represent stack symbols
I when there are not NTSs left, the word belongs to L(G)

I when the stack is empty before a final state is reached, the word
does not belong to L(A)

Solution: transform A into a PDA
A′ = (Q ∪ {p0,pf},Σ, Γ ∪ {X0}, δ′,X0,p0,F ∪ {pf}) where the stack is
empty iff A reaches a final state.
I empty the stack if a final state is reached

add transitions (qf , ε, γ, ε,pf) for all qf ∈ F , γ ∈ Γ

I add a new initial stack symbol that can only be deleted in pf
add transition (p0, ε,X0,Z0X0,q0)

323

Step 2: Convert transitions to production rules

Transform A′ = (Q ∪ {p0,pf},Σ, Γ ∪ {X0}, δ′,X0,p0,F ∪ {pf}) into
G = (VN ,Σ,P, [p0X0pf])

I VN = {[p,Z ,q] | {p,q} ⊆ Q,Z ∈ Γ}

I for each transition (p,a,Z ,Y1Y2 . . .Yn,q) with a ∈ Σ ∪ {ε} and
{Z ,Y1,Y2 . . .Yn} ⊆ Γ, P contains rules

I [p,Z ,qn]→ a[qY1q1][q1Y2q1] . . . [qn−1Ynqn]
I for all sets of states {q1,q2, . . .qn} ⊆ Q

I the start symbol [p0X0pf] means that the automaton has to go
from the initial to the final state deleting the initial stack symbol

324

Step 2: Convert transitions to production rules

Transform A′ = (Q ∪ {p0,pf},Σ, Γ ∪ {X0}, δ′,X0,p0,F ∪ {pf}) into
G = (VN ,Σ,P, [p0X0pf])

I VN = {[p,Z ,q] | {p,q} ⊆ Q,Z ∈ Γ}
I for each transition (p,a,Z ,Y1Y2 . . .Yn,q) with a ∈ Σ ∪ {ε} and
{Z ,Y1,Y2 . . .Yn} ⊆ Γ, P contains rules

I [p,Z ,qn]→ a[qY1q1][q1Y2q1] . . . [qn−1Ynqn]
I for all sets of states {q1,q2, . . .qn} ⊆ Q

I the start symbol [p0X0pf] means that the automaton has to go
from the initial to the final state deleting the initial stack symbol

324

Step 2: Convert transitions to production rules

Transform A′ = (Q ∪ {p0,pf},Σ, Γ ∪ {X0}, δ′,X0,p0,F ∪ {pf}) into
G = (VN ,Σ,P, [p0X0pf])

I VN = {[p,Z ,q] | {p,q} ⊆ Q,Z ∈ Γ}
I for each transition (p,a,Z ,Y1Y2 . . .Yn,q) with a ∈ Σ ∪ {ε} and
{Z ,Y1,Y2 . . .Yn} ⊆ Γ, P contains rules
I [p,Z ,qn]→ a[qY1q1][q1Y2q1] . . . [qn−1Ynqn]

I for all sets of states {q1,q2, . . .qn} ⊆ Q
I the start symbol [p0X0pf] means that the automaton has to go

from the initial to the final state deleting the initial stack symbol

324

Step 2: Convert transitions to production rules

Transform A′ = (Q ∪ {p0,pf},Σ, Γ ∪ {X0}, δ′,X0,p0,F ∪ {pf}) into
G = (VN ,Σ,P, [p0X0pf])

I VN = {[p,Z ,q] | {p,q} ⊆ Q,Z ∈ Γ}
I for each transition (p,a,Z ,Y1Y2 . . .Yn,q) with a ∈ Σ ∪ {ε} and
{Z ,Y1,Y2 . . .Yn} ⊆ Γ, P contains rules
I [p,Z ,qn]→ a[qY1q1][q1Y2q1] . . . [qn−1Ynqn]
I for all sets of states {q1,q2, . . .qn} ⊆ Q

I the start symbol [p0X0pf] means that the automaton has to go
from the initial to the final state deleting the initial stack symbol

324

Step 2: Convert transitions to production rules

Transform A′ = (Q ∪ {p0,pf},Σ, Γ ∪ {X0}, δ′,X0,p0,F ∪ {pf}) into
G = (VN ,Σ,P, [p0X0pf])

I VN = {[p,Z ,q] | {p,q} ⊆ Q,Z ∈ Γ}
I for each transition (p,a,Z ,Y1Y2 . . .Yn,q) with a ∈ Σ ∪ {ε} and
{Z ,Y1,Y2 . . .Yn} ⊆ Γ, P contains rules
I [p,Z ,qn]→ a[qY1q1][q1Y2q1] . . . [qn−1Ynqn]
I for all sets of states {q1,q2, . . .qn} ⊆ Q

I the start symbol [p0X0pf] means that the automaton has to go
from the initial to the final state deleting the initial stack symbol

324

Step 3: Remove ε rules

Problem: a transition (p, ε,Y , ε,q) leads to a rule [pYq]→ ε

Solution: replace ε rules with non-shortening rules

I iteratively find all symbols that can become ε

I E0 = {Y ∈ VN | Y → ε ∈ P}
I Ei = Ei−1 ∪ {Y ∈ VN | Y → Y1 . . .Yn and {Y1, . . .Yn} ⊆ Ei−1}

I for each rule with Y ∈ Emax on the right side, add a
corresponding rule without Y

I e.g. for A→ YaX , add A→ aX

I delete Y → ε rules

325

Step 3: Remove ε rules

Problem: a transition (p, ε,Y , ε,q) leads to a rule [pYq]→ ε

Solution: replace ε rules with non-shortening rules
I iteratively find all symbols that can become ε

I E0 = {Y ∈ VN | Y → ε ∈ P}
I Ei = Ei−1 ∪ {Y ∈ VN | Y → Y1 . . .Yn and {Y1, . . .Yn} ⊆ Ei−1}

I for each rule with Y ∈ Emax on the right side, add a
corresponding rule without Y

I e.g. for A→ YaX , add A→ aX

I delete Y → ε rules

325

Step 3: Remove ε rules

Problem: a transition (p, ε,Y , ε,q) leads to a rule [pYq]→ ε

Solution: replace ε rules with non-shortening rules
I iteratively find all symbols that can become ε
I E0 = {Y ∈ VN | Y → ε ∈ P}

I Ei = Ei−1 ∪ {Y ∈ VN | Y → Y1 . . .Yn and {Y1, . . .Yn} ⊆ Ei−1}
I for each rule with Y ∈ Emax on the right side, add a

corresponding rule without Y

I e.g. for A→ YaX , add A→ aX

I delete Y → ε rules

325

Step 3: Remove ε rules

Problem: a transition (p, ε,Y , ε,q) leads to a rule [pYq]→ ε

Solution: replace ε rules with non-shortening rules
I iteratively find all symbols that can become ε
I E0 = {Y ∈ VN | Y → ε ∈ P}
I Ei = Ei−1 ∪ {Y ∈ VN | Y → Y1 . . .Yn and {Y1, . . .Yn} ⊆ Ei−1}

I for each rule with Y ∈ Emax on the right side, add a
corresponding rule without Y

I e.g. for A→ YaX , add A→ aX

I delete Y → ε rules

325

Step 3: Remove ε rules

Problem: a transition (p, ε,Y , ε,q) leads to a rule [pYq]→ ε

Solution: replace ε rules with non-shortening rules
I iteratively find all symbols that can become ε
I E0 = {Y ∈ VN | Y → ε ∈ P}
I Ei = Ei−1 ∪ {Y ∈ VN | Y → Y1 . . .Yn and {Y1, . . .Yn} ⊆ Ei−1}

I for each rule with Y ∈ Emax on the right side, add a
corresponding rule without Y

I e.g. for A→ YaX , add A→ aX
I delete Y → ε rules

325

Step 3: Remove ε rules

Problem: a transition (p, ε,Y , ε,q) leads to a rule [pYq]→ ε

Solution: replace ε rules with non-shortening rules
I iteratively find all symbols that can become ε
I E0 = {Y ∈ VN | Y → ε ∈ P}
I Ei = Ei−1 ∪ {Y ∈ VN | Y → Y1 . . .Yn and {Y1, . . .Yn} ⊆ Ei−1}

I for each rule with Y ∈ Emax on the right side, add a
corresponding rule without Y
I e.g. for A→ YaX , add A→ aX

I delete Y → ε rules

325

Step 3: Remove ε rules

Problem: a transition (p, ε,Y , ε,q) leads to a rule [pYq]→ ε

Solution: replace ε rules with non-shortening rules
I iteratively find all symbols that can become ε
I E0 = {Y ∈ VN | Y → ε ∈ P}
I Ei = Ei−1 ∪ {Y ∈ VN | Y → Y1 . . .Yn and {Y1, . . .Yn} ⊆ Ei−1}

I for each rule with Y ∈ Emax on the right side, add a
corresponding rule without Y
I e.g. for A→ YaX , add A→ aX

I delete Y → ε rules

325

Closure properties

Closure under ∪, ·,∗
The class of context-free languages is closed under union,
concatenation, and Kleene star.

For context-free grammars G1 = (VN1 ,VT ,P1,S1) and
G2 = (VN2 ,VT ,P2,S2) with VN1 ∩ VN2 = ∅ (rename NTSs if needed),
let S be a new start symbol.

I for L(G1) ∪ L(G2), add productions S → S1,S → S2.
I for L(G1) · L(G2), add production S → S1S2.
I for L(G1)∗, add productions S → ε,S → T ,T → S1T ,T → S1.

326

Closure properties

Closure under ∪, ·,∗
The class of context-free languages is closed under union,
concatenation, and Kleene star.

For context-free grammars G1 = (VN1 ,VT ,P1,S1) and
G2 = (VN2 ,VT ,P2,S2) with VN1 ∩ VN2 = ∅ (rename NTSs if needed),
let S be a new start symbol.
I for L(G1) ∪ L(G2), add productions S → S1,S → S2.

I for L(G1) · L(G2), add production S → S1S2.
I for L(G1)∗, add productions S → ε,S → T ,T → S1T ,T → S1.

326

Closure properties

Closure under ∪, ·,∗
The class of context-free languages is closed under union,
concatenation, and Kleene star.

For context-free grammars G1 = (VN1 ,VT ,P1,S1) and
G2 = (VN2 ,VT ,P2,S2) with VN1 ∩ VN2 = ∅ (rename NTSs if needed),
let S be a new start symbol.
I for L(G1) ∪ L(G2), add productions S → S1,S → S2.
I for L(G1) · L(G2), add production S → S1S2.

I for L(G1)∗, add productions S → ε,S → T ,T → S1T ,T → S1.

326

Closure properties

Closure under ∪, ·,∗
The class of context-free languages is closed under union,
concatenation, and Kleene star.

For context-free grammars G1 = (VN1 ,VT ,P1,S1) and
G2 = (VN2 ,VT ,P2,S2) with VN1 ∩ VN2 = ∅ (rename NTSs if needed),
let S be a new start symbol.
I for L(G1) ∪ L(G2), add productions S → S1,S → S2.
I for L(G1) · L(G2), add production S → S1S2.
I for L(G1)∗, add productions S → ε,S → T ,T → S1T ,T → S1.

326

Pumping lemma for context-free languages

I A pumping lemma similar to the one regular languages also
holds for context-free languages.

I It can be used to show that a language is not context-free.
I Idea:

I If a grammar produces words of arbitrary length, there must be a
repeated NTS.

I This NTS produces itself (and other symbols).
I This cycle can be repeated arbitrarily often.

I Difference: instead of pumping one part of the word, two are
pumped in parallel: uvhwxhy ∈ L(G).

I Can not be applied to {anbn}, but to {anbncn}.
I {anbncn} is not context-free, but context-sensitive, as we have

seen before.

327

Pumping lemma for context-free languages

I A pumping lemma similar to the one regular languages also
holds for context-free languages.

I It can be used to show that a language is not context-free.

I Idea:

I If a grammar produces words of arbitrary length, there must be a
repeated NTS.

I This NTS produces itself (and other symbols).
I This cycle can be repeated arbitrarily often.

I Difference: instead of pumping one part of the word, two are
pumped in parallel: uvhwxhy ∈ L(G).

I Can not be applied to {anbn}, but to {anbncn}.
I {anbncn} is not context-free, but context-sensitive, as we have

seen before.

327

Pumping lemma for context-free languages

I A pumping lemma similar to the one regular languages also
holds for context-free languages.

I It can be used to show that a language is not context-free.
I Idea:

I If a grammar produces words of arbitrary length, there must be a
repeated NTS.

I This NTS produces itself (and other symbols).
I This cycle can be repeated arbitrarily often.

I Difference: instead of pumping one part of the word, two are
pumped in parallel: uvhwxhy ∈ L(G).

I Can not be applied to {anbn}, but to {anbncn}.
I {anbncn} is not context-free, but context-sensitive, as we have

seen before.

327

Pumping lemma for context-free languages

I A pumping lemma similar to the one regular languages also
holds for context-free languages.

I It can be used to show that a language is not context-free.
I Idea:
I If a grammar produces words of arbitrary length, there must be a

repeated NTS.

I This NTS produces itself (and other symbols).
I This cycle can be repeated arbitrarily often.

I Difference: instead of pumping one part of the word, two are
pumped in parallel: uvhwxhy ∈ L(G).

I Can not be applied to {anbn}, but to {anbncn}.
I {anbncn} is not context-free, but context-sensitive, as we have

seen before.

327

Pumping lemma for context-free languages

I A pumping lemma similar to the one regular languages also
holds for context-free languages.

I It can be used to show that a language is not context-free.
I Idea:
I If a grammar produces words of arbitrary length, there must be a

repeated NTS.
I This NTS produces itself (and other symbols).

I This cycle can be repeated arbitrarily often.
I Difference: instead of pumping one part of the word, two are

pumped in parallel: uvhwxhy ∈ L(G).
I Can not be applied to {anbn}, but to {anbncn}.
I {anbncn} is not context-free, but context-sensitive, as we have

seen before.

327

Pumping lemma for context-free languages

I A pumping lemma similar to the one regular languages also
holds for context-free languages.

I It can be used to show that a language is not context-free.
I Idea:
I If a grammar produces words of arbitrary length, there must be a

repeated NTS.
I This NTS produces itself (and other symbols).
I This cycle can be repeated arbitrarily often.

I Difference: instead of pumping one part of the word, two are
pumped in parallel: uvhwxhy ∈ L(G).

I Can not be applied to {anbn}, but to {anbncn}.
I {anbncn} is not context-free, but context-sensitive, as we have

seen before.

327

Pumping lemma for context-free languages

I A pumping lemma similar to the one regular languages also
holds for context-free languages.

I It can be used to show that a language is not context-free.
I Idea:
I If a grammar produces words of arbitrary length, there must be a

repeated NTS.
I This NTS produces itself (and other symbols).
I This cycle can be repeated arbitrarily often.

I Difference: instead of pumping one part of the word, two are
pumped in parallel: uvhwxhy ∈ L(G).

I Can not be applied to {anbn}, but to {anbncn}.
I {anbncn} is not context-free, but context-sensitive, as we have

seen before.

327

Pumping lemma for context-free languages

I A pumping lemma similar to the one regular languages also
holds for context-free languages.

I It can be used to show that a language is not context-free.
I Idea:
I If a grammar produces words of arbitrary length, there must be a

repeated NTS.
I This NTS produces itself (and other symbols).
I This cycle can be repeated arbitrarily often.

I Difference: instead of pumping one part of the word, two are
pumped in parallel: uvhwxhy ∈ L(G).

I Can not be applied to {anbn}, but to {anbncn}.

I {anbncn} is not context-free, but context-sensitive, as we have
seen before.

327

Pumping lemma for context-free languages

I A pumping lemma similar to the one regular languages also
holds for context-free languages.

I It can be used to show that a language is not context-free.
I Idea:
I If a grammar produces words of arbitrary length, there must be a

repeated NTS.
I This NTS produces itself (and other symbols).
I This cycle can be repeated arbitrarily often.

I Difference: instead of pumping one part of the word, two are
pumped in parallel: uvhwxhy ∈ L(G).

I Can not be applied to {anbn}, but to {anbncn}.
I {anbncn} is not context-free, but context-sensitive, as we have

seen before.

327

Closure properties (cont.)

Closure under ∩
Context-free languages are not closed under intersection.

Otherwise, {anbncn} would be context-free:

I {anbncm} is context-free
I {ambncn} is context-free
I {anbncn} = {anbncm} ∩ {ambncn}

328

Closure properties (cont.)

Closure under ∩
Context-free languages are not closed under intersection.

Otherwise, {anbncn} would be context-free:
I {anbncm} is context-free

I {ambncn} is context-free
I {anbncn} = {anbncm} ∩ {ambncn}

328

Closure properties (cont.)

Closure under ∩
Context-free languages are not closed under intersection.

Otherwise, {anbncn} would be context-free:
I {anbncm} is context-free
I {ambncn} is context-free

I {anbncn} = {anbncm} ∩ {ambncn}

328

Closure properties (cont.)

Closure under ∩
Context-free languages are not closed under intersection.

Otherwise, {anbncn} would be context-free:
I {anbncm} is context-free
I {ambncn} is context-free
I {anbncn} = {anbncm} ∩ {ambncn}

328

Closure properties: exercise CFCP

1. Define context-free grammars for {anbncm | n,m ≥ 0} and
{ambncn | n,m ≥ 0}

2. Use the known closure properties to show that context-free
languages are not closed under complement.

329

Decision problems: word problem

The word problem for cf. languages
For a word w and a context-free grammar G, it is decidable whether
w ∈ L(G) holds.

The CYK algorithm decides the word problem.

330

Decision problems: word problem

The word problem for cf. languages
For a word w and a context-free grammar G, it is decidable whether
w ∈ L(G) holds.

The CYK algorithm decides the word problem.

330

Decision problems: emptiness problem

The emptiness problem for cf. languages
For a context-free grammar G, it is decidable if L(G) = ∅ holds.

I The pumping lemma gives us a maximum length: if a grammar
produces any words, then it also produces one of maximum
length n (depending on the properties of the grammar).

I Since there is only a finite number of words up to length n and
the word problem is decidable, emptiness is also decidable.

331

Decision problems: emptiness problem

The emptiness problem for cf. languages
For a context-free grammar G, it is decidable if L(G) = ∅ holds.

I The pumping lemma gives us a maximum length: if a grammar
produces any words, then it also produces one of maximum
length n (depending on the properties of the grammar).

I Since there is only a finite number of words up to length n and
the word problem is decidable, emptiness is also decidable.

331

Decision problems: emptiness problem

The emptiness problem for cf. languages
For a context-free grammar G, it is decidable if L(G) = ∅ holds.

I The pumping lemma gives us a maximum length: if a grammar
produces any words, then it also produces one of maximum
length n (depending on the properties of the grammar).

I Since there is only a finite number of words up to length n and
the word problem is decidable, emptiness is also decidable.

331

Decision problems: equivalence problem

The equivalence problem for cf. languages
For context-free grammars G1,G2, it is undecidable if L(G1) = L(G2)
holds.

This follows from undecidability of Post’s Correspondence Problem.

332

Decision problems: equivalence problem

The equivalence problem for cf. languages
For context-free grammars G1,G2, it is undecidable if L(G1) = L(G2)
holds.

This follows from undecidability of Post’s Correspondence Problem.

332

Homework

I Read through the open material on
I Context-free grammars
I Push-down automata
I Closure properties of context-free languages

I Bonus: Understand the Pumming Lemma for CF languages (e.g.
in Hoffmann)

333

Review of Goals

I Refresher
I Chomsky Normal Form (again)
I Cocke-Younger-Kasami (CYK) parsing
I Pushdown automata and context-free grammars

334

Feedback round

I What was the best part of todays lecture?
I What part of todays lecture has the most potential for

improvement?
I Optional: how would you improve it?

335

Goals for Today

I Refresher
I Practical Parsing with YACC/Bison
I Background and Principles
I Workflow
I Desk calculator example

I Turing Machines
I Basics
I A working example
I Skimming over some topics of computability

336

Refresher

I Chomsky Normal Form for context-free grammars
I Parsing with Cocke-Younger-Kasami (CYK)
I Pushdown-automata (PDA)
I Unlimited stack
I “Instructions”: qcZ →Wq′

I Transitions consume top-symbol, can write back many symbols
I Transistion can use and consume current letter of word
I Non-determinism!
I Success: PDA is in accepting state after consuming word

I PDAs are equivalent to context-free grammars
I PDA can “execute” grammar
I Grammar can “simulate” PDA (with some thinking)

I Context-free language properties:
I Pumping possible with uvwxy -lemma
I CF languages are closed under ∪, ·,∗ (construct grammar)
I CF languages are not closed under ∩ (anbncm ∩ ambncn)
I The word problem for CF-languages is decidable (CYK)
I Emptiness is decidable, equivalency is not decidable

337

YACC/Bison

I Yacc - Yet Another Compiler
Compiler
I Originally written ≈1971 by

Stephen C. Johnson at AT&T
I LALR parser generator
I Translates grammar into syntax

analyser

I GNU Bison
I Written by Robert Corbett in 1988
I Yacc-compatibility by Richard

Stallman
I Output languages now C, C++,

Java
I Yacc, Bison, BYacc, . . . mostly

compatible (POSIX P1003.2)

338

Compiler

Variable Type
a int
b int

Source handler

Lexical analysis
(tokeniser)

Syntactic analysis
(parser)

Semantic analysis

Code generation
(several optimisation passes)

Sequence of characters:
i,n,t, ⏘, a,,, b, ;, a, =, b, +, 1, ;

Sequence of tokens:
(id, “int”), (id, “a”), (id, “b”), (semicolon), (id, “a”), (eq), (id, “b”), (plus), (int, “1”), (semicolon)

e.g. Abstract syntax tree

e.g. AST+symbol table

e.g. assembler code

����
���

���
�

���
�

���
�

���
�

���
�

�

����

���� �����

���� ����������

ld a,b
ld c, 1
add c
...

���
�

���
�

���
�

�

����

�����

����������

339

Compiler

Variable Type
a int
b int

Source handler

Lexical analysis
(tokeniser)

Syntactic analysis
(parser)

Semantic analysis

Code generation
(several optimisation passes)

Sequence of characters:
i,n,t, ⏘, a,,, b, ;, a, =, b, +, 1, ;

Sequence of tokens:
(id, “int”), (id, “a”), (id, “b”), (semicolon), (id, “a”), (eq), (id, “b”), (plus), (int, “1”), (semicolon)

e.g. Abstract syntax tree

e.g. AST+symbol table

e.g. assembler code

Flex

����
���

���
�

���
�

���
�

���
�

���
�

�

����

���� �����

���� ����������

ld a,b
ld c, 1
add c
...

���
�

���
�

���
�

�

����

�����

����������

339

Compiler

Variable Type
a int
b int

Source handler

Lexical analysis
(tokeniser)

Syntactic analysis
(parser)

Semantic analysis

Code generation
(several optimisation passes)

Sequence of characters:
i,n,t, ⏘, a,,, b, ;, a, =, b, +, 1, ;

Sequence of tokens:
(id, “int”), (id, “a”), (id, “b”), (semicolon), (id, “a”), (eq), (id, “b”), (plus), (int, “1”), (semicolon)

e.g. Abstract syntax tree

e.g. AST+symbol table

e.g. assembler code

Flex

����
���

���
�

���
�

���
�

���
�

���
�

�

����

���� �����

���� ����������

ld a,b
ld c, 1
add c
...

���
�

���
�

���
�

�

����

�����

����������

Bison

339

Yacc/Bison Background

I By default, Bison constructs a 1 token Look-Ahead Left-to-right
Rightmost-derivation or LALR(1) parser
I Input tokens are processed left-to-right
I Shift-reduce parser:

I Stack holds tokens (terminals) and non-terminals
I Tokens are shifted from input to stack. If the top of the stack

contains symbols that represent the right hand side (RHS) of a
grammar rule, the content is reduced to the LHS

I Since input is reduced left-to-right, this corresponds to a rightmost
derivation

I Ambiguities are solved via look-ahead and special rules
I If input can be reduced to start symbol, success!
I Error otherwise

I LALR(1) is efficient in time and memory
I Can parse “all reasonable languages”
I For unreasonable languages, Bison (but not Yacc) can also

construct GLR (General LR) parsers
I Try all possibilities with back-tracking
I Corresponds to the non-determinism of stack machines

340

Yacc/Bison Overview

I Bison reads a specification file and converts it into (C) code of a
parser

I Specification file: Definitions, grammar rules with actions,
support code
I Definitions: Token names, associated values, includes,

declarations
I Grammar rules: Non-terminal with alternatives, action associated

with each alternative
I Support code: e.g. main() function, error handling. . .
I Syntax similar to (F)lex

I Sections separated by %%
I Special commands start with %

I Bison generates function yyparse()
I Bison needs function yylex()
I Usually provided via (F)lex

341

Yacc/Bison workflow
Bison Input File

<file>.y

Definitions file
<file>.tab.h

Parser Source
<file>.tab.c

Flex Input file
<file>.l

Lexer Source
<file>.c

Lexer object
<file>.o

Parser object
<file>.tab.o

Final executable
parser

Some input
to process

Some output
produced

Bison

Flex

gcc

gcc

linker (gcc)

#include

342

Yacc/Bison workflow

 Execution time

Development time Bison Input File
<file>.y

Definitions file
<file>.tab.h

Parser Source
<file>.tab.c

Flex Input file
<file>.l

Lexer Source
<file>.c

Lexer object
<file>.o

Parser object
<file>.tab.o

Final executable
parser

Some input
to process

Some output
produced

Bison

Flex

gcc

gcc

linker (gcc)

#include

342

Example task: Desk calculator

I Desk calculator
I Reads algebraic expressions and assignments
I Prints result of expressions
I Can store values in registers R0-R99

I Example session:

[Shell] ./scicalc
R10=3*(5+4)
> RegVal: 27.000000
(3.1415*R10+3)
> 87.820500
R9=(3.1415*R10+3)
> RegVal: 87.820500
R9+R10
> 114.820500
...

343

Example task: Desk calculator

I Desk calculator
I Reads algebraic expressions and assignments
I Prints result of expressions
I Can store values in registers R0-R99

I Example session:

[Shell] ./scicalc
R10=3*(5+4)
> RegVal: 27.000000
(3.1415*R10+3)
> 87.820500
R9=(3.1415*R10+3)
> RegVal: 87.820500
R9+R10
> 114.820500
...

343

Abstract grammar for desk calculator (partial)

GDC = 〈VN ,VT ,P,S〉
I VT = {PLUS, MULT,
ASSIGN, OPENPAR,
CLOSEPAR, REGISTER,
FLOAT, . . . }
I Some terminals are

single characters (+,
=, . . .)

I Others are complex:
R10, 1.3e7

I Terminals (“tokens”)
are generated by
the lexer

I VN = {stmt, assign,
expr, term, factor,
. . . }

I P :
stmt → assign

| expr
assign → REGISTER ASSIGN expr
expr → expr PLUS term

| term
term → term MULT factor

| factor
factor → REGISTER

| FLOAT
| OPENPAR expr CLOSEPAR

I S = *handwave*

I For a single statement, S = stmt
I In practice, we need to handle

sequences of statements and
empty input lines (not reflected in
the grammar)

344

Parsing statements (1)

I Example string: R10 = (4.5+3*7)
I Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS
FLOAT MULT FLOAT CLOSEPAR
I In the following abbreviated R, A, O, F, P, F, M, F, C

I Parsing state:
I Unread input (left column)
I Current stack (middle column)
I How state was reached (right column)

I Parsing:

Input Stack Comment
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor

. . .

345

Parsing statements (1)

I Example string: R10 = (4.5+3*7)
I Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS
FLOAT MULT FLOAT CLOSEPAR
I In the following abbreviated R, A, O, F, P, F, M, F, C

I Parsing state:
I Unread input (left column)
I Current stack (middle column)
I How state was reached (right column)

I Parsing:

Input Stack Comment
R A O F P F M F C Start

A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor

. . .

345

Parsing statements (1)

I Example string: R10 = (4.5+3*7)
I Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS
FLOAT MULT FLOAT CLOSEPAR
I In the following abbreviated R, A, O, F, P, F, M, F, C

I Parsing state:
I Unread input (left column)
I Current stack (middle column)
I How state was reached (right column)

I Parsing:

Input Stack Comment
R A O F P F M F C Start
A O F P F M F C R Shift R to stack

O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor

. . .

345

Parsing statements (1)

I Example string: R10 = (4.5+3*7)
I Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS
FLOAT MULT FLOAT CLOSEPAR
I In the following abbreviated R, A, O, F, P, F, M, F, C

I Parsing state:
I Unread input (left column)
I Current stack (middle column)
I How state was reached (right column)

I Parsing:

Input Stack Comment
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack

F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor

. . .

345

Parsing statements (1)

I Example string: R10 = (4.5+3*7)
I Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS
FLOAT MULT FLOAT CLOSEPAR
I In the following abbreviated R, A, O, F, P, F, M, F, C

I Parsing state:
I Unread input (left column)
I Current stack (middle column)
I How state was reached (right column)

I Parsing:

Input Stack Comment
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack

P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor

. . .

345

Parsing statements (1)

I Example string: R10 = (4.5+3*7)
I Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS
FLOAT MULT FLOAT CLOSEPAR
I In the following abbreviated R, A, O, F, P, F, M, F, C

I Parsing state:
I Unread input (left column)
I Current stack (middle column)
I How state was reached (right column)

I Parsing:

Input Stack Comment
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack

P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor

. . .

345

Parsing statements (1)

I Example string: R10 = (4.5+3*7)
I Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS
FLOAT MULT FLOAT CLOSEPAR
I In the following abbreviated R, A, O, F, P, F, M, F, C

I Parsing state:
I Unread input (left column)
I Current stack (middle column)
I How state was reached (right column)

I Parsing:

Input Stack Comment
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F

P F M F C R A O term Reduce factor

. . .

345

Parsing statements (1)

I Example string: R10 = (4.5+3*7)
I Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS
FLOAT MULT FLOAT CLOSEPAR
I In the following abbreviated R, A, O, F, P, F, M, F, C

I Parsing state:
I Unread input (left column)
I Current stack (middle column)
I How state was reached (right column)

I Parsing:

Input Stack Comment
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor

. . .

345

Parsing statements (1)

I Example string: R10 = (4.5+3*7)
I Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS
FLOAT MULT FLOAT CLOSEPAR
I In the following abbreviated R, A, O, F, P, F, M, F, C

I Parsing state:
I Unread input (left column)
I Current stack (middle column)
I How state was reached (right column)

I Parsing:

Input Stack Comment
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor

. . .
345

Parsing statements (2)
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor

P F M F C R A O expr LA! Reduce term
F M F C R A O expr P Shift P
M F C R A O expr P F Shift F
M F C R A O expr P factor Reduce F
M F C R A O expr P term Reduce factor
F C R A O expr P term M LA! Shift M
C R A O expr P term M F Shift F
C R A O expr P term M factor Reduce F
C R A O expr P term Reduce tMf
C R A O expr Reduce ePt

R A O expr C Shift C
R A factor Reduce OeC
R A term Reduce factor
R A expr Reduce term
stmt Reduce RAe

346

Parsing statements (2)
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor
P F M F C R A O expr LA! Reduce term

F M F C R A O expr P Shift P
M F C R A O expr P F Shift F
M F C R A O expr P factor Reduce F
M F C R A O expr P term Reduce factor
F C R A O expr P term M LA! Shift M
C R A O expr P term M F Shift F
C R A O expr P term M factor Reduce F
C R A O expr P term Reduce tMf
C R A O expr Reduce ePt

R A O expr C Shift C
R A factor Reduce OeC
R A term Reduce factor
R A expr Reduce term
stmt Reduce RAe

346

Parsing statements (2)
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor
P F M F C R A O expr LA! Reduce term
F M F C R A O expr P Shift P

M F C R A O expr P F Shift F
M F C R A O expr P factor Reduce F
M F C R A O expr P term Reduce factor
F C R A O expr P term M LA! Shift M
C R A O expr P term M F Shift F
C R A O expr P term M factor Reduce F
C R A O expr P term Reduce tMf
C R A O expr Reduce ePt

R A O expr C Shift C
R A factor Reduce OeC
R A term Reduce factor
R A expr Reduce term
stmt Reduce RAe

346

Parsing statements (2)
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor
P F M F C R A O expr LA! Reduce term
F M F C R A O expr P Shift P
M F C R A O expr P F Shift F

M F C R A O expr P factor Reduce F
M F C R A O expr P term Reduce factor
F C R A O expr P term M LA! Shift M
C R A O expr P term M F Shift F
C R A O expr P term M factor Reduce F
C R A O expr P term Reduce tMf
C R A O expr Reduce ePt

R A O expr C Shift C
R A factor Reduce OeC
R A term Reduce factor
R A expr Reduce term
stmt Reduce RAe

346

Parsing statements (2)
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor
P F M F C R A O expr LA! Reduce term
F M F C R A O expr P Shift P
M F C R A O expr P F Shift F
M F C R A O expr P factor Reduce F

M F C R A O expr P term Reduce factor
F C R A O expr P term M LA! Shift M
C R A O expr P term M F Shift F
C R A O expr P term M factor Reduce F
C R A O expr P term Reduce tMf
C R A O expr Reduce ePt

R A O expr C Shift C
R A factor Reduce OeC
R A term Reduce factor
R A expr Reduce term
stmt Reduce RAe

346

Parsing statements (2)
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor
P F M F C R A O expr LA! Reduce term
F M F C R A O expr P Shift P
M F C R A O expr P F Shift F
M F C R A O expr P factor Reduce F
M F C R A O expr P term Reduce factor

F C R A O expr P term M LA! Shift M
C R A O expr P term M F Shift F
C R A O expr P term M factor Reduce F
C R A O expr P term Reduce tMf
C R A O expr Reduce ePt

R A O expr C Shift C
R A factor Reduce OeC
R A term Reduce factor
R A expr Reduce term
stmt Reduce RAe

346

Parsing statements (2)
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor
P F M F C R A O expr LA! Reduce term
F M F C R A O expr P Shift P
M F C R A O expr P F Shift F
M F C R A O expr P factor Reduce F
M F C R A O expr P term Reduce factor
F C R A O expr P term M LA! Shift M

C R A O expr P term M F Shift F
C R A O expr P term M factor Reduce F
C R A O expr P term Reduce tMf
C R A O expr Reduce ePt

R A O expr C Shift C
R A factor Reduce OeC
R A term Reduce factor
R A expr Reduce term
stmt Reduce RAe

346

Parsing statements (2)
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor
P F M F C R A O expr LA! Reduce term
F M F C R A O expr P Shift P
M F C R A O expr P F Shift F
M F C R A O expr P factor Reduce F
M F C R A O expr P term Reduce factor
F C R A O expr P term M LA! Shift M
C R A O expr P term M F Shift F

C R A O expr P term M factor Reduce F
C R A O expr P term Reduce tMf
C R A O expr Reduce ePt

R A O expr C Shift C
R A factor Reduce OeC
R A term Reduce factor
R A expr Reduce term
stmt Reduce RAe

346

Parsing statements (2)
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor
P F M F C R A O expr LA! Reduce term
F M F C R A O expr P Shift P
M F C R A O expr P F Shift F
M F C R A O expr P factor Reduce F
M F C R A O expr P term Reduce factor
F C R A O expr P term M LA! Shift M
C R A O expr P term M F Shift F
C R A O expr P term M factor Reduce F

C R A O expr P term Reduce tMf
C R A O expr Reduce ePt

R A O expr C Shift C
R A factor Reduce OeC
R A term Reduce factor
R A expr Reduce term
stmt Reduce RAe

346

Parsing statements (2)
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor
P F M F C R A O expr LA! Reduce term
F M F C R A O expr P Shift P
M F C R A O expr P F Shift F
M F C R A O expr P factor Reduce F
M F C R A O expr P term Reduce factor
F C R A O expr P term M LA! Shift M
C R A O expr P term M F Shift F
C R A O expr P term M factor Reduce F
C R A O expr P term Reduce tMf

C R A O expr Reduce ePt
R A O expr C Shift C
R A factor Reduce OeC
R A term Reduce factor
R A expr Reduce term
stmt Reduce RAe

346

Parsing statements (2)
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor
P F M F C R A O expr LA! Reduce term
F M F C R A O expr P Shift P
M F C R A O expr P F Shift F
M F C R A O expr P factor Reduce F
M F C R A O expr P term Reduce factor
F C R A O expr P term M LA! Shift M
C R A O expr P term M F Shift F
C R A O expr P term M factor Reduce F
C R A O expr P term Reduce tMf
C R A O expr Reduce ePt

R A O expr C Shift C
R A factor Reduce OeC
R A term Reduce factor
R A expr Reduce term
stmt Reduce RAe

346

Parsing statements (2)
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor
P F M F C R A O expr LA! Reduce term
F M F C R A O expr P Shift P
M F C R A O expr P F Shift F
M F C R A O expr P factor Reduce F
M F C R A O expr P term Reduce factor
F C R A O expr P term M LA! Shift M
C R A O expr P term M F Shift F
C R A O expr P term M factor Reduce F
C R A O expr P term Reduce tMf
C R A O expr Reduce ePt

R A O expr C Shift C

R A factor Reduce OeC
R A term Reduce factor
R A expr Reduce term
stmt Reduce RAe

346

Parsing statements (2)
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor
P F M F C R A O expr LA! Reduce term
F M F C R A O expr P Shift P
M F C R A O expr P F Shift F
M F C R A O expr P factor Reduce F
M F C R A O expr P term Reduce factor
F C R A O expr P term M LA! Shift M
C R A O expr P term M F Shift F
C R A O expr P term M factor Reduce F
C R A O expr P term Reduce tMf
C R A O expr Reduce ePt

R A O expr C Shift C
R A factor Reduce OeC

R A term Reduce factor
R A expr Reduce term
stmt Reduce RAe

346

Parsing statements (2)
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor
P F M F C R A O expr LA! Reduce term
F M F C R A O expr P Shift P
M F C R A O expr P F Shift F
M F C R A O expr P factor Reduce F
M F C R A O expr P term Reduce factor
F C R A O expr P term M LA! Shift M
C R A O expr P term M F Shift F
C R A O expr P term M factor Reduce F
C R A O expr P term Reduce tMf
C R A O expr Reduce ePt

R A O expr C Shift C
R A factor Reduce OeC
R A term Reduce factor

R A expr Reduce term
stmt Reduce RAe

346

Parsing statements (2)
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor
P F M F C R A O expr LA! Reduce term
F M F C R A O expr P Shift P
M F C R A O expr P F Shift F
M F C R A O expr P factor Reduce F
M F C R A O expr P term Reduce factor
F C R A O expr P term M LA! Shift M
C R A O expr P term M F Shift F
C R A O expr P term M factor Reduce F
C R A O expr P term Reduce tMf
C R A O expr Reduce ePt

R A O expr C Shift C
R A factor Reduce OeC
R A term Reduce factor
R A expr Reduce term

stmt Reduce RAe

346

Parsing statements (2)
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor
P F M F C R A O expr LA! Reduce term
F M F C R A O expr P Shift P
M F C R A O expr P F Shift F
M F C R A O expr P factor Reduce F
M F C R A O expr P term Reduce factor
F C R A O expr P term M LA! Shift M
C R A O expr P term M F Shift F
C R A O expr P term M factor Reduce F
C R A O expr P term Reduce tMf
C R A O expr Reduce ePt

R A O expr C Shift C
R A factor Reduce OeC
R A term Reduce factor
R A expr Reduce term
stmt Reduce RAe

346

Parsing statements (2)
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor
P F M F C R A O expr LA! Reduce term
F M F C R A O expr P Shift P
M F C R A O expr P F Shift F
M F C R A O expr P factor Reduce F
M F C R A O expr P term Reduce factor
F C R A O expr P term M LA! Shift M
C R A O expr P term M F Shift F
C R A O expr P term M factor Reduce F
C R A O expr P term Reduce tMf
C R A O expr Reduce ePt

R A O expr C Shift C
R A factor Reduce OeC
R A term Reduce factor
R A expr Reduce term
stmt Reduce RAe

346

Lexer interface

I Bison parser requires yylex() function
I yylex() returns token
I Token text is defined by regular expression pattern
I Tokens are encoded as integers
I Symbolic names for tokens are defined by Bison in generated

header file
I By convention: Token names are all CAPITALS

I yylex() provides optional semantic value of token
I Stored in global variable yylval
I Type of yylval defined by Bison in generated header file

I Default is int
I For more complex situations often a union
I For our example: Union of double (for floating point values) and

integer (for register numbers)

347

Lexer for desk calculator (1)

/*
Lexer for a minimal "scientific" calculator.

Copyright 2014 by Stephan Schulz, schulz@eprover.org.

This code is released under the GNU General Public Licence
Version 2.

*/

%option noyywrap

%{
#include "scicalcparse.tab.h"

%}

348

Lexer for desk calculator (2)

DIGIT [0-9]
INT {DIGIT}+
PLAINFLOAT {INT}|{INT}[.]|{INT}[.]{INT}|[.]{INT}
EXP [eE](\+|-)?{INT}
NUMBER {PLAINFLOAT}{EXP}?
REG R{DIGIT}{DIGIT}?

%%

"*" {return MULT;}
"+" {return PLUS;}
"=" {return ASSIGN;}
"(" {return OPENPAR;}
")" {return CLOSEPAR;}
\n {return NEWLINE;}

349

Lexer for desk calculator (3)

{REG} {
yylval.regno = atoi(yytext+1);
return REGISTER;

}

{NUMBER} {
yylval.val = atof(yytext);
return FLOAT;

}

[] { /* Skip whitespace*/ }

/* Everything else is an invalid character. */
. { return ERROR;}

%%

350

Data model of desk calculator

I Desk calculator has simple state
I 100 floating point registers
I R0-R99

I Represented in C as array of doubles:
#define MAXREGS 100

double regfile[MAXREGS];

I Needs to be initialized in support code!

351

Bison code for desk calculator: Header

%{
#include <stdio.h>

#define MAXREGS 100

double regfile[MAXREGS];

extern int yyerror(char* err);
extern int yylex(void);

%}

%union {
double val;
int regno;

}

352

Bison code for desk calculator: Tokens

%start stmtseq

%left PLUS
%left MULT
%token ASSIGN
%token OPENPAR
%token CLOSEPAR
%token NEWLINE
%token REGISTER
%token FLOAT
%token ERROR

%%

353

Actions in Bison

I Bison is based on syntax rules with associated actions
I Whenever a reduce is performed, the action associated with the

rule is executed
I Actions can be arbitrary C code
I Frequent: semantic actions
I The action sets a semantic value based on the semantic value of

the symbols reduced by the rule
I For terminal symbols: Semantic value is yylval from Flex
I Semantic actions have “historically valuable” syntax

I Value of reduced symbol: $$
I Value of first symbol in syntax rule body: $1
I Value of second symbol in syntax rule body: $2
I . . .
I Access to named components: $<val>1

354

Bison code for desk calculator: Grammar (1)

stmtseq: /* Empty */
| NEWLINE stmtseq {}
| stmt NEWLINE stmtseq {}
| error NEWLINE stmtseq {}; /* After an error,

start afresh */

I Head: sequence of statements
I First body line: Skip empty lines
I Second body line: separate current statement from rest
I Third body line: After parse error, start again with new line

355

Bison code for desk calculator: Grammar (2)

stmt: assign {printf("> RegVal: %f\n", $<val>1);}
|expr {printf("> %f\n", $<val>1);};

assign: REGISTER ASSIGN expr {regfile[$<regno>1] = $<val>3;
$<val>$ = $<val>3;} ;

expr: expr PLUS term {$<val>$ = $<val>1 + $<val>3;}
| term {$<val>$ = $<val>1;};

term: term MULT factor {$<val>$ = $<val>1 * $<val>3;}
| factor {$<val>$ = $<val>1;};

factor: REGISTER {$<val>$ = regfile[$<regno>1];}
| FLOAT {$<val>$ = $<val>1;}
| OPENPAR expr CLOSEPAR {$<val>$ = $<val>2;};

356

Bison code for desk calculator: Support code

int yyerror(char* err)
{

printf("Error: %s\n", err);
return 0;

}

int main (int argc, char* argv[])
{
int i;

for(i=0; i<MAXREGS; i++)
{

regfile[i] = 0.0;
}
return yyparse();

}

357

Reminder: Workflow and dependencies
Bison Input File

<file>.y

Definitions file
<file>.tab.h

Parser Source
<file>.tab.c

Flex Input file
<file>.l

Lexer Source
<file>.c

Lexer object
<file>.o

Parser object
<file>.tab.o

Final executable
parser

Some input
to process

Some output
produced

Bison

Flex

gcc

gcc

linker (gcc)

#include

358

Building the calculator

1. Generate parser C code and include file for lexer
I bison -d scicalcparse.y
I Generates scicalcparse.tab.c and scicalcparse.tab.h

2. Generate lexer C code
I flex -t scicalclex.l > scicalclex.c

3. Compile lexer
I gcc -c -o scicalclex.o scicalclex.c

4. Compile parser and support code
I gcc -c -o scicalcparse.tab.o scicalcparse.tab.c

5. Link everything
I gcc scicalclex.o scicalcparse.tab.o -o scicalc

6. Fun!
I ./scicalc

359

Bison exercise

I Go to http://wwwlehre.dhbw-stuttgart.de/˜sschulz/
fla2014.html

I Download scicalcparse.y and scicalclex.l

I Build the calculator
I Run and test the calculator
I Add a command clear that clears (sets to 0) all registers,

rebuild, retest!

360

http://wwwlehre.dhbw-stuttgart.de/~sschulz/fla2014.html
http://wwwlehre.dhbw-stuttgart.de/~sschulz/fla2014.html

Homework

I Extend the desk calculator example as follows:
I Add support for division and subtraction /, -
I Add support for unary minus (the negation operator), using ˜ as

the negation sign
I Bonus exercise: Use plain - as both unary and binary operators!

I Add support for the trigonometric function sin(x), cos(x),
where x can be any valid expression

I Add support for log(b,x), computing logb(x)

I Hints:
I You may need to #include<math.h> and link with -lm

I logb(x) =
log10(x)
log10(b) . man log10 should be helpful

361

Turing machine: Motivation

Four classes of languages described by grammars and equivalent
machine models:

1. regular languages ; finite automata
2. context-free languages ; pushdown automata
3. context-sensitive languages ; ?
4. Type-0-languages ; ?

We need a machine model that is more powerful than PDAs: Turing
machines

362

Turing machine: Motivation

Four classes of languages described by grammars and equivalent
machine models:

1. regular languages ; finite automata
2. context-free languages ; pushdown automata
3. context-sensitive languages ; ?
4. Type-0-languages ; ?

We need a machine model that is more powerful than PDAs: Turing
machines

362

Turing machine (0)

I Proposed in 1936 by Alan Turing
I Model of a universal computer
I Paper: On computable numbers, with an

application to the Entscheidungsproblem

I Properties:
I Storage: unlimited tape (in both directions)
I Read/write head can move arbitrarily on unlimited storage
I Finite control unit (FA)
I No separation between input medium (holds Σ) and working

medium (Γ)
I Transition relation only reads one character from the tape, but

contains moving instructions (l ,n, r)

363

Turing machine (1)

M = (Q,Σ, Γ,∆,q0,F)

Q = {q0,q1,q2, . . . ,qn} states
Σ = {a0,a1,a2, . . . ,am} I/O alphabet
Γ ⊇ Σ ∪ {ε} tape alphabet

q0 ∈ Q initial state
F ⊆ Q final states
∆ ⊆ Q × Γ× Γ× {l ,n, r} ×Q

transition relation

ε ε εεa1 a2 a3

q0 q1
q2

q3q4

Turing machines are often deterministic:
∆ : (Q × Γ)→ (Γ× {l ,n, r} ×Q)

364

Turing machine (1)

M = (Q,Σ, Γ,∆,q0,F)

Q = {q0,q1,q2, . . . ,qn} states
Σ = {a0,a1,a2, . . . ,am} I/O alphabet
Γ ⊇ Σ ∪ {ε} tape alphabet

q0 ∈ Q initial state
F ⊆ Q final states
∆ ⊆ Q × Γ× Γ× {l ,n, r} ×Q

transition relation

ε ε εεa1 a2 a3

q0 q1
q2

q3q4

Turing machines are often deterministic:
∆ : (Q × Γ)→ (Γ× {l ,n, r} ×Q)

364

The Turing machine (2)

ε ε εεa1 a2 a3

q0 q1
q2

q3q4

ε ε εεa1 a5 a3

q0 q1

q2
q3q4

(q4,a2,a5, r ,q2) ∈ ∆

Also written as q4,a2 → a5, r ,q2

365

The Turing machine (2)

ε ε εεa1 a2 a3

q0 q1
q2

q3q4

ε ε εεa1 a5 a3

q0 q1

q2
q3q4

(q4,a2,a5, r ,q2) ∈ ∆
Also written as q4,a2 → a5, r ,q2

365

Configurations of TMs

A configuration c of a Turing machine is given by
I the current state q
I the tape content α on the left of the read/write head

(except unlimited ε sequences)
I the tape content β starting with the position of the write head

(except unlimited ε sequences)
I written as αqβ, e.g. a1a5q2a3

366

Computations of TMs

The computation of a TMM on a word w is a sequence of
configurations (according to the transition function) of configurations,
starting from q0w .

I c = αqβ is accepting if q ∈ F .
I c is a stop configuration if there are no transitions from c.
I A Turing machine accepts w if the computation of T on w results

in accepting stop configuration.

367

Computations of TMs

The computation of a TMM on a word w is a sequence of
configurations (according to the transition function) of configurations,
starting from q0w .

I c = αqβ is accepting if q ∈ F .
I c is a stop configuration if there are no transitions from c.
I A Turing machine accepts w if the computation of T on w results

in accepting stop configuration.

367

Exercise: Turing machines

I Consider Σ = {a,b} and L = {w ∈ Σ∗ | |w |a is even}
I Give a TM M that accepts (only) words from L
I Give the computation of M on the words abbab and bbab

368

Example: TM for anbncn

M = 〈Q,Σ, Γ,∆,q0,F 〉 with
I Q = {start, findb, findc, check, back, end, f }
I Σ = {a,b, c} and Γ = Σ ∪ {ε, x , y , z}
I ∆ per tables below
I q0 =start and F = {f}

state read write move state
start ε ε n f
start a x r findb
findb a a r findb
findb y y r findb
findb b y r findc
findc b b r findc
findc z z r findc
findc c z r check
check c c l back
check ε ε l end

state read write move state
back z z l back
back b b l back
back y y l back
back a a l back
back x x r start
end z z l end
end y y l end
end x x l end
end ε ε n f

369

Exercise: Turing machines (2) TMABC

a) Simulate the computations of M on aabbcc and aabc.

b) Develop a Turing machine accepting all words
{wcw | w ∈ {a,b}∗}.

c) How do you have to modify the TM from b) if you want to
recognise inputs of the form ww?

370

Turing machines with several tapes

I A k -tape TM has k tapes on which the heads can move
independently.

I δ ⊆ Q × Γk × Γk × {r , l ,n}k ×Q
I It is possible to simulate a k -tape TM with a (1-tape) TM:
I use alphabet Γk × {X , ε}k

I the first k language elements encode the tape content, the
remaining ones the positions of the heads.

371

Nondeterminism

I just like FA and PDA, TMs can be deterministic or
non-deterministic, depending on the transition relation.

I for non-deterministic TMs, the machine accepts w if there exists
a sequence of transitions leading to an accepting stop
configuration.

Deterministic TMs can simulate computations of non-deterministic
TMs, i.e. they describe the same class of languages:
I use a 3-tape TM:
I tape 1 stores the input w
I tape 2 records which non-deterministic choices are made (for all

non-deterministic transitions)
I tape 3 encodes the computation on w with choices stored on

tape 2.

372

Nondeterminism

I just like FA and PDA, TMs can be deterministic or
non-deterministic, depending on the transition relation.

I for non-deterministic TMs, the machine accepts w if there exists
a sequence of transitions leading to an accepting stop
configuration.

Deterministic TMs can simulate computations of non-deterministic
TMs, i.e. they describe the same class of languages:
I use a 3-tape TM:
I tape 1 stores the input w
I tape 2 records which non-deterministic choices are made (for all

non-deterministic transitions)
I tape 3 encodes the computation on w with choices stored on

tape 2.

372

Simulating a Type-0-grammar G with a TM

I use a non-deterministic 2-tape TM
I tape 1 stores input word w
I tape 2 simulates the derivations of G, starting with S
I (non-deterministically) choose a position
I if the word starting at the position, matches α of a rule α→ β,

apply the rule
I move tape content if necessary
I replace α with β

I compare content of tape 2 with tape 1
I if they are equal, accept
I otherwise continue

373

Simulating a TM with a Type-0-grammar

Goal: transform TM A = (Q,Σ, Γ,∆,q0,F) into grammar G
Technical difficulty:
I A receives word as input at the start, possibly modifies it, then

possibly accepts.
I G starts with S, applies rules, possibly generating w at the end.

1. generate input word w ∈ Σ∗ with blanks left and right
2. simulate the computation of A on w

(p,a,b, r ,q) ; pa→ bq
(p,a,b, l ,q) ; cpa→ qcb (∀c ∈ Γ)

(p,a,b,n,q) ; pa→ qb

3. recreate w
I requires a more complicated alphabet

374

Closure properties

The class of languages described by Type-0-grammars or Turing
machines is:
I closed under ∪, ·,∗

I more complicated than for cf. grammars because context can
influence rule applicability

I rename NTSs (as for cf. grammars)
I only allow NTSs as context
I only productions of the kind N1N2 . . .Nk → M1M2 . . .Mj or N → a

I closed under ∩

I use a 2-tape-TM
I simulate computation of A1 on tape 1, A2 on tape 2
I accept if both A1 and A2 accept

I not closed under complement

375

Closure properties

The class of languages described by Type-0-grammars or Turing
machines is:
I closed under ∪, ·,∗
I more complicated than for cf. grammars because context can

influence rule applicability

I rename NTSs (as for cf. grammars)
I only allow NTSs as context
I only productions of the kind N1N2 . . .Nk → M1M2 . . .Mj or N → a

I closed under ∩

I use a 2-tape-TM
I simulate computation of A1 on tape 1, A2 on tape 2
I accept if both A1 and A2 accept

I not closed under complement

375

Closure properties

The class of languages described by Type-0-grammars or Turing
machines is:
I closed under ∪, ·,∗
I more complicated than for cf. grammars because context can

influence rule applicability
I rename NTSs (as for cf. grammars)

I only allow NTSs as context
I only productions of the kind N1N2 . . .Nk → M1M2 . . .Mj or N → a

I closed under ∩

I use a 2-tape-TM
I simulate computation of A1 on tape 1, A2 on tape 2
I accept if both A1 and A2 accept

I not closed under complement

375

Closure properties

The class of languages described by Type-0-grammars or Turing
machines is:
I closed under ∪, ·,∗
I more complicated than for cf. grammars because context can

influence rule applicability
I rename NTSs (as for cf. grammars)
I only allow NTSs as context

I only productions of the kind N1N2 . . .Nk → M1M2 . . .Mj or N → a
I closed under ∩

I use a 2-tape-TM
I simulate computation of A1 on tape 1, A2 on tape 2
I accept if both A1 and A2 accept

I not closed under complement

375

Closure properties

The class of languages described by Type-0-grammars or Turing
machines is:
I closed under ∪, ·,∗
I more complicated than for cf. grammars because context can

influence rule applicability
I rename NTSs (as for cf. grammars)
I only allow NTSs as context
I only productions of the kind N1N2 . . .Nk → M1M2 . . .Mj or N → a

I closed under ∩

I use a 2-tape-TM
I simulate computation of A1 on tape 1, A2 on tape 2
I accept if both A1 and A2 accept

I not closed under complement

375

Closure properties

The class of languages described by Type-0-grammars or Turing
machines is:
I closed under ∪, ·,∗
I more complicated than for cf. grammars because context can

influence rule applicability
I rename NTSs (as for cf. grammars)
I only allow NTSs as context
I only productions of the kind N1N2 . . .Nk → M1M2 . . .Mj or N → a

I closed under ∩

I use a 2-tape-TM
I simulate computation of A1 on tape 1, A2 on tape 2
I accept if both A1 and A2 accept

I not closed under complement

375

Closure properties

The class of languages described by Type-0-grammars or Turing
machines is:
I closed under ∪, ·,∗
I more complicated than for cf. grammars because context can

influence rule applicability
I rename NTSs (as for cf. grammars)
I only allow NTSs as context
I only productions of the kind N1N2 . . .Nk → M1M2 . . .Mj or N → a

I closed under ∩
I use a 2-tape-TM

I simulate computation of A1 on tape 1, A2 on tape 2
I accept if both A1 and A2 accept

I not closed under complement

375

Closure properties

The class of languages described by Type-0-grammars or Turing
machines is:
I closed under ∪, ·,∗
I more complicated than for cf. grammars because context can

influence rule applicability
I rename NTSs (as for cf. grammars)
I only allow NTSs as context
I only productions of the kind N1N2 . . .Nk → M1M2 . . .Mj or N → a

I closed under ∩
I use a 2-tape-TM
I simulate computation of A1 on tape 1, A2 on tape 2

I accept if both A1 and A2 accept
I not closed under complement

375

Closure properties

The class of languages described by Type-0-grammars or Turing
machines is:
I closed under ∪, ·,∗
I more complicated than for cf. grammars because context can

influence rule applicability
I rename NTSs (as for cf. grammars)
I only allow NTSs as context
I only productions of the kind N1N2 . . .Nk → M1M2 . . .Mj or N → a

I closed under ∩
I use a 2-tape-TM
I simulate computation of A1 on tape 1, A2 on tape 2
I accept if both A1 and A2 accept

I not closed under complement

375

Closure properties

The class of languages described by Type-0-grammars or Turing
machines is:
I closed under ∪, ·,∗
I more complicated than for cf. grammars because context can

influence rule applicability
I rename NTSs (as for cf. grammars)
I only allow NTSs as context
I only productions of the kind N1N2 . . .Nk → M1M2 . . .Mj or N → a

I closed under ∩
I use a 2-tape-TM
I simulate computation of A1 on tape 1, A2 on tape 2
I accept if both A1 and A2 accept

I not closed under complement

375

Linear bounded automata and context-sensitive
grammars

I context-sensitive grammars do not allow for shortening rules

I a linear bounded automaton (LBA) is a TM that only uses the
space originally occupied by the input w .

I ends of w are indicated by markers that cannot be passed

. . . > i n p u t < . . .

376

Linear bounded automata and context-sensitive
grammars

I context-sensitive grammars do not allow for shortening rules
I a linear bounded automaton (LBA) is a TM that only uses the

space originally occupied by the input w .

I ends of w are indicated by markers that cannot be passed

. . . > i n p u t < . . .

376

Linear bounded automata and context-sensitive
grammars

I context-sensitive grammars do not allow for shortening rules
I a linear bounded automaton (LBA) is a TM that only uses the

space originally occupied by the input w .
I ends of w are indicated by markers that cannot be passed

. . . > i n p u t < . . .

376

Linear bounded automata and context-sensitive
grammars

I context-sensitive grammars do not allow for shortening rules
I a linear bounded automaton (LBA) is a TM that only uses the

space originally occupied by the input w .
I ends of w are indicated by markers that cannot be passed

. . . > i n p u t < . . .

376

Linear bounded automata and context-sensitive
grammars

I context-sensitive grammars do not allow for shortening rules
I a linear bounded automaton (LBA) is a TM that only uses the

space originally occupied by the input w .
I ends of w are indicated by markers that cannot be passed

. . . > i n p u t < . . .

376

Equivalence of cs. grammars and LBAs

Transformation of cs. grammar G into LBA:
I as for Type-0-grammar: use 2-tape-TM
I input on tape 1
I simulate operations of G on tape 2

I since the productions of G are non-shortening, words longer
than w need not be considered

Transformation of LBA A into cs. grammar:
I similar to construction for TM:
I generate w without blanks
I simulate operation of A on w

I rules are not shortening 3
I PA→ BQ is not cs. . . .
I . . . but PA→ XA→ XY → BY → BQ is cs. (and equivalent) 3

377

Equivalence of cs. grammars and LBAs

Transformation of cs. grammar G into LBA:
I as for Type-0-grammar: use 2-tape-TM
I input on tape 1
I simulate operations of G on tape 2

I since the productions of G are non-shortening, words longer
than w need not be considered

Transformation of LBA A into cs. grammar:
I similar to construction for TM:
I generate w without blanks
I simulate operation of A on w

I rules are not shortening 3
I PA→ BQ is not cs. . . .
I . . . but PA→ XA→ XY → BY → BQ is cs. (and equivalent) 3

377

Context-sensitive grammars: closure properties

The class of languages described by context-sensitive grammars /
LBAs is:
I closed under ∪, ·,∗ ,∩
I as for Type-0-grammars / TMs

I closed under complement
I shown in 1988
I many scientists believed opposite to be true

378

Context-sensitive grammars: decision problems

Word problem for cs. languages
The word problem for cs. languages is decidable.
I Γ, Σ and P are finite
I rules are not shortening
I for a word of length n only a finite number of derivations up to

length n has to be considered.

Emptiness problem for cs. languages
The emptiness problem for cs. languages is undecidable.
Also follows from undecidability of Post’s correspondence problem.

Equivalence problem for cs. languages
The equivalence problem for cs. languages is undecidable.
If this problem was decidable for cs. languages, ist would also be
decidable for cf. languages (since every cf. language is also cs.).

379

Context-sensitive grammars: decision problems

Word problem for cs. languages
The word problem for cs. languages is decidable.
I Γ, Σ and P are finite
I rules are not shortening
I for a word of length n only a finite number of derivations up to

length n has to be considered.

Emptiness problem for cs. languages
The emptiness problem for cs. languages is undecidable.
Also follows from undecidability of Post’s correspondence problem.

Equivalence problem for cs. languages
The equivalence problem for cs. languages is undecidable.
If this problem was decidable for cs. languages, ist would also be
decidable for cf. languages (since every cf. language is also cs.).

379

Context-sensitive grammars: decision problems

Word problem for cs. languages
The word problem for cs. languages is decidable.
I Γ, Σ and P are finite
I rules are not shortening
I for a word of length n only a finite number of derivations up to

length n has to be considered.

Emptiness problem for cs. languages
The emptiness problem for cs. languages is undecidable.
Also follows from undecidability of Post’s correspondence problem.

Equivalence problem for cs. languages
The equivalence problem for cs. languages is undecidable.
If this problem was decidable for cs. languages, ist would also be
decidable for cf. languages (since every cf. language is also cs.).

379

The universal Turing machine U

U is a Turing machine emulator

ε εc(A) w εε

Input:
I encoding c(A) of a TM A
I word w

c(A) c(qt, pt, bt) εε

emulates computation of A on w
I encodes current configuration of A
I stops if A stops
I accepts if A accepts w
I runs forever if A runs forever with

input w

Every solvable problem can be solved in software.

380

The universal Turing machine U

U is a Turing machine emulator

ε εc(A) w εε

Input:
I encoding c(A) of a TM A
I word w

c(A) c(qt, pt, bt) εε

emulates computation of A on w
I encodes current configuration of A
I stops if A stops
I accepts if A accepts w
I runs forever if A runs forever with

input w

Every solvable problem can be solved in software.

380

The universal Turing machine U

U is a Turing machine emulator

ε εc(A) w εε

Input:
I encoding c(A) of a TM A
I word w

c(A) c(qt, pt, bt) εε

emulates computation of A on w
I encodes current configuration of A

I stops if A stops
I accepts if A accepts w
I runs forever if A runs forever with

input w

Every solvable problem can be solved in software.

380

The universal Turing machine U

U is a Turing machine emulator

ε εc(A) w εε

Input:
I encoding c(A) of a TM A
I word w

c(A) c(qt, pt, bt) εε

emulates computation of A on w
I encodes current configuration of A
I stops if A stops
I accepts if A accepts w
I runs forever if A runs forever with

input w

Every solvable problem can be solved in software.

380

The universal Turing machine U

U is a Turing machine emulator

ε εc(A) w εε

Input:
I encoding c(A) of a TM A
I word w

c(A) c(qt, pt, bt) εε

emulates computation of A on w
I encodes current configuration of A
I stops if A stops
I accepts if A accepts w
I runs forever if A runs forever with

input w

Every solvable problem can be solved in software.

380

The halting problem

Does the TM A halt with input w?

Wanted: TMs H1 and H2, such that with input c(A) and w
1. H1 accepts iff A halts on w and
2. H2 accepts iff A does not halt on w .

decision procedure for HP: let H1 and H2 run in parallel

1. U (almost) does what H1 needs to do. 3
2. Difficult: H2 needs to detect that that A does not terminate. ?

I infinite tape ; infinite number possible configurations
I recognising repeated configurations not sufficient.

381

The halting problem

Does the TM A halt with input w?
Wanted: TMs H1 and H2, such that with input c(A) and w

1. H1 accepts iff A halts on w and
2. H2 accepts iff A does not halt on w .

decision procedure for HP: let H1 and H2 run in parallel

1. U (almost) does what H1 needs to do. 3
2. Difficult: H2 needs to detect that that A does not terminate. ?

I infinite tape ; infinite number possible configurations
I recognising repeated configurations not sufficient.

381

The halting problem

Does the TM A halt with input w?
Wanted: TMs H1 and H2, such that with input c(A) and w

1. H1 accepts iff A halts on w and

2. H2 accepts iff A does not halt on w .
decision procedure for HP: let H1 and H2 run in parallel

1. U (almost) does what H1 needs to do. 3
2. Difficult: H2 needs to detect that that A does not terminate. ?

I infinite tape ; infinite number possible configurations
I recognising repeated configurations not sufficient.

381

The halting problem

Does the TM A halt with input w?
Wanted: TMs H1 and H2, such that with input c(A) and w

1. H1 accepts iff A halts on w and
2. H2 accepts iff A does not halt on w .

decision procedure for HP: let H1 and H2 run in parallel

1. U (almost) does what H1 needs to do. 3
2. Difficult: H2 needs to detect that that A does not terminate. ?

I infinite tape ; infinite number possible configurations
I recognising repeated configurations not sufficient.

381

The halting problem

Does the TM A halt with input w?
Wanted: TMs H1 and H2, such that with input c(A) and w

1. H1 accepts iff A halts on w and
2. H2 accepts iff A does not halt on w .

decision procedure for HP: let H1 and H2 run in parallel

1. U (almost) does what H1 needs to do. 3
2. Difficult: H2 needs to detect that that A does not terminate. ?

I infinite tape ; infinite number possible configurations
I recognising repeated configurations not sufficient.

381

The halting problem

Does the TM A halt with input w?
Wanted: TMs H1 and H2, such that with input c(A) and w

1. H1 accepts iff A halts on w and
2. H2 accepts iff A does not halt on w .

decision procedure for HP: let H1 and H2 run in parallel

1. U (almost) does what H1 needs to do. 3

2. Difficult: H2 needs to detect that that A does not terminate. ?
I infinite tape ; infinite number possible configurations
I recognising repeated configurations not sufficient.

381

The halting problem

Does the TM A halt with input w?
Wanted: TMs H1 and H2, such that with input c(A) and w

1. H1 accepts iff A halts on w and
2. H2 accepts iff A does not halt on w .

decision procedure for HP: let H1 and H2 run in parallel

1. U (almost) does what H1 needs to do. 3
2. Difficult: H2 needs to detect that that A does not terminate. ?

I infinite tape ; infinite number possible configurations
I recognising repeated configurations not sufficient.

381

Undecidability of the halting problem

Assumption: there is a TM H2 which, given c(A) and w as input
1. accepts if A does not halt with input w and
2. runs forever if A halts with input w .

If H2 exists, then there is also a TM S accepting exactly those
encodings of TMs that do not accept their own encoding

1. input: TM encoding c(A)

2. S replaces c(A) with c(A)c(A)

3. afterwards S operates like H2

382

Undecidability of the halting problem

Assumption: there is a TM H2 which, given c(A) and w as input
1. accepts if A does not halt with input w and
2. runs forever if A halts with input w .

If H2 exists, then there is also a TM S accepting exactly those
encodings of TMs that do not accept their own encoding

1. input: TM encoding c(A)

2. S replaces c(A) with c(A)c(A)

3. afterwards S operates like H2

382

Undecidability of the halting problem

Assumption: there is a TM H2 which, given c(A) and w as input
1. accepts if A does not halt with input w and
2. runs forever if A halts with input w .

If H2 exists, then there is also a TM S accepting exactly those
encodings of TMs that do not accept their own encoding

1. input: TM encoding c(A)

2. S replaces c(A) with c(A)c(A)

3. afterwards S operates like H2

382

Undecidability of the halting problem

Assumption: there is a TM H2 which, given c(A) and w as input
1. accepts if A does not halt with input w and
2. runs forever if A halts with input w .

If H2 exists, then there is also a TM S accepting exactly those
encodings of TMs that do not accept their own encoding

1. input: TM encoding c(A)

2. S replaces c(A) with c(A)c(A)

3. afterwards S operates like H2

382

Undecidability of the halting problem

Assumption: there is a TM H2 which, given c(A) and w as input
1. accepts if A does not halt with input w and
2. runs forever if A halts with input w .

If H2 exists, then there is also a TM S accepting exactly those
encodings of TMs that do not accept their own encoding

1. input: TM encoding c(A)

2. S replaces c(A) with c(A)c(A)

3. afterwards S operates like H2

382

Computation of S with input c(S)

Reminder
S accepts c(A) iff A does not accept c(A).

Case 1 S accepts c(S). This implies that S does not halt on the input
c(S). Therefore S does not accept c(S).

Case 2 S rejects c(S). Since S accepts exactly the encodings of
those TMs that reject their own encoding, this implies that S
accepts the input c(S).

This implies:

1. There is no such TM S.

2. There is no TM H2.
3. The halting problem is undecidable. (Turing 1936)

383

Computation of S with input c(S)

Reminder
S accepts c(A) iff A does not accept c(A).

Case 1 S accepts c(S). This implies that S does not halt on the input
c(S). Therefore S does not accept c(S).

Case 2 S rejects c(S). Since S accepts exactly the encodings of
those TMs that reject their own encoding, this implies that S
accepts the input c(S).

This implies:

1. There is no such TM S.

2. There is no TM H2.
3. The halting problem is undecidable. (Turing 1936)

383

Computation of S with input c(S)

Reminder
S accepts c(A) iff A does not accept c(A).

Case 1 S accepts c(S). This implies that S does not halt on the input
c(S). Therefore S does not accept c(S).

Case 2 S rejects c(S). Since S accepts exactly the encodings of
those TMs that reject their own encoding, this implies that S
accepts the input c(S).

This implies:

1. There is no such TM S.

2. There is no TM H2.
3. The halting problem is undecidable. (Turing 1936)

383

Computation of S with input c(S)

Reminder
S accepts c(A) iff A does not accept c(A).

Case 1 S accepts c(S). This implies that S does not halt on the input
c(S). Therefore S does not accept c(S).

Case 2 S rejects c(S). Since S accepts exactly the encodings of
those TMs that reject their own encoding, this implies that S
accepts the input c(S).

This implies:

1. There is no such TM S.

2. There is no TM H2.
3. The halting problem is undecidable. (Turing 1936)

383

Computation of S with input c(S)

Reminder
S accepts c(A) iff A does not accept c(A).

Case 1 S accepts c(S). This implies that S does not halt on the input
c(S). Therefore S does not accept c(S).

Case 2 S rejects c(S). Since S accepts exactly the encodings of
those TMs that reject their own encoding, this implies that S
accepts the input c(S).

This implies:

1. There is no such TM S.
2. There is no TM H2.

3. The halting problem is undecidable. (Turing 1936)

383

Computation of S with input c(S)

Reminder
S accepts c(A) iff A does not accept c(A).

Case 1 S accepts c(S). This implies that S does not halt on the input
c(S). Therefore S does not accept c(S).

Case 2 S rejects c(S). Since S accepts exactly the encodings of
those TMs that reject their own encoding, this implies that S
accepts the input c(S).

This implies:

1. There is no such TM S.
2. There is no TM H2.
3. The halting problem is undecidable. (Turing 1936)

383

Decision problems

Decision problems for Turing machines
The word problem, the emptiness problem, and the equivalence
problem are undecidable.

If any of these problems were decidable, one could easily derive a
decision procedure for the halting problem.

Closure under complement
The class of languages accepted by Turing machines is not closed
under complement.

If it were closed under complement, H2 would exist.

384

Decision problems

Decision problems for Turing machines
The word problem, the emptiness problem, and the equivalence
problem are undecidable.

If any of these problems were decidable, one could easily derive a
decision procedure for the halting problem.

Closure under complement
The class of languages accepted by Turing machines is not closed
under complement.

If it were closed under complement, H2 would exist.

384

Decision problems

Decision problems for Turing machines
The word problem, the emptiness problem, and the equivalence
problem are undecidable.

If any of these problems were decidable, one could easily derive a
decision procedure for the halting problem.

Closure under complement
The class of languages accepted by Turing machines is not closed
under complement.

If it were closed under complement, H2 would exist.

384

Decision problems

Decision problems for Turing machines
The word problem, the emptiness problem, and the equivalence
problem are undecidable.

If any of these problems were decidable, one could easily derive a
decision procedure for the halting problem.

Closure under complement
The class of languages accepted by Turing machines is not closed
under complement.

If it were closed under complement, H2 would exist.

384

Diagonalisation

Challenge of the proof
Show for all possible (infinitely many) TMs that none of them can
decide the halting problem.

TM in
pu

t

c(
A

)

c(
B)

c(
C)

c(
D

)

c(
E)

. . .
A 7

B 7

C 7

D 7

E 7
...

. . .

385

Diagonalisation

Challenge of the proof
Show for all possible (infinitely many) TMs that none of them can
decide the halting problem.

TM in
pu

t

c(
A

)

c(
B)

c(
C)

c(
D

)

c(
E)

. . .
A 7

B 7

C 7

D 7

E 7
...

. . .

385

Further diagonalisation arguments

Cantor diagonalisation (1891)
The set of real numbers is uncountable.

Epimenides paradox (6th century BC)
Epimenides [the Cretan] says: “[All] Cretans are always liars.”

Russell’s paradox (1903)
R := {T | T /∈ T} Does R ∈ R? hold?

Gödel’s incompleteness theorem (1931)
Construction of a sentence in 2nd order predicate logic which states
that itself cannot be proved.

386

Further diagonalisation arguments

Cantor diagonalisation (1891)
The set of real numbers is uncountable.

Epimenides paradox (6th century BC)
Epimenides [the Cretan] says: “[All] Cretans are always liars.”

Russell’s paradox (1903)
R := {T | T /∈ T} Does R ∈ R? hold?

Gödel’s incompleteness theorem (1931)
Construction of a sentence in 2nd order predicate logic which states
that itself cannot be proved.

386

Further diagonalisation arguments

Cantor diagonalisation (1891)
The set of real numbers is uncountable.

Epimenides paradox (6th century BC)
Epimenides [the Cretan] says: “[All] Cretans are always liars.”

Russell’s paradox (1903)
R := {T | T /∈ T} Does R ∈ R? hold?

Gödel’s incompleteness theorem (1931)
Construction of a sentence in 2nd order predicate logic which states
that itself cannot be proved.

386

Further diagonalisation arguments

Cantor diagonalisation (1891)
The set of real numbers is uncountable.

Epimenides paradox (6th century BC)
Epimenides [the Cretan] says: “[All] Cretans are always liars.”

Russell’s paradox (1903)
R := {T | T /∈ T} Does R ∈ R? hold?

Gödel’s incompleteness theorem (1931)
Construction of a sentence in 2nd order predicate logic which states
that itself cannot be proved.

386

Is this important?

I What is so bad about not being able to decide if a TM halts?

I Isn’t this a purely academic problem?

Ludwig Wittgenstein (1939)
It is very queer that this should have puzzled anyone. [...] If a man
says “I am lying” we say that it follows that he is not lying, from which
it follows that he is lying and so on. Well, so what? You ca go on like
that until you are black in the face. Why not? It doesn’t matter.
(Lectures on the Foundations of Mathematics, Cambridge)

What is the impact on practice?

387

Is this important?

I What is so bad about not being able to decide if a TM halts?
I Isn’t this a purely academic problem?

Ludwig Wittgenstein (1939)
It is very queer that this should have puzzled anyone. [...] If a man
says “I am lying” we say that it follows that he is not lying, from which
it follows that he is lying and so on. Well, so what? You ca go on like
that until you are black in the face. Why not? It doesn’t matter.
(Lectures on the Foundations of Mathematics, Cambridge)

What is the impact on practice?

387

Is this important?

I What is so bad about not being able to decide if a TM halts?
I Isn’t this a purely academic problem?

Ludwig Wittgenstein (1939)
It is very queer that this should have puzzled anyone. [...] If a man
says “I am lying” we say that it follows that he is not lying, from which
it follows that he is lying and so on. Well, so what? You ca go on like
that until you are black in the face. Why not? It doesn’t matter.
(Lectures on the Foundations of Mathematics, Cambridge)

What is the impact on practice?

387

Is this important?

I What is so bad about not being able to decide if a TM halts?
I Isn’t this a purely academic problem?

Ludwig Wittgenstein (1939)
It is very queer that this should have puzzled anyone. [...] If a man
says “I am lying” we say that it follows that he is not lying, from which
it follows that he is lying and so on. Well, so what? You ca go on like
that until you are black in the face. Why not? It doesn’t matter.
(Lectures on the Foundations of Mathematics, Cambridge)

What is the impact on practice?

387

It does not only affect halting

Halting is a fundamental property.
If halting cannot be decided, what can?

Rice’s theorem (1953)
Every non-trivial semantic property of TMs is undecidable.
non-trivial satisfied by some TMs, not satisfied by others
semantic referring to the accepted language

Example (Property E : TM accepts the set of prime numbers P)
If E is decidable, then so is the halting problem for A and an input wA.
Approach: Turing machine E , input wE

1. simulate computation of A auf wA

2. decide if wE ∈ P

Check if E accepts the set of prime numbers:
yes ; A halts with input wA no ; A does not halt on input wA

388

It does not only affect halting

Rice’s theorem (1953)
Every non-trivial semantic property of TMs is undecidable.

non-trivial satisfied by some TMs, not satisfied by others
semantic referring to the accepted language

Example (Property E : TM accepts the set of prime numbers P)
If E is decidable, then so is the halting problem for A and an input wA.
Approach: Turing machine E , input wE

1. simulate computation of A auf wA

2. decide if wE ∈ P

Check if E accepts the set of prime numbers:
yes ; A halts with input wA no ; A does not halt on input wA

388

It does not only affect halting

Rice’s theorem (1953)
Every non-trivial semantic property of TMs is undecidable.

non-trivial satisfied by some TMs, not satisfied by others

semantic referring to the accepted language

Example (Property E : TM accepts the set of prime numbers P)
If E is decidable, then so is the halting problem for A and an input wA.
Approach: Turing machine E , input wE

1. simulate computation of A auf wA

2. decide if wE ∈ P

Check if E accepts the set of prime numbers:
yes ; A halts with input wA no ; A does not halt on input wA

388

It does not only affect halting

Rice’s theorem (1953)
Every non-trivial semantic property of TMs is undecidable.

non-trivial satisfied by some TMs, not satisfied by others
semantic referring to the accepted language

Example (Property E : TM accepts the set of prime numbers P)
If E is decidable, then so is the halting problem for A and an input wA.
Approach: Turing machine E , input wE

1. simulate computation of A auf wA

2. decide if wE ∈ P

Check if E accepts the set of prime numbers:
yes ; A halts with input wA no ; A does not halt on input wA

388

It does not only affect halting

Rice’s theorem (1953)
Every non-trivial semantic property of TMs is undecidable.

non-trivial satisfied by some TMs, not satisfied by others
semantic referring to the accepted language

Example (Property E : TM accepts the set of prime numbers P)
If E is decidable, then so is the halting problem for A and an input wA.

Approach: Turing machine E , input wE
1. simulate computation of A auf wA

2. decide if wE ∈ P

Check if E accepts the set of prime numbers:
yes ; A halts with input wA no ; A does not halt on input wA

388

It does not only affect halting

Rice’s theorem (1953)
Every non-trivial semantic property of TMs is undecidable.

non-trivial satisfied by some TMs, not satisfied by others
semantic referring to the accepted language

Example (Property E : TM accepts the set of prime numbers P)
If E is decidable, then so is the halting problem for A and an input wA.
Approach: Turing machine E , input wE

1. simulate computation of A auf wA

2. decide if wE ∈ P

Check if E accepts the set of prime numbers:
yes ; A halts with input wA no ; A does not halt on input wA

388

It does not only affect halting

Rice’s theorem (1953)
Every non-trivial semantic property of TMs is undecidable.

non-trivial satisfied by some TMs, not satisfied by others
semantic referring to the accepted language

Example (Property E : TM accepts the set of prime numbers P)
If E is decidable, then so is the halting problem for A and an input wA.
Approach: Turing machine E , input wE

1. simulate computation of A auf wA

2. decide if wE ∈ P

Check if E accepts the set of prime numbers:
yes ; A halts with input wA no ; A does not halt on input wA

388

It does not only affect halting

Rice’s theorem (1953)
Every non-trivial semantic property of TMs is undecidable.

non-trivial satisfied by some TMs, not satisfied by others
semantic referring to the accepted language

Example (Property E : TM accepts the set of prime numbers P)
If E is decidable, then so is the halting problem for A and an input wA.
Approach: Turing machine E , input wE

1. simulate computation of A auf wA
2. decide if wE ∈ P

Check if E accepts the set of prime numbers:
yes ; A halts with input wA no ; A does not halt on input wA

388

It does not only affect halting

Rice’s theorem (1953)
Every non-trivial semantic property of TMs is undecidable.

non-trivial satisfied by some TMs, not satisfied by others
semantic referring to the accepted language

Example (Property E : TM accepts the set of prime numbers P)
If E is decidable, then so is the halting problem for A and an input wA.
Approach: Turing machine E , input wE

1. simulate computation of A auf wA
2. decide if wE ∈ P

Check if E accepts the set of prime numbers:
yes ; A halts with input wA no ; A does not halt on input wA

388

It does not only affect Turing machines

Church-Turing-thesis
Every effectively calculable function is a computable function.

computable means calculable by a (Turing) machine
effectively calculable refers to the intuitive idea without reference to a

particular computing model

What holds for Turing machines also holds for
I Type-0 grammars,
I while programs,
I von Neumann architecture,
I Java/C++/Lisp/Prolog programs,
I future machines and languages

No interesting property for any powerful programming language is
decidable!

389

It does not only affect Turing machines

Church-Turing-thesis
Every effectively calculable function is a computable function.

computable means calculable by a (Turing) machine

effectively calculable refers to the intuitive idea without reference to a
particular computing model

What holds for Turing machines also holds for
I Type-0 grammars,
I while programs,
I von Neumann architecture,

I Java/C++/Lisp/Prolog programs,
I future machines and languages

No interesting property for any powerful programming language is
decidable!

389

It does not only affect Turing machines

Church-Turing-thesis
Every effectively calculable function is a computable function.

computable means calculable by a (Turing) machine
effectively calculable refers to the intuitive idea without reference to a

particular computing model

What holds for Turing machines also holds for
I Type-0 grammars,
I while programs,
I von Neumann architecture,
I Java/C++/Lisp/Prolog programs,

I future machines and languages

No interesting property for any powerful programming language is
decidable!

389

It does not only affect Turing machines

Church-Turing-thesis
Every effectively calculable function is a computable function.

computable means calculable by a (Turing) machine
effectively calculable refers to the intuitive idea without reference to a

particular computing model

What holds for Turing machines also holds for
I Type-0 grammars,
I while programs,
I von Neumann architecture,
I Java/C++/Lisp/Prolog programs,
I future machines and languages

No interesting property for any powerful programming language is
decidable!

389

It does not only affect Turing machines

Church-Turing-thesis
Every effectively calculable function is a computable function.

computable means calculable by a (Turing) machine
effectively calculable refers to the intuitive idea without reference to a

particular computing model

What holds for Turing machines also holds for
I Type-0 grammars,
I while programs,
I von Neumann architecture,
I Java/C++/Lisp/Prolog programs,
I future machines and languages

No interesting property for any powerful programming language is
decidable!

389

Undecidable problems in practice

software development Does the program match the specification?

debugging Does the program have a memory leak?
malware Does the program harm the system?

education Does the student’s TM compute the same
function as the teacher’s TM?

formal languages Do two cf. grammars generate the same
language?

mathematics Hilbert’s tenth problem: find integer solutions
for a polynomial with several variables

logic Satisfiability of formulas in first-order predicate
logic

Yes, it does matter!

390

Undecidable problems in practice

software development Does the program match the specification?
debugging Does the program have a memory leak?

malware Does the program harm the system?
education Does the student’s TM compute the same

function as the teacher’s TM?
formal languages Do two cf. grammars generate the same

language?
mathematics Hilbert’s tenth problem: find integer solutions

for a polynomial with several variables
logic Satisfiability of formulas in first-order predicate

logic

Yes, it does matter!

390

Undecidable problems in practice

software development Does the program match the specification?
debugging Does the program have a memory leak?

malware Does the program harm the system?

education Does the student’s TM compute the same
function as the teacher’s TM?

formal languages Do two cf. grammars generate the same
language?

mathematics Hilbert’s tenth problem: find integer solutions
for a polynomial with several variables

logic Satisfiability of formulas in first-order predicate
logic

Yes, it does matter!

390

Undecidable problems in practice

software development Does the program match the specification?
debugging Does the program have a memory leak?

malware Does the program harm the system?
education Does the student’s TM compute the same

function as the teacher’s TM?

formal languages Do two cf. grammars generate the same
language?

mathematics Hilbert’s tenth problem: find integer solutions
for a polynomial with several variables

logic Satisfiability of formulas in first-order predicate
logic

Yes, it does matter!

390

Undecidable problems in practice

software development Does the program match the specification?
debugging Does the program have a memory leak?

malware Does the program harm the system?
education Does the student’s TM compute the same

function as the teacher’s TM?
formal languages Do two cf. grammars generate the same

language?

mathematics Hilbert’s tenth problem: find integer solutions
for a polynomial with several variables

logic Satisfiability of formulas in first-order predicate
logic

Yes, it does matter!

390

Undecidable problems in practice

software development Does the program match the specification?
debugging Does the program have a memory leak?

malware Does the program harm the system?
education Does the student’s TM compute the same

function as the teacher’s TM?
formal languages Do two cf. grammars generate the same

language?
mathematics Hilbert’s tenth problem: find integer solutions

for a polynomial with several variables

logic Satisfiability of formulas in first-order predicate
logic

Yes, it does matter!

390

Undecidable problems in practice

software development Does the program match the specification?
debugging Does the program have a memory leak?

malware Does the program harm the system?
education Does the student’s TM compute the same

function as the teacher’s TM?
formal languages Do two cf. grammars generate the same

language?
mathematics Hilbert’s tenth problem: find integer solutions

for a polynomial with several variables
logic Satisfiability of formulas in first-order predicate

logic

Yes, it does matter!

390

Undecidable problems in practice

software development Does the program match the specification?
debugging Does the program have a memory leak?

malware Does the program harm the system?
education Does the student’s TM compute the same

function as the teacher’s TM?
formal languages Do two cf. grammars generate the same

language?
mathematics Hilbert’s tenth problem: find integer solutions

for a polynomial with several variables
logic Satisfiability of formulas in first-order predicate

logic

Yes, it does matter!

390

Many people with programming experience do not
know this. . .

391

Some things that are still possible

It is possible

because

to translate a program P from
a language into an equivalent
one in another language

one specific program is created for
P.

to detect if a program con-
tains a instruction to write to
the hard disk

this is a syntactic property. Deci-
ding if this instruction is eventually
executed is impossible in general.

to check at runtime if a pro-
gram accesses the hard disk

this corresponds to the simulation
by U . It is undecidable if the code
is never executed.

to write a program that gives
the correct answer in many
“interesting” cases

there will always be cases in which
an incorrect answer or none at all is
given.

392

Some things that are still possible

It is possible because

to translate a program P from
a language into an equivalent
one in another language

one specific program is created for
P.

to detect if a program con-
tains a instruction to write to
the hard disk

this is a syntactic property. Deci-
ding if this instruction is eventually
executed is impossible in general.

to check at runtime if a pro-
gram accesses the hard disk

this corresponds to the simulation
by U . It is undecidable if the code
is never executed.

to write a program that gives
the correct answer in many
“interesting” cases

there will always be cases in which
an incorrect answer or none at all is
given.

392

Some things that are still possible

It is possible because

to translate a program P from
a language into an equivalent
one in another language

one specific program is created for
P.

to detect if a program con-
tains a instruction to write to
the hard disk

this is a syntactic property. Deci-
ding if this instruction is eventually
executed is impossible in general.

to check at runtime if a pro-
gram accesses the hard disk

this corresponds to the simulation
by U . It is undecidable if the code
is never executed.

to write a program that gives
the correct answer in many
“interesting” cases

there will always be cases in which
an incorrect answer or none at all is
given.

392

Some things that are still possible

It is possible because

to translate a program P from
a language into an equivalent
one in another language

one specific program is created for
P.

to detect if a program con-
tains a instruction to write to
the hard disk

this is a syntactic property. Deci-
ding if this instruction is eventually
executed is impossible in general.

to check at runtime if a pro-
gram accesses the hard disk

this corresponds to the simulation
by U . It is undecidable if the code
is never executed.

to write a program that gives
the correct answer in many
“interesting” cases

there will always be cases in which
an incorrect answer or none at all is
given.

392

Some things that are still possible

It is possible because

to translate a program P from
a language into an equivalent
one in another language

one specific program is created for
P.

to detect if a program con-
tains a instruction to write to
the hard disk

this is a syntactic property. Deci-
ding if this instruction is eventually
executed is impossible in general.

to check at runtime if a pro-
gram accesses the hard disk

this corresponds to the simulation
by U . It is undecidable if the code
is never executed.

to write a program that gives
the correct answer in many
“interesting” cases

there will always be cases in which
an incorrect answer or none at all is
given.

392

Some things that are still possible

It is possible because

to translate a program P from
a language into an equivalent
one in another language

one specific program is created for
P.

to detect if a program con-
tains a instruction to write to
the hard disk

this is a syntactic property. Deci-
ding if this instruction is eventually
executed is impossible in general.

to check at runtime if a pro-
gram accesses the hard disk

this corresponds to the simulation
by U . It is undecidable if the code
is never executed.

to write a program that gives
the correct answer in many
“interesting” cases

there will always be cases in which
an incorrect answer or none at all is
given.

392

Some things that are still possible

It is possible because

to translate a program P from
a language into an equivalent
one in another language

one specific program is created for
P.

to detect if a program con-
tains a instruction to write to
the hard disk

this is a syntactic property. Deci-
ding if this instruction is eventually
executed is impossible in general.

to check at runtime if a pro-
gram accesses the hard disk

this corresponds to the simulation
by U . It is undecidable if the code
is never executed.

to write a program that gives
the correct answer in many
“interesting” cases

there will always be cases in which
an incorrect answer or none at all is
given.

392

Some things that are still possible

It is possible because

to translate a program P from
a language into an equivalent
one in another language

one specific program is created for
P.

to detect if a program con-
tains a instruction to write to
the hard disk

this is a syntactic property. Deci-
ding if this instruction is eventually
executed is impossible in general.

to check at runtime if a pro-
gram accesses the hard disk

this corresponds to the simulation
by U . It is undecidable if the code
is never executed.

to write a program that gives
the correct answer in many
“interesting” cases

there will always be cases in which
an incorrect answer or none at all is
given.

392

What can be done?

Can the Turing machine be “fixed”?

I undecidability proof does not use any specific TM properties
I only requirement: existence of universal machine U
I TM is not to weak, but too powerful
I different machine models have the same problem (or are weaker)

Alternatives

I If possible: use weaker formalisms (modal logic, dynamic logic)
I use heuristics that work well in many cases, solve remaining

ones manually
I interactive programs

393

What can be done?

Can the Turing machine be “fixed”?

I undecidability proof does not use any specific TM properties

I only requirement: existence of universal machine U
I TM is not to weak, but too powerful
I different machine models have the same problem (or are weaker)

Alternatives

I If possible: use weaker formalisms (modal logic, dynamic logic)
I use heuristics that work well in many cases, solve remaining

ones manually
I interactive programs

393

What can be done?

Can the Turing machine be “fixed”?

I undecidability proof does not use any specific TM properties
I only requirement: existence of universal machine U

I TM is not to weak, but too powerful
I different machine models have the same problem (or are weaker)

Alternatives

I If possible: use weaker formalisms (modal logic, dynamic logic)
I use heuristics that work well in many cases, solve remaining

ones manually
I interactive programs

393

What can be done?

Can the Turing machine be “fixed”?

I undecidability proof does not use any specific TM properties
I only requirement: existence of universal machine U
I TM is not to weak, but too powerful

I different machine models have the same problem (or are weaker)

Alternatives

I If possible: use weaker formalisms (modal logic, dynamic logic)
I use heuristics that work well in many cases, solve remaining

ones manually
I interactive programs

393

What can be done?

Can the Turing machine be “fixed”?

I undecidability proof does not use any specific TM properties
I only requirement: existence of universal machine U
I TM is not to weak, but too powerful
I different machine models have the same problem (or are weaker)

Alternatives

I If possible: use weaker formalisms (modal logic, dynamic logic)
I use heuristics that work well in many cases, solve remaining

ones manually
I interactive programs

393

What can be done?

Can the Turing machine be “fixed”?

I undecidability proof does not use any specific TM properties
I only requirement: existence of universal machine U
I TM is not to weak, but too powerful
I different machine models have the same problem (or are weaker)

Alternatives
I If possible: use weaker formalisms (modal logic, dynamic logic)

I use heuristics that work well in many cases, solve remaining
ones manually

I interactive programs

393

What can be done?

Can the Turing machine be “fixed”?

I undecidability proof does not use any specific TM properties
I only requirement: existence of universal machine U
I TM is not to weak, but too powerful
I different machine models have the same problem (or are weaker)

Alternatives
I If possible: use weaker formalisms (modal logic, dynamic logic)
I use heuristics that work well in many cases, solve remaining

ones manually

I interactive programs

393

What can be done?

Can the Turing machine be “fixed”?

I undecidability proof does not use any specific TM properties
I only requirement: existence of universal machine U
I TM is not to weak, but too powerful
I different machine models have the same problem (or are weaker)

Alternatives
I If possible: use weaker formalisms (modal logic, dynamic logic)
I use heuristics that work well in many cases, solve remaining

ones manually
I interactive programs

393

Turing machines: summary

I Halting problem: does TM A halt on input w?

I Turing: no TM can decide the halting problem.
I Rice: no TM can decide any non-trivial semantic property of TMs.
I Church-Turing: this holds for every powerful machine model.
I No interesting problem of programs in any powerful programming

language is decidable.

Consequences

/ Computers cannot take all work away from computer scientists.
, Computers will never make computer scientists redundant.

394

Turing machines: summary

I Halting problem: does TM A halt on input w?
I Turing: no TM can decide the halting problem.

I Rice: no TM can decide any non-trivial semantic property of TMs.
I Church-Turing: this holds for every powerful machine model.
I No interesting problem of programs in any powerful programming

language is decidable.

Consequences

/ Computers cannot take all work away from computer scientists.
, Computers will never make computer scientists redundant.

394

Turing machines: summary

I Halting problem: does TM A halt on input w?
I Turing: no TM can decide the halting problem.
I Rice: no TM can decide any non-trivial semantic property of TMs.

I Church-Turing: this holds for every powerful machine model.
I No interesting problem of programs in any powerful programming

language is decidable.

Consequences

/ Computers cannot take all work away from computer scientists.
, Computers will never make computer scientists redundant.

394

Turing machines: summary

I Halting problem: does TM A halt on input w?
I Turing: no TM can decide the halting problem.
I Rice: no TM can decide any non-trivial semantic property of TMs.
I Church-Turing: this holds for every powerful machine model.

I No interesting problem of programs in any powerful programming
language is decidable.

Consequences

/ Computers cannot take all work away from computer scientists.
, Computers will never make computer scientists redundant.

394

Turing machines: summary

I Halting problem: does TM A halt on input w?
I Turing: no TM can decide the halting problem.
I Rice: no TM can decide any non-trivial semantic property of TMs.
I Church-Turing: this holds for every powerful machine model.
I No interesting problem of programs in any powerful programming

language is decidable.

Consequences

/ Computers cannot take all work away from computer scientists.
, Computers will never make computer scientists redundant.

394

Turing machines: summary

I Halting problem: does TM A halt on input w?
I Turing: no TM can decide the halting problem.
I Rice: no TM can decide any non-trivial semantic property of TMs.
I Church-Turing: this holds for every powerful machine model.
I No interesting problem of programs in any powerful programming

language is decidable.

Consequences

/ Computers cannot take all work away from computer scientists.
, Computers will never make computer scientists redundant.

394

Turing machines: summary

I Halting problem: does TM A halt on input w?
I Turing: no TM can decide the halting problem.
I Rice: no TM can decide any non-trivial semantic property of TMs.
I Church-Turing: this holds for every powerful machine model.
I No interesting problem of programs in any powerful programming

language is decidable.

Consequences

/ Computers cannot take all work away from computer scientists.

, Computers will never make computer scientists redundant.

394

Turing machines: summary

I Halting problem: does TM A halt on input w?
I Turing: no TM can decide the halting problem.
I Rice: no TM can decide any non-trivial semantic property of TMs.
I Church-Turing: this holds for every powerful machine model.
I No interesting problem of programs in any powerful programming

language is decidable.

Consequences

/ Computers cannot take all work away from computer scientists.
, Computers will never make computer scientists redundant.

394

Property overview

property regular context-free context-sens. unrestricted
(Type 3) (Type 2) (Type 1) (Type 0)

closure
M ∪, ·,∗ 3 3 3 3

M ∩ 3 7 3 3

M M 3 7 3 7

decidability
M word 3 3 3 7

M emptiness 3 3 7 7

M equiv. 3 7 7 7

deterministic
equivalent to 3 7 ? 3

non-det.

395

Review of Goals

I Refresher
I Practical Parsing with YACC/Bison
I Background and Principles
I Workflow
I Desk calculator example

I Turing Machines
I Basics
I A working example
I Skimming over some topics of computability

396

Feedback round

I What was the best part of todays lecture?
I What part of todays lecture has the most potential for

improvement?
I Optional: how would you improve it?

397

Goals for Today

I General remarks
I Refresher
I Open questions
I Examn exercises

398

Zur Klausur

I Abschlussklausur formale Sprachen und Automaten
I Ort: Rotebühlplatz 41, Raum 0.10 (Erdgeschoss!)
I Zeit: Dienstag, 25.11.2014, 11:00 (Pünktlich!)
I Dauer: 120 Minuten
I Hilfsmittel:

I Skript (geheftet oder im Ordner)
I Eigene Notizen (geheftet oder im Ordner)
I Keine Loseblattsammlungen!
I Keine (!) Computer (auch nicht, wenn Sie Tablett oder Mobiltelefon

heißen)
I Zur Übungsklausur (heute)
I Umfang etwas größer
I Aufgaben tendenziell etwas schwerer
I Echte Klausur wird ähnlich, nicht identisch!

I Generell: Andere Aufgaben!
I Z.t. andere Stoffgebiete

399

General remark

400

Refresher

I Bison
I Grammar with actions executed on reduce
I Workflow and integration with flex
I Example: Desk calculator
I Homework (extend desk calculator)

I Turing machines
I Simple model of instruction-executing machine
I Infinite tape with read/write head
I Finite control
I “Turing-complete” - can do every computation any known

computing paradigm can do
I Examples and meta-results

401

Open Question

I Exercise: Use the known closure properties to show that
context-free languages are not closed under complement.

I We know:
I The class of context-free languages is closed under union

(Combine grammars with S0 → S1,S0 → S2)
I The class of context-free languages is not closed under

intersection (anbncm ∩ ambncn is not CF).
I Now assume the class of CF languages were closed under

complement. Let L1,L2 be arbitrary CF languages.
I Then: L1,L2 are CF.
I Then L1 ∪ L2 is CF
I Then L1 ∪ L2 = L1 ∩ L2 is CF
I Hence the CF languages would be closed under intersection,

which is wrong. Hence the assumption is wrong and CF
languages are not closed under complement.

402

Übungsklausur

403

Goals for Today

I General remarks
I Refresher
I Open questions
I Examn exercises

404

This is the End. . .

405

