Formal Languages and Automata

Aufgabensammlung

Jan Hladik und Stephan Schulz

2. November 2016

1 Übungsaufgaben

1.1 Endliche Automaten

1.1.1 Aufgabe

Sei $\Sigma = \{a,b\}$. Geben Sie für die folgenden Sprachen einen DFA an

- $L_0 = \{ w \in \Sigma^* \mid |w|_a + |w|_b = 5 \}$
- $L_1 = \{ w \in \Sigma^* \mid |w|_a \cdot |w|_b = 4 \}$
- $L_2 = \{ w \in \Sigma^* \mid |w| \ge 2 \text{ und } w[|w| 1] = w[2] \}$

1.1.2 Aufgabe

Betrachten Sie den deterministischen endlichen Automaten \mathcal{A}_2 in Abbildung 1.

- 1. Welche Konfigurationsfolge durchläuft der Automat beim Bearbeiten des Wortes ababab?
- 2. Welche Konfigurationsfolge durchläuft der Automat beim Bearbeiten des Wortes aaabbb?
- 3. Geben Sie den Automaten in tabellarischer Form an.
- 4. Geben Sie eine formale Beschreibung von $L(A_2)$

1.1.3 Aufgabe

Betrachten Sie den deterministischen endlichen Automaten A_3 in Abbildung 2.

- 1. Welche Konfigurationsfolge durchläuft der Automat beim Bearbeiten des Wortes ababab?
- 2. Welche Konfigurationsfolge durchläuft der Automat beim Bearbeiten des Wortes aaabbb?
- 3. Geben Sie den Automaten in tabellarischer Form an.
- 4. Geben Sie eine formale Beschreibung von $L(A_2)$
- 5. Minimieren Sie den Automaten mit dem in der Vorlesung vorgestellten Verfahren.

1.1.4 Aufgabe

Betrachten Sie den NFA A_4 in Abbildung 3.

- a) Welche möglichen Ableitungen durchläuft der Automat auf dem Wort abbbba?
- b) Beschreiben Sie $L(A_4)$ als Menge.
- c) Konvertieren Sie A_4 mit dem in der Vorlesung angegebenen Verfahren in einen deterministischen endlichen Automaten.

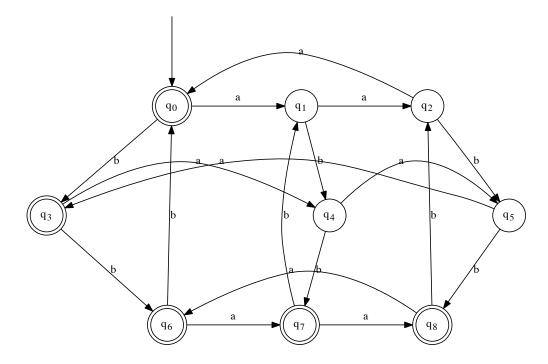


Abbildung 1: Automat A_2

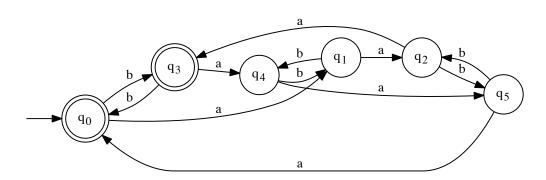


Abbildung 2: Automat A_3

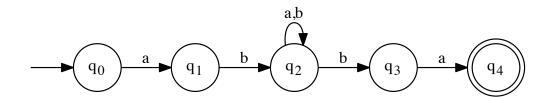


Abbildung 3: Automat A_4

1.2 Aufgabe

Betrachten Sie die folgende Tabelle:

Σ	{ <i>a</i> }	$\{a,b\}$	$\{a,b,c\}$	
$\{w \mid a \text{ ist Teilwort von } w\}$	aa^*			
$\{w \mid a \text{ ist kein Teilwort von } w\}$	ϵ		$(b + c)^*$	
$\{w \mid ab \text{ ist Teilwort von } w\}$	Ø			
$\{w \mid ab \text{ ist kein Teilwort von } w\}$				
$\{w \mid abc \text{ ist Teilwort von } w\}$				
$\{w \mid abc \text{ ist kein Teilwort von } w\}$				

Geben Sie für jede Kombination von Alphabet und Sprache folgendes an:

- a) Einen regulären Ausdruck an, der die Sprache erzeugt (falls möglich). Einige REs sind als Beispiel eingetragen.
- b) Einen DFA, der die Sprache akzeptiert.
- c) Einen (möglichst einfachen) NFA, der die Sprache akzeptiert.
 - Konvertieren Sie diesen NFA in einen DFA und vergleichen Sie ihn mit dem Automaten aus Teil c).

1.3 Reguläre und nichtreguläre Sprachen

1.3.1 Aufgabe

Sei
$$\Sigma = \{a, b\}$$
. Sei $L_0 = \{a^n b b a^n | n \in \mathbb{N}\}$.

- a) Geben Sie eine kontextfreie Grammatik G mit $L(G)=L_0$ an.
- b) Überprüfen Sie, welche die folgenden Worte in L_0 sind. Geben Sie im positiven Fall eine Ableitung in G an.
 - a1) bb
 - a2) aba
 - a3) aabbaa
- c) Zeigen oder widerlegen Sie: L_0 ist regulär.

1.3.2 Aufgabe

Sei
$$\Sigma = \{a, b\}$$
. Sei $L_1 = \{a^n w a^n | n \in \mathbb{N}, w \in \Sigma^*\}$.

- a) Geben Sie eine kontextfreie Grammatik G mit $L(G)=L_1$ an.
- b) Überprüfen Sie, welche die folgenden Worte in L_1 sind. Geben Sie im positiven Fall eine Ableitung in G an.
 - a1) ε
 - a2) babab
 - a3) aabbaaa
- c) Zeigen oder widerlegen Sie: L_1 ist regulär.

1.3.3 Aufgabe

Sei $\Sigma = \{a, b\}$. Sei $L_2 = \{a^n b a^n | n \in \mathbb{N}, n \leq 2\}$.

- a) Geben Sie eine kontextfreie Grammatik G mit $L(G) = L_2$ an.
- b) Überprüfen Sie, welche die folgenden Worte in L_2 sind. Geben Sie im positiven Fall eine Ableitung in G an.
 - a1) ε
 - a2) b
 - a2) aabaa
- c) Zeigen oder widerlegen Sie: L_2 ist regulär.

1.3.4 Aufgabe

Sei $\Sigma = \{a, b\}$. Sei $L_3 = \{a^n b^{2n} | n \in \mathbb{N}\}$.

- a) Geben Sie eine kontextfreie Grammatik G mit $L(G) = L_3$ an.
- b) Überprüfen Sie, welche die folgenden Worte in L_3 sind. Geben Sie im positiven Fall eine Ableitung in G an.
 - a1) ε
 - a2) aabbbb
 - a3) aaabbb
- c) Zeigen oder widerlegen Sie: L_3 ist regulär.

1.3.5 Aufgabe

Sei $\Sigma = \{a, b\}$. Sei $L_4 = \{a^n bba^m | n, m \in \mathbb{N}\}$.

- a) Geben Sie eine kontextfreie Grammatik G mit $L(G) = L_4$ an.
- b) Überprüfen Sie, welche die folgenden Worte in L_4 sind. Geben Sie im positiven Fall eine Ableitung in G an.
 - a1) bba
 - a2) ababba
 - a3) aabbaa
- c) Zeigen oder widerlegen Sie: L_4 ist regulär.

1.3.6 Aufgabe

Sei $\Sigma = \{a, b\}$. Sei $L_8 = \{a^n b w a^n | w \in \Sigma^*, n \in \mathbb{N}\}$.

- a) Geben Sie eine kontextfreie Grammatik G mit $L(G) = L_4$ an.
- b) Überprüfen Sie, welche die folgenden Worte in L_8 sind. Geben Sie im positiven Fall eine Ableitung in G an.
 - a1) abba
 - a2) ababaa
 - a3) aababa
- c) Zeigen oder widerlegen Sie: L_8 ist regulär.

1.4 Grammatiken und Sprachen

1.4.1 Aufgabe

Sei $\Sigma=\{a,b\}$ und $G_2=(\{S,T,U,X\},\{a,b\},\{S\to aTU,U\to X,TX\to T,T\to bS,T\to b\},S)$. Bestimmen Sie:

- 1. den maximalen Typ der Grammatik in der Chomsky-Hierarchie
- 2. die erzeugte Sprache
- 3. den maximalen Typ der erzeugten Sprache in der Chomsky-Hierarchie
- 4. falls Sprache und Grammatik unterschiedliche Typen haben, geben Sie eine äquivalente Grammatik mit dem maximal möglichen Typ an.

1.4.2 Aufgabe

Sei $\Sigma = \{a, b\}$ und $G_3 = (\{S\}, \{a, b\}, \{S \to \varepsilon, S \to aSb\}, S)$. Bestimmen Sie:

- 1. den maximalen Typ der Grammatik in der Chomsky-Hierarchie
- 2. die erzeugte Sprache
- 3. den maximalen Typ der erzeugten Sprache in der Chomsky-Hierarchie
- 4. falls Sprache und Grammatik unterschiedliche Typen haben, geben Sie eine äquivalente Grammatik mit dem maximal möglichen Typ an.

1.4.3 Aufgabe

Sei $L = \{a^n b^m c^p d^q \mid m, n, p, q \in N \text{ und } m + n = p + q\}.$

- a) Geben Sie eine kontextfreie Grammatik G an, die die Sprache L erzeugt
- b) Geben Sie Ableitungen in G für die folgenden Worte an:
 - b1) aabbccdd
 - b2) abdd

1.4.4 Aufgabe

Transformieren Sie die folgende Grammatik mit dem in der Vorlesung gezeigten Verfahren in Chomsky-Normalform.

$$G = \langle V_N, V_T, P, S \rangle$$
 mit

- $V_N = \{S, A, B, C, D, E\}$
- $V_T = \{a, b, c\}$

1.4.5 Aufgabe

Betrachten Sie die Grammatik $G = \langle V_N, V_T, P, S \rangle$ mit

- $V_N = \{S, A, B, R, T\}$
- $V_T = \{a, b\}$

$$\begin{array}{c} \bullet \ P = \{ & S \rightarrow AR \\ S \rightarrow AT \\ S \rightarrow AA \\ R \rightarrow SA \\ T \rightarrow SB \\ T \rightarrow b \\ B \rightarrow b \\ A \rightarrow a \end{array}$$

- a) Zeigen Sie mit Hilfe des CYK-Algorithmus, welche der folgenden Wörter in L(G) sind.
 - a1) aaabb
 - a2) aaaaab
- b) Geben Sie eine Characterisierung von L(G) an

1.4.6 Aufgabe

Gegeben sei der Kellerautomat $A=(\{q_0,q_1,q_2,q_3,q_f\},\{a,b,c,d\},\{Z_0,X\},\delta,q_0,Z_0,\{q_f\})$, wobei δ in der folgenden Tabelle angegeben ist.

- a) Geben Sie für die folgenden Wörter
 - falls das Wort in $L(A_{11})$ enthalten ist, eine akzeptierende Konfigurationsfolge,
 - falls das Wort nicht in $L(A_{11})$ enthalten ist, eine Konfigurationsfolge, bei der das gesamte Wort gelesen wird, an.
 - a1) $w_1 = aabccd$
 - a2) $w_2 = abc$
- b) Beschreiben Sie formal die von A akzeptierte Sprache als Menge.

2 Ideensammlung

- DFA minimieren
- NFA in DFA umwandeln
- RE in NFA umwandeln
- DFA in rechts-lineare Grammatik umwandeln
- DFA in RE umwandeln (?)
- Algebra auf REs?
- Rechts-lineare Grammatik in NFA umwandeln
- DFA für gegebene Sprache angeben
- Sprache für NFA, DFA, RE, Grammatik bestimmen
- Pumping-Lemma
- Produktautomaten konstruieren
- Abschlusseigenschaften nutzen (?)
- Was zu flex/bison?
- Typ einer Grammatik bestimmen
- Typ einer Sprache bestimmen
- CNF einer Grammatik berechnen eventuell einzelne Stufen einzeln?
- Parsen mit CYK