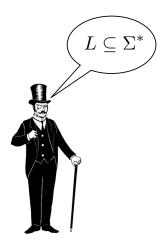
Formal Languages and Automata



Stephan Schulz & Jan Hladik

stephan.schulz@dhbw-stuttgart.de
jan.hladik@dhbw-stuttgart.de

with contributions from David Suendermann

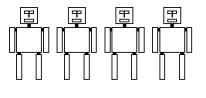


Table of Contents

Introduction Organisation Formal languages overview Formal language basics Regular Languages and Finite Automata Regular Expressions Finite Automata Non-Determinism Regular expressions and Finite Automata Minimisation Equivalence The Pumping Lemma Properties of Regular Languages Scanners and Flex Formal Grammars and Context-Free Languages

Formal Grammars The Chomsky Hierarchy **Right-linear Grammars** Context-free Grammars Push-Down Automata Properties of Context-free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0 **Turing Machines** Unrestricted Grammars Linear Bounded Automata Properties of Type-0-languages Lecture-specific material Lecture 1 Lecture 2 Lecture 3

Lecture 4 Lecture 5 Lecture 6 Lecture 7 Lecture 8 Lecture 9 Lecture 10 Lecture 11 Lecture 12 Lecture 13 Lecture 14 Lecture 15 Lecture 16 Lecture 17 Lecture 18 Bonus Exercises Selected Solutions

Outline

Introduction

Organisation Formal languages overview Formal language basics

Regular Languages and Finite Automata

Scanners and Flex

Formal Grammars and Context-Free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0 Lecture-specific material Bonus Exercises Selected Solutions

Outline

Introduction

Organisation

Formal languages overview Formal language basics

Regular Languages and Finite Automata

Scanners and Flex

Formal Grammars and Context-Free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0 Lecture-specific material Bonus Exercises Selected Solutions

Stephan Schulz

- Dipl.-Inform., U. Kaiserslautern, 1995
- Dr. rer. nat., TU München, 2000
- Visiting professor, U. Miami, 2002
- Visiting professor, U. West Indies, 2005
- Lecturer (Hildesheim, Offenburg, ...) since 2009
- Industry experience: Building Air Traffic Control systems
 - System engineer, 2005
 - Project manager, 2007
 - Product Manager, 2013
- Professor, DHBW Stuttgart, 2014

Stephan Schulz

- Dipl.-Inform., U. Kaiserslautern, 1995
- Dr. rer. nat., TU München, 2000
- Visiting professor, U. Miami, 2002
- Visiting professor, U. West Indies, 2005
- Lecturer (Hildesheim, Offenburg, ...) since 2009
- Industry experience: Building Air Traffic Control systems
 - System engineer, 2005
 - Project manager, 2007
 - Product Manager, 2013
- Professor, DHBW Stuttgart, 2014

Research: Logic & Automated Reasoning

Jan Hladik

- Dipl.-Inform.: RWTH Aachen, 2001
- Dr. rer. nat.: TU Dresden, 2007
- Industry experience: SAP Research
 - Work in publicly funded research projects
 - Collaboration with SAP product groups
 - Supervision of Bachelor, Master, and PhD students
- Professor: DHBW Stuttgart, 2014

Jan Hladik

- Dipl.-Inform.: RWTH Aachen, 2001
- Dr. rer. nat.: TU Dresden, 2007
- Industry experience: SAP Research
 - Work in publicly funded research projects
 - Collaboration with SAP product groups
 - Supervision of Bachelor, Master, and PhD students
- Professor: DHBW Stuttgart, 2014

Research: Semantic Web, Semantic Technologies, Automated Reasoning

Literature

Scripts

The most up-to-date version of this document as well as auxiliary material will be made available online at

http://wwwlehre.dhbw-stuttgart.de/~sschulz/ fla2022.html

Books

- John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman: Introduction to Automata Theory, Languages, and Computation [4]
- Michael Sipser: Introduction to the Theory of Computation [5]
- Dirk W. Hoffmann: Theoretische Informatik [3]
- Ulrich Hedtstück: Einführung in die theoretische Informatik [2]

Computing Environment

- For practical exercises, you will need a Linux/UNIX environment. If you do not run one natively, there are several options:
 - You can install VirtualBox (https://www.virtualbox.org) and then install e.g. Ubuntu (http://www.ubuntu.com/) on a virtual machine
 - For Windows, you can install the complete UNIX emulation package Cygwin from http://cygwin.com or use Microsofts WSL
 - For MacOS, you can install MacPorts (https://www.macports.org/) or Homebrew (https://brew.sh) and the necessary tools
- You will need at least flex, bison, gcc, make, and a good text editor
- There are some example programs in Python on the course web page

Outline of the Lecture

Introduction

Organisation Formal languages overview Formal language basics Regular Languages and Finite Automata Regular Expressions Finite Automata The Pumping Lemma Properties of Regular Languages Scanners and Flex Formal Grammars and Context-Free Languages Formal Grammars

The Chomsky Hierarchy Right-linear Grammars Context-free Grammars Push-Down Automata Properties of Context-free Languages Parsers and Bison

Turing Machines and Languages of Type 1 and

> Turing Machines Unrestricted Grammars Linear Bounded Automata Properties of Type-0-languages

Lecture-specific material Lecture 1

Lecture 2 Lecture 3 Lecture 4 Lecture 5 Lecture 6 Lecture 7 Lecture 8 Lecture 9 Lecture 10 Lecture 11 Lecture 12 Lecture 13 Lecture 14 Lecture 15 Lecture 16 Lecture 17 Lecture 18 Bonus Exercises Selected Solutions

Outline

Introduction

Organisation Formal languages overview Formal language basics Regular Languages and Finite Automata

Scanners and Flex

Formal Grammars and Context-Free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0 Lecture-specific material Bonus Exercises Selected Solutions Alphabet: finite set Σ of symbols (characters)
 {a,b,c}
Word: finite sequence w of characters (string)
 ab ≠ ba
Language: (possibly infinite) set L of words
 {ab,ba,abc} = {ba,abc,ab}
Formal: L defined precisely
 in contrast to natural languages wh

 in contrast to natural languages, where there are borderline cases

Some formal languages

Example

- (the set of all) names in a phone directory
- (the set of all) phone numbers in a phone directory
- (the set of all) legal C identifiers
- (the set of all) legal C programs
- (the set of all) legal HTML 4.01 Transitional documents
- the empty set
- (the set of all) ASCII strings
- (the set of all) Unicode strings

Example

- (the set of all) names in a phone directory
- (the set of all) phone numbers in a phone directory
- (the set of all) legal C identifiers
- (the set of all) legal C programs
- (the set of all) legal HTML 4.01 Transitional documents
- the empty set
- (the set of all) ASCII strings
- (the set of all) Unicode strings

More?

Language classes

This course: four classes of different complexity and expressivity

1 regular languages: limited power, but easy to handle

- "strings that start with a letter, followed by up to 7 letters or digits"
- legal C identifiers
- phone numbers

Language classes

This course: four classes of different complexity and expressivity

regular languages: limited power, but easy to handle

- "strings that start with a letter, followed by up to 7 letters or digits"
- legal C identifiers
- phone numbers

2 context-free languages: more expressive, but still feasible

- "every <token> is matched by </token>"
- nested dependencies
- (most aspects of) legal C programs
- many natural languages (English, German)

```
Jan says that we Jan sagt, dass wir

let die Kinder

the children dem Hans

help das Haus

Hans anstreichen

paint helfen

the house ließen
```

- 3 context-sensitive languages: even more expressive, difficult to handle computationally
 - "every variable has to be declared before it is used" (arbitrary sequence, arbitrary amounts of code in between)
 - cross-serial dependencies
 - (remaining aspects of) legal C programs
 - most remaining natural languages

- 3 context-sensitive languages: even more expressive, difficult to handle computationally
 - "every variable has to be declared before it is used" (arbitrary sequence, arbitrary amounts of code in between)
 - cross-serial dependencies
 - (remaining aspects of) legal C programs
 - most remaining natural languages (Swiss German)

```
Jan säit das mer
d'chind
em Hans
es huus
lönd
helfe
aastriche
```

- 3 context-sensitive languages: even more expressive, difficult to handle computationally
 - "every variable has to be declared before it is used" (arbitrary sequence, arbitrary amounts of code in between)
 - cross-serial dependencies
 - (remaining aspects of) legal C programs
 - most remaining natural languages (Swiss German)

```
Jan säit das mer Jan says that we
d'chind the children
em Hans Hans
es huus the house
lönd let
helfe help
aastriche paint
```

- 3 context-sensitive languages: even more expressive, difficult to handle computationally
 - "every variable has to be declared before it is used" (arbitrary sequence, arbitrary amounts of code in between)
 - cross-serial dependencies
 - (remaining aspects of) legal C programs
 - most remaining natural languages (Swiss German)

Jan säit das mer	Jan says that we
d'chind	the children
em Hans	Hans
es huus	the house
lönd	let
helfe	help
aastriche	paint

- 4 recursively enumerable languages: most general (Chomsky) class; undecidable
 - ▶ all (valid) mathematical theorems (in first-order logic)
 - programs terminating on a particular input

- Automata are formal models for computation
- Automata are characterised by
 - A set of states
 - Rules for the transition between states
 - ▶ A set of letters or characters (or, for control automata, events)
 - External memory

- Automata are formal models for computation
- Automata are characterised by
 - A set of states
 - Rules for the transition between states
 - A set of letters or characters (or, for control automata, events)
 - External memory
- Two main applications for automate
 - ► Control: process sequences of events
 - Languages (focus of this course): process finite sequences (words) of characters

Automata and Languages

- Automata for language processing...
 - ... process words
 - ... potentially accept words

- Automata for language processing...
 - ... process words
 - ... potentially accept words

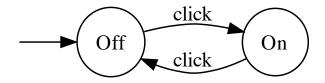
For every language class discussed in this course, a machine model exists such that for every language *L* there is an automaton $\mathcal{A}(L)$ that accepts exactly the words in *L*.

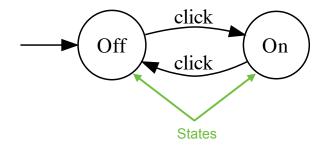
- Automata for language processing...
 - ... process words
 - ... potentially accept words

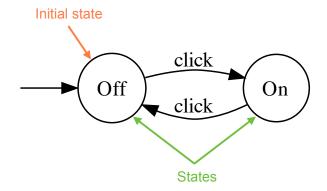
For every language class discussed in this course, a machine model exists such that for every language *L* there is an automaton $\mathcal{A}(L)$ that accepts exactly the words in *L*.

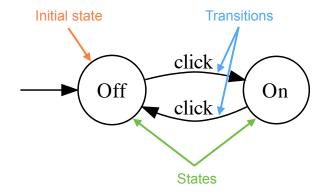
regular	\sim
context-free	\sim
context-sensitive	\sim
recursively enumerable	\sim

- finite automaton/finite state machine
- pushdown automaton
- linearly bounded Turing machine
- (unbounded) Turing machine







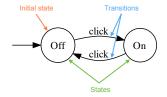


Formally:

- ▶ $Q = {Off, On}$ is the set of states
- $\Sigma = \{click\}$ is the alphabet
- The transition function δ is given by

δ	click
Off	On
On	Off

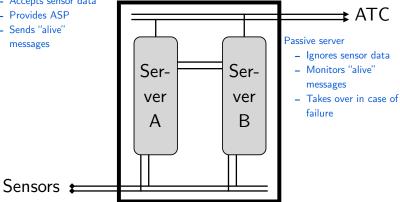
- ► The initial state is Off
- There are no accepting states



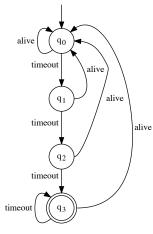
ATC redundancy

Aktive server:

- Accepts sensor data
- Provides ASP
- Sends "alive"

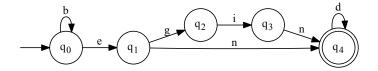


Finite automaton to the rescue



- Two events ("letters")
 - timeout: 0.1 seconds have passed
 - alive: message from active server
 - States q_0, q_1, q_2 : Server is passive
 - No processing of input
 - No sending of alive messages
- ▶ State *q*₃: Server becomes active
 - Process input, provide output to ATC
 - Send alive messages every 0.1 seconds

Exercise: Finite automaton



Does this automaton accept the words *begin*, *end*, *bind*, *bend*?

Turing Machine

"Universal computer"

- Very simple model of a computer
 - Infinite tape, one read/write head
 - Tape can store letters from a alphabet
 - Finite automaton controls read/write and movement operations
- Very powerful model of a computer
 - Can compute anything any real computer can compute
 - Can compute anything an "ideal" real computer can compute
 - Can compute everything a human can compute (?)

Formal grammars

Formalism to generate (rather than accept) words over alphabet terminal symbols: may appear in the produced word (alphabet) non-terminal symbols: may not appear in the produced word (temporary symbols) production rules: $l \rightarrow r$ means: l can be replaced by r anywhere in the word

Formal grammars

Formalism to generate (rather than accept) words over alphabet terminal symbols: may appear in the produced word (alphabet) non-terminal symbols: may not appear in the produced word (temporary symbols) production rules: $l \rightarrow r$ means: l can be replaced by r anywhere

in the word

Example

Grammar for arithmetic expressions over $\{0, 1\}$

$$\begin{array}{rcl} \Sigma & = & \{0, 1, +, \cdot, (,)\} \\ N & = & \{E\} \\ P & = & \{E \to 0, E \to 1, \\ & E \to (E) \\ & E \to E + E \\ & E \to E + E \\ & E \to E \cdot E\} \end{array}$$

Exercise: Grammars

Using

- ▶ the non-terminal symbols S, B, D, E, G, I, N
- the terminal symbols b, d, e, g, i, n
- ▶ the production rules $S \to BEGIN$, $BEG \to E, IN \to IND, IN \to N, EG \to EGG, GGG \to B,$ $B \to b, D \to d, E \to e, G \to g, I \to i, N \to n$

can you generate the words bend and end starting from the symbol S?

- If yes, how many steps do you need?
- If no, why not?

Questions about formal languages

For a given language *L*, how can we find

- ▶ a corresponding automaton A_L ?
- ▶ a corresponding grammar G_L ?
- What is the simplest automaton for L?
 - simplest" meaning: weakest possible language class
 - "simplest" meaning: least number of elements
- ▶ How can we use formal descriptions of languages for compilers?
 - detecting legal words/reserved words
 - testing if the structure is legal
 - understanding the meaning by analysing the structure

More questions about formal languages

Closure properties: if L_1 and L_2 are in a class, does this also hold for

- the union of L_1 and L_2 ,
- the intersection of L_1 and L_2 ,
- the concatenation of L_1 and L_2 ,
- the complement of L_1 ?

More questions about formal languages

Closure properties: if L_1 and L_2 are in a class, does this also hold for

- the union of L_1 and L_2 ,
- the intersection of L_1 and L_2 ,
- the concatenation of L_1 and L_2 ,
- the complement of L_1 ?

Decision problems: for a word w and languages L_1 and L_2 (given by grammars or automata),

- ▶ does $w \in L_1$ hold?
- \blacktriangleright is L_1 finite?
- \blacktriangleright is L_1 empty?
- does $L_1 = L_2$ hold?

Abandon all hope...

Example applications for formal languages and automata

- HTML and web browsers
- Speech recognition and understanding grammars
- Dialog systems and AI (Siri, Alexa, Hey Google, Watson)
- Regular expression matching
- Compilers and interpreters of programming languages

Example applications for formal languages and automata

- HTML and web browsers
- Speech recognition and understanding grammars
- Dialog systems and AI (Siri, Alexa, Hey Google, Watson)
- Regular expression matching
- Compilers and interpreters of programming languages

End lecture 1

Outline

Introduction

Organisation Formal languages overview Formal language basics

Regular Languages and Finite Automata

Scanners and Flex

Formal Grammars and Context-Free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0 Lecture-specific material Bonus Exercises Selected Solutions

Alphabets

Definition (Alphabet)

An alphabet Σ is a finite, non-empty set of characters (symbols, letters).

$$\Sigma = \{c_1, \ldots, c_n\}$$

Alphabets

Definition (Alphabet)

An alphabet Σ is a finite, non-empty set of characters (symbols, letters).

$$\Sigma = \{c_1, \ldots, c_n\}$$

Example

- 1 $\Sigma_{\text{bin}} = \{0, 1\}$ can express integers in the binary system.
- 2 The English language is based on $\Sigma_{en} = \{a, \dots, z, A, \dots, Z\}.$
- 3 $\Sigma_{ASCII} = \{0, ..., 127\}$ represents the set of ASCII characters [American Standard Code for Information Interchange] coding letters, digits, and special and control characters.

Alphabets: ASCII code chart

ASCII Code Chart

	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	I F I
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	S0	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2		!	н	#	\$	%	&	·	()	*	+	,	-	•	/
3	0	1	2	3	4	5	6	7	8	9	:	;	۷	=	۷	?
4	0	A	В	C	D	Ε	F	G	H	Ι	J	K	L	М	N	0
5	Р	Q	R	S	Т	U	V	W	X	Y	Z]	\]	~	-
6	,	а	b	с	d	е	f	g	h	i	j	k	ι	m	n	0
7	р	q	r	s	t	u	v	w	х	У	z	{	Ī	}	2	DEL

Definition (Word)

A word over the alphabet Σ is a finite sequence (list) of characters of Σ:

 $w = c_1 \dots c_n$ with $c_1, \dots, c_n \in \Sigma$.

- The empty word with no characters is written as ε .
- The set of all words over an alphabet Σ is represented by Σ^* .

Definition (Word)

A word over the alphabet Σ is a finite sequence (list) of characters of Σ:

 $w = c_1 \dots c_n$ with $c_1, \dots, c_n \in \Sigma$.

- The empty word with no characters is written as ε .
- The set of all words over an alphabet Σ is represented by Σ^* .

In programming languages, words are often referred to as strings.

Example

1 Using Σ_{bin} , we can define the words $w_1, w_2 \in \Sigma_{\text{bin}}^*$:

 $w_1 = 01100$ and $w_2 = 11001$

2 Using Σ_{en} , we can define the word $w \in \Sigma_{en}^*$:

w = example

Properties of words

Definition (Length, character access)

- The length |w| of a word w is the number of characters in w.
- ► The number of occurrences of a character *c* in *w* is denoted as |w|_c.
- ► The individual characters within words are accessed using w[i] with i ∈ {1, 2, ..., |w|}.

Properties of words

Definition (Length, character access)

- The length |w| of a word w is the number of characters in w.
- ► The number of occurrences of a character *c* in *w* is denoted as |w|_c.
- ► The individual characters within words are accessed using w[i] with i ∈ {1, 2, ..., |w|}.

Example

- $|example| = 7 \quad and \quad |\varepsilon| = 0$
- $\blacktriangleright \ |\texttt{example}|_{\texttt{e}} = 2 \quad \text{and} \quad |\texttt{example}|_{\texttt{k}} = 0$

example[4] = m

Appending words

Definition (Concatenation of words)

For words w_1 and w_2 , the concatenation $w_1 \cdot w_2$ is defined as w_1 followed by w_2 .

Appending words

Definition (Concatenation of words)

For words w_1 and w_2 , the concatenation $w_1 \cdot w_2$ is defined as w_1 followed by w_2 .

 $w_1 \cdot w_2$ is often simply written as $w_1 w_2$.

Definition (Concatenation of words)

For words w_1 and w_2 , the concatenation $w_1 \cdot w_2$ is defined as w_1 followed by w_2 .

 $w_1 \cdot w_2$ is often simply written as $w_1 w_2$.

Example

Let $w_1 = 01$ and $w_2 = 10$. Then the following holds:

 $w_1w_2 = 0110$ and $w_2w_1 = 1001$

Iterated concatenation

We denote the set of natural numbers $\{0, 1, \ldots\}$ by \mathbb{N} .

Definition (Power of a word)

For $n \in \mathbb{N}$, the *n*-th power w^n of a word *w* concatenates the same word *n* times:

$$w^{0} = \varepsilon$$

$$w^{n} = w^{n-1} \cdot w \quad \text{if } n > 0$$

Iterated concatenation

We denote the set of natural numbers $\{0, 1, \ldots\}$ by \mathbb{N} .

Definition (Power of a word)

For $n \in \mathbb{N}$, the *n*-th power w^n of a word *w* concatenates the same word *n* times:

$$w^{0} = \varepsilon$$

$$w^{n} = w^{n-1} \cdot w \quad \text{if } n > 0$$

Example

Let w = ab. Then:

$$w^0 = \varepsilon$$

 $w^1 = ab$
 $w^3 = ababab$

Exercise: Operations on words

Given the alphabet $\Sigma = \{a, b, c\}$ and the words

$$\blacktriangleright$$
 $u = abc$

$$\triangleright$$
 $v = aa$

$$\blacktriangleright w = cb$$

what is denoted by the following expressions?

1
$$u^2 \cdot w$$

2 $v \cdot \varepsilon \cdot w \cdot u^0$
3 $|u^3|_a$
4 $v \cdot a^2 \cdot (v[4])$
5 $(v \cdot a^2 \cdot v)[4]$
6 $|w^0|$
7 $|w^0 \cdot w|$

Definition (Formal language)

For an alphabet Σ , a formal language over Σ is a subset $L \subseteq \Sigma^*$.

Definition (Formal language)

For an alphabet Σ , a formal language over Σ is a subset $L \subseteq \Sigma^*$.

Example

Let $L_{\mathbb{N}} = \{ \mathbb{1}w \mid w \in \Sigma_{\mathrm{bin}}^* \} \cup \{ \mathbb{0} \}.$

Then $L_{\mathbb{N}}$ is the set of all words that represent integers using the binary system (all words starting with 1 and the word 0):

 $100 \in L_{\mathbb{N}}$ but $010 \notin L_{\mathbb{N}}$.

Definition (Numeric value)

We define the function

$$n: L_{\mathbb{N}} \to \mathbb{N}$$

as the function returning the numeric value of a word in the language $L_{\mathbb{N}}$. This means

(a)
$$n(0) = 0$$
,
(b) $n(1) = 1$,
(c) $n(w0) = 2 \cdot n(w)$ for $|w| > 0$,
(d) $n(w1) = 2 \cdot n(w) + 1$ for $|w| > 0$.

Definition (Prime numbers)

We define the language $L_{\mathbb{P}}$ as the language representing prime numbers in the binary system:

$$L_{\mathbb{P}} = \{ w \in L_{\mathbb{N}} \mid n(w) \in \mathbb{P} \}.$$

Definition (Prime numbers)

We define the language $L_{\mathbb{P}}$ as the language representing prime numbers in the binary system:

$$L_{\mathbb{P}} = \{ w \in L_{\mathbb{N}} \mid n(w) \in \mathbb{P} \}.$$

One way to formally express the set of all prime numbers is

$$\mathbb{P} = \{ p \in \mathbb{N}^{\geq 2} \mid \{ t \in \mathbb{N} \mid \exists k \in \mathbb{N} : k \cdot t = p \} = \{1, p\} \}.$$

C functions as a language

Definition

We define the language $L_C \subset \Sigma^*_{ASCII}$ as the set of all C function definitions with a declaration of the form:

```
char* f(char* x);
```

(where f and x are legal C identifiers). Then L_C contains the ASCII code of all those definitions of C functions processing and returning a string.

C functions as a language

Definition

We define the language $L_C \subset \Sigma^*_{ASCII}$ as the set of all C function definitions with a declaration of the form:

```
char* f(char* x);
```

(where f and x are legal C identifiers). Then L_C contains the ASCII code of all those definitions of C functions processing and returning a string.

Examples

- ▶ char* f(char* x){return x;} $\in L_C$
- char* f(char* x){return "";} $\in L_C$
- ▶ char* f(char* x, int y){return "";} $\notin L_C$
- ▶ Harakiri $\notin L_C$

C function evaluations as a language

Definition

Using the alphabet $\Sigma_{ASCII+} = \Sigma_{ASCII} \cup \{\dagger\}$, we define the universal language

$$L_u = \{f \dagger x \dagger y \mid (a) \text{ and } (b) \text{ and } (c)\}$$
 with

(a) f ∈ L_C (i.e. f is a C function mapping strings to strings),
(b) x, y ∈ Σ^{*}_{ASCII},
(c) applying f to x terminates and returns y.

C function evaluations as a language

Definition

Using the alphabet $\Sigma_{ASCII+} = \Sigma_{ASCII} \cup \{\dagger\}$, we define the universal language

```
L_u = \{f \dagger x \dagger y \mid (a) \text{ and } (b) \text{ and } (c)\} with
```

(a) f ∈ L_C (i.e. f is a C function mapping strings to strings),
(b) x, y ∈ Σ^{*}_{ASCII},
(c) applying f to x terminates and returns y.

Examples

	char*	f(char*	x){return	x;}taaataaa	$\in L_u$
--	-------	---------	-----------	-------------	-----------

- ▶ char* f(char* x){return x;}taaatbbb $\notin L_u$
- ▶ char* f(char* x){return "";} taat $\in L_u$

Formal languages have a wide scope:

- Testing whether a word belongs to *L*_N is straightforward
- ► The same test for L_P is more complex
- The test for L_C requires a proper C parser
- Later we will see that there is no algorithm that will correctly perform the membership test for L_u

```
def inN(x):
    if x=="0":
        return True
    if x=="":
        return False
    if x[0]!="1":
        return False
    for c in x[1:]:
        if c!="0" and c!="1":
            return False
    return True
```

Abandon all hope...

Product

Definition (Product of formal languages)

Given an alphabet Σ and the formal languages $L_1, L_2 \subseteq \Sigma^*$, we define the product

$$L_1 \cdot L_2 = \{ w_1 \cdot w_2 \mid w_1 \in L_1, w_2 \in L_2 \}.$$

Product

Definition (Product of formal languages)

Given an alphabet Σ and the formal languages $L_1, L_2 \subseteq \Sigma^*$, we define the product

$$L_1 \cdot L_2 = \{ w_1 \cdot w_2 \mid w_1 \in L_1, w_2 \in L_2 \}.$$

Example

Using the alphabet $\boldsymbol{\Sigma}_{en},$ we define the languages

$$L_1 = \{ab, bc\} \text{ and } L_2 = \{ac, cb\}.$$

The product is

$$L_1 \cdot L_2 = \{ abac, abcb, bcac, bccb \}.$$

Power

Definition (Power of a language)

Given an alphabet Σ , a formal language $L \subseteq \Sigma^*$, and an integer $n \in \mathbb{N}$, we define the *n*-th power of *L* (recursively) as follows:

$$L^{0} = \{\varepsilon\}$$
$$L^{n} = L^{n-1} \cdot L$$

Power

Definition (Power of a language)

Given an alphabet Σ , a formal language $L \subseteq \Sigma^*$, and an integer $n \in \mathbb{N}$, we define the *n*-th power of *L* (recursively) as follows:

$$L^{0} = \{\varepsilon\}$$
$$L^{n} = L^{n-1} \cdot L$$

Example

Using the alphabet Σ_{en} , we define the language $L = \{ab, ba\}$. Thus:

The Kleene Star operator

Definition (Kleene Star)

Given an alphabet Σ and a formal language $L \subseteq \Sigma^*$, we define the Kleene star operator as

$$L^* = \bigcup_{n \in \mathbb{N}} L^n.$$

Definition (Kleene Star)

Given an alphabet Σ and a formal language $L \subseteq \Sigma^*$, we define the Kleene star operator as

$$L^* = \bigcup_{n \in \mathbb{N}} L^n.$$

Example

Using the alphabet Σ_{en} , we define the language $L = \{a\}$. Thus:

$$L^* = \{ a^n \mid n \in \mathbb{N} \}.$$

Given

• the alphabet Σ_{bin} ,

- the function n(w) mapping binary words to numbers as defined on page 40, and
- ▶ the language $L = \{1\}$,

formally describe the following:

a) the language $M = L^* \setminus \{\varepsilon\}$

b) the set
$$N = \{n(w) \mid w \in M\}$$

- c) the language $M^{-} = \{w \mid n(w) 1 \in N\}$
- d) the language $M^+ = \{w \mid n(w) + 1 \in N\}$

Hinweis: $N \neq \mathbb{N}$

Outline

Introduction

Regular Languages and Finite Automata

Regular Expressions Finite Automata The Pumping Lemma Properties of Regular Languages

Scanners and Flex

Formal Grammars and Context-Free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0 Lecture-specific material Bonus Exercises Selected Solutions

Outline

Introduction

Regular Languages and Finite Automata

Regular Expressions

Finite Automata The Pumping Lemma Properties of Regular Languages

Scanners and Flex

Formal Grammars and Context-Free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0 Lecture-specific material Bonus Exercises Selected Solutions Compact and convenient way to represent a set of strings

Compact and convenient way to represent a set of strings

- Characterize tokens for compilers
- Describe search terms for a database
- Filter through genomic data
- Extract URLs from web pages
- Extract email addresses from web pages

Compact and convenient way to represent a set of strings

- Characterize tokens for compilers
- Describe search terms for a database
- Filter through genomic data
- Extract URLs from web pages
- Extract email addresses from web pages

The set of all regular expressions (over an alphabet) is a formal language

Each single regular expression describes a formal language

▶ $1(0+1)^*$

1(0+1)* - all words beginning with a 1 (also known as L_N\{0})
 11*

- ▶ $1(0+1)^*$ all words beginning with a 1 (also known as $L_{\mathbb{N}} \setminus \{0\}$)
- ► 11* all words consisting of one ore more letters 1 (*M* from the last exercise)

$$\bullet \ 0(10)^* + (10)^* + 1(01)^* + (01)^*$$

- ▶ $1(0+1)^*$ all words beginning with a 1 (also known as $L_{\mathbb{N}} \setminus \{0\}$)
- 11* all words consisting of one ore more letters 1 (*M* from the last exercise)
- ▶ 0(10)* + (10)* + 1(01)* + (01)* the language of all words where no two subsequent characters are the same

Definition (Power set of a set)

- Assume a set S. Then the power set of S, written as 2^S, is the set of all subsets of S.
- In particular, if Σ is an alphabet, 2^{Σ*} is the set of all subsets of Σ* and hence the set of all possible formal languages over Σ.

Definition (Power set of a set)

- Assume a set S. Then the power set of S, written as 2^S, is the set of all subsets of S.
- In particular, if Σ is an alphabet, 2^{Σ*} is the set of all subsets of Σ* and hence the set of all possible formal languages over Σ.

Example

$$2^{\Sigma_{\text{bin}}} = 2^{\{0,1\}} = \{\{\}, \{0\}, \{1\}, \{0,1\}\},\$$

Definition (Power set of a set)

- Assume a set S. Then the power set of S, written as 2^S, is the set of all subsets of S.
- In particular, if Σ is an alphabet, 2^{Σ*} is the set of all subsets of Σ* and hence the set of all possible formal languages over Σ.

Example

$$\begin{array}{rcl} 2^{\Sigma_{\text{bin}}} &=& 2^{\{0,1\}} = \{\{\}, \{0\}, \{1\}, \{0,1\}\}, \\ 2^{\Sigma_{\text{bin}}} &=& 2^{\{\varepsilon,0,1,00,01,\ldots\}} \end{array}$$

Definition (Power set of a set)

- Assume a set S. Then the power set of S, written as 2^S, is the set of all subsets of S.
- In particular, if Σ is an alphabet, 2^{Σ*} is the set of all subsets of Σ* and hence the set of all possible formal languages over Σ.

Example

$$\begin{array}{rcl} 2^{\Sigma_{\text{bin}}} &=& 2^{\{0,1\}} = \{\{\}, \{0\}, \{1\}, \{0,1\}\}, \\ 2^{\Sigma_{\text{bin}}^{*}} &=& 2^{\{\varepsilon, 0, 1, 00, 01, \ldots\}} \end{array}$$

$$= \{\{\}, \{\varepsilon\}, \{0\}, \{1\}, \{00\}, \{01\}, \dots \\ \dots \{\varepsilon, 0\}, \{\varepsilon, 1\}, \{\varepsilon, 00\}, \{\varepsilon, 01\}, \dots \}$$

 $\dots \{010, 1110, 10101\}, \dots \}.$

A regular expression over Σ ...

- ... is a word over the extended alphabet $\Sigma \cup \{\emptyset, \varepsilon, +, \cdot, *, (,)\}$
 - ▶ Note that we implicitly assume that $\{\emptyset, \varepsilon, +, \cdot, *, (,)\} \cap \Sigma = \{\}$
 - Ø denotes a regular expression (syntax)
 - {} denotes the empty set (semantics)
- \blacktriangleright ... describes a formal language over Σ

A regular expression over Σ ...

- ▶ ... is a word over the extended alphabet $\Sigma \cup \{\emptyset, \varepsilon, +, \cdot, *, (,)\}$
 - ▶ Note that we implicitly assume that $\{\emptyset, \varepsilon, +, \cdot, *, (,)\} \cap \Sigma = \{\}$
 - Ø denotes a regular expression (syntax)
 - {} denotes the empty set (semantics)
- \blacktriangleright ... describes a formal language over Σ

Terminology

The following terms are defined on the next slides:

- ▶ R_{Σ} is the set of all regular expressions over the alphabet Σ .
- ▶ The function $L : R_{\Sigma} \to 2^{\Sigma^*}$ assigns a formal language $L(r) \subseteq \Sigma^*$ to each regular expression *r*.

Definition (Regular expressions)

The set of regular expressions R_{Σ} over the alphabet Σ is defined as follows:

- **1** The regular expression \emptyset denotes the empty language. $\emptyset \in R_{\Sigma}$ and $L(\emptyset) = \{\}$
- 2 The regular expression ε denotes the language containing only the empty word.

 $\varepsilon \in R_{\Sigma}$ and $L(\varepsilon) = \{\varepsilon\}$

3 Each symbol in the alphabet Σ is a regular expression. $c \in \Sigma \Rightarrow c \in R_{\Sigma}$ and $L(c) = \{c\}$

Definition (Regular expressions (cont'))

- 4 The operator + denotes the union of the languages of r_1 and r_2 . $r_1 \in R_{\Sigma}, r_2 \in R_{\Sigma} \Rightarrow r_1 + r_2 \in R_{\Sigma}$ and $L(r_1 + r_2) = L(r_1) \cup L(r_2)$
- **5** The operator \cdot denotes the product of the languages of r_1 and r_2 . $r_1 \in R_{\Sigma}, r_2 \in R_{\Sigma} \Rightarrow r_1 \cdot r_2 \in R_{\Sigma}$ and $L(r_1 \cdot r_2) = L(r_1) \cdot L(r_2)$
- **6** The Kleene star of a regular expression *r* denotes the Kleene star of the language of *r*.

 $r \in R_{\Sigma} \Rightarrow r^* \in R_{\Sigma}$ and $L(r^*) = (L(r))^*$

7 Brackets can be used to group regular expressions without changing their language.

 $r \in R_{\Sigma} \Rightarrow (r) \in R_{\Sigma}$ and L((r)) = L(r)

Equivalence of regular expressions

Definition (Equivalence and precedence)

- ► Two regular expressions r_1 and r_2 are equivalent if they denote the same language: $r_1 \doteq r_2$ if and only if $L(r_1) = L(r_2)$
- The operators have the following precedence:
 - $(\ldots) > * > \cdot > +$
- ► The product operator · can be omitted.

Equivalence of regular expressions

Definition (Equivalence and precedence)

- ► Two regular expressions r₁ and r₂ are equivalent if they denote the same language: r₁ ≐ r₂ if and only if L(r₁) = L(r₂)
- The operators have the following precedence:

 $(\ldots) > * > \cdot > +$

► The product operator · can be omitted.

Example

$$\begin{array}{rcl} a+b\cdot c^* &\doteq& a+(b\cdot (c^*))\\ ac+bc^* &\doteq& a\cdot c+b\cdot c^* \end{array}$$

Equivalence of regular expressions

Definition (Equivalence and precedence)

- ► Two regular expressions r_1 and r_2 are equivalent if they denote the same language: $r_1 \doteq r_2$ if and only if $L(r_1) = L(r_2)$
- The operators have the following precedence:

 $(\ldots) > * > \cdot > +$

► The product operator · can be omitted.

Example

$$\begin{array}{rcl} a+b\cdot c^* &\doteq& a+(b\cdot (c^*))\\ ac+bc^* &\doteq& a\cdot c+b\cdot c^* \end{array}$$

Note: Some authors (and tools) use | as the union operator.

Examples for regular expressions

Example

- Let $\Sigma_{abc} = \{a, b, c\}.$
 - The regular expression r₁ = (a + b + c)(a + b + c) describes all the words of exactly two symbols:

$$L(r_1) = \{ w \in \Sigma_{abc}^* \mid |w| = 2 \}$$

► The regular expression r₂ = (a + b + c)(a + b + c)* describes all the words of one or more symbols:

$$L(r_2) = \{ w \in \Sigma_{abc}^* \mid |w| \ge 1 \}$$

Exercise: regular expressions

- Using the alphabet Σ_{abc} = {a, b, c}, give a regular expression r₁ for all the words w ∈ Σ^{*}_{abc} containing exactly one a or exactly one b.
- **2** Formally describe $L(r_1)$ as a set.
- 3 Using the alphabet $\Sigma_{abc} = \{a, b, c\}$, give a regular expression r_2 for all the words containing at least one a and at least one b.
- 4 Using the alphabet $\Sigma_{bin} = \{0, 1\}$, give a regular expression for all the words whose third last symbol is 1.
- 5 Using the alphabet Σ_{bin} , give a regular expression for all the words not containing the string 110.
- 6 Which language is described by the regular expression

 $r_6 = (1 + \varepsilon)(00^*1)^*0^*?$

Exercise: regular expressions

- Using the alphabet Σ_{abc} = {a, b, c}, give a regular expression r₁ for all the words w ∈ Σ^{*}_{abc} containing exactly one a or exactly one b.
- **2** Formally describe $L(r_1)$ as a set.
- 3 Using the alphabet $\Sigma_{abc} = \{a, b, c\}$, give a regular expression r_2 for all the words containing at least one a and at least one b.
- 4 Using the alphabet $\Sigma_{bin} = \{0, 1\}$, give a regular expression for all the words whose third last symbol is 1.
- 5 Using the alphabet Σ_{bin} , give a regular expression for all the words not containing the string 110.
- 6 Which language is described by the regular expression

$$r_6 = (1 + \varepsilon)(00^*1)^*0^*?$$

Theorem

1
$$r_1 + r_2 \doteq r_2 + r_1$$
 (commutative law)
2 $(r_1 + r_2) + r_3 \doteq r_1 + (r_2 + r_3)$ (associative law)
3 $(r_1r_2)r_3 \doteq r_1(r_2r_3)$ (associative law)
4 $\emptyset r \doteq \emptyset$ and $r\emptyset \doteq \emptyset$
5 $\varepsilon r \doteq r$ and $r\emptyset \doteq 0$
6 $\emptyset + r \doteq r$
7 $(r_1 + r_2)r_3 \doteq r_1r_3 + r_2r_3$ (distributive law)
8 $r_1(r_2 + r_3) \doteq r_1r_2 + r_1r_3$ (distributive law)

Proof of Rule 1 $(r_1 + r_2 \doteq r_2 + r_1)$.

$$L(r_1 + r_2) = L(r_1) \cup L(r_2) = L(r_2) \cup L(r_1) = L(r_2 + r_1)$$

Proof of Rule 1 $(r_1 + r_2 \doteq r_2 + r_1)$.

$$L(r_1 + r_2) = L(r_1) \cup L(r_2) = L(r_2) \cup L(r_1) = L(r_2 + r_1)$$

$$L(\emptyset r) \stackrel{\text{Def. concat}}{=} L(\emptyset) \cdot L(r)$$

Proof of Rule 1 $(r_1 + r_2 \doteq r_2 + r_1)$.

$$L(r_1 + r_2) = L(r_1) \cup L(r_2) = L(r_2) \cup L(r_1) = L(r_2 + r_1)$$

$$L(\emptyset r) \stackrel{\text{Def. concat}}{=} L(\emptyset) \cdot L(r)$$
$$\stackrel{\text{Def. empty regexp}}{=} \{\} \cdot L(r)$$

Proof of Rule 1 $(r_1 + r_2 \doteq r_2 + r_1)$.

$$L(r_1 + r_2) = L(r_1) \cup L(r_2) = L(r_2) \cup L(r_1) = L(r_2 + r_1)$$

$$L(\emptyset r) \xrightarrow{\text{Def. concat}} L(\emptyset) \cdot L(r)$$

$$\stackrel{\text{Def. empty regexp}}{=} \{\} \cdot L(r)$$

$$\stackrel{\text{Def. product}}{=} \{w_1 w_2 \mid w_1 \in \{\}, w_2 \in L(r)\}$$

Proof of Rule 1 $(r_1 + r_2 \doteq r_2 + r_1)$.

$$L(r_1 + r_2) = L(r_1) \cup L(r_2) = L(r_2) \cup L(r_1) = L(r_2 + r_1)$$

$$L(\emptyset r) \xrightarrow{\text{Def. concat}} L(\emptyset) \cdot L(r)$$

$$\stackrel{\text{Def. empty regexp}}{=} \{\} \cdot L(r)$$

$$\stackrel{\text{Def. product}}{=} \{w_1 w_2 \mid w_1 \in \{\}, w_2 \in L(r)\}$$

$$= \{\}$$

Proof of Rule 1 ($r_1 + r_2 \doteq r_2 + r_1$).

$$L(r_1 + r_2) = L(r_1) \cup L(r_2) = L(r_2) \cup L(r_1) = L(r_2 + r_1)$$

Proof of Rule 4 ($\emptyset r \doteq \emptyset$).

 $\begin{array}{cccc} L(\emptyset r) & \stackrel{\text{Def. concat}}{=} & L(\emptyset) \cdot L(r) \\ & \stackrel{\text{Def. empty regexp}}{=} & \{\} \cdot L(r) \\ & \stackrel{\text{Def. product}}{=} & \{w_1 w_2 \mid w_1 \in \{\}, w_2 \in L(r)\} \\ & = & \{\} \\ & \stackrel{\text{Def. empty regexp}}{=} & L(\emptyset) \end{array}$

Algebraic operations on regular expressions (cont.)

Theorem $r+r \doteq r$ $(r^*)^* \doteq r^*$ $\emptyset^* \doteq \varepsilon$ $\varepsilon^* \doteq \varepsilon$ $r^* \doteq \varepsilon + r^*r$ **14** $r^* \doteq (\varepsilon + r)^*$ $\varepsilon \notin L(s)$ and $r \doteq rs + t \longrightarrow r \doteq ts^*$ (proof by Arto Salomaa) $r^*r \doteq rr^*$ (see Lemma: Kleene Star below) $\varepsilon \notin L(s)$ and $r \doteq sr + t \longrightarrow r \doteq s^*t$ (Arden's Lemma)

Lemma (Kleene Star)

 $u^*u \doteq uu^*$

$$u^*u \doteq uu^*$$

$$u^*u \doteq (\varepsilon + u^*u)u$$
 (by 13. $(r)^* \doteq \varepsilon + (r)^*r$)

$$u^*u \doteq uu^*$$

$$u^*u \doteq (\varepsilon + u^*u)u \quad \text{(by 13. } (r)^* \doteq \varepsilon + (r)^*r)$$
$$\doteq (u^*u + \varepsilon)u \quad \text{(by 1. } r_1 + r_2 \doteq r_2 + r_1)$$

$$u^*u \doteq uu^*$$

$$u^{*}u \stackrel{\doteq}{=} (\varepsilon + u^{*}u)u \quad (by \ 13. \ (r)^{*} \stackrel{=}{=} \varepsilon + (r)^{*}r) \\ \stackrel{\doteq}{=} (u^{*}u + \varepsilon)u \quad (by \ 1. \ r_{1} + r_{2} \stackrel{=}{=} r_{2} + r_{1}) \\ \stackrel{\doteq}{=} u^{*}uu + u \quad (by \ 7. \ (r_{1} + r_{2})r_{3} \stackrel{=}{=} r_{1}r_{3} + r_{2}r_{3}$$

$$u^*u \doteq uu^*$$

$$u^{*}u \stackrel{\doteq}{=} (\varepsilon + u^{*}u)u \quad (by \ 13. \ (r)^{*} \stackrel{=}{=} \varepsilon + (r)^{*}r)$$

$$\stackrel{\doteq}{=} (u^{*}u + \varepsilon)u \quad (by \ 1. \ r_{1} + r_{2} \stackrel{=}{=} r_{2} + r_{1})$$

$$\stackrel{\doteq}{=} u^{*}uu + u \quad (by \ 7. \ (r_{1} + r_{2})r_{3} \stackrel{=}{=} r_{1}r_{3} + r_{2}r_{3})$$

$$\stackrel{\doteq}{=} uu^{*} \qquad (by \ 15. \ r \stackrel{=}{=} rs + t \text{ with } r = u^{*}u, s = u, t = u)$$

Proof of Case 2: $\varepsilon \in L(u)$.

We show $L(u^*u) = L(u^*) = L(uu^*)$

Proof of Case 2: $\varepsilon \in L(u)$.

We show $L(u^*u) = L(u^*) = L(uu^*)$

a) Proof of
$$L(u^*u) \subseteq L(u^*)$$

 $L(u^*u) = L(u^*) \cdot L(u)$
 $= (L(u))^* \cdot L(u)$
 $= (\bigcup_{i \ge 0} L(u)^i) \cdot L(u)$
 $= \bigcup_{i \ge 0} (L(u)^i \cdot L(u))$
 $= \bigcup_{i \ge 1} L(u)^i$
 $\subseteq L(u^*)$

Proof of Case 2: $\varepsilon \in L(u)$.

We show $L(u^*u) = L(u^*) = L(uu^*)$

b

a) Proof of
$$L(u^*u) \subseteq L(u^*)$$

 $L(u^*u) = L(u^*) \cdot L(u)$
 $= (L(u))^* \cdot L(u)$
 $= (\bigcup_{i \ge 0} L(u)^i) \cdot L(u)$
 $= \bigcup_{i \ge 0} (L(u)^i \cdot L(u))$
 $= \bigcup_{i \ge 1} L(u)^i$
 $\subseteq L(u^*)$

) Proof of
$$L(u^*u) \supseteq L(u^*)$$

 $L(u^*u) = \{tv \mid t \in L(u^*), v \in L(u)\}$
 $\supseteq \{tv \mid t \in L(u^*), v = \varepsilon\}$
 $= \{t \mid t \in L(u^*)\}$
 $= L(u^*)$

Proof of Case 2: $\varepsilon \in L(u)$.

We show $L(u^*u) = L(u^*) = L(uu^*)$

b

a) Proof of
$$L(u^*u) \subseteq L(u^*)$$

 $L(u^*u) = L(u^*) \cdot L(u)$
 $= (L(u))^* \cdot L(u)$
 $= (\bigcup_{i \ge 0} L(u)^i) \cdot L(u)$
 $= \bigcup_{i \ge 0} (L(u)^i \cdot L(u))$
 $= \bigcup_{i \ge 1} L(u)^i$
 $\subseteq L(u^*)$

) Proof of
$$L(u^*u) \supseteq L(u^*)$$

 $L(u^*u) = \{tv \mid t \in L(u^*), v \in L(u)\}$
 $\supseteq \{tv \mid t \in L(u^*), v = \varepsilon\}$
 $= \{t \mid t \in L(u^*)\}$
 $= L(u^*)$

▶ a) and b) imply
$$L(u^*u) = L(u^*)$$

•
$$L(uu^*) = L(u^*)$$
: strictly analoguous

- Arto: $\varepsilon \notin L(s)$ and $r \doteq rs + t \longrightarrow r \doteq ts^*$
- Why do we need $\varepsilon \notin L(s)$?
 - ▶ This guarantees that only words of the form ts^* are in L(r)
 - ▶ Example: $r \doteq rs + t$ with $s = b^*$, t = a.
 - ▶ If we could apply Arto, the result would be $r \doteq a(b^*)^* \doteq ab^*$
 - ▶ But $L = \{ab^*\} \cup \{b^*\}$ also fulfills the equation, i.e. there is no single unique solution in this case
 - Intuitively: *ε* ∈ *L*(*s*) is a second escape from the recursion that bypasses *t*
- The case for Arden's lemma (ε ∉ L(s) and r ≐ sr + t → r ≐ s*t) is analoguous

Exercise: Algebra on regular expressions

Prove the equivalence using only algebraic operations:

 $r^* \doteq \varepsilon + r^*$.

2 Simplify the regular expression *s* using only algebraic operations:

$$s = 0(\varepsilon + 0 + 1)^* + (\varepsilon + 1)(1 + 0)^* + \varepsilon.$$

Brove the equivalence using only algebraic equivalences:

 $10(10)^* \doteq 1(01)^*0.$

Exercise: Algebra on regular expressions

Prove the equivalence using only algebraic operations:

 $r^* \doteq \varepsilon + r^*.$

2 Simplify the regular expression *s* using only algebraic operations:

$$s = 0(\varepsilon + 0 + 1)^* + (\varepsilon + 1)(1 + 0)^* + \varepsilon.$$

Brove the equivalence using only algebraic equivalences:

 $10(10)^* \doteq 1(01)^*0.$

Exercise: Algebra on regular expressions

Prove the equivalence using only algebraic operations:

 $r^* \doteq \varepsilon + r^*.$

2 Simplify the regular expression *s* using only algebraic operations:

$$s = 0(\varepsilon + 0 + 1)^* + (\varepsilon + 1)(1 + 0)^* + \varepsilon.$$

Brove the equivalence using only algebraic equivalences:

 $10(10)^* \doteq 1(01)^*0.$

Outline

Introduction

Regular Languages and Finite Automata

Regular Expressions

Finite Automata

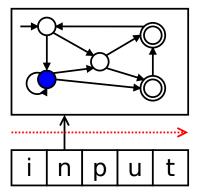
The Pumping Lemma Properties of Regular Languages

Scanners and Flex

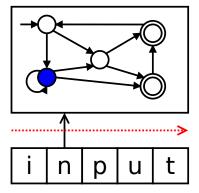
Formal Grammars and Context-Free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0 Lecture-specific material Bonus Exercises Selected Solutions

- Simple model of computation
- Can recognize regular languages
- Equivalent to regular expressions
 - We can automatically generate a FA from a RE
 - We can automatically generate an RE from an FA
- Two variants:
 - Deterministic (DFA, now)
 - Non-deterministic (NFA, later)
- Easy to implement in actual programs

Deterministic Finite Automata: Idea



Deterministic Finite Automata: Idea



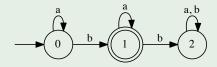
Deterministic finite automaton (DFA)

- ▶ is in one of finitely many states
- starts in the initial state
- processes input from left to right
 - changes state depending on character read
 - determined by transition function
 - no rewinding!
 - no writing!
- accepts input if
 - ▶ after reading the entire input
 - an accepting state is reached

DFA \mathcal{A} for a^*ba^*

Example (Automaton \mathcal{A})

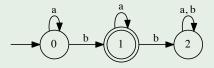
 $\mathcal A$ is a simple DFA recognizing the regular language $\mathtt{a}^*\mathtt{b}\mathtt{a}^*.$



DFA \mathcal{A} for a^*ba^*

Example (Automaton \mathcal{A})

 $\mathcal A$ is a simple DFA recognizing the regular language $\mathtt{a}^*\mathtt{b}\mathtt{a}^*.$



- \mathcal{A} has three states, 0, 1 and 2.
- It operates on the alphabet $\{a, b\}$.
- ► The transition function is indicated by the arrows.
- ▶ 0 is the initial state (with an arrow pointing at it *out of nowhere*).
- ▶ 1 is an accepting state (represented as a double circle).
- 2 is also called a junk state (once it is reached, the word can never be accepted).

DFA: formal definition

Definition (Deterministic Finite Automaton)

A deterministic finite automaton (DFA) is a quintuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ with the following components

- \triangleright Q is a finite set of states.
- > Σ is the (finite) input alphabet.
- $\delta: Q \times \Sigma \to Q$ is the transition function.
- ▶ $q_0 \in Q$ is the initial state.
- $F \subseteq Q$ is the set of final (or accepting) states.

DFA: formal definition

Definition (Deterministic Finite Automaton)

A deterministic finite automaton (DFA) is a quintuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ with the following components

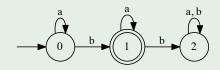
- \triangleright Q is a finite set of states.
- > Σ is the (finite) input alphabet.
- $\delta: Q \times \Sigma \to Q$ is the transition function.
- ▶ $q_0 \in Q$ is the initial state.
- $F \subseteq Q$ is the set of final (or accepting) states.

Notes:

- δ is a total function there has to be a transition from every state for every letter
- ... but automata with partial transition functions can be "repaired" into a proper DFA by adding a junk state

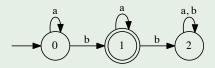
Formal definition of \mathcal{A}

Example



Formal definition of \mathcal{A}

Example



 \mathcal{A} is expressed as $(Q, \Sigma, \delta, q_0, F)$ with

•
$$Q = \{0, 1, 2\}$$

• $\Sigma = \{a, b\}$
• $\delta(0, a) = 0; \delta(0, b) = 1, \delta(1, a) = 1; \delta(1, b) = \delta(2, a) = \delta(2, b) = 2$
• $q_0 = 0$
• $F = \{1\}$

Definition (Language accepted by an automaton)

The state transition function δ is generalised to a function δ' whose second argument is a word as follows:

$$\blacktriangleright \ \delta': Q \times \Sigma^* \to Q$$

$$\blacktriangleright \ \delta'(q,\varepsilon) = q \text{ for every } q \in Q$$

 $\blacktriangleright \ \delta'(q,wc) = \delta(\delta'(q,w),c) \quad \text{with} \quad c \in \Sigma; w \in \Sigma^*$

Definition (Language accepted by an automaton)

The state transition function δ is generalised to a function δ' whose second argument is a word as follows:

$$\blacktriangleright \ \delta': Q \times \Sigma^* \to Q$$

$$\blacktriangleright \ \delta'(q,\varepsilon) = q \text{ for every } q \in Q$$

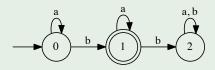
 $\blacktriangleright \ \delta'(q,wc) = \delta(\delta'(q,w),c) \quad \text{with} \quad c \in \Sigma; w \in \Sigma^*$

The language accepted by a DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ is defined as

$$L(\mathcal{A}) = \{ w \in \Sigma^* \mid \delta'(q_0, w) \in F \}.$$

Language accepted by ${\mathcal A}$

Example



Language accepted by ${\cal A}$

Example

$$\blacktriangleright \ \delta'(0,aa) = \delta(\delta'(0,a),a) = \delta(\delta(\delta'(0,\varepsilon),a),a) = 0$$

Definition (Configuration, Run)

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

A configuration of A is a pair (q, w) with $q \in Q$ and $w \in \Sigma^*$.

Definition (Configuration, Run)

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

A configuration of \mathcal{A} is a pair (q, w) with $q \in Q$ and $w \in \Sigma^*$.

A run of A on a word $w = c_1 \cdot c_2 \cdots c_n$ is a sequence of configurations:

$$((q_0, c_1 \cdot c_2 \cdots c_n), (q_1, c_2 \cdots c_n), \ldots, (q_n, \varepsilon))$$

Definition (Configuration, Run)

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

A configuration of \mathcal{A} is a pair (q, w) with $q \in Q$ and $w \in \Sigma^*$.

A run of A on a word $w = c_1 \cdot c_2 \cdots c_n$ is a sequence of configurations:

$$((q_0, c_1 \cdot c_2 \cdots c_n), (q_1, c_2 \cdots c_n), \dots, (q_n, \varepsilon))$$

where

•
$$q_i \in Q$$
 holds for $1 \le i \le n$ and
• $\delta(q_{i-1}, c_i) = q_i$ holds for $1 \le i \le n$.

Definition (Configuration, Run)

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

A configuration of \mathcal{A} is a pair (q, w) with $q \in Q$ and $w \in \Sigma^*$.

A run of A on a word $w = c_1 \cdot c_2 \cdots c_n$ is a sequence of configurations:

$$((q_0, c_1 \cdot c_2 \cdots c_n), (q_1, c_2 \cdots c_n), \ldots, (q_n, \varepsilon))$$

where

►
$$q_i \in Q$$
 holds for $1 \le i \le n$ and
► $\delta(q_{i-1}, c_i) = q_i$ holds for $1 \le i \le n$

A run is accepting if $q_n \in F$ holds.

Definition (Configuration, Run)

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

A configuration of \mathcal{A} is a pair (q, w) with $q \in Q$ and $w \in \Sigma^*$.

A run of A on a word $w = c_1 \cdot c_2 \cdots c_n$ is a sequence of configurations:

$$((q_0, c_1 \cdot c_2 \cdots c_n), (q_1, c_2 \cdots c_n), \dots, (q_n, \varepsilon))$$

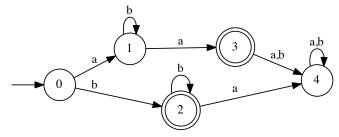
where

▶
$$q_i \in Q$$
 holds for $1 \le i \le n$ and
▶ $\delta(q_{i-1}, c_i) = q_i$ holds for $1 \le i \le n$.

A run is accepting if $q_n \in F$ holds.

The language accepted by A can alternatively be defined as the set of all words for which there exists an accepting run of A.

1 Given this graphical representation of a DFA \mathcal{A} :



- a) Give a regular expression describing L(A).
- b) Give a formal definition of A.

2 Give

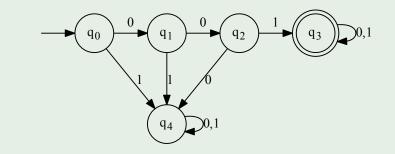
- ▶ a regular expression,
- a graphical representation of a DFA, and
- a formal definition

for the language $L \subset \{a, b\}^*$ containing all those words featuring the substring ab

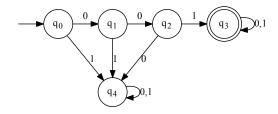
- a) at the beginning,
- b) at an arbitrary position,
- c) at the end.

Another example

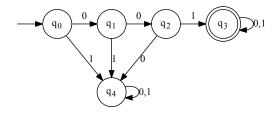
Example



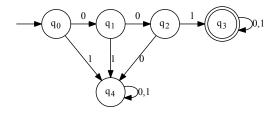
Which language is recognized by the DFA?



$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$		0	
• $Q = \{q_0, q_1, q_2, q_3, q_4\}$	q_0	q_1	q_4
$\Sigma = \{0, 1\}$	q_1	q_2	q_4
• Initial state: q_0	$q_2 \\ q_3$	$\begin{array}{c} q_1 \\ q_2 \\ q_4 \\ q_3 \\ q_4 \end{array}$	q_3 q_3
$\blacktriangleright F = \{q_3\}$	q_4	q_4	q_4



$\mathcal{A} = (\mathcal{Q}, \Sigma, \delta, q_0, F)$	δ	0	1
$\triangleright Q = \{q_0, q_1, q_2, q_3, q_4\}$	q_0	q_1	q_4
$\blacktriangleright \Sigma = \{0, 1\}$	q_1	q_2	q_4
lnitial state: q_0	$q_2 \\ q_3$	$ \begin{array}{c} q_1\\ q_2\\ q_4\\ q_3\\ q_4 \end{array} $	q_3 q_3
$\blacktriangleright F = \{q_3\}$	q_4	q_4	q_4



$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$$

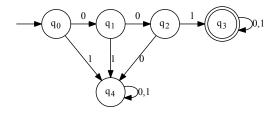
$$\triangleright \ \ Q = \{q_0, q_1, q_2, q_3, q_4\}$$

$$\blacktriangleright \Sigma = \{0, 1\}$$

• Initial state: q_0

•
$$F = \{q_3\}$$

δ	0	1
q_0	q_1	q_4
q_1	q_2	q_4
q_2	q_4	q_3
q_3	q_3	q_3
q_4	q_4	q_4



$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$$

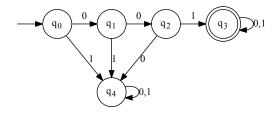
$$\triangleright \ Q = \{q_0, q_1, q_2, q_3, q_4\}$$

$$\Sigma = \{0, 1\}$$

• Initial state: q_0

•
$$F = \{q_3\}$$

	δ	0	1
\rightarrow	q_0	q_1	q_4
	q_1	q_2	q_4
	q_2	q_4	q_3
*	q_3	q_3	q_3
	q_4	q_4	q_4



$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$$

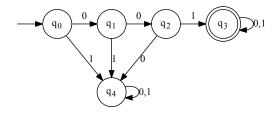
$$\triangleright \ \ Q = \{q_0, q_1, q_2, q_3, q_4\}$$

• $\Sigma = \{0, 1\}$

• Initial state: q_0

•
$$F = \{q_3\}$$

	δ	0	1
\rightarrow	q_0	q_1	q_4
	q_1	q_2	q_4
	q_2	q_4	q_3
*	q_3	q_3	q_3
	q_4	q_4	q_4



$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$$

$$\triangleright \ \ Q = \{q_0, q_1, q_2, q_3, q_4\}$$

• $\Sigma = \{0, 1\}$

Initial state: q_0

$$\blacktriangleright \quad F = \{q_3\}$$

	δ	0	1
\rightarrow	q_0	q_1	q_4
	q_1	q_2	q_4
	q_2	q_4	q_3
*	q_3	q_3	q_3
	q_4	q_4	q_4

DFA: Tabular representation in practice

DFA: Tabular representation in practice

> easim.py fsa001.txt 10101
Processing: 10101
q0 :: 1 -> q4
q4 :: 0 -> q4
q4 :: 1 -> q4
q4 :: 0 -> q4
q4 :: 0 -> q4
q4 :: 1 -> q4
Rejected

DFA: Tabular representation in practice

```
> easim.py fsa001.txt 10101
Processing: 10101
q0 :: 1 -> q4
q4 :: 0 -> q4
q4 :: 1 -> q4
q4 :: 0 -> q4
q4 :: 1 -> q4
Rejected
> easim.py fsa001.txt 101
Processing: 101
q0 :: 1 -> q4
q4 :: 0 -> q4
q4 :: 1 -> q4
Rejected
```

DFAs in tabular form: exercise

Give the following DFA ...
 as a formal 5-tuple
 as a diagram
 parity | 0 1
 -> even | even odd
 * odd | odd even

Characterize the language accepted by the DFA

Assume

▶
$$\Sigma = \{a, b, c\}$$

▶ $L_1 = \{ubw \mid u \in \Sigma^*, w \in \Sigma\}$
▶ $L_2 = \{ubw \mid u \in \Sigma, w \in \Sigma^*\}$

- ► Group 1 (your family name starts with A-M): Find a DFA A with L(A) = L₁
- ► Group 2 (your family name does not start with A-M): Find a DFA A with L(A) = L₂

End lecture 4

Outline

Introduction

Regular Languages and Finite Automata

Regular Expressions

Finite Automata

Regular expressions and Finite Automata Minimisation Equivalence

The Pumping Lemma Properties of Regular Languages Scanners and Flex Formal Grammars and Context-Free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0 Lecture-specific material Bonus Exercises Selected Solutions

Drawbacks of deterministic automata

Deterministic automata:

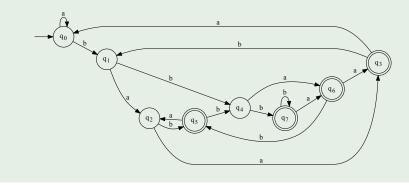
- ▶ Transition function δ
 - exactly one transition from every configuration
- can be complex even for simple languages

Drawbacks of deterministic automata

Deterministic automata:

- Transition function δ
 - exactly one transition from every configuration
- can be complex even for simple languages

Example (DFA \mathcal{A} for $(a + b)^*b(a + b)(a + b)$)



Non-Determinism

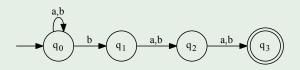
- FA can be simplified if one input can lead to
 - one transition,
 - multiple transitions, or
 - no transition.
- Intuitively, such an FA selects its next state from a set of states depending on the current state and the input
 - and always chooses the "right" one
- This is called a non-deterministic finite automaton (NFA)

Non-Determinism

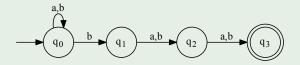
FA can be simplified if one input can lead to

- one transition,
- multiple transitions, or
- no transition.
- Intuitively, such an FA selects its next state from a set of states depending on the current state and the input
 - and always chooses the "right" one
- This is called a non-deterministic finite automaton (NFA)

Example (NFA \mathcal{B} for $(a + b)^*b(a + b)(a + b)$)



Example (Transitions in \mathcal{B})



▶ In state q_0 with input b, the FA has to "guess" the next state.

The string abab can be read in three ways:

1
$$q_0 \stackrel{a}{\mapsto} q_0 \stackrel{b}{\mapsto} q_0 \stackrel{a}{\mapsto} q_0 \stackrel{b}{\mapsto} q_0$$
 (failure)
2 $q_0 \stackrel{a}{\mapsto} q_0 \stackrel{b}{\mapsto} q_0 \stackrel{a}{\mapsto} q_0 \stackrel{b}{\mapsto} q_1$ (failure)
3 $q_0 \stackrel{a}{\mapsto} q_0 \stackrel{b}{\mapsto} q_1 \stackrel{a}{\mapsto} q_2 \stackrel{b}{\mapsto} q_3$ (success

► An NFA accepts an input *w* if there exists an accepting run on *w*!

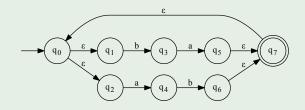
NFA: non-deterministic transitions and ε -transitions

- Non-deterministic transitions allow an NFA to go to more than one successor state
 - ▶ Instead of a function δ , an NFA has a transition relation Δ
- An NFA can additionally change its current state without reading an input symbol: $q_1 \stackrel{\varepsilon}{\mapsto} q_2$.
 - This is called a spontaneous transition or ε-transition
 - ▶ Thus, Δ is a relation on $Q \times (\Sigma \cup \{\varepsilon\}) \times Q$

NFA: non-deterministic transitions and ε -transitions

- Non-deterministic transitions allow an NFA to go to more than one successor state
 - ▶ Instead of a function δ , an NFA has a transition relation Δ
- An NFA can additionally change its current state without reading an input symbol: $q_1 \stackrel{\varepsilon}{\mapsto} q_2$.
 - This is called a spontaneous transition or ε-transition
 - ▶ Thus, Δ is a relation on $Q \times (\Sigma \cup \{\varepsilon\}) \times Q$

Example (NFA with ε -transitions)



Definition (NFA)

An NFA is a quintuple $\mathcal{A} = (Q, \Sigma, \Delta, q_0, F)$ with the following components:

- 1 Q is the finite set of states.
- 2 Σ is the input alphabet.
- 3 Δ is a relation over $Q \times (\Sigma \cup \{\varepsilon\}) \times Q$.
- 4 $q_0 \in Q$ is the initial state.
- **5** $F \subseteq Q$ is the set of final states.

Definition (Configuration, Run of an NFA)

Let $\mathcal{A} = (Q, \Sigma, \Delta, q_0, F)$ be an NFA.

A configuration of A is a pair (q, w) as for a DFA.

Definition (Configuration, Run of an NFA)

Let $\mathcal{A} = (Q, \Sigma, \Delta, q_0, F)$ be an NFA.

A configuration of A is a pair (q, w) as for a DFA.

A run of A on a word $w_0 = c_1 \cdot c_2 \cdots c_n$ is a sequence of transitions

 $r = ((q_0, w_0), (q_1, w_1), \dots, (q_m, \varepsilon))$

such that the following conditions are satisfied:

- ▶ $q_i \in Q$ for all $1 \le i \le m$,
- ▶ if *r* contains the configurations $(q_i, w_i), (q_{i+1}, w_{i+1})$, then
 - ▶ there is a transition $(q_i, c, q_{i+1}) \in \Delta$ with $c \in \Sigma \cup \{\varepsilon\}$

$$\blacktriangleright w_i = c \cdot w_{i+1}$$

Definition (Configuration, Run of an NFA)

Let $\mathcal{A} = (Q, \Sigma, \Delta, q_0, F)$ be an NFA.

A configuration of A is a pair (q, w) as for a DFA.

A run of A on a word $w_0 = c_1 \cdot c_2 \cdots c_n$ is a sequence of transitions

 $r = ((q_0, w_0), (q_1, w_1), \dots, (q_m, \varepsilon))$

such that the following conditions are satisfied:

- ▶ $q_i \in Q$ for all $1 \le i \le m$,
- ▶ if *r* contains the configurations $(q_i, w_i), (q_{i+1}, w_{i+1})$, then
 - ▶ there is a transition $(q_i, c, q_{i+1}) \in \Delta$ with $c \in \Sigma \cup \{\varepsilon\}$

$$\blacktriangleright w_i = c \cdot w_{i+1}.$$

The run *r* is accepting if q_m is a final state.

Definition (Configuration, Run of an NFA)

Let $\mathcal{A} = (Q, \Sigma, \Delta, q_0, F)$ be an NFA.

A configuration of A is a pair (q, w) as for a DFA.

A run of A on a word $w_0 = c_1 \cdot c_2 \cdots c_n$ is a sequence of transitions

 $r = ((q_0, w_0), (q_1, w_1), \dots, (q_m, \varepsilon))$

such that the following conditions are satisfied:

- ▶ $q_i \in Q$ for all $1 \le i \le m$,
- ▶ if *r* contains the configurations $(q_i, w_i), (q_{i+1}, w_{i+1})$, then
 - ▶ there is a transition $(q_i, c, q_{i+1}) \in \Delta$ with $c \in \Sigma \cup \{\varepsilon\}$

$$\blacktriangleright w_i = c \cdot w_{i+1}.$$

The run *r* is accepting if q_m is a final state.

The slightly more complex definition is necessary to handle ε -transitions.

Definition (Language recognized by an NFA)

Let $\mathcal{A} = (Q, \Sigma, \Delta, q_0, F)$ be an NFA. The language accepted by \mathcal{A} is

 $L(\mathcal{A}) = \{w \mid \text{ there is an accepting run of } \mathcal{A} \text{ on } w\}$

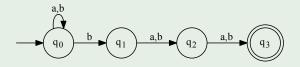
Definition (Language recognized by an NFA)

Let $\mathcal{A} = (Q, \Sigma, \Delta, q_0, F)$ be an NFA. The language accepted by \mathcal{A} is

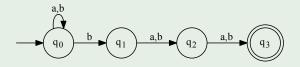
 $L(\mathcal{A}) = \{w \mid \text{ there is an accepting run of } \mathcal{A} \text{ on } w\}$

Note:

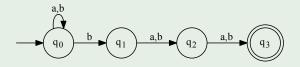
- Only existence of one accepting run is required
- It does not matter if there are also non-accepting runs on w



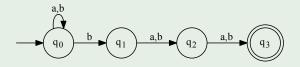
$$\mathcal{B} = (Q, \Sigma, \Delta, q_0, F)$$
 with
 $Q = \{q_0, q_1, q_2, q_3\}$
 $\Sigma = \{a, b\}$
 $F = \{q_3\}$



$$\mathcal{B} = (Q, \Sigma, \Delta, q_0, F)$$
 with
 $Q = \{q_0, q_1, q_2, q_3\}$
 $\Sigma = \{a, b\}$
 $F = \{q_3\}$

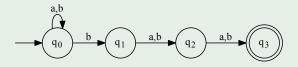


$$\mathcal{B} = (Q, \Sigma, \Delta, q_0, F)$$
 with
 $Q = \{q_0, q_1, q_2, q_3\}$
 $\Sigma = \{a, b\}$
 $F = \{q_3\}$

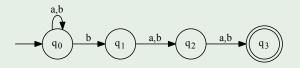


$$\mathcal{B} = (Q, \Sigma, \Delta, q_0, F)$$
 with
 $Q = \{q_0, q_1, q_2, q_3\}$
 $\Sigma = \{a, b\}$
 $F = \{q_3\}$

Example (Formal definition of \mathcal{B})



 $\begin{aligned} \mathcal{B} &= (Q, \Sigma, \Delta, q_0, F) \text{ with } & \Delta &= \{(q_0, a, q_0), (q_0, b, q_0), (q_0, b, q_1), \\ Q &= \{q_0, q_1, q_2, q_3\} & (q_1, a, q_2), (q_1, b, q_2), \\ \Sigma &= \{a, b\} & (q_2, a, q_3), (q_2, b, q_3)\} \\ F &= \{q_3\} \end{aligned}$



$\mathcal{B} = (\mathcal{Q}, \Sigma, \Delta, q_0, F)$ with	Δ	a	b	ε
$Q = \{q_0, q_1, q_2, q_3\}$			$\{q_0,q_1\}$	
$\Sigma = \{a, b\}$			(1-)	{}
$\mathbf{F} = \{q_3\}$			$\{q_3\}$	{}
$\mathbf{r} = \{q_3\}$	q_3	{}	{}	{}

Develop an NFA A whose language $L(A) \subset \{a, b\}^*$ contains all those words featuring the substring aba. Give:

- ▶ a regular expression representing L(A),
- ▶ a graphical representation of A,
- a formal definition of A.

Theorem (Equivalence of DFA and NFA)

NFAs and DFAs recognize the same class of languages.

- ▶ For every DFA A there is an an NFA B with L(A) = L(B).
- For every NFA \mathcal{B} there is an an DFA \mathcal{A} with $L(\mathcal{B}) = L(\mathcal{A})$.

Theorem (Equivalence of DFA and NFA)

NFAs and DFAs recognize the same class of languages.

- ▶ For every DFA A there is an an NFA B with L(A) = L(B).
- For every NFA \mathcal{B} there is an an DFA \mathcal{A} with $L(\mathcal{B}) = L(\mathcal{A})$.
- The direction DFA to NFA is trivial:
 - Every DFA is (essentially) an NFA
 - ... since every function is a relation
- What about the other direction?

Equivalence of DFA and NFA

Equivalence of DFAs and NFAs can be shown by transforming

\blacktriangleright an NFA ${\cal A}$

▶ into a DFA det(A) accepting the same language.

Equivalence of DFA and NFA

- Equivalence of DFAs and NFAs can be shown by transforming
 - \blacktriangleright an NFA ${\cal A}$
 - into a DFA det(A) accepting the same language.

Method:

- \blacktriangleright states of $\det(\mathcal{A})$ represent sets of states of \mathcal{A}
- ▶ a transition from q_1 to q_2 with character c in det(A) is possible if
 - in \mathcal{A} there is a transition with c
 - from one of the states that q_1 represents
 - to one of the states that q_2 represents.
- ► a state in det(A) is accepting if it contains an accepting state

Equivalence of DFA and NFA

- Equivalence of DFAs and NFAs can be shown by transforming
 - \blacktriangleright an NFA ${\cal A}$
 - into a DFA det(A) accepting the same language.

Method:

- \blacktriangleright states of $\det(\mathcal{A})$ represent sets of states of \mathcal{A}
- ▶ a transition from q_1 to q_2 with character c in det(A) is possible if
 - in \mathcal{A} there is a transition with c
 - from one of the states that q_1 represents
 - to one of the states that q_2 represents.
- \blacktriangleright a state in $\det(\mathcal{A})$ is accepting if it contains an accepting state

To this end, we define three auxiliary functions.

- ec to compute the ε closure of a state
- δ^* to compute possible successors of a state
- ▶ $\hat{\delta}$, the new transition function for the generated DFA

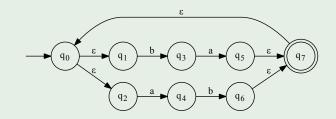
The ε closure of a state q contains all states the NFA can change to by means of ε transitions starting from q.

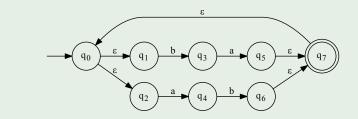
The ε closure of a state q contains all states the NFA can change to by means of ε transitions starting from q.

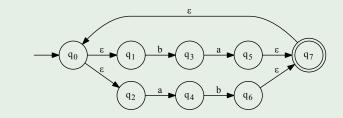
Definition (ε closure)

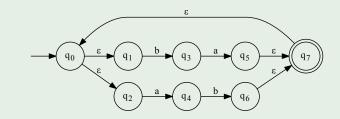
The function $ec: Q \to 2^Q$ is the smallest function with the properties: $q \in ec(q)$

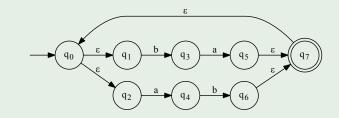
 $\blacktriangleright \ p \in ec(q) \land (p, \varepsilon, r) \in \Delta \quad \Rightarrow \quad r \in \ ec(q)$

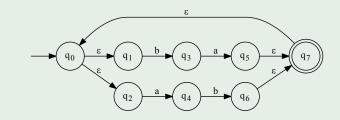






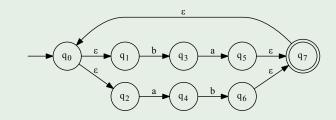






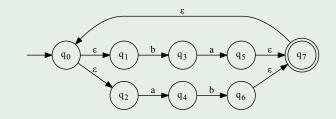
•
$$ec(q_4) =$$

Example



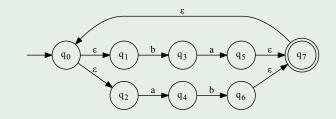
ec(q₄) = {q₄},
 ec(q₅) =

Example



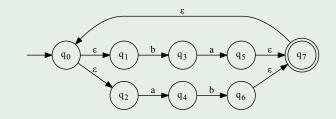
ec(q₄) = {q₄},
ec(q₅) = {q₅, q₇, q₀, q₁, q₂},
ec(q₆) =

Example



ec(q₄) = {q₄},
ec(q₅) = {q₅, q₇, q₀, q₁, q₂},
ec(q₆) = {q₆, q₇, q₀, q₁, q₂},
ec(q₇) =

Example



ec(q₄) = {q₄},
ec(q₅) = {q₅, q₇, q₀, q₁, q₂},
ec(q₆) = {q₆, q₇, q₀, q₁, q₂},
ec(q₇) = {q₇, q₀, q₁, q₂}.

The function δ^* maps

- a pair (q, c) (state and character)
- ▶ to the set of all states the NFA can change to from *q* with *c*
- followed by any number of ε transitions.

The function δ^* maps

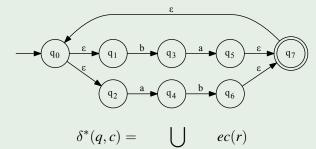
- a pair (q, c) (state and character)
- ▶ to the set of all states the NFA can change to from q with c
- followed by any number of ε transitions.

Definition (Successor state function)

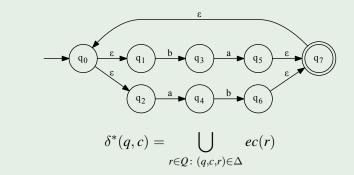
The function $\delta^*: Q \times \Sigma \to 2^Q$ is defined as follows:

$$\delta^*(q,c) = \bigcup_{r \in \mathcal{Q} \colon (q,c,r) \in \Delta} ec(r)$$

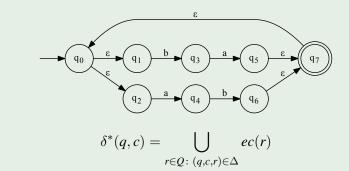
Example



 $r \in Q \colon (q,c,r) \in \Delta$

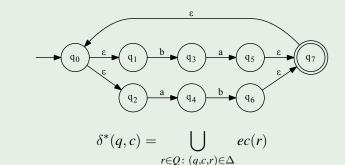


Example

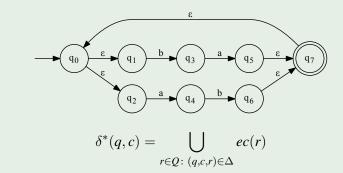


• $\delta^*(q_0, a) = \{\},$ • $\delta^*(q_1, b) =$

Example



• $\delta^*(q_0, a) = \{\},$ • $\delta^*(q_1, b) = \{q_3\},$ • $\delta^*(q_3, a) =$



•
$$\delta^*(q_0, a) = \{\},$$

• $\delta^*(q_1, b) = \{q_3\},$
• $\delta^*(q_3, a) = \{q_5, q_7, q_0, q_1, q_2\},$
• ...

The function $\hat{\delta}$ maps

- a pair (M, c) consisting of a set of states *M* and a character *c*
- ► to the set N of states that are reachable from any state of M via ∆ by reading the character c
- **>** possibly followed by ε transitions.

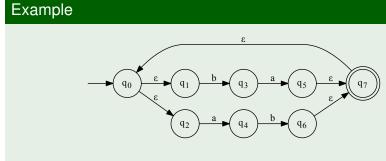
The function $\hat{\delta}$ maps

- a pair (M, c) consisting of a set of states *M* and a character *c*
- ► to the set N of states that are reachable from any state of M via ∆ by reading the character c
- > possibly followed by ε transitions.

Definition (Extended transition function)

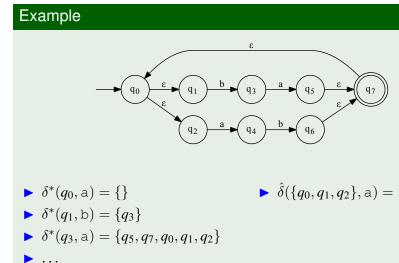
The function $\hat{\delta}: 2^Q \times \Sigma \to 2^Q$ is defined as follows:

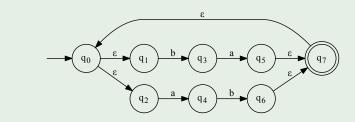
$$\hat{\delta}(M,c) = \bigcup_{q \in M} \delta^*(q,c).$$



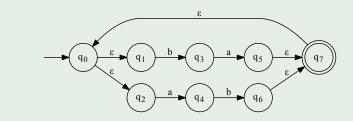
•
$$\delta^*(q_0, a) = \{\}$$

• $\delta^*(q_1, b) = \{q_3\}$
• $\delta^*(q_3, a) = \{q_5, q_7, q_0, q_1, q_2\}$
• ...

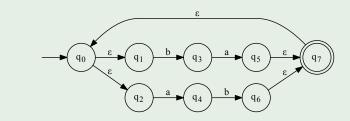




- $\delta^*(q_0, a) = \{\}$ • $\delta^*(q_1, b) = \{q_3\}$ • $\delta^*(q_3, a) = \{q_5, q_7, q_0, q_1, q_2\}$
- $\hat{\delta}(\{q_0, q_1, q_2\}, a) = \{q_4\}$ • $\hat{\delta}(\{q_3\}, a) =$



- $\delta^*(q_0, a) = \{\}$ • $\delta^*(q_1, b) = \{q_3\}$ • $\delta^*(q_3, a) = \{q_5, q_7, q_0, q_1, q_2\}$
- $\hat{\delta}(\{q_0, q_1, q_2\}, a) = \{q_4\}$ • $\hat{\delta}(\{q_3\}, a) = \{q_5, q_7, q_0, q_1, q_2\}$ • $\hat{\delta}(\{q_3\}, b) =$



. . .

- $\delta^*(q_0, a) = \{\}$ • $\delta^*(q_1, b) = \{q_3\}$ • $\delta^*(q_3, a) = \{q_5, q_7, q_0, q_1, q_2\}$
- \$\bar{\delta}(\{q_0, q_1, q_2\}, \mathbf{a}) = \{q_4\}\$
 \$\bar{\delta}(\{q_3\}, \mathbf{a}) = \{q_5, q_7, q_0, q_1, q_2\}\$
 \$\bar{\delta}(\{q_3\}, \mathbf{b}) = \{\}\$

Using the auxiliary functions ec, $\hat{\delta}$, we can define $det(\mathcal{A})$.

Using the auxiliary functions ec, $\hat{\delta}$, we can define $det(\mathcal{A})$.

Definition

For an NFA $\mathcal{A} = (Q, \Sigma, \Delta, q_0, F)$, the deterministic Automaton $det(\mathcal{A})$ is defined as

$$2^Q, \Sigma, \hat{\delta}, ec(q_0), \hat{F})$$

with $\hat{F} = \{ M \in 2^Q \mid M \cap F \neq \{ \} \}.$

Using the auxiliary functions ec, $\hat{\delta}$, we can define $det(\mathcal{A})$.

Definition

For an NFA $\mathcal{A} = (Q, \Sigma, \Delta, q_0, F)$, the deterministic Automaton $det(\mathcal{A})$ is defined as

 $(2^Q, \Sigma, \hat{\delta}, ec(q_0), \hat{F})$

with $\hat{F} = \{ M \in 2^Q \mid M \cap F \neq \{ \} \}.$

The set of final states \hat{F} is the set of all subsets of Q containing a final state.

Using the auxiliary functions ec, $\hat{\delta}$, we can define $det(\mathcal{A})$.

Definition

For an NFA $\mathcal{A} = (Q, \Sigma, \Delta, q_0, F)$, the deterministic Automaton $det(\mathcal{A})$ is defined as

 $(2^Q, \Sigma, \hat{\delta}, ec(q_0), \hat{F})$

with $\hat{F} = \{ M \in 2^Q \mid M \cap F \neq \{ \} \}.$

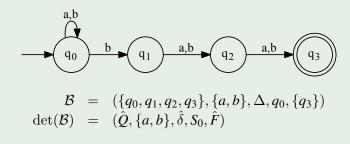
The set of final states \hat{F} is the set of all subsets of Q containing a final state.

Remark

In practice, we use a more efficient stepwise construction that only builds the *reachable* states, not all of 2^{Q} !

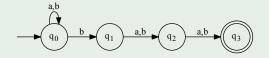
Example: transformation into DFA

Example (NFA \mathcal{B} for $(a + b)^*b(a + b)(a + b)$)

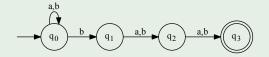


▶ Initial state: $S_0 := ec(q_0) = \{q_0\}$

Example: transformation into DFA (cont')



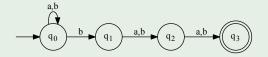
Example: transformation into DFA (cont')



•
$$\hat{\delta}(S_0, a) = \{q_0\} = S_0$$

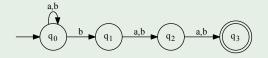
• $\hat{\delta}(S_0, b) =$

Example: transformation into DFA (cont')



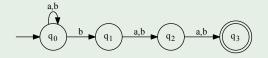
•
$$\hat{\delta}(S_0, a) = \{q_0\} = S_0$$

• $\hat{\delta}(S_0, b) = \{q_0, q_1\} =: S$
• $\hat{\delta}(S_1, a) =$



•
$$\hat{\delta}(S_0, a) = \{q_0\} = S_0$$

• $\hat{\delta}(S_0, b) = \{q_0, q_1\} =: S_1$
• $\hat{\delta}(S_1, a) = \{q_0, q_2\} =: S_2$
• $\hat{\delta}(S_1, b) =$



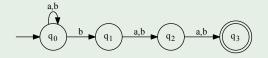
$$\hat{\delta}(S_0, a) = \{q_0\} = S_0$$

$$\hat{\delta}(S_0, b) = \{q_0, q_1\} =: S_1$$

$$\hat{\delta}(S_1, a) = \{q_0, q_2\} =: S_2$$

$$\hat{\delta}(S_1, b) = \{q_0, q_1, q_2\} =: S$$

$$\hat{\delta}(S_2, a) =$$



$$\hat{\delta}(S_0, a) = \{q_0\} = S_0$$

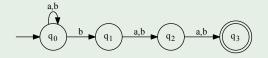
$$\hat{\delta}(S_0, b) = \{q_0, q_1\} =: S_1$$

$$\hat{\delta}(S_1, a) = \{q_0, q_2\} =: S_2$$

$$\hat{\delta}(S_1, b) = \{q_0, q_1, q_2\} =: S_4$$

$$\hat{\delta}(S_2, a) = \{q_0, q_3\} =: S_3$$

$$\hat{\delta}(S_2, b) =$$



$$\hat{\delta}(S_0, a) = \{q_0\} = S_0$$

$$\hat{\delta}(S_0, b) = \{q_0, q_1\} =: S_1$$

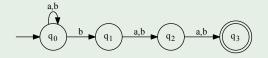
$$\hat{\delta}(S_1, a) = \{q_0, q_2\} =: S_2$$

$$\hat{\delta}(S_1, b) = \{q_0, q_1, q_2\} =: S_4$$

$$\hat{\delta}(S_2, a) = \{q_0, q_3\} =: S_3$$

$$\hat{\delta}(S_2, b) = \{q_0, q_1, q_3\} =: S_5$$

$$\hat{\delta}(S_4, a) =$$



$$\hat{\delta}(S_0, a) = \{q_0\} = S_0$$

$$\hat{\delta}(S_0, b) = \{q_0, q_1\} =: S_1$$

$$\hat{\delta}(S_1, a) = \{q_0, q_2\} =: S_2$$

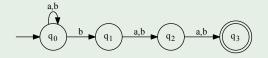
$$\hat{\delta}(S_1, b) = \{q_0, q_1, q_2\} =: S_4$$

$$\hat{\delta}(S_2, a) = \{q_0, q_3\} =: S_3$$

$$\hat{\delta}(S_2, b) = \{q_0, q_1, q_3\} =: S_5$$

$$\hat{\delta}(S_4, a) = \{q_0, q_2, q_3\} =: S_6$$

$$\hat{\delta}(S_4, b) =$$



$$\hat{\delta}(S_0, a) = \{q_0\} = S_0$$

$$\hat{\delta}(S_0, b) = \{q_0, q_1\} =: S_1$$

$$\hat{\delta}(S_1, a) = \{q_0, q_2\} =: S_2$$

$$\hat{\delta}(S_1, b) = \{q_0, q_1, q_2\} =: S_4$$

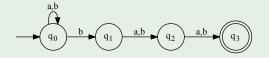
$$\hat{\delta}(S_2, a) = \{q_0, q_3\} =: S_3$$

$$\hat{\delta}(S_2, b) = \{q_0, q_1, q_3\} =: S_5$$

$$\hat{\delta}(S_4, a) = \{q_0, q_1, q_2, q_3\} =: S_6$$

$$\hat{\delta}(S_4, b) = \{q_0, q_1, q_2, q_3\} =: S_7$$

Example



► $\hat{\delta}(S_3, a) =$

$$\hat{\delta}(S_0, a) = \{q_0\} = S_0$$

$$\hat{\delta}(S_0, b) = \{q_0, q_1\} =: S_1$$

$$\hat{\delta}(S_1, a) = \{q_0, q_2\} =: S_2$$

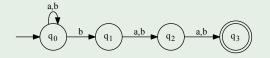
$$\hat{\delta}(S_1, b) = \{q_0, q_1, q_2\} =: S_4$$

$$\hat{\delta}(S_2, a) = \{q_0, q_1, q_3\} =: S_5$$

$$\hat{\delta}(S_2, b) = \{q_0, q_1, q_3\} =: S_6$$

$$\hat{\delta}(S_4, b) = \{q_0, q_1, q_2, q_3\} =: S_6$$

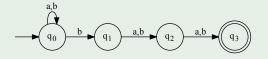
Example



 $\hat{\delta}(S_0, a) = \{q_0\} = S_0$ $\hat{\delta}(S_0, b) = \{q_0, q_1\} =: S_1$ $\hat{\delta}(S_1, a) = \{q_0, q_2\} =: S_2$ $\hat{\delta}(S_1, b) = \{q_0, q_1, q_2\} =: S_4$ $\hat{\delta}(S_2, a) = \{q_0, q_3\} =: S_3$ $\hat{\delta}(S_2, b) = \{q_0, q_1, q_3\} =: S_5$ $\hat{\delta}(S_4, a) = \{q_0, q_2, q_3\} =: S_6$ $\hat{\delta}(S_4, b) = \{q_0, q_1, q_2, q_3\} =: S_7$

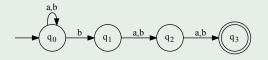
• $\hat{\delta}(S_3, a) = \{q_0\} = S_0$ • $\hat{\delta}(S_3, b) =$

Example



 $\hat{\delta}(S_0, a) = \{q_0\} = S_0$ $\hat{\delta}(S_0, b) = \{q_0, q_1\} =: S_1$ $\hat{\delta}(S_1, a) = \{q_0, q_2\} =: S_2$ $\hat{\delta}(S_1, b) = \{q_0, q_1, q_2\} =: S_4$ $\hat{\delta}(S_2, a) = \{q_0, q_3\} =: S_3$ $\hat{\delta}(S_2, b) = \{q_0, q_1, q_3\} =: S_5$ $\hat{\delta}(S_4, a) = \{q_0, q_2, q_3\} =: S_6$ $\hat{\delta}(S_4, b) = \{q_0, q_1, q_2, q_3\} =: S_7$ *ô*(S₃, a) = {q₀} = S₀
 ô(S₃, b) = {q₀, q₁} = S₁
 ô(S₅, a) =

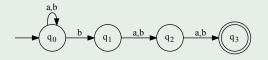
Example



 $\hat{\delta}(S_0, a) = \{q_0\} = S_0$ $\hat{\delta}(S_0, b) = \{q_0, q_1\} =: S_1$ $\hat{\delta}(S_1, a) = \{q_0, q_2\} =: S_2$ $\hat{\delta}(S_1, b) = \{q_0, q_1, q_2\} =: S_4$ $\hat{\delta}(S_2, a) = \{q_0, q_1, q_3\} =: S_5$ $\hat{\delta}(S_2, b) = \{q_0, q_1, q_3\} =: S_6$ $\hat{\delta}(S_4, b) = \{q_0, q_1, q_2, q_3\} =: S_7$

• $\hat{\delta}(S_3, a) = \{q_0\} = S_0$ • $\hat{\delta}(S_3, b) = \{q_0, q_1\} = S_1$ • $\hat{\delta}(S_5, a) = \{q_0, q_2\} = S_2$ • $\hat{\delta}(S_5, b) =$

Example



$$\hat{\delta}(S_0, a) = \{q_0\} = S_0$$

$$\hat{\delta}(S_0, b) = \{q_0, q_1\} =: S_1$$

$$\hat{\delta}(S_1, a) = \{q_0, q_2\} =: S_2$$

$$\hat{\delta}(S_1, b) = \{q_0, q_1, q_2\} =: S_4$$

$$\hat{\delta}(S_2, a) = \{q_0, q_1, q_3\} =: S_5$$

$$\hat{\delta}(S_4, b) = \{q_0, q_1, q_2, q_3\} =: S_6$$

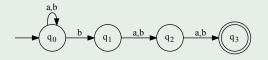
$$\hat{\delta}(S_4, b) = \{q_0, q_1, q_2, q_3\} =: S_7$$

• $\hat{\delta}(S_3, a) = \{q_0\} = S_0$ • $\hat{\delta}(S_3, b) = \{q_0, q_1\} = S_1$ • $\hat{\delta}(S_5, a) = \{q_0, q_2\} = S_2$

•
$$\delta(S_5, b) = \{q_0, q_1, q_2\} = S_4$$

• $\hat{\delta}(S_6, a) =$

Example



$$\hat{\delta}(S_0, a) = \{q_0\} = S_0$$

$$\hat{\delta}(S_0, b) = \{q_0, q_1\} =: S_1$$

$$\hat{\delta}(S_1, a) = \{q_0, q_2\} =: S_2$$

$$\hat{\delta}(S_1, b) = \{q_0, q_1, q_2\} =: S_4$$

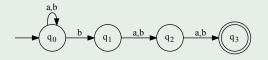
$$\hat{\delta}(S_2, a) = \{q_0, q_1, q_3\} =: S_5$$

$$\hat{\delta}(S_2, b) = \{q_0, q_1, q_3\} =: S_6$$

$$\hat{\delta}(S_4, b) = \{q_0, q_1, q_2, q_3\} =: S_7$$

 $\hat{\delta}(S_3, a) = \{q_0\} = S_0$ $\hat{\delta}(S_3, b) = \{q_0, q_1\} = S_1$ $\hat{\delta}(S_5, a) = \{q_0, q_2\} = S_2$ $\hat{\delta}(S_5, b) = \{q_0, q_1, q_2\} = S_4$ $\hat{\delta}(S_6, a) = \{q_0, q_3\} = S_3$ $\hat{\delta}(S_6, b) =$

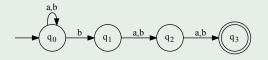
Example



 $\hat{\delta}(S_0, a) = \{q_0\} = S_0$ $\hat{\delta}(S_0, b) = \{q_0, q_1\} =: S_1$ $\hat{\delta}(S_1, a) = \{q_0, q_2\} =: S_2$ $\hat{\delta}(S_1, b) = \{q_0, q_1, q_2\} =: S_4$ $\hat{\delta}(S_2, a) = \{q_0, q_1, q_3\} =: S_5$ $\hat{\delta}(S_4, b) = \{q_0, q_1, q_2, q_3\} =: S_6$ $\hat{\delta}(S_4, b) = \{q_0, q_1, q_2, q_3\} =: S_7$

 $\hat{\delta}(S_3, a) = \{q_0\} = S_0$ $\hat{\delta}(S_3, b) = \{q_0, q_1\} = S_1$ $\hat{\delta}(S_5, a) = \{q_0, q_2\} = S_2$ $\hat{\delta}(S_5, b) = \{q_0, q_1, q_2\} = S_4$ $\hat{\delta}(S_6, a) = \{q_0, q_3\} = S_3$ $\hat{\delta}(S_6, b) = \{q_0, q_1, q_3\} = S_5$ $\hat{\delta}(S_7, a) =$

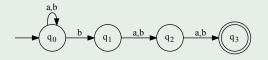
Example



 $\hat{\delta}(S_0, a) = \{q_0\} = S_0$ $\hat{\delta}(S_0, b) = \{q_0, q_1\} =: S_1$ $\hat{\delta}(S_1, a) = \{q_0, q_2\} =: S_2$ $\hat{\delta}(S_1, b) = \{q_0, q_1, q_2\} =: S_4$ $\hat{\delta}(S_2, a) = \{q_0, q_3\} =: S_3$ $\hat{\delta}(S_2, b) = \{q_0, q_1, q_3\} =: S_5$ $\hat{\delta}(S_4, a) = \{q_0, q_2, q_3\} =: S_6$ $\hat{\delta}(S_4, b) = \{q_0, q_1, q_2, q_3\} =: S_7$

 $\hat{\delta}(S_3, a) = \{q_0\} = S_0$ $\hat{\delta}(S_3, b) = \{q_0, q_1\} = S_1$ $\hat{\delta}(S_5, a) = \{q_0, q_2\} = S_2$ $\hat{\delta}(S_5, b) = \{q_0, q_1, q_2\} = S_4$ $\hat{\delta}(S_6, a) = \{q_0, q_1, q_3\} = S_3$ $\hat{\delta}(S_6, b) = \{q_0, q_1, q_3\} = S_5$ $\hat{\delta}(S_7, a) = \{q_0, q_2, q_3\} = S_6$ $\hat{\delta}(S_7, b) =$

Example



 $\hat{\delta}(S_0, a) = \{q_0\} = S_0$ $\hat{\delta}(S_0, b) = \{q_0, q_1\} =: S_1$ $\hat{\delta}(S_1, a) = \{q_0, q_2\} =: S_2$ $\hat{\delta}(S_1, b) = \{q_0, q_1, q_2\} =: S_4$ $\hat{\delta}(S_2, a) = \{q_0, q_3\} =: S_3$ $\hat{\delta}(S_2, b) = \{q_0, q_1, q_3\} =: S_5$ $\hat{\delta}(S_4, a) = \{q_0, q_2, q_3\} =: S_6$ $\hat{\delta}(S_4, b) = \{q_0, q_1, q_2, q_3\} =: S_7$

 $\hat{\delta}(S_3, a) = \{q_0\} = S_0$ $\hat{\delta}(S_3, b) = \{q_0, q_1\} = S_1$ $\hat{\delta}(S_5, a) = \{q_0, q_2\} = S_2$ $\hat{\delta}(S_5, b) = \{q_0, q_1, q_2\} = S_4$ $\hat{\delta}(S_6, a) = \{q_0, q_3\} = S_3$ $\hat{\delta}(S_6, b) = \{q_0, q_1, q_3\} = S_5$ $\hat{\delta}(S_7, a) = \{q_0, q_2, q_3\} = S_6$ $\hat{\delta}(S_7, b) = \{q_0, q_1, q_2, q_3\} = S_7$

Example

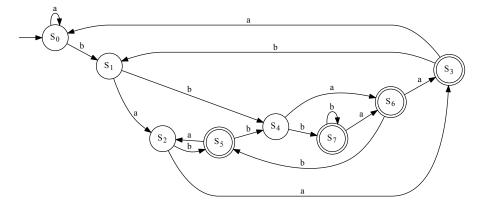
We can now define the DFA $det(\mathcal{B}) = (\hat{Q}, \Sigma, \hat{\delta}, S_0, \hat{F})$ as follows:

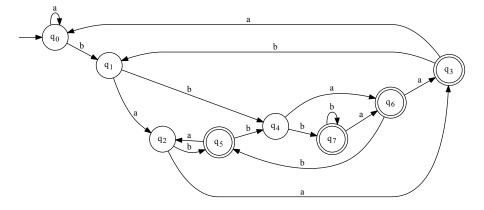
• the set of states $\hat{Q} = \{S_0, \cdots, S_7\},\$

• the state transition function $\hat{\delta}$ is:

$\hat{\delta}$	<i>S</i> ₀	<i>S</i> ₁	S_2	<i>S</i> ₃	S_4	S_5	S_6	<i>S</i> ₇
a	<i>S</i> ₀	<i>S</i> ₂	<i>S</i> ₃	S_0	<i>S</i> ₆	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₆
b	<i>S</i> ₁	<i>S</i> ₄	S_5	S_1	S_7	<i>S</i> ₄	S_5	<i>S</i> ₇

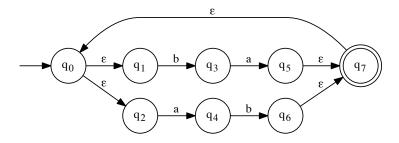
▶ and the set of final states $\hat{F} = \{S_3, S_5, S_6, S_7\}$.





Exercise: Transformation into DFA

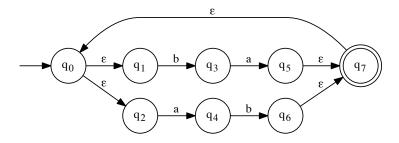
Given the following NFA \mathcal{A} :



- a) Determine $det(\mathcal{A})$.
- b) Draw det(A)'s graphical representation
- c) Give a regular expression representing the same language as A.

Exercise: Transformation into DFA

Given the following NFA \mathcal{A} :

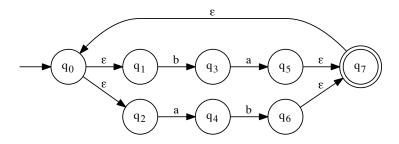


- a) Determine $det(\mathcal{A})$.
- b) Draw $det(\mathcal{A})$'s graphical representation
- c) Give a regular expression representing the same language as A.

Solution

Exercise: Transformation into DFA

Given the following NFA \mathcal{A} :



- a) Determine $det(\mathcal{A})$.
- b) Draw $det(\mathcal{A})$'s graphical representation
- c) Give a regular expression representing the same language as A.

Outline

Introduction

Regular Languages and Finite Automata

Regular Expressions

Finite Automata

Non-Determinism Regular expressions and Finite Automata Minimisation Equivalence

The Pumping Lemma Properties of Regular Languages Scanners and Flex Formal Grammars and Context-Free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0 Lecture-specific material Bonus Exercises Selected Solutions

Regular expressions and Finite Automata

Regular expressions describe regular languages

- For each regular language *L*, there is an regular expression *r* with L(r) = L
- For every regular expression r, L(r) is a regular language
- Finite automata describe regular languages
 - ▶ For each regular language *L*, there is a FA A with L(A) = L
 - ▶ For every finite automaton A, L(A) is a regular language
- Now: constructive proof of equivalence between REs and FAs
 - We already know that DFAs and NFAs are equivalent
 - Now: Equivalence of NFAs and REs

Transformation of regular expressions into NFAs

- ► For a regular expression *r*, derive NFA A(r) with L(A(r)) = L(r).
- Idea:
 - ► Construct NFAs for the elementary REs ($\emptyset, \varepsilon, c \in \Sigma$)
 - We combine NFAs for subexpressions to generate NFAs for composite REs
- ► All NFAs we construct have a number of special properties:
 - ▶ There are no transitions to the initial state.
 - ► There is only a single final state.
 - ▶ There are no transitions from the final state.

Transformation of regular expressions into NFAs

- ► For a regular expression *r*, derive NFA A(r) with L(A(r)) = L(r).
- Idea:
 - ► Construct NFAs for the elementary REs ($\emptyset, \varepsilon, c \in \Sigma$)
 - We combine NFAs for subexpressions to generate NFAs for composite REs
- ► All NFAs we construct have a number of special properties:
 - ▶ There are no transitions to the initial state.
 - ▶ There is only a single final state.
 - ▶ There are no transitions from the final state.

We can easily achieve this with ε -transitions!

Let Σ be an alphabet.

• The elementary regular expressions over Σ are:

•
$$\emptyset$$
 with $L(\emptyset) = \{\}$

•
$$\varepsilon$$
 with $L(\varepsilon) = \{\varepsilon\}$

•
$$c \in \Sigma$$
 with $L(c) = \{c\}$

Let r₁ and r₂ be regular expressions over Σ. Then the following are also regular expressions over Σ:

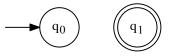
•
$$r_1 + r_2$$
 with $L(r_1 + r_2) = L(r_1) \cup L(r_2)$

•
$$r_1 \cdot r_2$$
 with $L(r_1 \cdot r_2) = L(r_1) \cdot L(r_2)$

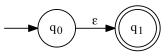
•
$$r_1^*$$
 with $L(r_1^*) = (L(r_1))^*$

NFAs for elementary REs

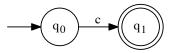
Let Σ be the alphabet which r is based on. 1 $\mathcal{A}(\emptyset) = (\{q_0, q_1\}, \Sigma, \{\}, q_0, \{q_1\})$



2 $\mathcal{A}(\varepsilon) = (\{q_0, q_1\}, \Sigma, \{(q_0, \varepsilon, q_1)\}, q_0, \{q_1\})$



3 $\mathcal{A}(c) = (\{q_0, q_1\}, \Sigma, \{(q_0, c, q_1)\}, q_0, \{q_1\})$ for all $c \in \Sigma$



NFAs for composite REs (general)

Assume in the following:

$$\blacktriangleright \mathcal{A}(r_1) = (Q_1, \Sigma, \Delta_1, q_1, \{q_2\})$$

$$\blacktriangleright \mathcal{A}(r_2) = (Q_2, \Sigma, \Delta_2, q_3, \{q_4\})$$

$$\blacktriangleright Q_1 \cap Q_2 = \{\}$$

- $\blacktriangleright q_0, q_5 \notin Q_1 \cup Q_2$
- $A(r_1)$ is visualised by a square box with two explicit states
 - The initial state q_1 is on the left
 - ▶ The unique accepting state *q*² on the right
 - All other states and transitions are implicit
 - ▶ We mark initial/accepting states only for the composite automaton

NFAs for composite REs (general)

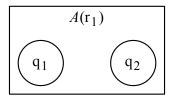
Assume in the following:

$$A(r_1) = (Q_1, \Sigma, \Delta_1, q_1, \{q_2\})$$

$$\blacktriangleright \mathcal{A}(r_2) = (Q_2, \Sigma, \Delta_2, q_3, \{q_4\})$$

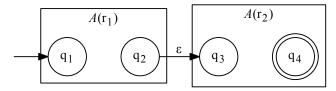
$$\blacktriangleright Q_1 \cap Q_2 = \{\}$$

- $\blacktriangleright q_0, q_5 \notin Q_1 \cup Q_2$
- $A(r_1)$ is visualised by a square box with two explicit states
 - The initial state q_1 is on the left
 - The unique accepting state q₂ on the right
 - All other states and transitions are implicit
 - ▶ We mark initial/accepting states only for the composite automaton



NFAs for composite REs (concatenation)

4
$$\mathcal{A}(r_1 \cdot r_2) = (Q_1 \cup Q_2, \Sigma, \Delta_1 \cup \Delta_2 \cup \{(q_2, \varepsilon, q_3)\}, q_1, \{q_4\})$$



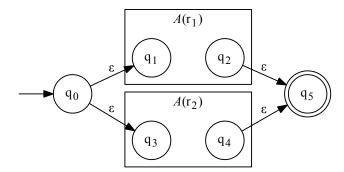
Reminder:

•
$$\mathcal{A}(r_1) = (Q_1, \Sigma, \Delta_1, q_1, \{q_2\})$$

• $\mathcal{A}(r_2) = (Q_2, \Sigma, \Delta_2, q_3, \{q_4\})$

NFAs for composite REs (alternatives)

5 $\mathcal{A}(r_1 + r_2) = (\{q_0, q_5\} \cup Q_1 \cup Q_2, \Sigma, \Delta, q_0, \{q_5\})$ $\Delta = \Delta_1 \cup \Delta_2 \cup \{(q_0, \varepsilon, q_1), (q_0, \varepsilon, q_3), (q_2, \varepsilon, q_5), (q_4, \varepsilon, q_5)\}$



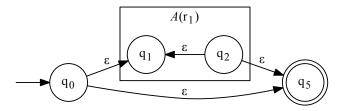
Reminder:

•
$$\mathcal{A}(r_1) = (Q_1, \Sigma, \Delta_1, q_1, \{q_2\})$$

• $\mathcal{A}(r_2) = (Q_2, \Sigma, \Delta_2, q_3, \{q_4\})$

NFAs for composite REs (Kleene Star)

$$\begin{array}{l} \mathbf{6} \quad \mathcal{A}(r_1^*) = (\{q_0, q_5\} \cup Q_1, \Sigma, \Delta, q_0, \{q_5\}) \\ \Delta = \Delta_1 \cup \{(q_0, \varepsilon, q_1), (q_2, \varepsilon, q_1), (q_0, \varepsilon, q_5), (q_2, \varepsilon, q_5)\} \end{array}$$



Reminder:

•
$$\mathcal{A}(r_1) = (Q_1, \Sigma, \Delta_1, q_1, \{q_2\})$$

The previous construction produces for each regular expression *r* an NFA A with L(A) = L(r).

The previous construction produces for each regular expression *r* an NFA A with L(A) = L(r).

Corollary

Every language described by a regular expression can be accepted by a non-deterministic finite automaton. Systematically construct an NFA accepting the same language as the regular expression

 $(a+b)a^*b$

Find arbitrary $w_1, w_2 \in L((a+b)a^*b)$ with $|w_1|, |w_2| \ge 5$ and find an accepting run for each

 Systematically construct an NFA accepting the same language as the regular expression

 $(a+b)a^*b$

Find arbitrary $w_1, w_2 \in L((a+b)a^*b)$ with $|w_1|, |w_2| \ge 5$ and find an accepting run for each

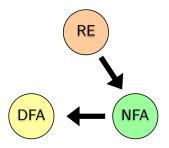
 Systematically construct an NFA accepting the same language as the regular expression

 $(a+b)a^*b$

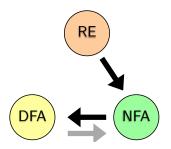
Find arbitrary w₁, w₂ ∈ L((a + b)a*b) with |w₁|, |w₂| ≥ 5 and find an accepting run for each

 Claim: NFAs, DFAs and REs all describe the same language class

- Claim: NFAs, DFAs and REs all describe the same language class
- Previous transformations:
 - REs into equivalent NFAs
 - NFAs into equivalent DFAs

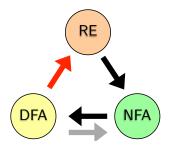


- Claim: NFAs, DFAs and REs all describe the same language class
- Previous transformations:
 - REs into equivalent NFAs
 - NFAs into equivalent DFAs
 - (DFAs to equivalent NFAs)



- Claim: NFAs, DFAs and REs all describe the same language class
- Previous transformations:
 - REs into equivalent NFAs
 - NFAs into equivalent DFAs
 - (DFAs to equivalent NFAs)

Todo: convert DFA to equivalent RE

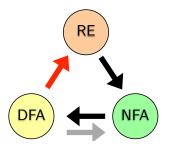


- Claim: NFAs, DFAs and REs all describe the same language class
- Previous transformations:
 - REs into equivalent NFAs
 - NFAs into equivalent DFAs
 - (DFAs to equivalent NFAs)

Todo: convert DFA to equivalent RE

Given a DFA A, derive a regular expression r(A) accepting the same language:

 $L(r(\mathcal{A})) = L(\mathcal{A})$

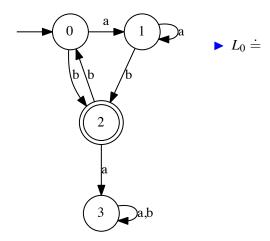


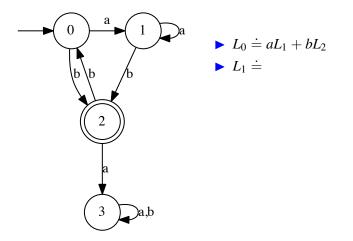
Convert DFA into RE

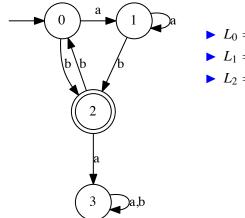
► Goal: transform DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ into RE $r(\mathcal{A})$ with $L(r(\mathcal{A})) = L(\mathcal{A})$

Idea:

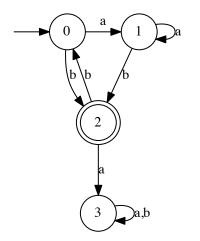
- For each state q generate an equation describing the language L_q
 - that is accepted when starting from q,
 - depending on the languages accepted at neighbouring states.
- Method:
 - For each transition with c to q': generate alternative $c \cdot L_{q'}$
 - For final states: additionally ε
- ▶ Solve the resulting system for *L*_{q0}
 - ▶ Result: RE describing $L_{q_0} = L(A)$
- Convention:
 - States are named $\{0, 1, \ldots, n\}$
 - Initial state is 0

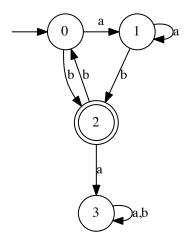






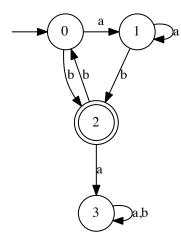
$$L_0 = aL_1 + bL_2$$
$$L_1 \doteq aL_1 + bL_2$$
$$L_2 \doteq bL_2$$





- $\blacktriangleright L_0 \doteq aL_1 + bL_2$
- $\blacktriangleright L_1 \doteq aL_1 + bL_2$
- $\blacktriangleright L_2 \doteq aL_3 + bL_0 + \varepsilon$

$$\triangleright L_3 \doteq (a+b)L_3$$



- $\blacktriangleright L_0 \doteq aL_1 + bL_2$
- $\triangleright L_1 \doteq aL_1 + bL_2$
- $\blacktriangleright L_2 \doteq aL_3 + bL_0 + \varepsilon$

$$\blacktriangleright L_3 \doteq (a+b)L_3$$

4 equations, 4 unknowns

What now?

Lemma:

$$\varepsilon \notin L(s)$$
 and $r \doteq sr + t \longrightarrow r \doteq s^*t$

Arden, Dean N.: Delayed-logic and finite-state machines. Proceedings of the Second Annual Symposium on Switching **Circuit Theory** and Logical Design, 1961, pp. 133–151, IEEE

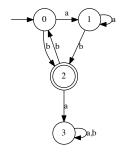
Lemma:

$$\varepsilon \not\in L(s)$$
 and $r \doteq sr + t \longrightarrow r \doteq s^*t$

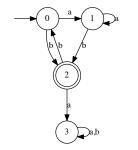
Compare Arto Salomaa:

$$\varepsilon \notin L(s)$$
 and $r \doteq rs + t \longrightarrow r \doteq ts^*$

Arden, Dean N.: Delayed-logic and finite-state machines. Proceedings of the Second Annual Symposium on Switching **Circuit Theory** and Logical Design, 1961, pp. 133–151, IEEE

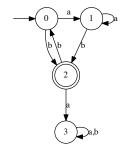


- $L_0 \doteq aL_1 + bL_2$ $L_1 \doteq aL_1 + bL_2$
- $\blacktriangleright L_2 \doteq aL_3 + bL_0 + \varepsilon$
- $\blacktriangleright L_3 \doteq (a+b)L_3$

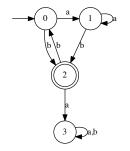


 $L_0 \doteq aL_1 + bL_2$ $L_1 \doteq aL_1 + bL_2$ $L_2 \doteq aL_3 + bL_0 + \varepsilon$ $L_3 \doteq (a+b)L_3$

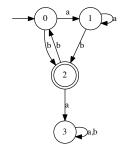
 $L_3 \doteq (a+b)L_3 + \emptyset$ [neutral el.]



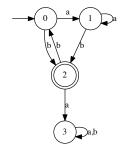
$$L_3 \doteq (a+b)L_3 + \emptyset \qquad [neutral el.] \\ \doteq (a+b)^* \emptyset \qquad [Arden]$$



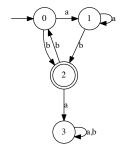
$$\begin{array}{rcl} L_3 &\doteq & (a+b)L_3 + \emptyset & \qquad [\text{neutral el.}] \\ &\doteq & (a+b)^* \emptyset & \qquad [\text{Arden}] \\ &\doteq & \emptyset & \qquad [\text{absorbing el.}] \end{array}$$



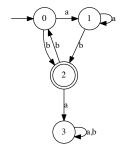
$$\begin{array}{rcl} L_3 &\doteq & (a+b)L_3 + \emptyset & \qquad [\text{neutral el.}] \\ &\doteq & (a+b)^* \emptyset & \qquad [\text{Arden}] \\ &\doteq & \emptyset & \qquad [\text{absorbing el.} \\ L_2 &\doteq & a \emptyset + b L_0 + \varepsilon & \qquad [\text{replace } L_3] \end{array}$$

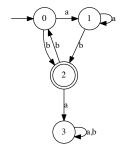


$$\begin{array}{rcl} L_3 &\doteq & (a+b)L_3 + \emptyset & \qquad [\text{neutral el.}] \\ &\doteq & (a+b)^* \emptyset & \qquad [\text{Arden}] \\ &\doteq & \emptyset & \qquad [\text{absorbing el.}] \\ L_2 &\doteq & a \emptyset + b L_0 + \varepsilon & \qquad [\text{replace } L_3] \\ &\doteq & \emptyset + b L_0 + \varepsilon & \qquad [\text{absorbing el.}] \end{array}$$

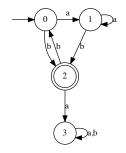


$$\begin{array}{rcl} L_3 &\doteq (a+b)L_3 + \emptyset & \qquad [\text{neutral el.}] \\ &\doteq (a+b)^* \emptyset & \qquad [\text{Arden}] \\ &\doteq \emptyset & \qquad [\text{absorbing el.}] \\ L_2 &\doteq a \emptyset + bL_0 + \varepsilon & \qquad [\text{replace } L_3] \\ &\doteq \emptyset + bL_0 + \varepsilon & \qquad [\text{absorbing el.}] \\ &\doteq bL_0 + \varepsilon & \qquad [\text{neutral el.}] \end{array}$$

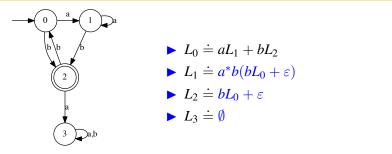




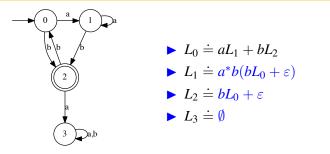
$$\begin{array}{rcl} L_3 &\doteq & (a+b)L_3 + \emptyset & [\text{neutral el.}] \\ &\doteq & (a+b)^* \emptyset & [\text{Arden}] \\ &\doteq & \emptyset & [\text{absorbing el.}] \\ L_2 &\doteq & a \emptyset + bL_0 + \varepsilon & [\text{replace } L_3] \\ &\doteq & \emptyset + bL_0 + \varepsilon & [\text{absorbing el.}] \\ &\doteq & bL_0 + \varepsilon & [\text{neutral el.}] \\ L_1 &\doteq & aL_1 + b(bL_0 + \varepsilon) & [\text{replace } L_2] \\ &\doteq & a^* b(bL_0 + \varepsilon) & [\text{Arden}] \end{array}$$



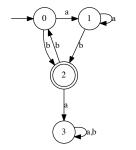
- $\blacktriangleright L_0 \doteq aL_1 + bL_2$
- $\triangleright \ L_1 \doteq a^* b (b L_0 + \varepsilon)$
- $\blacktriangleright L_2 \doteq bL_0 + \varepsilon$
- \blacktriangleright $L_3 \doteq \emptyset$



 $L_0 \doteq a(a^*b(bL_0 + \varepsilon)) + b(bL_0 + \varepsilon)$ [replace L_1, L_2]

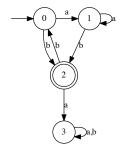


$$L_0 \doteq a(a^*b(bL_0 + \varepsilon)) + b(bL_0 + \varepsilon) \quad [\text{replace } L_1, L_2 \\ \doteq aa^*bbL_0 + aa^*b + bbL_0 + b \quad [\text{dist.}]$$



 $L_0 \doteq aL_1 + bL_2$ $L_1 \doteq a^*b(bL_0 + \varepsilon)$ $L_2 \doteq bL_0 + \varepsilon$ $L_3 \doteq \emptyset$

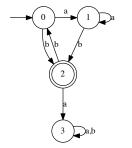
$$\begin{array}{rcl} L_0 &\doteq& a(a^*b(bL_0+\varepsilon))+b(bL_0+\varepsilon) & [\text{replace } L_1,L_2] \\ &\doteq& aa^*bbL_0+aa^*b+bbL_0+b & [\text{dist.}] \\ &\doteq& (aa^*bb+bb)L_0+aa^*b+b & [\text{comm.,dist.}] \end{array}$$



► $L_0 \doteq aL_1 + bL_2$ ► $L_1 \doteq a^*b(bL_0 + \varepsilon)$ ► $L_2 \doteq bL_0 + \varepsilon$ ► $L_3 \doteq \emptyset$

$$L_0 \doteq a(a^*b(bL_0 + \varepsilon)) + b(bL_0 + \varepsilon)$$
[r
$$\doteq aa^*bbL_0 + aa^*b + bbL_0 + b$$
[d
$$\doteq (aa^*bb + bb)L_0 + aa^*b + b$$
[d
$$\doteq (aa^*bb + bb)^*(aa^*b + b)$$
[d

[replace L_1, L_2] [dist.] [comm.,dist.] [Arden]



• $L_0 \doteq aL_1 + bL_2$ • $L_1 \doteq a^*b(bL_0 + \varepsilon)$ • $L_2 \doteq bL_0 + \varepsilon$ • $L_3 \doteq \emptyset$

$$L_0 \doteq a(a^*b(bL_0 + \varepsilon)) + b(bL_0 + \varepsilon)$$

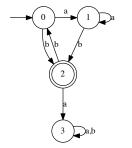
$$\doteq aa^*bbL_0 + aa^*b + bbL_0 + b$$

$$\doteq (aa^*bb + bb)L_0 + aa^*b + b$$

$$\doteq (aa^*bb + bb)^*(aa^*b + b)$$

$$\doteq ((aa^* + \varepsilon)bb)^*((aa^* + \varepsilon)b)$$

[replace L_1, L_2] [dist.] [comm.,dist.] [Arden] [dist.]



• $L_0 \doteq aL_1 + bL_2$ • $L_1 \doteq a^*b(bL_0 + \varepsilon)$ • $L_2 \doteq bL_0 + \varepsilon$ • $L_3 \doteq \emptyset$

$$L_0 \doteq a(a^*b(bL_0 + \varepsilon)) + b(bL_0 + \varepsilon)$$

$$\doteq aa^*bbL_0 + aa^*b + bbL_0 + b$$

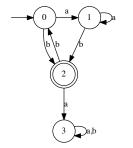
$$\doteq (aa^*bb + bb)L_0 + aa^*b + b$$

$$\doteq (aa^*bb + bb)^*(aa^*b + b)$$

$$\doteq ((aa^* + \varepsilon)bb)^*((aa^* + \varepsilon)b)$$

$$\doteq (a^*bb)^*(a^*b)$$

[replace L_1, L_2] [dist.] [comm.,dist.] [Arden] [dist.] [$rr^* + \varepsilon \doteq r^*$]

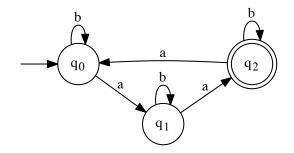


• $L_0 \doteq aL_1 + bL_2$ • $L_1 \doteq a^*b(bL_0 + \varepsilon)$ • $L_2 \doteq bL_0 + \varepsilon$ • $L_3 \doteq \emptyset$

$$\begin{array}{rcl} L_0 &\doteq& a(a^*b(bL_0+\varepsilon))+b(bL_0+\varepsilon) & [\text{replace } L_1,L_2] \\ &\doteq& aa^*bbL_0+aa^*b+bbL_0+b & [\text{dist.}] \\ &\doteq& (aa^*bb+bb)L_0+aa^*b+b & [\text{comm.,dist.}] \\ &\doteq& (aa^*bb+bb)^*(aa^*b+b) & [\text{Arden}] \\ &\doteq& ((aa^*+\varepsilon)bb)^*((aa^*+\varepsilon)b) & [\text{dist.}] \\ &\doteq& (a^*bb)^*(a^*b) & [rr^*+\varepsilon\doteq r^*] \end{array}$$

Therefore: $L(A) = L((a^*bb)^*(a^*b))$

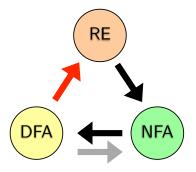
Transform the following DFA into a regular expression accepting the same language:



Resume: Finite automata and regular expressions

We have learned how to convert

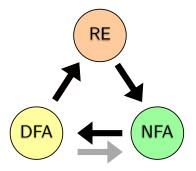
- REs to equivalent NFAs
- NFAs to equivalent DFAs
- (DFAs to equivalent NFAs)



Resume: Finite automata and regular expressions

We have learned how to convert

- REs to equivalent NFAs
- NFAs to equivalent DFAs
- (DFAs to equivalent NFAs)
- DFAs to equivalent REs

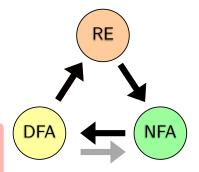


Resume: Finite automata and regular expressions

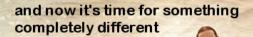
We have learned how to convert

- REs to equivalent NFAs
- NFAs to equivalent DFAs
- (DFAs to equivalent NFAs)
- DFAs to equivalent REs

REs, NFAs and DFAs describe the same class of languages – regular languages!



and now it's time for something completely different



Outline

Introduction

Regular Languages and Finite Automata

Regular Expressions

Finite Automata

Non-Determinism Regular expressions and Finite Automata Minimisation Equivalence

The Pumping Lemma Properties of Regular Languages Scanners and Flex Formal Grammars and Context-Free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0 Lecture-specific material Bonus Exercises Selected Solutions

Efficient Automata: Minimisation of DFAs

Given the DFA

$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F),$$

we want to derive a DFA

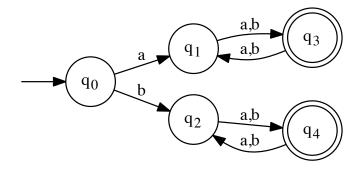
$$\mathcal{A}^- = (Q^-, \Sigma, \delta^-, q_0, F^-),$$

accepting the same language:

$$L(\mathcal{A}) = L(\mathcal{A}^{-})$$

for which the number of states (elements of Q^-) is minimal, i.e. there is no DFA accepting L(A) with fewer states.

Minimisation of DFAs: example/exercise



How small can we make it?

Basic idea:

- Two states with both
 - ▶ ... the same acceptance status (accepting/not accepting)
 - … exactly the same transitions

are equivalent and can be merged

Basic idea:

- Two states with both
 - ▶ ... the same acceptance status (accepting/not accepting)
 - ... exactly the same transitions

are equivalent and can be merged

This is also true if the transitions are not exactly the same, but are equivalent

Basic idea:

- Two states with both
 - ▶ ... the same acceptance status (accepting/not accepting)
 - ... exactly the same transitions

are equivalent and can be merged

This is also true if the transitions are not exactly the same, but are equivalent

Realisation: For a DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, identify pairs of necessarily distinct states

- ▶ Base case: Two states *p*, *q* are necessarily distinct if:
 - one of them is accepting, the other is not accepting
- ▶ Inductive case: Two states *p*, *q* are necessarily distinct if
 - ▶ there is a $c \in \Sigma$ such that $\delta(p,c) = p', \delta(q,c) = q'$
 - ▶ and p', q' are already necessarily distinct

Definition (Necessarily distinct states)

For a DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, *V* is the smallest set of pairs with

- $\blacktriangleright \ \{(p,q) \in (Q \times Q) \mid p \in F, q \notin F\} \subseteq V$
- $\blacktriangleright \ \{(p,q) \in (Q \times Q) \mid p \notin F, q \in F\} \subseteq V$
- if $\delta(p,c) = p', \delta(q,c) = q', (p',q') \in V$ for some $c \in \Sigma$, then $(p,q) \in V$.
- We identifify pairs of necessarily distinct states
- Pairs of states that are not necessarily distinct are equivalent and can be merged

Initialize V with all those pairs for which one member is a final state and the other is not:

$$V = \{ (p,q) \in Q \times Q \mid (p \in F \land q \notin F) \lor (p \notin F \land q \in F) \}.$$

Initialize V with all those pairs for which one member is a final state and the other is not:

 $V = \{ (p,q) \in Q \times Q \mid (p \in F \land q \notin F) \lor (p \notin F \land q \in F) \}.$

2 While there exists

- \blacktriangleright a new pair of states (p,q) and a symbol c
- ▶ such that the states $\delta(p,c)$ and $\delta(q,c)$ are necessarily distinct,
- add this pair and its inverse to V:

Initialize V with all those pairs for which one member is a final state and the other is not:

 $V = \{ (p,q) \in Q \times Q \mid (p \in F \land q \notin F) \lor (p \notin F \land q \in F) \}.$

2 While there exists

- \blacktriangleright a new pair of states (p,q) and a symbol *c*
- ▶ such that the states $\delta(p,c)$ and $\delta(q,c)$ are necessarily distinct,
- ▶ add this pair and its inverse to V:

while
$$(\exists (p,q) \in Q \times Q \exists c \in \Sigma \mid (\delta(p,c), \delta(q,c)) \in V \land (p,q) \notin V)$$

{
 $V = V \cup \{(p,q), (q,p)\}$ }

Minimisation of DFAs: merging States

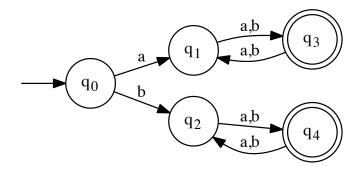
- ▶ If there is a pair of states (p,q) such that for every word $w \in \Sigma^*$
 - reading w results in equivalent successor states,
 - then p and q are equivalent.

 $(p,q) \notin V \Rightarrow \forall w \in \Sigma^* : \delta(p,w) \text{ and } \delta(q,w))$ are indistinguishable.

- Equivalent states p, q can be merged
 - Replace all transitions to p by transitions to q
 - Remove p
- This process can be iterated to identify and merge all pairs of equivalent states

Minimisation of DFAs: example

We want to minimize this DFA with 5 states:



This is the formal definition of the DFA:

$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$$

with

- 1 $Q = \{q_0, q_1, q_2, q_3, q_4\}$
- **2** $\Sigma = \{a, b\}$
- $\delta = \dots$ (skipped to save space, see graph)
- 4 $F = \{q_3, q_4\}$

This is the formal definition of the DFA:

$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$$

with

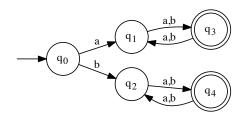
- 1 $Q = \{q_0, q_1, q_2, q_3, q_4\}$
- 2 $\Sigma = \{a, b\}$
- $\delta = \dots$ (skipped to save space, see graph)
- 4 $F = \{q_3, q_4\}$

Represent the set V by means of a two-dimensional table with

- ▶ the elements of *Q* as columns and rows
- the elements of V are marked with \times
- ▶ pairs that are definitely not members of V are marked with ∘

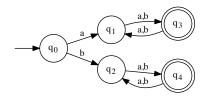
1 the initial state of *V* is obtained by using $F = \{q_3, q_4\}$ and $Q \setminus F = \{q_0, q_1, q_2\}$:

	q_0	q_1	q_2	q_3	q_4
q_0				×	×
q_1				×	×
q_2				×	×
q_3	×	×	×		
q_4	×	×	×		



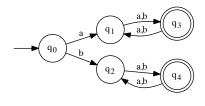
2 The elements of $\{(q_i, q_i) \mid i \in \{0, \dots, 4\}$ are not contained in *V* since every state is equivalent to itself:

	q_0	q_1	q_2	q_3	q_4
q_0	0			×	×
q_1		0		×	Х
q_2			0	×	Х
<i>q</i> ₃	×	×	×	0	
q_4	×	×	×		0



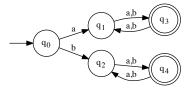
2 The elements of $\{(q_i, q_i) \mid i \in \{0, \dots, 4\}$ are not contained in *V* since every state is equivalent to itself:

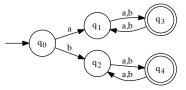
	q_0	q_1	q_2	q_3	q_4
q_0	0			×	×
q_1		0		×	×
q_2			0	×	Х
q_3	×	×	×	0	
q_4	×	×	×		0



There are eight remaining empty fields. Since the table is symmetric, four pairs of states have to be checked.

 Check the transitions of every remaining state-pair for every letter.





$$\begin{array}{l} 1 \quad \delta(q_0, \mathbf{a}) = q_1; \\ \delta(q_0, \mathbf{a}) = q_1; \\ \delta(q_0, \mathbf{a}) = q_1; \\ \delta(q_2, \mathbf{a}) = q_4; \\ (q_1, q_4) \in V \rightarrow (q_0, q_2), \\ (q_2, q_0) \in V \\ \hline \end{array} \\ \begin{array}{l} 2 \quad \delta(q_0, \mathbf{a}) = q_1; \\ \delta(q_2, \mathbf{a}) = q_4; \\ (q_3, q_4) \notin V \text{ (as of yet)} \\ \delta(q_1, \mathbf{b}) = q_3; \\ \delta(q_2, \mathbf{b}) = q_4; \\ (q_3, q_4) \notin V \text{ (as of yet)} \\ \hline \end{array} \\ \begin{array}{l} 4 \quad \delta(q_3, \mathbf{a}) = q_1; \\ \delta(q_4, \mathbf{b}) = q_2; \\ (q_1, q_2) \notin V \text{ (as of yet)} \\ \delta(q_3, \mathbf{b}) = q_1; \\ \delta(q_4, \mathbf{b}) = q_2; \\ (q_1, q_2) \notin V \text{ (as of yet)} \\ \end{array} \end{array}$$

4 Mark the newly found distinct pairs with ×:

	q_0	q_1	q_2	q_3	q_4
q_0	0	×	×	×	×
q_1	×	0		×	×
q_2	×		0	×	×
q_3	×	×	×	0	
q_4	×	×	×		0

4 Mark the newly found distinct pairs with ×:

	q_0	q_1	q_2	q_3	q_4
q_0	0	×	×	×	×
q_1	×	0		×	×
q_2	×		0	×	×
q_3	×	×	×	0	
q_4	×	×	×		0

Two pairs remain to be checked.

- 5 Check the remaining pairs.
- 6 Since no additional necessarily distinct state pairs are found, fill empty cells with o:

	q_0	q_1	q_2	q_3	q_4
q_0	0	×	×	×	×
q_1	×	0	0	×	Х
q_2	×	0	0	×	×
q_3	×	×	×	0	0
q_4	×	×	×	0	0

- 5 Check the remaining pairs.
- 6 Since no additional necessarily distinct state pairs are found, fill empty cells with o:

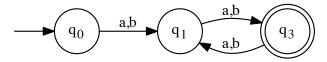
	q_0	q_1	q_2	q_3	q_4
q_0	0	×	\times	×	×
q_1	×	0	0	×	×
q_2	×	0	0	×	×
q_3	×	×	×	0	0
q_4	×	×	×	0	0

From the table, we can derive the following pairs of equivalent states (omitting trivial and symmetric ones):

►
$$(q_1, q_2)$$
,

$$(q_3, q_4).$$

This is the minimized DFA after merging equivalent states:



Derive a minimal DFA accepting the language

 $L(a(ba)^*).$

Solve the exercise in three steps:

- **1** Derive an NFA accepting *L*.
- 2 Transform the NFA into a DFA.
- 3 Minimize the DFA.

Theorem (The minimal DFA is unique)

Assume an arbitrary regular language *L*. Then there is a unique (up to the the renaming of states) minimal DFA A with L(A) = L.

- States can easily be systematically renamed to make equivalent minimal automata strictly equal
- The unique minimal DFA for L can be constructed by minimizing an arbitrary DFA that accepts L

Outline

Introduction

Regular Languages and Finite Automata

Regular Expressions

Finite Automata

Non-Determinism Regular expressions and Finite Automata Minimisation

Equivalence

The Pumping Lemma Properties of Regular Languages Scanners and Flex Formal Grammars and Context-Free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0 Lecture-specific material Bonus Exercises Selected Solutions

Equivalence of regular expressions

- Different regular expressions can describe the same language
- ► Algebraic transformation rules can be used to prove equivalence
 - requires human interaction
 - can be very difficult
 - non-equivalence cannot be shown
- Now: straight-forward algorithm proving equivalence of REs based on FA
- The algorithm is described in the textbook by John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman: Introduction to Automata Theory, Languages, and Computation (3rd edition), 2007 (and earlier editions)

Equivalence of regular expressions: algorithm

Given the REs r₁ and r₂, derive NFAs A₁ and A₂ accepting their respective languages:

$$L(r_1) = L(A_1)$$
 and $L(r_2) = L(A_2)$.

- **2** Transform the NFAs A_1 and A_2 into the DFAs D_1 and D_2 .
- 3 Minimize the DFAs \mathcal{D}_1 and \mathcal{D}_2 yielding the DFAs \mathcal{M}_1 and \mathcal{M}_2 .
- 4 r₁ ≐ r₂ holds iff M₁ and M₂ are identical (modulo renaming of states)

Equivalence of regular expressions: algorithm

1 Given the REs r_1 and r_2 , derive NFAs A_1 and A_2 accepting their respective languages:

$$L(r_1) = L(A_1)$$
 and $L(r_2) = L(A_2)$.

- **2** Transform the NFAs A_1 and A_2 into the DFAs D_1 and D_2 .
- 3 Minimize the DFAs \mathcal{D}_1 and \mathcal{D}_2 yielding the DFAs \mathcal{M}_1 and \mathcal{M}_2 .
- 4 r₁ ≐ r₂ holds iff M₁ and M₂ are identical (modulo renaming of states)

Note: If equivalence can be shown in any intermediate stage of the algorithm, this is sufficient to prove $r_1 \doteq r_2$ (e.g. if $A_1 = A_2$).

Reusing an exercise from an earlier section, prove the following equivalence (by conversion to minimal DFAs):

 $10(10)^* \doteq 1(01)^*0$

Reusing an exercise from an earlier section, prove the following equivalence (by conversion to minimal DFAs):

 $10(10)^* \doteq 1(01)^*0$

Outline

Introduction

Regular Languages and Finite Automata

Regular Expressions Finite Automata The Pumping Lemma

Properties of Regular Languages

Scanners and Flex

Formal Grammars and Context-Free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0 Lecture-specific material Bonus Exercises Selected Solutions

Non-regular languages

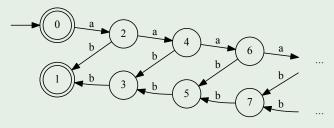
For some simple languages, there is no obvious FA:

Non-regular languages

For some simple languages, there is no obvious FA:

Example (Naive automaton \mathcal{A} for $L = \{a^n b^n \mid n \in \mathbb{N}\}$)

 $\ensuremath{\mathcal{A}}$ has an infinite number of states:

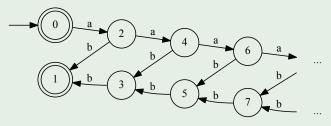


Non-regular languages

For some simple languages, there is no obvious FA:

Example (Naive automaton \mathcal{A} for $L = \{a^n b^n \mid n \in \mathbb{N}\}$)

 \mathcal{A} has an infinite number of states:



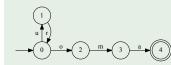
- Is there a better solution?
- If no, how can this be shown?

- 1 Every regular language *L* is accepted by a finite Automaton A_L .
- 2 If *L* contains arbitrarily long words, then A_L must contain a cycle.
 - \blacktriangleright *L* contains arbitrarily long words iff *L* is infinite.
- 3 If A_L contains a cycle, then the cycle can be traversed arbitrarily often (and the resulting word will be accepted).

- 1 Every regular language *L* is accepted by a finite Automaton A_L .
- 2 If *L* contains arbitrarily long words, then A_L must contain a cycle.
 - \blacktriangleright *L* contains arbitrarily long words iff *L* is infinite.
- 3 If A_L contains a cycle, then the cycle can be traversed arbitrarily often (and the resulting word will be accepted).

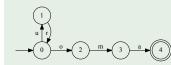
- 1 Every regular language *L* is accepted by a finite Automaton A_L .
- 2 If *L* contains arbitrarily long words, then A_L must contain a cycle.
 - \blacktriangleright *L* contains arbitrarily long words iff *L* is infinite.
- 3 If A_L contains a cycle, then the cycle can be traversed arbitrarily often (and the resulting word will be accepted).

- 1 Every regular language *L* is accepted by a finite Automaton A_L .
- 2 If *L* contains arbitrarily long words, then A_L must contain a cycle.
 - \blacktriangleright *L* contains arbitrarily long words iff *L* is infinite.
- 3 If A_L contains a cycle, then the cycle can be traversed arbitrarily often (and the resulting word will be accepted).



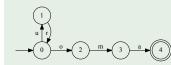
- C accepts uroma
- C also accepts uroma

- 1 Every regular language *L* is accepted by a finite Automaton A_L .
- 2 If *L* contains arbitrarily long words, then A_L must contain a cycle.
 - \blacktriangleright *L* contains arbitrarily long words iff *L* is infinite.
- 3 If A_L contains a cycle, then the cycle can be traversed arbitrarily often (and the resulting word will be accepted).



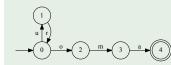
- C accepts uroma
- C also accepts uroma

- 1 Every regular language *L* is accepted by a finite Automaton A_L .
- 2 If *L* contains arbitrarily long words, then A_L must contain a cycle.
 - \blacktriangleright *L* contains arbitrarily long words iff *L* is infinite.
- 3 If A_L contains a cycle, then the cycle can be traversed arbitrarily often (and the resulting word will be accepted).



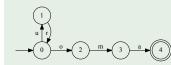
- C accepts uroma
- C also accepts uroma

- 1 Every regular language *L* is accepted by a finite Automaton A_L .
- 2 If *L* contains arbitrarily long words, then A_L must contain a cycle.
 - \blacktriangleright *L* contains arbitrarily long words iff *L* is infinite.
- 3 If A_L contains a cycle, then the cycle can be traversed arbitrarily often (and the resulting word will be accepted).



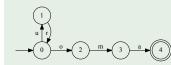
- C accepts uroma
- C also accepts uroma

- 1 Every regular language *L* is accepted by a finite Automaton A_L .
- 2 If *L* contains arbitrarily long words, then A_L must contain a cycle.
 - \blacktriangleright *L* contains arbitrarily long words iff *L* is infinite.
- 3 If A_L contains a cycle, then the cycle can be traversed arbitrarily often (and the resulting word will be accepted).



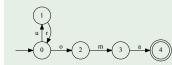
- C accepts uroma
- C also accepts uroma

- 1 Every regular language *L* is accepted by a finite Automaton A_L .
- 2 If *L* contains arbitrarily long words, then A_L must contain a cycle.
 - \blacktriangleright *L* contains arbitrarily long words iff *L* is infinite.
- 3 If A_L contains a cycle, then the cycle can be traversed arbitrarily often (and the resulting word will be accepted).



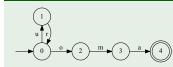
- C accepts uroma
- C also accepts ururoma

- 1 Every regular language *L* is accepted by a finite Automaton A_L .
- 2 If *L* contains arbitrarily long words, then A_L must contain a cycle.
 - \blacktriangleright *L* contains arbitrarily long words iff *L* is infinite.
- 3 If A_L contains a cycle, then the cycle can be traversed arbitrarily often (and the resulting word will be accepted).



- C accepts uroma
- C also accepts urururoma

- 1 Every regular language *L* is accepted by a finite Automaton A_L .
- 2 If *L* contains arbitrarily long words, then A_L must contain a cycle.
 - \blacktriangleright *L* contains arbitrarily long words iff *L* is infinite.
- 3 If A_L contains a cycle, then the cycle can be traversed arbitrarily often (and the resulting word will be accepted).



- C accepts uroma
- C also accepts ururur...oma

The Pumping Lemma

Lemma

Let *L* be a regular language. Then there exists a $k \in \mathbb{N}$ such that for every word $s \in L$ with $|s| \ge k$ the following holds:

The Pumping Lemma

Lemma

Let L be a regular language.

Then there exists a $k \in \mathbb{N}$ such that for every word $s \in L$ with $|s| \ge k$ the following holds:

1
$$\exists u, v, w \in \Sigma^* (s = u \cdot v \cdot w),$$

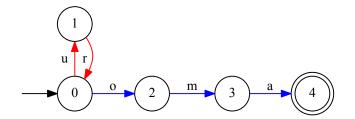
i.e. s consists of prolog *u*, cycle *v* and epilog *w*,

- 2 $v \neq \varepsilon$, i.e. the cycle has a length of at least 1,
- 3 $|u \cdot v| \le k$, *i.e.* prolog and cycle combined have a length of at most k,

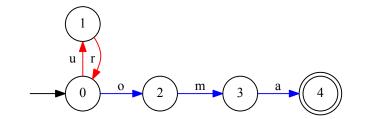
$$4 \forall h \in \mathbb{N}(u \cdot v^h \cdot w \in L),$$

i.e. an arbitrary number of cycle transitions results in a word of the language *L*.

The Pumping Lemma visualised



The Pumping Lemma visualised



\triangleright C has 5 states	k = 5
 uroma has 5 letters 	s = uroma
• There is a segmentation $s = u \cdot v \cdot w$	$u = \varepsilon$ $v = ur$ $w = oma$
• such that $v \neq \varepsilon$	v = ur
• and $ u \cdot v \leq k$	$ arepsilon \cdot \mathrm{ur} = 2 \leq 5$
▶ and $\forall h \in \mathbb{N}(u \cdot v^h \cdot w \in L(\mathcal{C}))$	(ur)*oma $\subseteq L(\mathcal{C})$

► The Pumping Lemma describes a property of regular languages

- ▶ If *L* is regular, then some words can be pumped up.
- ► Goal: proof of irregularity of a language
 - ▶ If *L* has property *X*, then *L* is not regular.
- How can the Pumping Lemma help?

► The Pumping Lemma describes a property of regular languages

- ▶ If *L* is regular, then some words can be pumped up.
- ► Goal: proof of irregularity of a language
 - ▶ If *L* has property *X*, then *L* is not regular.
- How can the Pumping Lemma help?

Theorem (Contraposition)

$$A \to B \quad \Leftrightarrow \quad \neg B \to \neg A$$

Contraposition of the Pumping Lemma

The Pumping Lemma in formal logic:

$$\begin{aligned} reg(L) &\to & \exists k \in \mathbb{N} \ \forall s \in L : (|s| \ge k \to \\ &\exists u, v, w : (s = u \cdot v \cdot w \land v \neq \varepsilon \land |u \cdot v| \le k \land \\ &\forall h \in \mathbb{N} : (u \cdot v^h \cdot w \in L))) \end{aligned}$$

Contraposition of the Pumping Lemma

The Pumping Lemma in formal logic:

$$\begin{aligned} reg(L) &\to & \exists k \in \mathbb{N} \ \forall s \in L : (|s| \ge k \to \\ &\exists u, v, w : (s = u \cdot v \cdot w \land v \neq \varepsilon \land |u \cdot v| \le k \land \\ &\forall h \in \mathbb{N} : (u \cdot v^h \cdot w \in L))) \end{aligned}$$

Contraposition of the PL:

$$\begin{array}{l} \neg (\exists k \in \mathbb{N} \ \forall s \in L(|s| \ge k \rightarrow \\ \exists u, v, w(s = u \cdot v \cdot w \land v \neq \varepsilon \land |u \cdot v| \le k \land \\ \forall h \in \mathbb{N}(u \cdot v^h \cdot w \in L)))) \quad \rightarrow \quad \neg reg(L) \end{array}$$

Contraposition of the Pumping Lemma

The Pumping Lemma in formal logic:

$$\begin{aligned} reg(L) &\to & \exists k \in \mathbb{N} \ \forall s \in L : (|s| \ge k \to \\ &\exists u, v, w : (s = u \cdot v \cdot w \land v \neq \varepsilon \land |u \cdot v| \le k \land \\ &\forall h \in \mathbb{N} : (u \cdot v^h \cdot w \in L))) \end{aligned}$$

Contraposition of the PL:

$$\begin{array}{l} \neg (\exists k \in \mathbb{N} \ \forall s \in L(|s| \geq k \rightarrow \\ \exists u, v, w(s = u \cdot v \cdot w \land v \neq \varepsilon \land |u \cdot v| \leq k \land \\ \forall h \in \mathbb{N}(u \cdot v^h \cdot w \in L)))) \quad \rightarrow \quad \neg reg(L) \end{array}$$

After pushing negation inward and doing some propositional transformations:

$$\forall k \in \mathbb{N} \ \exists s \in L(|s| \ge k \land \\ \forall u, v, w(s = u \cdot v \cdot w \land v \neq \varepsilon \land |u \cdot v| \le k \rightarrow \\ \exists h \in \mathbb{N}(u \cdot v^h \cdot w \notin L))) \rightarrow \neg reg(L)$$

$$\forall k \in \mathbb{N} \ \exists s \in L(|s| \ge k \land \\ \forall u, v, w(s = u \cdot v \cdot w \land v \neq \varepsilon \land |u \cdot v| \le k \rightarrow \\ \exists h \in \mathbb{N} \ (u \cdot v^h \cdot w \notin L))) \quad \rightarrow \quad \neg reg(L)$$

$$\forall k \in \mathbb{N} \exists s \in L(|s| \ge k \land \\ \forall u, v, w(s = u \cdot v \cdot w \land v \neq \varepsilon \land |u \cdot v| \le k \rightarrow \\ \exists h \in \mathbb{N} (u \cdot v^h \cdot w \notin L))) \rightarrow \neg reg(L)$$

If for each natural number k

$$\forall k \in \mathbb{N} \exists s \in L(|s| \ge k \land \\ \forall u, v, w(s = u \cdot v \cdot w \land v \neq \varepsilon \land |u \cdot v| \le k \rightarrow \\ \exists h \in \mathbb{N} (u \cdot v^h \cdot w \notin L))) \rightarrow \neg reg(L)$$

If for each natural number k there is a word s

$$\forall k \in \mathbb{N} \ \exists s \in L(|s| \ge k \land \\ \forall u, v, w(s = u \cdot v \cdot w \land v \neq \varepsilon \land |u \cdot v| \le k \rightarrow \\ \exists h \in \mathbb{N} \ (u \cdot v^h \cdot w \notin L))) \rightarrow \neg reg(L)$$

If for each natural number k there is a word s with length at least k

$$\forall k \in \mathbb{N} \exists s \in L(|s| \ge k \land \forall u, v, w(s = u \cdot v \cdot w \land v \neq \varepsilon \land |u \cdot v| \le k \rightarrow \exists h \in \mathbb{N} (u \cdot v^h \cdot w \notin L))) \rightarrow \neg reg(L)$$

If for each natural number k there is a word s with length at least k and for every segmentation $u \cdot v \cdot w$ of s

$$\forall k \in \mathbb{N} \ \exists s \in L(|s| \ge k \land \\ \forall u, v, w(s = u \cdot v \cdot w \land v \neq \varepsilon \land |u \cdot v| \le k \rightarrow \\ \exists h \in \mathbb{N} \ (u \cdot v^h \cdot w \notin L))) \ \rightarrow \neg reg(L)$$

If for each natural number *k* there is a word *s* with length at least *k* and for every segmentation $u \cdot v \cdot w$ of *s* (with $v \neq \varepsilon$ and $|u \cdot v| \leq k$)

$$\forall k \in \mathbb{N} \ \exists s \in L(|s| \ge k \land \\ \forall u, v, w(s = u \cdot v \cdot w \land v \neq \varepsilon \land |u \cdot v| \le k \rightarrow \\ \exists h \in \mathbb{N} \ (u \cdot v^h \cdot w \notin L))) \rightarrow \neg reg(L)$$

If for each natural number k there is a word s with length at least k and for every segmentation $u \cdot v \cdot w$ of s (with $v \neq \varepsilon$ and $|u \cdot v| \leq k$) there is a number h

$$\forall k \in \mathbb{N} \ \exists s \in L(|s| \ge k \land \\ \forall u, v, w(s = u \cdot v \cdot w \land v \neq \varepsilon \land |u \cdot v| \le k \rightarrow \\ \exists h \in \mathbb{N} \ (u \cdot v^h \cdot w \notin L))) \rightarrow \neg reg(L)$$

If for each natural number k there is a word s with length at least k and for every segmentation $u \cdot v \cdot w$ of s (with $v \neq \varepsilon$ and $|u \cdot v| \leq k$) there is a number h such that $u \cdot v^h \cdot w$ does not belong to L,

$$\forall k \in \mathbb{N} \ \exists s \in L(|s| \ge k \land \\ \forall u, v, w(s = u \cdot v \cdot w \land v \neq \varepsilon \land |u \cdot v| \le k \rightarrow \\ \exists h \in \mathbb{N} \ (u \cdot v^h \cdot w \notin L))) \rightarrow \neg reg(L)$$

If for each natural number *k* there is a word *s* with length at least *k* and for every segmentation $u \cdot v \cdot w$ of *s* (with $v \neq \varepsilon$ and $|u \cdot v| \leq k$) there is a number *h* such that $u \cdot v^h \cdot w$ does not belong to *L*, then *L* is not regular.

We have to show:

► For every natural number k

We have to show:

- ► For every natural number k
- For an unspecified arbitrary natural number k

We have to show:

- For every natural number k
- For an unspecified arbitrary natural number k
- there is a word $s \in L$ that is longer than k

such that

every segmentation

 $u \cdot v \cdot w = s$

```
with |u \cdot v| \leq k and |v| \neq \varepsilon
```

► can be pumped up into a word $u \cdot v^h \cdot w \notin L$.

We have to show:

- ► For every natural number k
- For an unspecified arbitrary natural number k
- there is a word $s \in L$ that is longer than k
- such that every segmentation

 $u \cdot v \cdot w = s$

with $|u \cdot v| \leq k$ and $|v| \neq \varepsilon$

► can be pumped up into a word $u \cdot v^h \cdot w \notin L$.

Example $(L = a^n b^n)$

• Choose $s = a^k b^k$. It follows:

$$s = \underbrace{a^i}_u \cdot \underbrace{a^j}_v \cdot \underbrace{a^\ell \cdot b^k}_w$$

 $\blacktriangleright i+j+\ell=k$

 since |u ⋅ v| ≤ k holds, u and v consist only of as
 v ≠ ε implies i > 1

• Choose h = 0. It follows:

•
$$u \cdot v^h \cdot w = u \cdot w = a^{i+\ell} b^k$$

$$j \ge 1$$
 implies $i + \ell < k$

Regarding quantifiers

Four quantifiers:

In the lemma:

$$\exists k \forall s \exists u, v, w \forall h(u \cdot v^h \cdot w \in L)$$

► To show irregularity:

$$\forall k \exists s \forall u, v, w \exists h(u \cdot v^h \cdot w \notin L)$$

Regarding quantifiers

Four quantifiers:

In the lemma:

$$\exists k \forall s \exists u, v, w \forall h(u \cdot v^h \cdot w \in L)$$

To show irregularity:

$$\forall k \exists s \forall u, v, w \exists h(u \cdot v^h \cdot w \notin L)$$

To do:

- **1** Find a word s depending on the length k.
- **2** Find an *h* depending on the segmentation $u \cdot v \cdot w$.
- **3** Prove that $u \cdot v^h \cdot w \notin L$ holds.

Play the pumping game at http://weitz.de/pump/.

Remark: Weitz uses a slightly stronger variant of the pumping lemma, where the string uv can be anywhere in the word, not just at the beginning.

Use the pumping lemma to show that

$$L = \{a^n b^m \mid n < m\}$$

is not regular.

Use the pumping lemma to show that

$$L = \{a^n b^m \mid n < m\}$$

is not regular.

Reminder:

- **1** Find a word s depending on the length k.
- **2** Find an *h* depending on the segmentation $u \cdot v \cdot w$.
- **3** Prove that $u \cdot v^h \cdot w \notin L$ holds.

Use the pumping lemma to show that

$$L = \{a^n b^m \mid n < m\}$$

is not regular.

Reminder:

- **1** Find a word s depending on the length k.
- **2** Find an *h* depending on the segmentation $u \cdot v \cdot w$.
- **3** Prove that $u \cdot v^h \cdot w \notin L$ holds.

Let *L* be the number containing all words of the form a^p where *p* is a prime number:

$$L = \{ a^p \mid p \in \mathbb{P} \}.$$

Prove that L is not a regular language.

Hint: let h = p + 1

Let *L* be the number containing all words of the form a^p where *p* is a prime number:

$$L = \{ a^p \mid p \in \mathbb{P} \}.$$

Prove that L is not a regular language.

Hint: let h = p + 1

Solution

Practical relevance of irregularity

Finite automata cannot count arbitrarily high.

Practical relevance of irregularity

Finite automata cannot count arbitrarily high.

Examples (Nested dependencies)

C for every { there is a } XML for every <token> there is a </token> LATEX for every \begin{env} there is a \end{env} German for every subject there is a predicate

Practical relevance of irregularity

Finite automata cannot count arbitrarily high.

Examples (Nested dependencies)

C for every { there is a } XML for every <token> there is a </token> LATEX for every \begin{env} there is a \end{env} German for every subject there is a predicate Erinnern Sie sich, wie der Krieger

```
Erinnern Sie sich,
wie der Krieger,
der die Botschaft,
die den Sieg,
den die Griechen bei Marathon
errungen hatten,
verkündete,
brachte,
starb!
```

- Every regular language is accepted by a DFA A (with k states).
- ▶ Pumping lemma: words with at least *k* letters can be pumped up.
- If it is possible to pump up a word w ∈ L and obtain a word w' ∉ L, then L is not regular.
 - Make sure to handle quantifiers correctly!
- Practical relevance
 - ► FAs cannot count arbitrarily high.
 - Nested structures are not regular.
 - programming languages
 - natural languages
 - ▶ More powerful tools are needed to handle these languages.

Outline

Introduction

Regular Languages and Finite Automata

Regular Expressions Finite Automata The Pumping Lemma Properties of Regular Languages

Scanners and Flex

Formal Grammars and Context-Free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0 Lecture-specific material Bonus Exercises Selected Solutions Reminder:

- ► Formal languages are sets of words (over a finite alphabet)
- A formal language L is a regular language if any of the following holds:
 - ▶ There exists an NFA A with L(A) = L
 - ▶ There exists a DFA A with L(A) = L
 - ▶ There exists a regular expression r with L(r) = L
 - There exists a regular grammar G with L(G) = L
- Pumping lemma: not all languages are regular

Reminder:

- ► Formal languages are sets of words (over a finite alphabet)
- A formal language L is a regular language if any of the following holds:
 - ▶ There exists an NFA A with L(A) = L
 - ▶ There exists a DFA A with L(A) = L
 - ▶ There exists a regular expression r with L(r) = L
 - ▶ There exists a regular grammar G with L(G) = L
- Pumping lemma: not all languages are regular

Question

What can we do to regular languages and be sure the result is still regular?

Question: If L_1 and L_2 are regular languages, does the same hold for $L_1 \cup L_2$? (closure under union)

- $L_1 \cup L_2$? (closure under union)
- $L_1 \cap L_2$? (closure under intersection)

- $L_1 \cup L_2$? (closure under union)
- $L_1 \cap L_2$? (closure under intersection)
- $L_1 \cdot L_2$? (closure under concatenation)

- $L_1 \cup L_2$? (closure under union)
- $L_1 \cap L_2$? (closure under intersection)
- $L_1 \cdot L_2$? (closure under concatenation)
- $\overline{L_1}$, i.e. $\Sigma^* \setminus L_1$? (closure under complement)

 $\begin{array}{ll} L_1 \cup L_2 ? & (\mbox{closure under union}) \\ L_1 \cap L_2 ? & (\mbox{closure under intersection}) \\ L_1 \cdot L_2 ? & (\mbox{closure under concatenation}) \\ \overline{L_1}, \mbox{ i.e. } \Sigma^* \setminus L_1 ? & (\mbox{closure under complement}) \\ L_1^* ? & (\mbox{closure under Kleene-star}) \end{array}$

 $\begin{array}{ll} L_1 \cup L_2 ? & (\mbox{closure under union}) \\ L_1 \cap L_2 ? & (\mbox{closure under intersection}) \\ L_1 \cdot L_2 ? & (\mbox{closure under concatenation}) \\ \overline{L_1}, \mbox{ i.e. } \Sigma^* \setminus L_1 ? & (\mbox{closure under complement}) \\ L_1^* ? & (\mbox{closure under Kleene-star}) \end{array}$

 $\begin{array}{ll} L_1 \cup L_2 ? & (\mbox{closure under union}) \\ L_1 \cap L_2 ? & (\mbox{closure under intersection}) \\ L_1 \cdot L_2 ? & (\mbox{closure under concatenation}) \\ \overline{L_1}, \mbox{ i.e. } \Sigma^* \setminus L_1 ? & (\mbox{closure under complement}) \\ L_1^* ? & (\mbox{closure under Kleene-star}) \end{array}$

Meta-Question: How do we answer these questions?

Closure properties (Theorem)

Theorem (Closure properties of regular languages)

Let L_1 and L_2 be regular languages. Then the following langages are also regular:

- \blacktriangleright $L_1 \cup L_2$
- \blacktriangleright $L_1 \cap L_2$
- $\blacktriangleright L_1 \cdot L_2$
- $\blacktriangleright \overline{L_1}$, *i.e.* $\Sigma^* \setminus L_1$
- $\triangleright L_1^*$

Closure properties (Theorem)

Theorem (Closure properties of regular languages)

Let L_1 and L_2 be regular languages. Then the following langages are also regular:

- \blacktriangleright $L_1 \cup L_2$
- \blacktriangleright $L_1 \cap L_2$

$$\blacktriangleright L_1 \cdot L_2$$

*

$$\blacktriangleright \overline{L_1}$$
, i.e. $\Sigma^* \setminus L_1$

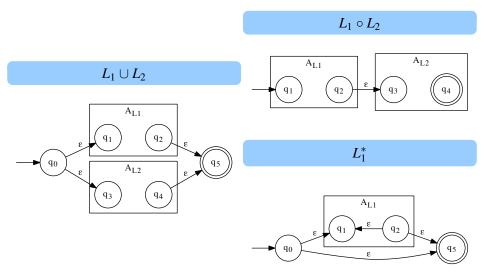
Proof.

Idea: using (disjoint) finite automata for L_1 and L_2 , construct an automaton for the different languages above.

We use the same construction that was used to generate NFAs for regular expressions:

- Let A_{L_1} and A_{L_2} be automata for L_1 and L_2 .
- $L_1 \cup L_2$ new initial and final states, ε -transitions to initial/final states of A_{L_1} and A_{L_2}
 - $L_1 \cdot L_2 \in$ -transition from final state of A_{L_1} to initial state of A_{L_2}
 - $(L_1)^*$ **>** new initial and final states (with ε -transitions),
 - ε-transitions from the original final states to the original initial state,
 - \triangleright ε -transition from the new initial to the new final state.

Visual refresher



Closure under intersection

Let $\mathcal{A}_{L_1} = (Q_1, \Sigma, \delta_1, q_{0_1}, F_1)$ and $\mathcal{A}_{L_2} = (Q_2, \Sigma, \delta_2, q_{0_2}, F_2)$ be DFAs for L_1 and L_2 .

An automaton $L = (Q, \Sigma, \delta, q_0, F)$ for $A_{L_1} \cap A_{L_2}$ can be generated as follows:

▶
$$Q = Q_1 \times Q_2$$

▶ $\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$ for all $q_1 \in Q_1, q_2 \in Q_2, a \in \Sigma$
▶ $q_0 = (q_{0_1}, q_{0_2})$
▶ $F = F_1 \times F_2$

Closure under intersection

Let $\mathcal{A}_{L_1} = (Q_1, \Sigma, \delta_1, q_{0_1}, F_1)$ and $\mathcal{A}_{L_2} = (Q_2, \Sigma, \delta_2, q_{0_2}, F_2)$ be DFAs for L_1 and L_2 .

An automaton $L = (Q, \Sigma, \delta, q_0, F)$ for $A_{L_1} \cap A_{L_2}$ can be generated as follows:

• $Q = Q_1 \times Q_2$ • $\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$ for all $q_1 \in Q_1, q_2 \in Q_2, a \in \Sigma$ • $q_0 = (q_{0_1}, q_{0_2})$ • $F = F_1 \times F_2$

This product automaton

- ▶ starts in state that corresponds to initial states of A_{L_1} and A_{L_2} ,
- simulates simultaneous processing in both automata
- accepts if both A_{L_1} and A_{L_2} accept.

Generate automata for

- ▶ $L_1 = \{w \in \{0, 1\}^* \mid |w|_1 \text{ is divisible by 2}\}$
- $L_2 = \{w \in \{0,1\}^* \mid |w|_1 \text{ is divisible by 3}\}$

Then generate an automaton for $L_1 \cap L_2$.

Generate automata for

- ▶ $L_1 = \{w \in \{0,1\}^* \mid |w|_1 \text{ is divisible by 2}\}$
- $L_2 = \{w \in \{0,1\}^* \mid |w|_1 \text{ is divisible by 3}\}$

Then generate an automaton for $L_1 \cap L_2$.

Solution

Generate automata for

- ▶ $L_1 = \{w \in \{0,1\}^* \mid |w|_1 \text{ is divisible by 2}\}$
- $L_2 = \{w \in \{0,1\}^* \mid |w|_1 \text{ is divisible by 3}\}$

Then generate an automaton for $L_1 \cap L_2$.

Closure under complement

Theorem (Closure under complement)

Let *L* be a regular language over Σ . Then $\overline{L} = \Sigma^* \setminus L$ is regular.

Let $\mathcal{A}_L = (Q, \Sigma, q_0, \delta, F)$ be a DFA for the language *L*.

Then $\overline{\mathcal{A}_L} = (Q, \Sigma, q_0, \delta, Q \setminus F)$ is an automaton accepting \overline{L} :

Theorem (Closure under complement)

Let *L* be a regular language over Σ . Then $\overline{L} = \Sigma^* \setminus L$ is regular.

Let $\mathcal{A}_L = (Q, \Sigma, q_0, \delta, F)$ be a DFA for the language *L*.

Then $\overline{\mathcal{A}_L} = (Q, \Sigma, q_0, \delta, Q \setminus F)$ is an automaton accepting \overline{L} :

▶ if
$$w \in L(\mathcal{A})$$
 then $\delta'(q_0, w) \in F$, i.e.
 $\delta'(q_0, w) \notin Q \setminus F$, which implies $w \notin L(\overline{\mathcal{A}_L})$.

▶ if
$$w \notin L(\mathcal{A})$$
 then $\delta'(q_0, w) \notin F$, i.e.
 $\delta'(q_0, w) \in Q \setminus F$, which implies $w \in L(\overline{\mathcal{A}_L})$.

Theorem (Closure under complement)

Let *L* be a regular language over Σ . Then $\overline{L} = \Sigma^* \setminus L$ is regular.

Let $\mathcal{A}_L = (Q, \Sigma, q_0, \delta, F)$ be a DFA for the language *L*.

Then $\overline{\mathcal{A}_L} = (Q, \Sigma, q_0, \delta, Q \setminus F)$ is an automaton accepting \overline{L} :

▶ if
$$w \in L(\mathcal{A})$$
 then $\delta'(q_0, w) \in F$, i.e.
 $\delta'(q_0, w) \notin Q \setminus F$, which implies $w \notin L(\overline{\mathcal{A}_L})$.

▶ if
$$w \notin L(\mathcal{A})$$
 then $\delta'(q_0, w) \notin F$, i.e.
 $\delta'(q_0, w) \in Q \setminus F$, which implies $w \in L(\overline{\mathcal{A}_L})$.

Reminder:

 $\delta':Q\times\Sigma^*\to Q$

 $\delta'(q_0, w)$ is the final state of the automaton after processing w

Theorem (Closure under complement)

Let *L* be a regular language over Σ . Then $\overline{L} = \Sigma^* \setminus L$ is regular.

Let $\mathcal{A}_L = (Q, \Sigma, q_0, \delta, F)$ be a DFA for the language *L*.

Then $\overline{\mathcal{A}_L} = (Q, \Sigma, q_0, \delta, Q \setminus F)$ is an automaton accepting \overline{L} :

▶ if
$$w \in L(\mathcal{A})$$
 then $\delta'(q_0, w) \in F$, i.e.
 $\delta'(q_0, w) \notin Q \setminus F$, which implies $w \notin L(\overline{\mathcal{A}_L})$.

▶ if
$$w \notin L(\mathcal{A})$$
 then $\delta'(q_0, w) \notin F$, i.e.
 $\delta'(q_0, w) \in Q \setminus F$, which implies $w \in L(\overline{\mathcal{A}_L})$.

Reminder:

 $\delta':Q\times\Sigma^*\to Q$

 $\delta'(q_0, w)$ is the final state of the automaton after processing w

All we have to do is exchange accepting and non-accepting states.

Show that $L = \{w \in \{a, b\}^* \mid |w|_a = |w|_b\}$ is not regular.

Hint: Use the following:

- ▶ $a^n b^n$ is not regular. (Pumping lemma)
- ▶ a^*b^* is regular. (Regular expression)
- ► (one of) the closure properties shown before.

Finite languages and automata

Theorem (Regularity of finite languages)

Every finite language, i.e. every language containing only a finite number of words, is regular.

Finite languages and automata

Theorem (Regularity of finite languages)

Every finite language, i.e. every language containing only a finite number of words, is regular.

Proof.

Let
$$L = \{w_1, ..., w_n\}.$$

- ► For each w_i, generate an automaton A_i with initial state q_{0i} and final state q_{fi}.
- Let *q*₀ be a new state, from which there is an *ε*-transition to each *q*_{0*i*}.

Finite languages and automata

Theorem (Regularity of finite languages)

Every finite language, i.e. every language containing only a finite number of words, is regular.

Proof.

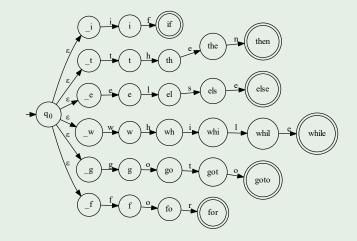
Let
$$L = \{w_1, ..., w_n\}.$$

- ► For each w_i, generate an automaton A_i with initial state q_{0i} and final state q_{fi}.
- Let *q*₀ be a new state, from which there is an *ε*-transition to each *q*_{0*i*}.

Then the resulting automaton, with q_0 as initial state and all q_{f_i} as final states, accepts *L*.

Example: finite language

Example ($L = \{if, then, else, while, goto, for\}$ over Σ_{ASCII})



Finite languages and regular expressions

Theorem (Regularity of finite languages)

Every finite language is regular.

Alternate proof.

Let $L = \{w_1, w_2, \dots, w_n\}$. Write *L* as the regular expression $w_1 + w_2 + \dots + w_n$.

Finite languages and regular expressions

Theorem (Regularity of finite languages)

Every finite language is regular.

Alternate proof.

Let $L = \{w_1, w_2, \dots, w_n\}$. Write *L* as the regular expression $w_1 + w_2 + \dots + w_n$.

Corollary

The class of finite languages is characterised by

- acyclic NFAs (or DFAs that have no cycles on any path from the initial state to an accepting state)
- regular expressions without Kleene star.

Is there a word in L_1 ? emptiness problem

Is there a word in L_1 ? emptiness problem

Is w an element of L_1 ? word problem

Is there a word in L_1 ? Is *w* an element of L_1 ? Is L_1 equal to L_2 ? emptiness problem word problem equivalence problem

```
Is there a word in L_1?
Is w an element of L_1?
Is L_1 equal to L_2?
Is L_1 finite?
```

emptiness problem word problem equivalence problem finiteness problem

Emptiness problem

Theorem (Emptiness problem for regular languages)

The emptiness problem for regular languages is decidable.

Theorem (Emptiness problem for regular languages)

The emptiness problem for regular languages is decidable.

Proof.

Algorithm: Let A be an automaton accepting the language L.

- Starting with the initial state q_0 , mark all states to which there is a transition from q_0 as reachable.
- Continue with transitions from states which are already marked as reachable until either a final state is reached or no further states are reachable.
- ▶ If a final (accepting) state is reachable, then $L \neq \{\}$ holds.

Group exercise: Emptiness problem

Find an alternative algorithm for checking emptiness, using the results from the chapter on equivalence.

Word problem

Theorem (Word problem for regular languages)

The word problem for regular languages is decidable.

Word problem

Theorem (Word problem for regular languages)

The word problem for regular languages is decidable.

Proof.

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a DFA accepting *L* and $w = c_1 c_2 \dots c_n$. Algorithm:

- $\blacktriangleright q_1 := \delta(q_0, c_1)$
- $\blacktriangleright q_2 := \delta(q_1, c_2)$

> ...

▶ If $q_n \in F$ holds, then A accepts w.

Word problem

Theorem (Word problem for regular languages)

The word problem for regular languages is decidable.

Proof.

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a DFA accepting *L* and $w = c_1 c_2 \dots c_n$. Algorithm:

- $\triangleright q_1 := \delta(q_0, c_1)$
- $\blacktriangleright q_2 := \delta(q_1, c_2)$
- ▶ ...
- ▶ If $q_n \in F$ holds, then A accepts w.

All we have to do is simulate the run of A on w.

Equivalence problem

Theorem (Equivalence problem for regular languages)

The equivalence problem for regular languages is decidable.

Equivalence problem

Theorem (Equivalence problem for regular languages)

The equivalence problem for regular languages is decidable.

We have already shown how to prove this using minimised DFAs for L_1 and L_2 .

Equivalence problem

Theorem (Equivalence problem for regular languages)

The equivalence problem for regular languages is decidable.

We have already shown how to prove this using minimised DFAs for L_1 and L_2 .

Alternative proof.

One can also use closure properties and decidability of the emptiness problem:

$$L_1 = L_2 \text{ iff } \underbrace{(L_1 \cap \overline{L_2})}_{\text{words that are in } L_1, \text{ but not in } L_2} \cup \underbrace{(\overline{L_1} \cap L_2)}_{\text{words that are not in } L_1, \text{ but in } L_2} = \{\}$$

Finiteness problem

Theorem (Finiteness problem for regular languages)

The finiteness problem for regular languages is decidable.

Theorem (Finiteness problem for regular languages)

The finiteness problem for regular languages is decidable.

Proof.

Idea: if there is a loop in an accepting run, words of arbitrary length are accepted.

Theorem (Finiteness problem for regular languages)

The finiteness problem for regular languages is decidable.

Proof.

Idea: if there is a loop in an accepting run, words of arbitrary length are accepted.

Let \mathcal{A} be a DFA accepting L.

- Eliminate from A all states that are not reachable from the initial state, obtaining A_r.
- ► Eliminate from *A_r* all states from which no final state is reachable, obtaining *A_f*.
- ▶ *L* is infinite iff A_f contains a loop.

Theorem (Finiteness problem for regular languages)

The finiteness problem for regular languages is decidable.

Proof.

Idea: if there is a loop in an accepting run, words of arbitrary length are accepted.

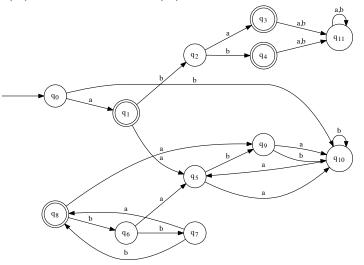
Let \mathcal{A} be a DFA accepting L.

- Eliminate from A all states that are not reachable from the initial state, obtaining A_r.
- Eliminate from A_r all states from which no final state is reachable, obtaining A_f.
- ▶ *L* is infinite iff A_f contains a loop.

Note that A_f may be a NFA (because it misses some transitions) 182

Exercise: Finiteness

Consider the following DFA A. Use to previous algorithm to decide if L(A) is finite. Describe L(A).



Extensions: look-ahead and back-references

- Look-ahead: Only match a RE if another match follows
 - ▶ r_1/r_2 ("positive look-ahead")
- Back-references: Match a previously matched string again
 - ▶ $(a^*)_1b\backslash 1$ matches a^nba^n (!)
 - $((a+b)^*)_1 \setminus 1$ matches *ww* ($w \in \{a, b\}^*$) (!)
- Results:
 - Look-aheads don't increase power of REs
 - Back-references do increase the power of REs
 - In the presence of back-references, look-aheads increase the power further (FSCD 2022, [1])

Extensions: look-ahead and back-references

- Look-ahead: Only match a RE if another match follows
 - ▶ r_1/r_2 ("positive look-ahead")
- Back-references: Match a previously matched string again
 - ▶ $(a^*)_1b\backslash 1$ matches a^nba^n (!)
 - $((a+b)^*)_1 \setminus 1$ matches $ww (w \in \{a, b\}^*)$ (!)
- Results:
 - Look-aheads don't increase power of REs
 - Back-references do increase the power of REs
 - In the presence of back-references, look-aheads increase the power further (FSCD 2022, [1])

$$RE = RE_{LA} \subset RE_{BR} \subset RE_{BRLA}$$

Regular languages: summary

Regular languages

- are characterised by
 - NFAs / DFAs
 - regular expressions
 - regular grammars
- can be transferred from one formalism to another one
- are closed under all operators (considered here)
- all decision problems (considered here) are decidable
- do not contain several interesting languages (aⁿbⁿ, counting)
 - see chapter on grammars
- can express important features of programming languages
 - keywords
 - legal identifiers
 - numbers

in compilers, these features are used by scanners (next chapter)

Regular languages: summary

Regular languages

- are characterised by
 - NFAs / DFAs
 - regular expressions
 - regular grammars
- can be transferred from one formalism to another one
- are closed under all operators (considered here)
- all decision problems (considered here) are decidable
- do not contain several interesting languages (aⁿbⁿ, counting)
 - see chapter on grammars
- can express important features of programming languages
 - keywords
 - legal identifiers
 - numbers

in compilers, these features are used by scanners (next chapter)

Introduction Regular Languages and Finite Automata

Scanners and Flex

Formal Grammars and Context-Free Languages

Parsers and Bison Turing Machines and Languages of Type 1 and 0 Lecture-specific material Bonus Exercises Selected Solutions

- For practical exercises, you will need a complete Linux/UNIX environment. If you do not run one natively, there are several options:
 - ▶ You can install VirtualBox (https://www.virtualbox.org) and then install e.g. Ubuntu (http://www.ubuntu.com/) on a virtual machine. Make sure to install the *Guest Additions*
 - For Windows, you can install the complete UNIX emulation package Cygwin from http://cygwin.com
 - For MacOS, you can install fink
 (http://fink.sourceforge.net/) or MacPorts
 (https://www.macports.org/) and the necessary tools
- You will need at least flex, bison, gcc, make, and a good text editor

Syntactic Structure of Programming Languages

Syntactic Structure of Programming Languages

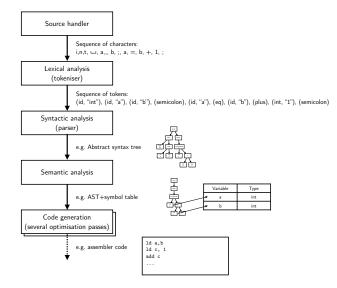
- ► Regular: vocabulary
 - ▶ Keywords, operators, identifiers
 - Described by regular expressions or regular grammar
 - ► Handled by (generated or hand-written) scanner/tokenizer/lexer

- ► Regular: vocabulary
 - ▶ Keywords, operators, identifiers
 - Described by regular expressions or regular grammar
 - Handled by (generated or hand-written) scanner/tokenizer/lexer
- Context-free: program structure
 - Matching parenthesis, block structure, algebraic expressions, ...
 - Described by context-free grammar
 - ► Handled by (generated or hand-written) parser

- ► Regular: vocabulary
 - ▶ Keywords, operators, identifiers
 - Described by regular expressions or regular grammar
 - Handled by (generated or hand-written) scanner/tokenizer/lexer
- Context-free: program structure
 - ▶ Matching parenthesis, block structure, algebraic expressions, ...
 - Described by context-free grammar
 - ► Handled by (generated or hand-written) parser
- Context-sensitive: e.g. declarations
 - Described by human-readable constraints
 - Handled in an ad-hoc fashion (e.g. symbol table)

- Regular: vocabulary
 - Keywords, operators, identifiers
 - Described by regular expressions or regular grammar
 - Handled by (generated or hand-written) scanner/tokenizer/lexer
- Context-free: program structure
 - Matching parenthesis, block structure, algebraic expressions, ...
 - Described by context-free grammar
 - ► Handled by (generated or hand-written) parser
- Context-sensitive: e.g. declarations
 - Described by human-readable constraints
 - Handled in an ad-hoc fashion (e.g. symbol table)

High-Level Architecture of a Compiler



- Handles input files
- Provides character-by-character access
- May maintain file/line/column (for error messages)
- May provide look-ahead

- Handles input files
- Provides character-by-character access
- May maintain file/line/column (for error messages)
- May provide look-ahead

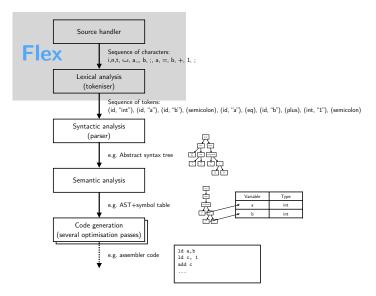
Result: Sequence of characters (with positions)

- Breaks program into tokens
- ► Typical tokens:
 - Reserved word (if, while)
 - Identifier (i, database)
 - ▶ Symbols ({, }, (,), +, -, ...)

- Breaks program into tokens
- ► Typical tokens:
 - Reserved word (if, while)
 - Identifier (i, database)
 - ▶ Symbols ({, }, (,), +, -, ...)

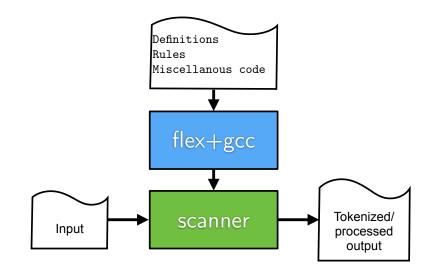
Result: Sequence of tokens

Automatisation with Flex

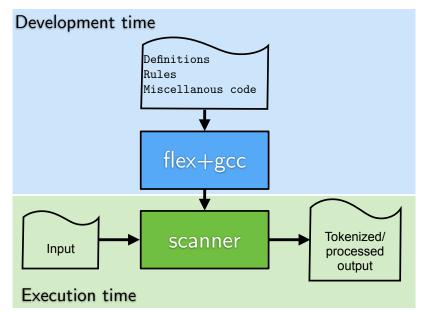


Flex is a scanner generator

- Input: Specification of a regular language and what to do with it
 - Definitions named regular expressions
 - Rules patterns+actions
 - (miscellaneous support code)
- Output: Source code of scanner
 - Scans input for patterns
 - Executes associated actions
 - Default action: Copy input to output
 - Interface for higher-level processing: yylex() function



Flex Overview



- Goal: Sum up all numbers in a file, separately for ints and floats
- Given: A file with numbers and commands
 - Ints: Non-empty sequences of digits
 - Floats: Non-empty sequences of digits, followed by decimal dot, followed by (potentially empty) sequence of digits
 - Command print: Print current sums
 - Command reset: Reset sums to 0.
- At end of file, print sums

Flex Example Output

Input

12 3.1415 0.33333 print reset 2 11 1.5 2.5 print 1 print 1.0

Output

int: 12 ("12") float: 3.141500 ("3.1415") float: 0.333330 ("0.33333") Current: 12 : 3,474830 Reset int: 2 ("2") int: 11 ("11") float: 1.500000 ("1.5") float: 2.500000 ("2.5") Current: 13 : 4.000000 int: 1 ("1") Current: 14 : 4.000000 float: 1.000000 ("1.0") Final 14 : 5.000000

- Flex files have 3 sections
 - Definitions
 - Rules
 - User Code
- Sections are separated by %%
- Flex files traditionally use the suffix .1

Example Code (definition section)

```
%option noyywrap
DIGIT [0-9]
%{
    int intval = 0;
    double floatval = 0.0;
%}
```

응응

Example Code (rule section)

```
{DIGIT}+
   printf( "int: %d (\"%s\")\n", atoi(yytext), yytext );
   intval += atoi(yytext);
{DIGIT}+"."{DIGIT}*
   printf( "float: %f (\"%s\")\n", atof(yytext),yytext );
   floatval += atof(vvtext);
reset {
   intval = 0;
   floatval = 0;
   printf("Reset\n");
print {
   printf("Current: %d : %f\n", intval, floatval);
\n|. {
   /* Skip */
```

Example Code (user code section)

```
88
int main( int argc, char **argv )
{
   ++argv, --argc; /* skip over program name */
   if ( argc > 0 )
     yyin = fopen( argv[0], "r" );
   else
     yyin = stdin;
   yylex();
   printf("Final %d : %f\n", intval, floatval);
}
```

Generating a scanner

```
> flex -t numbers.l > numbers.c
> qcc -c -o numbers.o numbers.c
> qcc numbers.o -o scan numbers
> ./scan numbers Numbers.txt
int: 12 ("12")
float: 3.141500 ("3.1415")
float: 0.333330 ("0.33333")
Current: 12 : 3.474830
Reset.
int: 2 ("2")
int: 11 ("11")
float: 1.500000 ("1.5")
float: 2.500000 ("2.5")
```

. . .

Flexing in detail

```
> flex -tv numbers.l > numbers.c
scanner options: -tvI8 -Cem
37/2000 NFA states
18/1000 DFA states (50 words)
5 rules
Compressed tables always back-up
1/40 start conditions
20 epsilon states, 11 double epsilon states
6/100 character classes needed 31/500 words
of storage, 0 reused
36 state/nextstate pairs created
24/12 unique/duplicate transitions
. . .
381 total table entries needed
```

Download the flex example and input from http://wwwlehre.dhbw-stuttgart.de/~sschulz/ fla2022.html

Build and execute the program:

- Generate the scanner with flex
- Compile/link the C code with gcc
- Execute the resulting program in the input file
- Add a command total that adds the integer sum to the floating point sum and sets the integer back to 0
- Test the modified program

- Can contain flex options
- Can contain (C) initialization code
 - ▶ Typically #include () directives
 - Global variable definitions
 - Macros and type definitions
 - Initialization code is embedded in %{ and %}
- Can contain definitions of regular expressions
 - Format: NAME RE
 - Defined NAMES can be referenced later

Regular Expressions in Practice (1)

- The minimal syntax of REs as discussed before suffices to show their equivalence to finite state machines
- Practical implementations of REs (e.g. in Flex) use a richer and more powerful syntax
- Regular expressions in Flex are based on the ASCII alphabet
- We distinguish between the set of operator symbols

$$O = \{ \, . \, , \star , + , ? , - , \, \tilde{} \, , \, | \, , \, (\, , \,) \, , \, [\, , \,] \, , \{ , \} , < , > , / \, , \, \backslash \, , \, \hat{} \, , \, \forall \}$$

and the set of regular expressions

1.
$$c \in \Sigma_{\text{ASCII}} \setminus O \longrightarrow c \in R$$

2. "." $\in R$

any character but newline (\n)

Regular Expressions in Practice (2)

3. $x \in \{a, b, f, n, r, t, v\} \longrightarrow \langle x \in R$ defines the following control characters

- \a (alert)
- \b (backspace)
- $\fi) f$ (form feed)
- \n (newline)
- \r (carriage return)
- \t (tabulator)
- \v (vertical tabulator)
- 4. $a, b, c \in \{0, \dots, 7\} \longrightarrow \ abc \in R \text{ octal representation of a character's ASCII code (e.g. \040 represents the empty space "")$

Regular Expressions in Practice (3)

5. $c \in O \longrightarrow \backslash c \in R$ escaping operator symbols 6. $r_1, r_2 \in R \longrightarrow r_1 r_2 \in R$ concatenation 7. $r_1, r_2 \in R \longrightarrow r_1 | r_2 \in R$ infix operation using "|" rather than "+" 8. $r \in R \longrightarrow r \star \in R$ Kleene star 9. $r \in R \longrightarrow r + \in R$ (one or more or r)

10. $r \in R \longrightarrow r? \in R$ optional presence (zero or one *r*)

Regular Expressions in Practice (4)

- 11. $r \in R, n \in \mathbb{N} \longrightarrow r\{n\} \in R$ concatenation of *n* times r
- 12. $r \in R$; $m, n \in \mathbb{N}$; $m \le n \longrightarrow r\{m, n\} \in R$ concatenation of between *m* and *n* times *r*

13.
$$r \in R \longrightarrow \hat{r} \in R$$

r has to be at the beginning of line

$$14. \ r \in R \longrightarrow r \$ \in R$$

r has to be at the end of line

15.
$$r_1, r_2 \in R \longrightarrow r_1/r_2 \in R$$

The same as r_1r_2 , however, only the contents of r_1 is consumed. The trailing context r_2 can be processed by the next rule.

16.
$$r \in R \longrightarrow (r) \in R$$

Grouping regular expressions with brackets.

Regular Expressions in Practice (5)

17. Ranges

- [aeiou] \doteq a|e|i|o|u
- $[a-z] \doteq a|b|c| \cdots |z$
- [a-zA-Z0-9]: alphanumeric characters
- [^0-9]: all ASCII characters w/o digits
- **18**. [] ∈ *R*

empty space

19. $w \in \{\Sigma_{ASCII} \setminus \{ \setminus, "\} \}^* \longrightarrow "w" \in R$ verbatim text (no escape sequences) **21.** $r \in R \longrightarrow \tilde{r} \in R$

The upto operator matches the shortest string ending with *r*. 22. predefined character classes

	[:alnum:]	[:alpha:]	[:blank:]
►	[:cntrl:]	[:digit:]	[:graph:]
	[:lower:]	[:print:]	[:punct:]
	[:space:]	[:upper:]	[:xdigit:]

Regular Expressions in Practice (precedences)

I. "(", ")" (strongest)
II. "*", "+", "?"
III. concatenation
IV. "|" (weakest)

Regular Expressions in Practice (precedences)

```
    I. "(", ")" (strongest)
    II. "*", "+", "?"
    III. concatenation
    IV. "|" (weakest)
```

Example

 $a * b | c + de \doteq ((a *)b) | (((c+)d)e)$

Regular Expressions in Practice (precedences)

```
    I. "(", ")" (strongest)
    II. "*", "+", "?"
    III. concatenation
    IV. "|" (weakest)
```

Example

 $a * b | c + de \doteq ((a *)b) | (((c+)d)e)$

Rule of thumb: *, +, ? bind the smallest possible RE. Use () if in doubt!

Regular Expressions in Practice (definitions)

► Assume definiton NAME DEF

▶ In later REs. {NAME} is expanded to (DEF)

Example:

```
DIGIT [0-9]
INTEGER {DIGIT}+
PAIR \({INTEGER}, {INTEGER}\)
```

Given the alphabet Σ_{ascii} , how would you express the following practical REs using only the simple REs we have used so far?

- 2 [^0-9]
- 3 (r)+
- **4** (r){3}
- <mark>5</mark> (r){3,7}
- <mark>6</mark> (r)?

Example Code (definition section) (revisited)

```
%option noyywrap
DIGIT [0-9]
%{
    int intval = 0;
    double floatval = 0.0;
%}
```

응응

- This is the core of the scanner!
- Rules have the form PATTERN ACTION
- Patterns are regular expressions
 - Typically use previous definitions
- There has to be white space between pattern and action
- Actions are C code
 - Can be embedded in { and }
 - Can be simple C statements
 - ► For a token-by-token scanner, must include return statement
 - Inside the action, the variable yytext contains the text matched by the pattern
 - Otherwise: Full input file is processed

Example Code (rule section) (revisited)

```
{DIGIT}+
   printf( "int: %d (\"%s\")\n", atoi(yytext), yytext );
   intval += atoi(yytext);
{DIGIT}+"."{DIGIT}*
   printf( "float: %f (\"%s\")\n", atof(yytext),yytext );
   floatval += atof(vvtext);
reset {
   intval = 0;
   floatval = 0;
   printf("Reset\n");
print {
   printf("Current: %d : %f\n", intval, floatval);
\n|. {
   /* Skip */
```

- Can contain all kinds of code
- For stand-alone scanner: must include main()
- In main(), the function yylex() will invoke the scanner
- yylex() will read data from the file pointer yyin (so main() must set it up reasonably)

Example Code (user code section) (revisited)

```
88
int main( int argc, char **argv )
{
   ++argv, --argc; /* skip over program name */
   if ( argc > 0 )
     yyin = fopen( argv[0], "r" );
   else
     yyin = stdin;
   yylex();
   printf("Final %d : %f\n", intval, floatval);
}
```

Comments in Flex are complicated

- ▶ ... because nearly everything can be a pattern
- Simple rules:
 - ▶ Use old-style C comments /* This is a comment */
 - Never start them in the first column
 - Comments are copied into the generated code
 - Read the manual if you want the dirty details

Flex Miscellaneous

Flex online:

- https://github.com/westes/flex
- Manual: https://westes.github.io/flex/manual/
- REs: https:

//westes.github.io/flex/manual/Patterns.html

Flex Miscellaneous

Flex online:

- https://github.com/westes/flex
- Manual: https://westes.github.io/flex/manual/
- REs: https:

//westes.github.io/flex/manual/Patterns.html

- make knows flex
 - Make will automatically generate file.o from file.l
 - Be sure to set LEX=flex to enable flex extensions
 - Makefile example:

```
LEX=flex
all: scan_numbers
numbers.o: numbers.l
```

```
scan_numbers: numbers.o
gcc numbers.o -o scan_numbers
```

A security audit firm needs a tool that scans documents for the following:

- Email addresses
 - Fomat: String over [A-Za-z0-9_.~-], followed by @, followed by a domain name according to RFC-1034, https://tools.ietf.org/html/rfc1034, Section 3.5 (we only consider the case that the domain name is not empty)
- (simplified) Web addresses
 - http:// followed by an RFC-1034 domain name, optionally followed by :<port> (where <port> is a non-empty sequence of digits), optionally followed by one or several parts of the form /<str>, where <str> is a non-empty sequence over [A-Za-z0-9_.~-]

Flexercise (2)

Bank account numbers

- Old-style bank account numbers start with an identifying string, optionally followed by ., optionally followed by :, optionally followed by spaces, followed by a non-empty sequence of up to 10 digits. Identifying strings are Konto, Kto, KNr, Ktonr, Kontonummer
- (German) IBANs are strings starting with DE, followed by exactly 20 digits. Human-readable IBANs have spaces after every 4 characters (the last group has only 2 characters)

Examples:

- Rosenda@gidwd-39.at.z8o3rw2.zhv
- http://jzl.j51g.m-x95.vi5/oj1g_i1/72zz_gt68f
- http://iefbottw99.v4gy.zslu9q.zrc2es01nr.dy:8004
- ▶ Ktonr. 241524
- DE26959558703965641174
- ▶ DE27 0192 8222 4741 4694 55

- Create a programm scanning for the data described above and printing the found items.
- Example input/output data can be found under http://wwwlehre.dhbw-stuttgart.de/~sschulz/ fla2022.html

- Create a programm scanning for the data described above and printing the found items.
- Example input/output data can be found under http://wwwlehre.dhbw-stuttgart.de/~sschulz/ fla2022.html

End lecture 10

Introduction Regular Languages and Finite Automata

Scanners and Flex

Formal Grammars and Context-Free Languages

Formal Grammars The Chomsky Hierarchy Right-linear Grammars Context-free Grammars Push-Down Automata Properties of Context-free Languages Parsers and Bison Furing Machines and Languages Type 1 and 0 Lecture-specific material Bonus Exercises

Selected Solutions

Introduction Regular Languages and Finite Automata

Scanners and Flex

Formal Grammars and Context-Free Languages

Formal Grammars

The Chomsky Hierarchy Right-linear Grammars Context-free Grammars Push-Down Automata Properties of Context-free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0 Lecture-specific material Bonus Exercises Selected Solutions So far, we have seen

- ▶ regular expressions: compact description of regular languages
- ▶ finite automata: recognise words of a regular language

So far, we have seen

- regular expressions: compact description of regular languages
- ► finite automata: recognise words of a regular language
- Another, more powerful formalism: formal grammars
 - generate words of a language
 - contain a set of rules allowing to replace symbols with different symbols

 $S \rightarrow aA, \quad A \rightarrow bB, \quad B \rightarrow \varepsilon$

 $S \rightarrow aA$, $A \rightarrow bB$, $B \rightarrow \varepsilon$ generates ab (starting from *S*): $S \rightarrow aA \rightarrow abB \rightarrow ab$

 $S \rightarrow aA$, $A \rightarrow bB$, $B \rightarrow \varepsilon$ generates ab (starting from S): $S \rightarrow aA \rightarrow abB \rightarrow ab$

 $S \rightarrow \varepsilon, \quad S \rightarrow aSb$

 $S \rightarrow aA$, $A \rightarrow bB$, $B \rightarrow \varepsilon$ generates ab (starting from S): $S \rightarrow aA \rightarrow abB \rightarrow ab$

 $S \rightarrow \varepsilon$, $S \rightarrow aSb$ generates $a^n b^n$

Grammars: definition

Definition (Grammar according to Chomsky)

A (formal) grammar is a quadruple

 $G = (N, \Sigma, P, S)$

with

- 1 the set of non-terminal symbols N,
- **2** the set of terminal symbols Σ ,
- 3 the set of production rules P of the form

$$\alpha \to \beta$$

with $\alpha \in V^*NV^*, \beta \in V^*, V = N \cup \Sigma$

4 the distinguished start symbol $S \in N$.

Noam Chomsky (*1928)

- Linguist, philosopher, logician, ...
- BA, MA, PhD (1955) at the University of Pennsylvania
- Mainly teaching at MIT (since 1955)
 - Also Harvard, Columbia University, Institute of Advanced Studies (Princeton), UC Berkely, ...
 - Currently Laureate Professor of Linguistics at University of Arizona, Institute Professor Emeritus at MIT
- Opposition to Vietnam War, Essay The Responsibility of Intellectuals
- Most cited academic (1980-1992)
- "World's top public intellectual" (2005)
- More than 40 honorary degrees

Grammar for $\ensuremath{\mathbb{C}}$ identifiers

Example (C identifiers)

- $G = (N, \Sigma, P, S)$ describes C identifiers:
 - alpha-numeric words
 - which must not start with a digit
 - ▶ and may contain an underscore (_)

Grammar for $\ensuremath{\mathbb{C}}$ identifiers

Example (C identifiers)

 $G = (N, \Sigma, P, S)$ describes C identifiers:

- alpha-numeric words
- which must not start with a digit
- ▶ and may contain an underscore (_)

$$N = \{S, R, L, D\} \text{ (start, rest, letter, digit),}$$

$$\Sigma = \{a, \dots, z, A, \dots, Z, 0, \dots, 9, _\},$$

$$P = \{ S \rightarrow LR|_R$$

$$R \rightarrow LR|DR|_R|\varepsilon$$

$$L \rightarrow a|\dots|z|A|\dots|Z$$

$$D \rightarrow 0|\dots|9\}$$

Grammar for $\ensuremath{\mathbb{C}}$ identifiers

Example (C identifiers)

 $G = (N, \Sigma, P, S)$ describes c identifiers:

- alpha-numeric words
- which must not start with a digit
- ▶ and may contain an underscore (_)

$$N = \{S, R, L, D\} \text{ (start, rest, letter, digit),}$$

$$\Sigma = \{a, \dots, z, A, \dots, Z, 0, \dots, 9, _\},$$

$$P = \{ S \rightarrow LR|_R$$

$$R \rightarrow LR|DR|_R|\varepsilon$$

$$L \rightarrow a|\dots|z|A|\dots|Z$$

$$D \rightarrow 0|\dots|9\}$$

 $\alpha \rightarrow \beta_1 | \dots | \beta_n$ is an abbreviation for $\alpha \rightarrow \beta_1, \dots, \alpha \rightarrow \beta_n$.

Formal grammars: derivation, language

Definition (Derivation, Language of a Grammar)

For a grammar $G = (N, \Sigma, P, S)$ with $V = (\Sigma \cup N)$ and words $x, y \in V^*$, we say that

G derives *y* from *x* in one step $(x \Rightarrow_G y)$ iff

$$\exists u, v, p, q \in V^* : (x = upv) \land (p \to q \in P) \land (y = uqv)$$

Formal grammars: derivation, language

Definition (Derivation, Language of a Grammar)

For a grammar $G = (N, \Sigma, P, S)$ with $V = (\Sigma \cup N)$ and words $x, y \in V^*$, we say that

G derives *y* from *x* in one step $(x \Rightarrow_G y)$ iff

$$\exists u, v, p, q \in V^* : (x = upv) \land (p \to q \in P) \land (y = uqv)$$

Moreover, we say that

G derives *y* from *x* $(x \Rightarrow_G^* y)$ iff $\exists w_0, \dots, w_n$ with $w_0 = x, w_n = y, w_{i-1} \Rightarrow_G w_i$ for $i \in \{1, \dots, n\}$

Formal grammars: derivation, language

Definition (Derivation, Language of a Grammar)

For a grammar $G = (N, \Sigma, P, S)$ with $V = (\Sigma \cup N)$ and words $x, y \in V^*$, we say that

G derives *y* from *x* in one step $(x \Rightarrow_G y)$ iff

$$\exists u, v, p, q \in V^* : (x = upv) \land (p \to q \in P) \land (y = uqv)$$

Moreover, we say that

G derives *y* from *x* $(x \Rightarrow_G^* y)$ iff $\exists w_0, \dots, w_n$ with $w_0 = x, w_n = y, w_{i-1} \Rightarrow_G w_i$ for $i \in \{1, \dots, n\}$ The language of *G* is $L(G) = \{w \in \Sigma^* \mid S \Rightarrow_G^* w\}$

Grammars and derivations

Example (G_3)

Let $G_3 = (N, \Sigma, P, S)$ with

$$\triangleright N = \{S\},\$$

$$\blacktriangleright \Sigma = \{a\},\$$

 $\blacktriangleright P = \{S \to aS, S \to \varepsilon\}.$

Grammars and derivations

Example (G_3)

Let $G_3 = (N, \Sigma, P, S)$ with

- $\triangleright N = \{S\},\$
- ► $\Sigma = \{a\},$
- $\blacktriangleright P = \{S \to aS, S \to \varepsilon\}.$

Derivations of G_3 have the general form

$$S \Rightarrow aS \Rightarrow aaS \Rightarrow \dots \Rightarrow a^nS \Rightarrow a^n$$

Grammars and derivations

Example (G_3)

Let $G_3 = (N, \Sigma, P, S)$ with

- $\triangleright N = \{S\},\$
- ► $\Sigma = \{a\},$
- $\blacktriangleright P = \{S \to aS, S \to \varepsilon\}.$

Derivations of G_3 have the general form

$$S \Rightarrow aS \Rightarrow aaS \Rightarrow \cdots \Rightarrow a^nS \Rightarrow a^n$$

The language produced by G_3 is

$$L(G_3) = \{ a^n \mid n \in \mathbb{N} \}.$$

Example (G_2)

Let
$$G_2 = (N, \Sigma, P, S)$$
 with
 $N = \{S\},$
 $\Sigma = \{a, b\},$
 $P = \{S \rightarrow aSb, S \rightarrow \varepsilon\}$

Example (G₂)

Let
$$G_2 = (N, \Sigma, P, S)$$
 with
 $\triangleright N = \{S\},$
 $\flat \Sigma = \{a, b\},$
 $\flat P = \{S \rightarrow aSb, S \rightarrow \varepsilon\}$

Derivations of G₂:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow \cdots \Rightarrow a^nSb^n \Rightarrow a^nb^n$$
.

Example (G₂)

Let
$$G_2 = (N, \Sigma, P, S)$$
 with
 $\triangleright N = \{S\},$
 $\flat \Sigma = \{a, b\},$
 $\flat P = \{S \rightarrow aSb, S \rightarrow \varepsilon\}$

Derivations of G₂:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow \cdots \Rightarrow a^nSb^n \Rightarrow a^nb^n$$
.

$$L(G_2) = \{ a^n b^n \mid n \in \mathbb{N} \}.$$

Example (G_2)

Let
$$G_2 = (N, \Sigma, P, S)$$
 with
 $\triangleright N = \{S\},$
 $\flat \Sigma = \{a, b\},$
 $\flat P = \{S \rightarrow aSb, S \rightarrow \varepsilon\}$

Derivations of G₂:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow \cdots \Rightarrow a^nSb^n \Rightarrow a^nb^n$$
.

$$L(G_2) = \{ a^n b^n \mid n \in \mathbb{N} \}.$$

Reminder: $L(G_2)$ is not regular!

Example (G_1)

Let $G_1 = (N, \Sigma, P, S)$ with

 $\triangleright N = \{S, B, C\},\$

$$\blacktriangleright \Sigma = \{\texttt{a},\texttt{b},\texttt{c}\}$$

► P:

$$S \rightarrow aSBC \quad 1$$

$$S \rightarrow aBC \quad 2$$

$$CB \rightarrow BC \quad 3$$

$$aB \rightarrow ab \quad 4$$

$$bB \rightarrow bb \quad 5$$

$$bC \rightarrow bc \quad 6$$

$$cC \rightarrow cc \quad 7$$

Exercise: Derivations in G_1

Example (G_1)

- Let $G_1 = (N, \Sigma, P, S)$ with
 - $\triangleright N = \{S, B, C\},\$
 - ► $\Sigma = \{a, b, c\},\$
 - ► *P*:
- $S \rightarrow aSBC \quad 1$ $S \rightarrow aBC \quad 2$ $CB \rightarrow BC \quad 3$ $aB \rightarrow ab \quad 4$ $bB \rightarrow bb \quad 5$
- $bC \rightarrow bc \qquad 6$ $cC \rightarrow cc \qquad 7$

- Give derivations for 3 different words in L(G₁)
- Can you characterize $L(G_1)$?

Derivations of G_1 :

$$S \Rightarrow_1 aSBC \Rightarrow_1 aaSBCBC \Rightarrow_1 \dots \Rightarrow_1 a^{n-1}S(BC)^{n-1} \Rightarrow_2 a^n (BC)^n$$
$$\Rightarrow_3^* a^n B^n C^n \Rightarrow_{4,5}^* a^n b^n C^n \Rightarrow_{6,7}^* a^n b^n c^n$$

Derivations of G_1 :

$$S \Rightarrow_1 aSBC \Rightarrow_1 aaSBCBC \Rightarrow_1 \dots \Rightarrow_1 a^{n-1}S(BC)^{n-1} \Rightarrow_2 a^n (BC)^n$$
$$\Rightarrow_3^* a^n B^n C^n \Rightarrow_{4,5}^* a^n b^n C^n \Rightarrow_{6,7}^* a^n b^n c^n$$
$$L(G_1) = \{a^n b^n c^n | n \in \mathbb{N}; n > 0\}.$$

Derivations of G_1 :

$$S \Rightarrow_1 aSBC \Rightarrow_1 aaSBCBC \Rightarrow_1 \dots \Rightarrow_1 a^{n-1}S(BC)^{n-1} \Rightarrow_2 a^n (BC)^n$$
$$\Rightarrow_3^* a^n B^n C^n \Rightarrow_{4,5}^* a^n b^n C^n \Rightarrow_{6,7}^* a^n b^n c^n$$
$$L(G_1) = \{a^n b^n c^n | n \in \mathbb{N}; n > 0\}.$$

- These three derivation examples represent different classes of grammars or languages characterized by different properties.
- A widely used classification scheme of formal grammars and languages is the Chomsky hierarchy (1956).

Introduction Regular Languages and Finite Automata

Scanners and Flex

Formal Grammars and Context-Free Languages

Formal Grammars

The Chomsky Hierarchy

Right-linear Grammars Context-free Grammars Push-Down Automata Properties of Context-free Languages

Turing Machines and Languages of Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

Definition (Grammar of type 0)

Every Chomsky grammar $G = (N, \Sigma, P, S)$ is of Type 0 or unrestricted.

Definition (context-sensitive grammar)

A Chomsky grammar $G = (N, \Sigma, P, S)$ is of is Type 1 (context-sensitive) if all productions are of the form

$$\alpha \rightarrow \beta$$
 with $|\alpha| \leq |\beta|$

Exception: the rule $S \rightarrow \varepsilon$ is allowed if *S* does not appear on the right-hand side of any rule

Definition (context-sensitive grammar)

A Chomsky grammar $G = (N, \Sigma, P, S)$ is of is Type 1 (context-sensitive) if all productions are of the form

 $\alpha \rightarrow \beta$ with $|\alpha| \leq |\beta|$

Exception: the rule $S \rightarrow \varepsilon$ is allowed if *S* does not appear on the right-hand side of any rule

Rules never derive shorter words

except possibly for the empty word in the first step

What is context-sensitive about grammars as defined on the previous slides?

- What is context-sensitive about grammars as defined on the previous slides?
- Grammars of the type defined on the last slide were originally called monotonic or non-contracting by Chomsky

- What is context-sensitive about grammars as defined on the previous slides?
- Grammars of the type defined on the last slide were originally called monotonic or non-contracting by Chomsky
- Context-sensitive grammars additionally had to satisfy the property that all rules are of the form

 $\alpha_1 A \alpha_2 \rightarrow \alpha_1 \beta \alpha_2$ with $A \in N; \alpha_1, \alpha_2 \in V^*, \beta \in VV^*$

- rule application can depend on a context α₁, α₂
- context cannot be modified (or moved)
- only one NTS can be modified

Context-sensitive vs. monotonic grammars

Every monotonic grammar can be rewritten as context-sensitive

- ► $AB \rightarrow BA$ is not context-sensitive, but can be replaced by $AB \rightarrow AY, AY \rightarrow XY, XY \rightarrow XA, XA \rightarrow BA$, which is
- ▶ if terminal symbols are involved: replace $S \rightarrow aB \rightarrow ba$ with $S \rightarrow N_aB \rightarrow \dots N_bN_a \rightarrow bN_a \rightarrow ba$
- Since context preservation is irrelevant for the language class, we drop the context requirement for this lecture
- Since the term "context-sensitive" is generally used in the literature, we stick with this term (for both grammars and languages), even if we only require non-monotonicity

The Chomsky hierarchy (2)

Definition (context-free grammar)

A Chomsky grammar $G = (N, \Sigma, P, S)$ is of is Type 2 (context-free) if all productions are of the form

 $A \rightarrow \beta$ with $A \in N; \beta \in V^*$

The Chomsky hierarchy (2)

Definition (context-free grammar)

A Chomsky grammar $G = (N, \Sigma, P, S)$ is of is Type 2 (context-free) if all productions are of the form

$$A
ightarrow eta$$
 with $A \in N; eta \in V^*$

Only single non-terminals are replaced

- independent of their context
- Contracting rules are allowed!
 - context-free grammars are not a subset of context-sensitive grammars
 - but: context-free languages are a subset of context-sensitive languages
 - reason: contracting rules can be removed from context-free grammars, but not from context-sensitive ones

Definition (right-linear grammar)

A Chomsky grammar $G = (N, \Sigma, P, S)$ is of Type 3 (right-linear or regular) if all productions are of the form

 $A \rightarrow aB$

with $A \in N$; $B \in N \cup \{\varepsilon\}$; $a \in \Sigma \cup \{\varepsilon\}$

Definition (right-linear grammar)

A Chomsky grammar $G = (N, \Sigma, P, S)$ is of Type 3 (right-linear or regular) if all productions are of the form

 $A \rightarrow aB$

with
$$A \in N$$
; $B \in N \cup \{\varepsilon\}$; $a \in \Sigma \cup \{\varepsilon\}$

- only one NTS on the left
- on the right: one TS, one NTS, both, or neither
- analogy with automata is obvious

Definition (language classes)

A language is called

recursively enumerable, context-sensitive, context-free, or regular,

if it can be generated by a

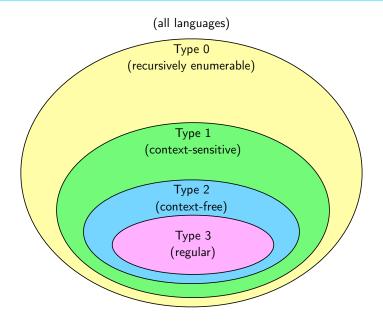
unrestricted, context-sensitive, context-free, or regular

grammar, respectively.

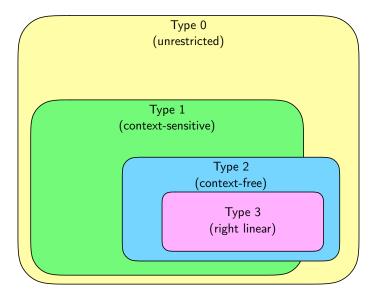
For each grammar/language type, there is a corresponding type of machine model:

grammar	language	machine
Туре 0	recursively	Turing machine
unrestricted	enumerable	
Type 1	context-sensitive	linear-bounded non-deterministic
		Turing machine
Type 2	context-free	non-deterministic
		pushdown automaton
Туре 3	regular	finite automaton
right linear		

The Chomsky Hierarchy for Languages



The Chomsky Hierarchy for Grammars



The Chomsky hierarchy: examples

Example (C identifiers revisited)

$$S \rightarrow LR|_R$$

$$R \rightarrow LR|DR|_R|\varepsilon$$

$$L \rightarrow a|\dots|z|A|\dots$$

Z

$$D \rightarrow 0 | \dots | 9$$

The Chomsky hierarchy: examples

Example (C identifiers revisited)

$$S \rightarrow LR|_R$$

$$R \rightarrow LR|DR|_R|\varepsilon$$

$$L \rightarrow a|\dots|z|A|\dots|Z$$

$$D \rightarrow 0|\dots|9$$

This grammar is context-free but not regular.

Example (C identifiers revisited)

$$S \rightarrow LR|_R$$

$$R \rightarrow LR|DR|_R|\varepsilon$$

$$L \rightarrow a|\dots|z|A|\dots|Z$$

$$D \rightarrow 0|\dots|9$$

This grammar is context-free but not regular. An equivalent regular grammar:

$$S \rightarrow AR | \cdots | ZR | aR | \cdots | zR | R$$

$$R \rightarrow AR | \cdots | ZR | aR | \cdots | zR | 0R | \cdots | 9R | R | \varepsilon$$

The Chomsky hierarchy: examples revisited

Returning to the three derivation examples:

•
$$G_3$$
 with $P = \{S \rightarrow aS, S \rightarrow \varepsilon\}$

 \triangleright G₃ is regular.

▶ So is the produced language $L_3 = \{a^n \mid n \in \mathbb{N}\}.$

▶
$$G_2$$
 with $P = \{S \rightarrow aSb, S \rightarrow \varepsilon\}$

▶ G₂ is context-free.

▶ So is the produced language $L_2 = \{a^n b^n \mid n \in \mathbb{N}\}.$

• G_1 with $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, \ldots\}$

- \triangleright G_1 is context-sensitive.
- ▶ So is the produced language $L_1 = \{a^n b^n c^n \mid n \in \mathbb{N}; n > 0\}.$

The Chomsky hierarchy: exercises

1 Let
$$G = (N, \Sigma, P, S)$$
 with
 $\blacktriangleright N = \{S, A, B\},$
 $\blacktriangleright \Sigma = \{a\},$
 $\blacktriangleright P:$
 $S \rightarrow \varepsilon$ 1
 $S \rightarrow ABA$ 2
 $AB \rightarrow aa$ 3
 $aA \rightarrow aaaA$ 4
 $A \rightarrow a$ 5

- a) What is G's highest type?
- b) Show how G derives the word aaaaa.
- c) Formally describe the language L(G).
- d) Define a regular grammar G' equivalent to G.

The Chomsky hierarchy: exercises (cont.)

2 An octal constant is a finite sequence of digits starting with 0 followed by at least one digit ranging from 0 to 7. Define a regular grammar encoding exactly the set of possible octal constants.

The Chomsky hierarchy: exercises (cont.)

3 Let $G = (N, \Sigma, P, S)$ with $\triangleright N = \{S, A, B\},$ $\triangleright \Sigma = \{a, b, t\},$ $\triangleright P: S \rightarrow aAS = 1$ $S \rightarrow bBS = 2$ $Ab \rightarrow bA = 7$ $S \rightarrow t = 3$ $At \rightarrow ta = 4$ $Bb \rightarrow bB = 9$ $Bt \rightarrow tb = 5$

- a) What is G's highest type?
- b) Formally describe the language L(G).

The Chomsky hierarchy: exercises (cont.)

3 Let $G = (N, \Sigma, P, S)$ with $\triangleright N = \{S, A, B\},$ $\triangleright \Sigma = \{a, b, t\},$ $\triangleright P: S \rightarrow aAS = 1$ $S \rightarrow bBS = 2$ $Aa \rightarrow aA = 6$ $S \rightarrow bBS = 2$ $Ab \rightarrow bA = 7$ $S \rightarrow t = 3$ $At \rightarrow ta = 4$ $Bb \rightarrow bB = 9$ $Bt \rightarrow tb = 5$

- a) What is G's highest type?
- b) Formally describe the language L(G).

End lecture 11

Introduction Regular Languages and Finite Automata

Scanners and Flex

Formal Grammars and Context-Free Languages

Formal Grammars The Chomsky Hierarchy Right-linear Grammars

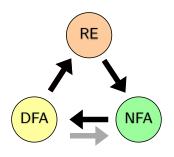
Context-free Grammars

Push-Down Automata Properties of Context-free Languages arsers and Bison uring Machines and Language ype 1 and 0

Lecture-specific material

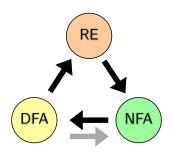
Bonus Exercises

Selected Solutions



We know:

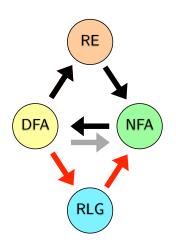
- Regular expression can be converted to NFAs
- NFAs can be converted to DFAs
- DFAs can be described by regular expressions
- Hence NFA, DFA, RE are equivalent and all describe the class of regular languages



We know:

- Regular expression can be converted to NFAs
- NFAs can be converted to DFAs
- DFAs can be described by regular expressions
- Hence NFA, DFA, RE are equivalent and all describe the class of regular languages

Now: Right-linear grammars



We know:

- Regular expression can be converted to NFAs
- NFAs can be converted to DFAs
- DFAs can be described by regular expressions
- Hence NFA, DFA, RE are equivalent and all describe the class of regular languages
- Now: Right-linear grammars
- We show:
 - DFAs can be converted into right-linear grammars
 - Right-linear grammars can be converted into NFAs

Theorem (right-linear grammars and regular languages)

The class of regular languages (generated by regular expressions, accepted by finite automata) is exactly the class of languages generated by right-linear grammars.

Theorem (right-linear grammars and regular languages)

The class of regular languages (generated by regular expressions, accepted by finite automata) is exactly the class of languages generated by right-linear grammars.

Proof.

We constructively prove the theorem by providing algorithms to...

- Convert a DFA to a right-linear grammar
- Convert a right-linear grammar to an NFA

... such that the languages of grammar and automaton are the same.

$DFA \sim right-linear grammar$

Algorithm for transforming a DFA

$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$$

into a grammar

$$G = (N, \Sigma, P, S)$$

$$\triangleright$$
 $N = Q$

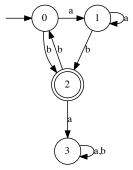
$$\triangleright$$
 $S = q_0$

$$\blacktriangleright P = \{ p \to aq \mid ((p,a),q) \in \delta \} \quad \cup \quad \{ p \to \varepsilon \mid p \in F \}$$

 \blacktriangleright (Σ remains the same)

Exercise: DFA to right-linear grammar

Consider the following DFA \mathcal{A} :



- a) Give a formal definition of \mathcal{A}
- b) Generate a right-linear grammar G with L(G) = L(A)
- c) Find a $w \in L(A)$ with $|w| \ge 3$ and give a run (of A) and a derivation (with G) for w

Right-linear grammar ~> NFA

Algorithm for transforming a grammar

$$G = (N, \Sigma, P, S)$$

into an NFA

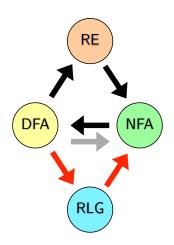
$$\mathcal{A} = (Q, \Sigma, \Delta, q_0, F)$$

$$\begin{array}{l} \bullet \quad Q = N \cup \{q_f\} \quad (q_f \notin N) \\ \bullet \quad q_0 = S \\ \bullet \quad F = \{q_f\} \\ \bullet \quad \Delta = \{(A, c, B) \mid A \rightarrow cB \in P\} \quad \cup \\ \{(A, c, q_f) \mid A \rightarrow c \in P\} \quad \cup \\ \{(A, \varepsilon, B) \mid A \rightarrow B \in P\} \quad \cup \\ \{(A, \varepsilon, q_f) \mid A \rightarrow \varepsilon \in P\} \end{array}$$

Transform the grammar $G = (\{S, A, B\}, \{a, b\}, P, S)$ into an NFA.

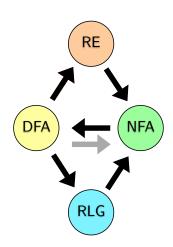
$$\begin{array}{rrrrr} P: & S & \to & aB|\varepsilon\\ & A & \to & aB|b\\ & B & \to & A \end{array}$$

Which language is generated by G?



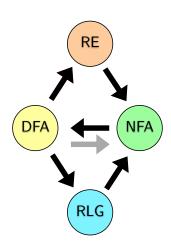
We now know:

- Regular expression can be converted to NFAs
- NFAs can be converted to DFAs
- DFAs can be described by regular expressions
 - Hence NFA, DFA, RE are equivalent and all describe the class of regular languages



We now know:

- Regular expression can be converted to NFAs
- NFAs can be converted to DFAs
- DFAs can be described by regular expressions
- Hence NFA, DFA, RE are equivalent and all describe the class of regular languages
- DFAs can be converted into right-linear grammars
- Right-linear grammars can be converted into NFAs



We now know:

- Regular expression can be converted to NFAs
- NFAs can be converted to DFAs
- DFAs can be described by regular expressions
- Hence NFA, DFA, RE are equivalent and all describe the class of regular languages
- DFAs can be converted into right-linear grammars
- Right-linear grammars can be converted into NFAs

REs, DFAs, NFAs, Right-linear grammars are all equivalent formalisms to describe the class of regular languages! Introduction Regular Languages and Finite Automata

Scanners and Flex

Formal Grammars and Context-Free Languages

Formal Grammars The Chomsky Hierarchy Right-linear Grammars Context-free Grammars Push-Down Automata Properties of Context-free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0 Lecture-specific material Bonus Exercises Selected Solutions

- Reminder: G = (N, Σ, P, S) is context-free if all rules in P are of the form A → β with
 - ▶ $A \in N$ and
 - $\blacktriangleright \ \beta \in (\Sigma \cup N)^*$
- Context-free languages/grammars are highly relevant for practical applications
 - Core of most programming languages
 - XML
 - Algebraic expressions
 - Many aspects of human language

Grammars: equivalence and normal forms

Definition (equivalence)

Two grammars are called equivalent if they generate the same language.

Grammars: equivalence and normal forms

Definition (equivalence)

Two grammars are called equivalent if they generate the same language.

We will now compute grammars that are equivalent to some given context-free grammar G but have "nicer" properties

- ► Reduced grammars contain no unproductive symbols
- Grammars in Chomsky normal form support efficient decision of the word problem

Grammars: equivalence and normal forms

Definition (equivalence)

Two grammars are called equivalent if they generate the same language.

We will now compute grammars that are equivalent to some given context-free grammar G but have "nicer" properties

- Reduced grammars contain no unproductive symbols
- Grammars in Chomsky normal form support efficient decision of the word problem

I.e. grammars in CNF allow efficient parsing of arbitrary context-free languages!

Definition (reduced)

- Let $G = (N, \Sigma, P, S)$ be a context-free grammar.
 - $A \in N$ is called terminating if $A \Rightarrow^*_G w$ for some $w \in \Sigma^*$.
 - ▶ $A \in N$ is called reachable if $S \Rightarrow^*_G uAv$ for some $u, v \in V^*$.
 - ► *G* is called reduced if *N* contains only reachable and terminating symbols.

The terminating symbols can be computed as follows:

1
$$T := \{A \in N \mid \exists w \in \Sigma^* : A \to w \in P\}$$

- **2** add all symbols *M* to *T* with a rule $M \to D$ with $D \in (\Sigma \cup T)^*$
- 3 repeat step 2 until no further symbols can be added

Now *T* contains exactly the terminating symbols.

The terminating symbols can be computed as follows:

1
$$T := \{A \in N \mid \exists w \in \Sigma^* : A \to w \in P\}$$

- **2** add all symbols *M* to *T* with a rule $M \to D$ with $D \in (\Sigma \cup T)^*$
- 3 repeat step 2 until no further symbols can be added

Now *T* contains exactly the terminating symbols.

The reachable symbols can be computed as follows:

- **1** $R := \{S\}$
- **2** for every $A \in R$, add all symbols M with a rule $A \rightarrow V^*MV^*$
- 3 repeat step 2 until no further symbols can be added

Now *R* contains exactly the reachable symbols.

Reducing context-free grammars

Theorem (reduction of context-free grammars)

Every context-free grammar G can be transformed into an equivalent reduced context-free grammar G_r .

Reducing context-free grammars

Theorem (reduction of context-free grammars)

Every context-free grammar G can be transformed into an equivalent reduced context-free grammar G_r .

Proof.

- 1 generate the grammar G_T by removing all non-terminating symbols (and rules containing them) from G
- 2 generate the grammar G_r by removing all unreachable symbols (and rules containing them) from G_T

Reducing context-free grammars

Theorem (reduction of context-free grammars)

Every context-free grammar G can be transformed into an equivalent reduced context-free grammar G_r .

Proof.

- 1 generate the grammar G_T by removing all non-terminating symbols (and rules containing them) from G
- 2 generate the grammar G_r by removing all unreachable symbols (and rules containing them) from G_T

Sequence is important: symbols become unreachable if they only appear together with non-terminating symbols.

Reachable and terminating symbols

Example

Let $G = (N, \Sigma, P, S)$ with $N = \{S, A, B, C, T\},$ $\Sigma = \{a, b, c\},$ P: S = T

$$S \rightarrow T|B|C$$

 $T \rightarrow AB$
 $A \rightarrow a$
 $B \rightarrow bB$
 $C \rightarrow c$

Reachable and terminating symbols

Example

Let $G = (N, \Sigma, P, S)$ with $\triangleright N = \{S, A, B, C, T\},$ $\triangleright \Sigma = \{a, b, c\},$ $\triangleright P:$ $S \rightarrow T|B|C$ $T \rightarrow AB$ $A \rightarrow a$ $B \rightarrow bB$ $C \rightarrow c$

- ▶ terminating symbols in $G: C, A, S \rightarrow G_T$
- ▶ reachable symbols in G_T : $S, C \quad \sim \quad G_r$

note: A is still reachable in G!

Compute the reduced grammar $G = (N, \Sigma, P, S)$ for the following grammar $G' = (N', \Sigma, P', S)$:

- 1 $N' = \{S, A, B, C, D\},$ 2 $\Sigma = \{a, b\},$ 3 P':
 - $S \rightarrow A|aS|B \qquad B \rightarrow Ba$ $A \rightarrow a \qquad C \rightarrow Da$ $A \rightarrow AS \qquad D \rightarrow Cb$ $A \rightarrow Ba \qquad D \rightarrow a$

Chomsky normal form

Reduced grammars can be further modified to allow for an efficient decision procedure for the word problem.

Chomsky normal form

Reduced grammars can be further modified to allow for an efficient decision procedure for the word problem.

Definition (CNF)

A context-free grammar (N, Σ, P, S) is in Chomsky normal form if all rules are of the kind

- ▶ $N \rightarrow a$ with $a \in \Sigma$
- ▶ $N \rightarrow AB$ with $A, B \in N$

▶ $S \rightarrow \varepsilon$, if *S* does not appear on the right-hand side of any rule

Chomsky normal form

Reduced grammars can be further modified to allow for an efficient decision procedure for the word problem.

Definition (CNF)

A context-free grammar (N, Σ, P, S) is in Chomsky normal form if all rules are of the kind

- ▶ $N \rightarrow a$ with $a \in \Sigma$
- ▶ $N \rightarrow AB$ with $A, B \in N$
- ▶ $S \rightarrow \varepsilon$, if S does not appear on the right-hand side of any rule

Transformation of a reduced grammar into CNF:

- 1 remove ε -productions
- **2** remove chain rules $(A \rightarrow B)$
- 3 introduce auxiliary symbols

Theorem (ε -free grammar)

Every context-free grammar can be transformed into an equivalent cf. grammar that does not contain rules of the kind $A \rightarrow \varepsilon$ (except $S \rightarrow \varepsilon$ if *S* does not appear on the rhs).

Theorem (ε -free grammar)

Every context-free grammar can be transformed into an equivalent cf. grammar that does not contain rules of the kind $A \rightarrow \varepsilon$ (except $S \rightarrow \varepsilon$ if *S* does not appear on the rhs).

Procedure:

- 1 let $E = \{A \in N \mid A \to \varepsilon \in P\}$
- **2** add all symbols *B* to *E* for which there is a rule $B \to \beta$ with $\beta \in E^*$
- 3 repeat step 2 until no further symbols can be added
- 4 for every rule $C \rightarrow \beta_1 B \beta_2$ with $B \in E$
 - ▶ add rule $C \rightarrow \beta_1 \beta_2$ to P
 - repeat this process until no new rules are added
- **5** remove all rules $A \rightarrow \varepsilon$ from *P*
- 6 if $S \in E$
 - use a new start symbol S₀
 - ▶ add rules $S_0 \rightarrow \varepsilon | S$

Corollary (Monotonic context-free grammars)

For every context-free language *L*, there exists a grammar *G* with L(G) = L that is both context-free and monotonic.

- A context-free grammar for *L* exists by definition
- That grammar can be made ε-free (and hence monotonic) with the previous algorithm

Corollary (Monotonic context-free grammars)

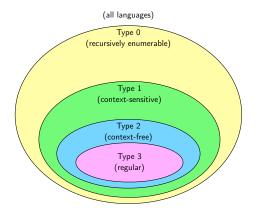
For every context-free language *L*, there exists a grammar *G* with L(G) = L that is both context-free and monotonic.

- ► A context-free grammar for *L* exists by definition
- That grammar can be made ε-free (and hence monotonic) with the previous algorithm

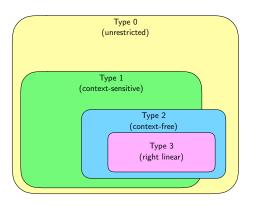
Corollary (Monotonic right-linear grammars)

For every regular language *L*, there exists a grammar *G* with L(G) = L that is both right-linear and monotonic.

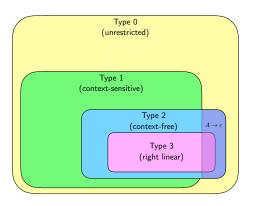
Every right-linear grammar is also context-free, i.e. we can apply the same algorithem and argument as for context-free languages



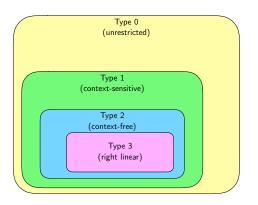
 For languages, Type-0, Type-1, Type-2, Type-3 form a real inclusion hierarchy



- For languages, Type-0, Type-1, Type-2, Type-3 form a real inclusion hierarchy
- Not quite true for grammars:



- For languages, Type-0, Type-1, Type-2, Type-3 form a real inclusion hierarchy
- Not quite true for grammars:
 - A → ε allowed in context-free/regular grammars, not in context-sensitive grammars



- For languages, Type-0, Type-1, Type-2, Type-3 form a real inclusion hierarchy
- Not quite true for grammars:
 - A → ε allowed in context-free/regular grammars, not in context-sensitive grammars
- Eliminating ε-productions removes this discrepancy!

a lecture 12

Removal of chain rules

Theorem (chain rules)

Every ε -free context-free grammar can be transformed into an equivalent cf. grammar that does not contain rules of the kind $A \rightarrow B$.

Theorem (chain rules)

Every ε -free context-free grammar can be transformed into an equivalent cf. grammar that does not contain rules of the kind $A \rightarrow B$.

Procedure:

- 1 for every $A \in N$, compute the set $N(A) = \{B \in N \mid A \Rightarrow_G^* B\}$ (this can be done iteratively, as shown previously)
- **2** remove $A \rightarrow C$ for any $C \in N$ from P
- 3 add the following production rules to P

$$\{A \to w \mid w \notin N \text{ and } B \to w \in P \text{ and } B \in N(A)\}$$

Theorem (chain rules)

Every ε -free context-free grammar can be transformed into an equivalent cf. grammar that does not contain rules of the kind $A \rightarrow B$.

Procedure:

- 1 for every $A \in N$, compute the set $N(A) = \{B \in N \mid A \Rightarrow_G^* B\}$ (this can be done iteratively, as shown previously)
- **2** remove $A \rightarrow C$ for any $C \in N$ from P
- 3 add the following production rules to P

$$\{A \to w \mid w \notin N \text{ and } B \to w \in P \text{ and } B \in N(A)\}$$

Example

 $A \rightarrow a|B; \quad B \rightarrow bb|C; \quad C \rightarrow ccc$ is equivalent to $A \rightarrow a|bb|ccc; B \rightarrow bb|ccc; C \rightarrow ccc$ Reminder: Chomsky normal form A context-free grammar (N, Σ, P, S) is in CNF if all rules are of the kind

- ▶ $N \rightarrow a$ with $a \in \Sigma$
- $\blacktriangleright N \to AB \text{ with } A, B \in N$
- ▶ $S \rightarrow \varepsilon$, if S does not appear on the right-hand side of any rule

Reminder: Chomsky normal form A context-free grammar (N, Σ, P, S) is in CNF if all rules are of the kind

- ▶ $N \rightarrow a$ with $a \in \Sigma$
- ▶ $N \rightarrow AB$ with $A, B \in N$
- ▶ $S \rightarrow \varepsilon$, if *S* does not appear on the right-hand side of any rule

Theorem (transformation into Chomsky normal form)

Every context free grammar can be transformed into an equivalent cf. grammar in Chomsky normal form.

Algorithm for computing Chomsky normal form

- 1 remove ε rules
- 2 remove chain rules
- 3 compute reduced grammar
 - remove non-terminating symbols
 - 2 remove unreachable symbols
- 4 for all rules $A \to w$ with $w \notin \Sigma$:
 - ► for all $a \in \Sigma$ replace all occurrences of a in w by a new non-terminal symbol X_a
 - ▶ add rules $X_a \rightarrow a$
- **5** replace rules of the form $A \rightarrow B_1 B_2 \dots B_n$ with n > 2 with rules

$$\begin{array}{rccc} A & \rightarrow & B_1C_1 \\ C_1 & \rightarrow & B_2C_2 \\ & \vdots \\ C_{n-2} & \rightarrow & B_{n-1}B_n \end{array}$$

where the C_i are new non-terminals

Exercise: tranformation into CNF

Compute the Chomsky normal form of the following grammar:

$$G = (N, \Sigma, P, S)$$

S	\rightarrow	AB SB BDE	С	\rightarrow	SB
A	\rightarrow	Aa	D	\rightarrow	Ε
В	\rightarrow	bB BaB ab	Ε	\rightarrow	ε

Exercise: tranformation into CNF

Compute the Chomsky normal form of the following grammar:

$$G = (N, \Sigma, P, S)$$

S	\rightarrow	AB SB BDE	С	\rightarrow	SB
A	\rightarrow	Aa	D	\rightarrow	Ε
В	\rightarrow	bB BaB ab	Ε	\rightarrow	ε

Chomsky NF: purpose

Why transform G into Chomsky NF?

- ▶ in a context-free grammar, derivations can have arbitrary length
 - ▶ if there are contracting rules, a derivation of *w* can contain words longer than *w*
 - ▶ if there are chain rules $(C \rightarrow B; B \rightarrow C)$, a derivation of *w* can contain arbitrarily many steps
- word problem is difficult to decide
- ▶ if G is in CNF, for a word of length n, a derivation has 2n − 1 steps:
 - ▶ n-1 rule applications $A \to BC$
 - ▶ *n* rule applications $A \rightarrow a$
- ► word problem can be decided by checking all derivations of length 2n 1

Chomsky NF: purpose

Why transform G into Chomsky NF?

- ▶ in a context-free grammar, derivations can have arbitrary length
 - ▶ if there are contracting rules, a derivation of *w* can contain words longer than *w*
 - ▶ if there are chain rules $(C \rightarrow B; B \rightarrow C)$, a derivation of *w* can contain arbitrarily many steps
- word problem is difficult to decide
- ▶ if G is in CNF, for a word of length n, a derivation has 2n − 1 steps:
 - ▶ n-1 rule applications $A \to BC$
 - ▶ *n* rule applications $A \rightarrow a$
- ► word problem can be decided by checking all derivations of length 2n 1
- That's still plenty of derivations!

Chomsky NF: purpose

Why transform G into Chomsky NF?

- ▶ in a context-free grammar, derivations can have arbitrary length
 - ▶ if there are contracting rules, a derivation of *w* can contain words longer than *w*
 - ▶ if there are chain rules $(C \rightarrow B; B \rightarrow C)$, a derivation of *w* can contain arbitrarily many steps
- word problem is difficult to decide
- ▶ if G is in CNF, for a word of length n, a derivation has 2n − 1 steps:
 - ▶ n-1 rule applications $A \rightarrow BC$
 - ▶ *n* rule applications $A \rightarrow a$
- ► word problem can be decided by checking all derivations of length 2n 1
- That's still plenty of derivations!

More efficient algorithm: Cocke-Younger-Kasami (CYK)

Cocke-Younger-Kasami algorithm

- Eficient algorithm to decide the word problem for context-free grammars
- Core ideas independently developed by
 - ► John Cocke (1925—2002): *Programming languages and their compilers: Preliminary notes*, 1970 (with Jacob T. Schwartz)
 - Daniel H. Younger (??-): Recognition and parsing of context-free languages in time n³, 1967
 - Tadao Kasami (1930–2007) An efficient recognition and syntax-analysis algorithm for context-free languages, 1965
- Complexity: $O(|w|^3 \cdot |G|)$
- Can provide all ways to parse/generate a word
- Extends to probabilistic parsing

Decide the word problem for a context-free grammar G in Chomsky NF and a word w.

- ▶ find out which NTS are needed in the end to produce the TS for w (using production rules A → a).
- ► iteratively find all NTS that can generate the required sequence of NTS (using production rules A → BC).
- ▶ if *S* can produce the required sequence, $w \in L(G)$ holds.

Decide the word problem for a context-free grammar G in Chomsky NF and a word w.

- ▶ find out which NTS are needed in the end to produce the TS for w (using production rules $A \rightarrow a$).
- ► iteratively find all NTS that can generate the required sequence of NTS (using production rules A → BC).
- ▶ if *S* can produce the required sequence, $w \in L(G)$ holds.

Mechanism:

- operates on a table.
- field in row i and column j contains all NTS that can generate the target word from character i through j.

Decide the word problem for a context-free grammar G in Chomsky NF and a word w.

- ▶ find out which NTS are needed in the end to produce the TS for w (using production rules $A \rightarrow a$).
- ► iteratively find all NTS that can generate the required sequence of NTS (using production rules A → BC).
- ▶ if *S* can produce the required sequence, $w \in L(G)$ holds.

Mechanism:

- operates on a table.
- field in row i and column j contains all NTS that can generate the target word from character i through j.

Example of dynamic programming!

S	\rightarrow	а
В	\rightarrow	b
В	\rightarrow	С
S	\rightarrow	SA
A	\rightarrow	BS
В	\rightarrow	BB
В	\rightarrow	BS

$i \setminus j$	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						
<i>w</i> =	a	b	а	С	b	a

S	\rightarrow	a
В	\rightarrow	b
В	\rightarrow	С
S	\rightarrow	SA
A	\rightarrow	BS
В	\rightarrow	BB
В	\rightarrow	BS

$i \setminus j$	1	2	3	4	5	6
1	S					
2						
3						
4						
5						
6						
<i>w</i> =	a	b	a	С	b	a

S	\rightarrow	a
В	\rightarrow	b
В	\rightarrow	С
S	\rightarrow	SA
A	\rightarrow	BS
В	\rightarrow	BB
В	\rightarrow	BS

$i \setminus j$	1	2	3	4	5	6
1	S					
2		В				
3						
4						
5						
6						
w =	a	b	a	С	b	a

S	\rightarrow	a
В	\rightarrow	b
В	\rightarrow	С
S	\rightarrow	SA
A	\rightarrow	BS
В	\rightarrow	BB
В	\rightarrow	BS

$i \setminus j$	1	2	3	4	5	6
1	S					
2		В				
3			S			
4						
5						
6						
<i>w</i> =	a	b	а	С	b	a

S	\rightarrow	a
В	\rightarrow	b
В	\rightarrow	С
S	\rightarrow	SA
A	\rightarrow	BS
В	\rightarrow	BB
В	\rightarrow	BS

$i \setminus j$	1	2	3	4	5	6
1	S					
2		В				
3			S			
4				B		
5						
6						
<i>w</i> =	a	b	a	С	b	а

S	\rightarrow	a
В	\rightarrow	b
В	\rightarrow	С
S	\rightarrow	SA
A	\rightarrow	BS
В	\rightarrow	BB
В	\rightarrow	BS

$i \setminus j$	1	2	3	4	5	6
1	S					
2		В				
3			S			
4				В		
5					B	
6						
w =	a	b	а	С	b	a

S	\rightarrow	a
В	\rightarrow	b
В	\rightarrow	С
S	\rightarrow	SA
A	\rightarrow	BS
В	\rightarrow	BB
В	\rightarrow	BS

$i \setminus j$	1	2	3	4	5	6
1	S					
2		В				
3			S			
4				B		
5					B	
6						S
<i>w</i> =	a	b	а	С	b	a

S	\rightarrow	a
В	\rightarrow	b
В	\rightarrow	С
S	\rightarrow	SA
A	\rightarrow	BS
В	\rightarrow	BB
В	\rightarrow	BS

$i \setminus j$	1	2	3	4	5	6
1	S	{}				
2		В				
3			S			
4				B		
5					B	
6						S
w =	a	b	а	С	b	a

S	\rightarrow	a
В	\rightarrow	b
В	\rightarrow	С
S	\rightarrow	SA
A	\rightarrow	BS
В	\rightarrow	BB
В	\rightarrow	BS

$i \setminus j$	1	2	3	4	5	6
1	S	{}				
2		В	A, B			
3			S			
4				В		
5					B	
6						S
<i>w</i> =	a	b	a	С	b	a

S	\rightarrow	а
В	\rightarrow	b
В	\rightarrow	С
S	\rightarrow	SA
A	\rightarrow	BS
В	\rightarrow	BB
В	\rightarrow	BS

$i \setminus j$	1	2	3	4	5	6
1	S	{}				
2		В	A, B			
3			S	{}		
4				B		
5					B	
6						S
w =	a	b	а	С	b	a

S	\rightarrow	а
В	\rightarrow	b
В	\rightarrow	С
S	\rightarrow	SA
A	\rightarrow	BS
В	\rightarrow	BB
В	\rightarrow	BS

$i \setminus j$	1	2	3	4	5	6
1	S	{}				
2		В	A, B			
3			S	{}		
4				В	B	
5					B	
6						S
<i>w</i> =	a	b	а	С	b	a

S	\rightarrow	а
В	\rightarrow	b
В	\rightarrow	С
S	\rightarrow	SA
A	\rightarrow	BS
В	\rightarrow	BB
В	\rightarrow	BS

$i \setminus j$	1	2	3	4	5	6
1	S	{}				
2		В	A, B			
3			S	{}		
4				B	B	
5					B	A, B
6						S
w =	a	b	a	С	b	a

S	\rightarrow	а
В	\rightarrow	b
В	\rightarrow	С
S	\rightarrow	SA
A	\rightarrow	BS
В	\rightarrow	BB
В	\rightarrow	BS

$i \setminus j$	1	2	3	4	5	6
1	S	{}	S			
2		В	A, B			
3			S	{}		
4				В	В	
5					В	A, B
6						S
w =	a	b	а	С	b	a

S	\rightarrow	а
В	\rightarrow	b
В	\rightarrow	С
S	\rightarrow	SA
A	\rightarrow	BS
В	\rightarrow	BB
В	\rightarrow	BS

$i \setminus j$	1	2	3	4	5	6
1	S	{}	S			
2		В	A, B	В		
3			S	{}		
4				В	B	
5					B	A, B
6						S
w =	a	b	а	С	b	a

S	\rightarrow	а
В	\rightarrow	b
В	\rightarrow	С
S	\rightarrow	SA
A	\rightarrow	BS
В	\rightarrow	BB
В	\rightarrow	BS

$i \setminus j$	1	2	3	4	5	6
1	S	{}	S			
2		В	A, B	В		
3			S	{}	{}	
4				В	B	
5					B	A, B
6						S
w =	a	b	a	С	b	a

S	\rightarrow	а
В	\rightarrow	b
В	\rightarrow	С
S	\rightarrow	SA
Α	\rightarrow	BS
В	\rightarrow	BB
В	\rightarrow	BS

$i \setminus j$	1	2	3	4	5	6
1	S	{}	S			
2		В	A, B	В		
3			S	{}	{}	
4				В	B	A, B
5					B	A, B
6						S
w =	a	b	a	С	b	a

S	\rightarrow	а
В	\rightarrow	b
В	\rightarrow	С
S	\rightarrow	SA
Α	\rightarrow	BS
В	\rightarrow	BB
В	\rightarrow	BS

$i \setminus j$	1	2	3	4	5	6
1	S	{}	S	{}		
2		В	A, B	В		
3			S	{}	{}	
4				В	B	A, B
5					B	A, B
6						S
w =	a	b	a	С	b	a

S	\rightarrow	a
В	\rightarrow	b
В	\rightarrow	С
S	\rightarrow	SA
A	\rightarrow	BS
В	\rightarrow	BB
В	\rightarrow	BS

$i \setminus j$	1	2	3	4	5	6
1	S	{}	S	{}		
2		В	A, B	В	B	
3			S	{}	{}	
4				В	B	A, B
5					B	A, B
6						S
w =	a	b	a	С	b	a

S	\rightarrow	а
В	\rightarrow	b
В	\rightarrow	С
S	\rightarrow	SA
Α	\rightarrow	BS
В	\rightarrow	BB
В	\rightarrow	BS

$i \setminus j$	1	2	3	4	5	6
1	S	{}	S	{}		
2		В	A, B	В	B	
3			S	{}	{}	S
4				В	B	A, B
5					B	A, B
6						S
w =	a	b	a	С	b	a

S	\rightarrow	а
В	\rightarrow	b
В	\rightarrow	С
S	\rightarrow	SA
Α	\rightarrow	BS
В	\rightarrow	BB
В	\rightarrow	BS

$i \setminus j$	1	2	3	4	5	6
1	S	{}	S	{}	{}	
2		В	A, B	В	B	
3			S	{}	{}	S
4				В	B	A, B
5					B	A, B
6						S
w =	a	b	a	С	b	a

S	\rightarrow	a
В	\rightarrow	b
В	\rightarrow	С
S	\rightarrow	SA
A	\rightarrow	BS
В	\rightarrow	BB
В	\rightarrow	BS

$i \setminus j$	1	2	3	4	5	6
1	S	{}	S	{}	{}	
2		В	A, B	В	B	A, B
3			S	{}	{}	S
4				В	B	A, B
5					B	A, B
6						S
w =	a	b	a	С	b	a

S	\rightarrow	a
В	\rightarrow	b
В	\rightarrow	С
S	\rightarrow	SA
A	\rightarrow	BS
В	\rightarrow	BB
В	\rightarrow	BS

$i \setminus j$	1	2	3	4	5	6
1	S	{}	S	{}	{}	S
2		В	A, B	В	B	A, B
3			S	{}	{}	S
4				В	B	A, B
5					B	A, B
6						S
w =	a	b	a	С	b	a

CYK: method

- Core idea: Bottom-Up dynamic programming
 - For all subwords of w compute the set of all non-terminal symbols from which it can be derived
 - Results are stored in the table: Field *i*, *j* stores the non-terminals from which w[i] ... w[j] can be derived
 - Start with words of length 1 (on the main diagonal)
 - ▶ Only rules of the form $N \rightarrow t$ relevant
 - ▶ Fill successive diagonals (going right/up)
 - Remember: Each field represents the NTS which generate a subword!
 - Consider all splits of the subword (by going left to right in the row, top to bottom in the column)
 - Consider all combinations of non-terminals for each split
 - ▶ Only rules of the form $N \rightarrow XY$ relevant: If XY is a combination generating $w[i] \dots w[j]$, add N at (i.j).
 - ▶ If *S* generates $w[1] \dots w[|w|](=w)$, then $w \in L(G)$

CYK: formal algorithm

for
$$i := 1$$
 to n do
 $N_{ii} := \{A \mid A \rightarrow a_i \in P\}$

for
$$i := 1$$
 to n do
 $N_{ii} := \{A \mid A \rightarrow a_i \in P\}$
for $d := 1$ to $n - 1$ do

for
$$i := 1$$
 to n do
 $N_{ii} := \{A \mid A \to a_i \in P\}$
for $d := 1$ to $n - 1$ do
for $i := 1$ to $n - d$ do
 $j := i + d$
 $N_{ij} := \{\}$

for
$$i := 1$$
 to n do
 $N_{ii} := \{A \mid A \to a_i \in P\}$
for $d := 1$ to $n - 1$ do
for $i := 1$ to $n - d$ do
 $j := i + d$
 $N_{ij} := \{\}$
for $k := i$ to $j - 1$ do
 $N_{ij} := N_{ij} \cup \{A \mid A \to BC \in P; B \in N_{ik}; C \in N_{(k+1)j}\}$

Consider the grammarP: $S \rightarrow AB|SB|BDE$ $G = (N, \Sigma, P, S)$ from the previous $A \rightarrow Aa$ exercise $B \rightarrow BB|BaB|ab$ $N = \{S, A, B, C\}$ $C \rightarrow SB$ $\Sigma = \{a, b\}$ $D \rightarrow E$

Use the CYK algorithm to determine if the following words can be generated by *G*:

 $E \rightarrow \varepsilon$

a)
$$w_1 = babaab$$

b)
$$w_2 = abba$$

Consider the grammar $G = (N, \Sigma, P, S)$ from the previous exercise

•
$$N = \{S, A, B, C_1, X_a, X_b\}$$

• $\Sigma = \{a, b\}$

$$P: \quad S \quad \to \quad SB|BC_1|X_bB|X_aX_b$$

$$B \rightarrow BC_1 | X_b B | X_a X_b$$

$$C_1 \rightarrow X_a B$$

$$X_a \rightarrow a$$

 $X_b \rightarrow b$

a)
$$w_1 = babaab$$

b)
$$w_2 = abba$$

Consider the grammar $G = (N, \Sigma, P, S)$ from the previous exercise

•
$$N = \{S, A, B, D, X, Y\}$$

• $\Sigma = \{a, b\}$

- $P: S \rightarrow SB|BD|YB|XY$
 - $B \rightarrow BD|YB|XY$

$$D \rightarrow XB$$

$$X \rightarrow a$$

 $Y \rightarrow b$

a)
$$w_1 = babaab$$

b)
$$w_2 = abba$$

Consider the grammar $G = (N, \Sigma, P, S)$ from the previous exercise

•
$$N = \{S, A, B, D, X, Y\}$$

• $\Sigma = \{a, b\}$

- $P: S \rightarrow SB|BD|YB|XY$
 - $B \rightarrow BD|YB|XY$

$$D \rightarrow XB$$

$$X \rightarrow a$$

 $Y \rightarrow b$

a)
$$w_1 = babaab$$

b)
$$w_2 = abba$$

Consider the grammar $G = (N, \Sigma, P, S)$ from the previous exercise

•
$$N = \{S, A, B, D, X, Y\}$$

• $\Sigma = \{a, b\}$

- $P: S \rightarrow SB|BD|YB|XY$
 - $B \rightarrow BD|YB|XY$

$$D \rightarrow XB$$

$$X \rightarrow a$$

 $Y \rightarrow b$

a)
$$w_1 = babaab$$

b)
$$w_2 = abba$$

Introduction Regular Languages and Finite Automata

Scanners and Flex

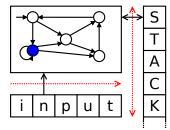
Formal Grammars and Context-Free Languages

Formal Grammars The Chomsky Hierarchy Right-linear Grammars Context-free Grammars

Push-Down Automata Properties of Context-free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0 Lecture-specific material Bonus Exercises Selected Solutions

- DFAs/NFAs are weaker than context-free grammars
- to accept languages like aⁿbⁿ, an unlimited storage component is needed
- Pushdown automata have an unlimited stack
 - LIFO: last in, first out
 - only top symbol can be read
 - arbitrary amount of symbols can be added to the top

PDA: conceptual model



- extends FA by unlimited stack:
 - transitions can read and write stack
 - only at the top
 - stack alphabet Γ
 - LIFO: last in, first out
- acceptance condition
 - empty stack after reading input
 - no final states needed
- commonalities with FA:
 - read input from left to right
 - set of states, input alphabet
 - initial state

$\Delta \subseteq Q \times \Sigma \cup \{\varepsilon\} \times \Gamma \times \Gamma^* \times Q$

- PDA is in a state
- can read next input character or nothing
- must read (and remove) top stack symbol
- can write arbitrary amout of symbols on top of stack
- goes into a new state

$\Delta \subseteq Q \times \Sigma \cup \{\varepsilon\} \times \Gamma \times \Gamma^* \times Q$

- PDA is in a state
- can read next input character or nothing
- must read (and remove) top stack symbol
- can write arbitrary amout of symbols on top of stack
- goes into a new state

A transition (p, c, A, BC, q) can be written as follows:

$$p \quad c \quad A \quad o \quad BC \quad q$$

Pushdown automata: definition

Definition (pushdown automaton)

A pushdown automaton (PDA) is a 6-tuple $(Q, \Sigma, \Gamma, \Delta, q_0, Z_0)$ where

- ▶ Q, Σ, q_0 are defined as for NFAs.
- \triangleright Γ is the stack alphabet
- Z₀ is the initial stack symbol
- $\blacktriangleright \ \Delta \subseteq Q \times \Sigma \cup \{\varepsilon\} \times \Gamma \times \Gamma^* \times Q \text{ is the transition relation}$

Pushdown automata: definition

Definition (pushdown automaton)

A pushdown automaton (PDA) is a 6-tuple $(Q, \Sigma, \Gamma, \Delta, q_0, Z_0)$ where

- ▶ Q, Σ, q_0 are defined as for NFAs.
- Γ is the stack alphabet
- Z₀ is the initial stack symbol
- $\blacktriangleright \ \Delta \subseteq Q \times \Sigma \cup \{\varepsilon\} \times \Gamma \times \Gamma^* \times Q \text{ is the transition relation}$

A configuration of a PDA is a triple (q, w, γ) where

- q is the current state
- w is the input yet unread
- \blacktriangleright γ is the current stack content

Pushdown automata: definition

Definition (pushdown automaton)

A pushdown automaton (PDA) is a 6-tuple $(Q, \Sigma, \Gamma, \Delta, q_0, Z_0)$ where

- ▶ Q, Σ, q_0 are defined as for NFAs.
- \triangleright Γ is the stack alphabet
- Z₀ is the initial stack symbol
- $\blacktriangleright \ \Delta \subseteq Q \times \Sigma \cup \{\varepsilon\} \times \Gamma \times \Gamma^* \times Q \text{ is the transition relation}$

A configuration of a PDA is a triple (q, w, γ) where

- q is the current state
- w is the input yet unread
- \blacktriangleright γ is the current stack content

A PDA \mathcal{A} accepts a word $w \in \Sigma^*$ if, starting from the configuration (q_0, w, Z_0) , \mathcal{A} can reach the configuration $(q, \varepsilon, \varepsilon)$ for some q.

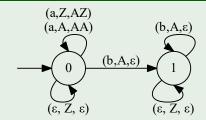
Example: PDA for $a^n b^n$

Example (Automaton A)

- $\mathcal{A} = (Q, \Sigma, \Gamma, \Delta, 0, Z)$
 - ▶ $Q = \{0, 1\}$
 - $\triangleright \ \Sigma = \{a, b\}$

$$\blacktriangleright \ \Gamma = \{A, Z\}$$

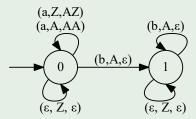
$$\blacktriangleright \Delta$$
 :



Example: PDA for $a^n b^n$

Example (Automaton A)

 $\mathcal{A} = (Q, \Sigma, \Gamma, \Delta, 0, Z)$ $\mathcal{Q} = \{0, 1\}$ $\Sigma = \{a, b\}$ $\Gamma = \{A, Z\}$ $\Delta:$ $0 \in Z \rightarrow \varepsilon$



- $0 \hspace{0.1in} \varepsilon \hspace{0.1in} Z \hspace{0.1in}
 ightarrow \hspace{0.1in} \varepsilon \hspace{0.1in} 0 \hspace{0.1in} ext{accept empty word}$
- $0 \quad a \quad Z \quad \rightarrow \quad AZ \quad 0 \quad \text{read first a, store A}$
- $0 \quad a \quad A \quad \rightarrow \quad AA \quad 0 \quad \text{read further a, store A}$
- $0 \quad b \quad A \quad
 ightarrow \quad \varepsilon \quad \quad 1 \quad \text{read first b, delete A}$
- $1 \quad b \quad A \quad
 ightarrow \quad \varepsilon \qquad 1 \quad \text{read further b, delete A}$
- $1 \hspace{0.1in} \varepsilon \hspace{0.1in} Z \hspace{0.1in}
 ightarrow \hspace{0.1in} \varepsilon \hspace{0.1in} 1 \hspace{0.1in} ext{accept if all As have been deleted}$

Process *aabb*:

Process *aabb*:

1 (0, aabb, Z)

Process *aabb*:

(0, aabb, Z)
 (0, abb, AZ)

Process *aabb*:

(0, aabb, Z)
 (0, abb, AZ)
 (0, bb, AAZ)

Process *aabb*:

(0, aabb, Z)
 (0, abb, AZ)
 (0, bb, AAZ)

4 (1, b, AZ)

Process aabb:

- (0, aabb, Z)
 (0, abb, AZ)
- (0, bb, AAZ)
- **4** (1, b, AZ)
- $[1, \varepsilon, Z)$

0	ε	Ζ	\rightarrow	ε	0
0	a	Ζ	\rightarrow	AZ	0
0	а	Α	\rightarrow	AA	0
0	b	Α	\rightarrow	ε	1
1	b	Α	\rightarrow	ε	1
1	ε	Ζ	\rightarrow	ε	1

- (0, aabb, Z)
 (0, abb, AZ)
- (0, bb, AAZ)
- **4** (1, b, AZ)
- $(1,\varepsilon,Z)$
- $\begin{array}{c} \mathbf{6} & (1,\varepsilon,\varepsilon) \end{array}$

0	ε	Ζ	\rightarrow	ε	0	
0	а	Ζ	\rightarrow	AZ	0	
0	а	Α	\rightarrow	AA	0	
0	b	Α	\rightarrow	ε	1	
1	b	Α	\rightarrow	ε	1	
1	ε	Ζ	\rightarrow	ε	1	

Process aabb:
1 (0, aabb, Z)
2 (0, abb, AZ)
3 (0, bb, AAZ)
4 (1, b, AZ)
5 (1, ε, Z)
6 (1, ε, ε)

0	ε	Ζ	\rightarrow	ε	0
0	а	Ζ	\rightarrow	AZ	0
0	а	Α	\rightarrow	AA	0
0	b	Α	\rightarrow	ε	1
1	b	Α	\rightarrow	ε	1
1	ε	Ζ	\rightarrow	ε	1

Process *aabb*: 1 (0, *aabb*, Z) 2 (0, *abb*, AZ) 3 (0, *bb*, AAZ) 4 (1, *b*, AZ) 5 (1, ε , Z) 6 (1, ε , ε)

Process abb: 1 (0, abb, Z)

0	ε	Ζ	\rightarrow	ε	0
0	а	Ζ	\rightarrow	AZ	0
0	а	Α	\rightarrow	AA	0
0	b	Α	\rightarrow	ε	1
1	b	Α	\rightarrow	ε	1
1	ε	Ζ	\rightarrow	ε	1

Process *aabb*: 1 (0, *aabb*, Z) 2 (0, *abb*, AZ) 3 (0, *bb*, AAZ) 4 (1, *b*, AZ) 5 (1, ε , Z) 6 (1, ε , ε)

Process abb: 1 (0, abb, Z)

2 (0, bb, AZ)

0	ε	Ζ	\rightarrow	ε	0
0	а	Ζ	\rightarrow	AZ	0
0	а	Α	\rightarrow	AA	0
0	b	Α	\rightarrow	ε	1
1	b	Α	\rightarrow	ε	1
1	ε	Ζ	\rightarrow	ε	1

Process aabb:
1 (0, aabb, Z)
2 (0, abb, AZ)
3 (0, bb, AAZ)
4 (1, b, AZ)
5 (1, ε, Z)
6 (1, ε, ε)

- **1** (0, abb, Z)
- (0, bb, AZ)
- **3** (1, b, Z)

0	ε	Ζ	\rightarrow	ε	0
0	а	Ζ	\rightarrow	AZ	0
0	а	Α	\rightarrow	AA	0
0	b	Α	\rightarrow	ε	1
1	b	Α	\rightarrow	ε	1
1	ε	Ζ	\rightarrow	ε	1

Process aabb:
1 (0, aabb, Z)
2 (0, abb, AZ)
3 (0, bb, AAZ)
4 (1, b, AZ)
5 (1, ε, Z)
6 (1, ε, ε)

- **1** (0, abb, Z)
- (0, bb, AZ)
- **3** (1, b, Z)
- **4** $(1, b, \varepsilon)$

0	ε	Ζ	\rightarrow	ε	0
0	а	Ζ	\rightarrow	AZ	0
0	а	Α	\rightarrow	AA	0
0	b	Α	\rightarrow	ε	1
1	b	Α	\rightarrow	ε	1
1	ε	Ζ	\rightarrow	ε	1

Process aabb:
1 (0, aabb, Z)
2 (0, abb, AZ)
3 (0, bb, AAZ)
4 (1, b, AZ)
5 (1, ε, Z)
6 (1, ε, ε)

- (0, abb, Z)
- **2** (0, bb, AZ)
- **3** (1, b, Z)
- **4** (1, *b*, ε)
- 5 No rule applicable, input not read entirely

- Γ and Σ do not need to be disjoint
 - Not uncommon: $\Sigma \subseteq \Gamma$
 - ▶ ... but convention: Σ lowercase letters, Γ uppercase letters
- \triangleright ε transitions are possible
 - ...and can modify the stack
- PDAs as defined above are non-deterministic
 - Deterministic PDA: For each situation there is only one applicable transition (either ε or c)
 - deterministic PDAs are strictly weaker
- ▶ We can also define PDAs with acceptance via final states, but...
 - this makes representation of PDAs more complex
 - makes proofs more difficult

Define a PDA detecting all palindromes over $\Sigma = \{a, b\}$, i.e. all words

$$\{w \cdot \overleftarrow{w} \mid w \in \Sigma^*\}$$

where

$$\overleftarrow{w} = a_n \dots a_1$$
 if $w = a_1 \dots a_n$

Can you define a deterministic automaton?

Theorem

The class of languages that can be accepted by a PDA is exactly the class of languages that can be produced by a context-free grammar.

Theorem

The class of languages that can be accepted by a PDA is exactly the class of languages that can be produced by a context-free grammar.

Proof.

- ▶ For a cf. grammar *G*, generate a PDA A_G with $L(A_G) = L(G)$.
- For a PDA \mathcal{A} , generate a cf. grammar $G_{\mathcal{A}}$ with $L(G_{\mathcal{A}}) = L(\mathcal{A})$.

From context-free grammars to PDAs

For a grammar $G = (N, \Sigma, P, S)$, an equivalent PDA is:

$$\mathcal{A}_G = (\{q\}, \Sigma, \Sigma \cup N, \Delta, q, S)$$

$$\begin{array}{lll} \Delta &=& \{(q,\varepsilon,A,\gamma,q) \mid A \to \gamma \in P\} & \cup \\ && \{(q,a,a,\varepsilon,q) \mid a \in \Sigma\} \end{array}$$

From context-free grammars to PDAs

For a grammar $G = (N, \Sigma, P, S)$, an equivalent PDA is:

$$\mathcal{A}_G = (\{q\}, \Sigma, \Sigma \cup N, \Delta, q, S)$$

$$\begin{array}{lll} \Delta &=& \{(q,\varepsilon,A,\gamma,q) \mid A \to \gamma \in P\} & \cup \\ && \{(q,a,a,\varepsilon,q) \mid a \in \Sigma\} \end{array}$$

 \mathcal{A}_G simulates the productions of *G* in the following way:

- a production rule is applied to the top stack symbol if it is an NTS
- a TS is removed from the stack if it corresponds to the next input character

From context-free grammars to PDAs

For a grammar $G = (N, \Sigma, P, S)$, an equivalent PDA is:

$$\mathcal{A}_G = (\{q\}, \Sigma, \Sigma \cup N, \Delta, q, S)$$

$$\begin{array}{lll} \Delta &=& \{(q,\varepsilon,A,\gamma,q) \mid A \to \gamma \in P\} & \cup \\ && \{(q,a,a,\varepsilon,q) \mid a \in \Sigma\} \end{array}$$

 \mathcal{A}_G simulates the productions of *G* in the following way:

- a production rule is applied to the top stack symbol if it is an NTS
- a TS is removed from the stack if it corresponds to the next input character

Note:

- A_G is nondeterministic if there are several rules for one NTS.
- \triangleright \mathcal{A}_G only has one single state.
 - ▶ Corollary: PDAs need no states, could be written as $(\Sigma, \Gamma, \Delta, Z_0)$.

For the grammar $G = (\{S\}, \{a, b\}, P, S)$ with

$$P = \{S \rightarrow aSa \\ S \rightarrow bSb \\ S \rightarrow \varepsilon\}$$

- **•** create an equivalent PDA \mathcal{A}_G ,
- ▶ show how A_G processes the input *abba*.

From PDAs to context-free grammars

Transforming a PDA $\mathcal{A} = (Q, \Sigma, \Gamma, \Delta, q_0, Z_0)$ into a grammar $G_{\mathcal{A}} = (N, \Sigma, P, S)$ is more involved:

- > N contains symbols [pZq], meaning
 - \blacktriangleright A must go from p to q deleting Z from the stack
- ▶ for a transition $(p, a, Z, \varepsilon, q)$ that deletes a stack symbol:
 - \blacktriangleright A can switch from p to q and delete Z by reading input a
 - this can be expressed by a production rule $[pZq] \rightarrow a$.
- ▶ for transitions (p, a, Z, ABC, q) that produce stack symbols:
 - ▶ test all possible transitions for removing these symbols
 - ▶ $[pZt] \rightarrow a[qAr][rBs][sCt]$ for all states r, s, t
 - intuitive meaning: in order to go from p to t and delete Z, you can
 - 1 read the input a
 - 2 go into state q
 - 3 find states r, s through which you can go from q to t and delete A, B, and C from the stack.

$G_{\mathcal{A}}$: formal definition

For $\mathcal{A} = (Q, \Sigma, \Gamma, \Delta, q_0, Z_0)$ we define $G_{\mathcal{A}} = (N, \Sigma, P, S)$ as follows

- $\blacktriangleright \ N = \{S\} \cup \{[pZq] \mid p,q \in Q, Z \in \Gamma\}$
- ▶ *P* contains the following rules:
 - ▶ for every $q \in Q$, *P* contains $\{S \to [q_0 Z_0 q]\}$ meaning: A has to go from q_0 to any state q, deleting Z_0 .
 - ▶ for each transition $(p, a, Z, Y_1Y_2 ... Y_n, q)$ with
 - ▶ $a \in \Sigma \cup \{\varepsilon\}$ and
 - $\triangleright \quad Z, Y_1, Y_2 \ldots Y_n \in \Gamma,$

$G_{\mathcal{A}}$: formal definition

For $\mathcal{A} = (Q, \Sigma, \Gamma, \Delta, q_0, Z_0)$ we define $G_{\mathcal{A}} = (N, \Sigma, P, S)$ as follows

- $\blacktriangleright \ N = \{S\} \cup \{[pZq] \mid p,q \in Q, Z \in \Gamma\}$
- P contains the following rules:
 - ▶ for every $q \in Q$, *P* contains $\{S \to [q_0 Z_0 q]\}$ meaning: A has to go from q_0 to any state q, deleting Z_0 .
 - ▶ for each transition $(p, a, Z, Y_1Y_2 ... Y_n, q)$ with
 - ▶ $a \in \Sigma \cup \{\varepsilon\}$ and

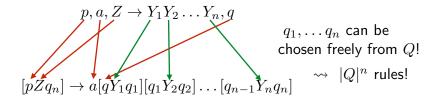
$$\triangleright \quad Z, Y_1, Y_2 \ldots Y_n \in \Gamma,$$

P contains rules

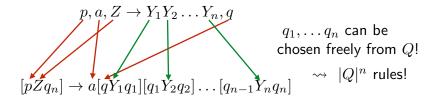
$[pZq_n] \rightarrow a[qY_1q_1][q_1Y_2q_2]\dots[q_{n-1}Y_nq_n]$

for all possible combinations of states $q_1, q_2, \ldots q_n \in Q$.

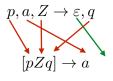
PDA to grammar illustrated



PDA to grammar illustrated

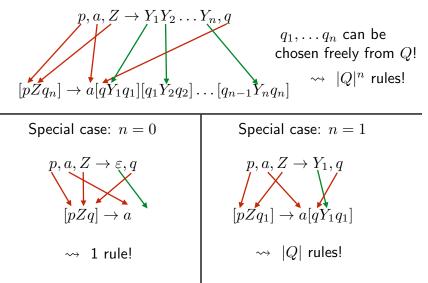


Special case: n = 0

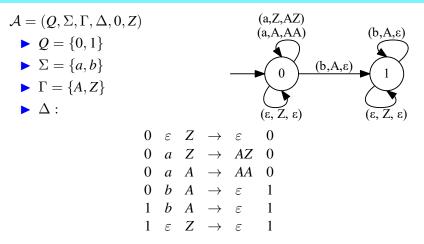


 \rightarrow 1 rule!

PDA to grammar illustrated

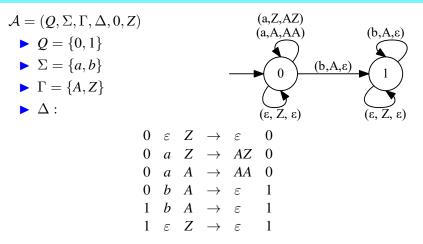


Exercise: transformation of PDA into grammar



- ▶ Transform A into a grammar G_A (and reduce G_A).
- Show how G_A produces the words ε , *ab*, and *aabb*.

Exercise: transformation of PDA into grammar



- ▶ Transform A into a grammar G_A (and reduce G_A).
- Show how G_A produces the words ε , *ab*, and *aabb*.

• Assume $\Sigma = \{a, b\}$.

Find a PDA A_1 that accepts $L_1 = \{w \in \Sigma^* \mid |w|_a = |w|_b\}$.

• Give an accepting run of A_1 on *abbbaa*.

• Assume $\Sigma = \{a, b\}$.

- Find a PDA A_2 that accepts $L_2 = \{w \in \Sigma^* \mid |w|_a < |w|_b\}.$
- Give an accepting run of A_2 on *bbbaaaabb*.

• Assume
$$\Sigma = \{a, b, c\}$$
.

Find a PDA A_3 that accepts

 $L_3 = \{w \in \Sigma^* \mid |w| \text{ is odd and } w[(|w| + 1)/2] = a\}$ (the middle symbol is an *a*)

• Give an accepting run of A_3 on *cccaabb*.

• Assume $\Sigma = \{a, b, c\}$.

Find a PDA A_4 that accepts $L_4 = \{a^n b^m c^o \mid n, m, o \in \mathbb{N}, n = m + o\}$

• Give an accepting run of A_4 on *aacc*.

• Assume $\Sigma = \{a, b\}$.

▶ Find a PDA A_1 that accepts $L_1 = \{w \in \Sigma^* \mid |w|_a = |w|_b\}$.

• Give an accepting run of A_1 on *abbbaa*.

• Assume
$$\Sigma = \{a, b\}$$
.

- Find a PDA A_2 that accepts $L_2 = \{w \in \Sigma^* \mid |w|_a < |w|_b\}.$
- Give an accepting run of A_2 on *bbbaaaabb*.

• Assume
$$\Sigma = \{a, b, c\}$$
.

▶ Find a PDA A₃ that accepts

 $L_3 = \{w \in \Sigma^* \mid |w| \text{ is odd and } w[(|w| + 1)/2] = a\}$ (the middle symbol is an *a*)

• Give an accepting run of A_3 on *cccaabb*.

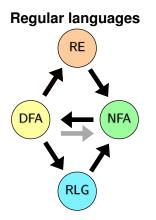
• Assume $\Sigma = \{a, b, c\}$.

Find a PDA A_4 that accepts $L_4 = \{a^n b^m c^o \mid n, m, o \in \mathbb{N}, n = m + o\}$

• Give an accepting run of A_4 on *aacc*.

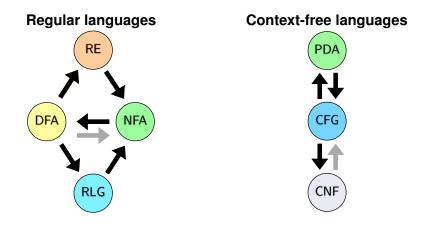
End lecture 14

Comparison: Regular vs. context-free languages



Context-free languages

Comparison: Regular vs. context-free languages



For both language classes there are different but equivalent formal descriptions, supporting different arguments about the classes!

Introduction Regular Languages and Finite Automata

Scanners and Flex

Formal Grammars and Context-Free Languages

Formal Grammars The Chomsky Hierarchy Right-linear Grammars Context-free Grammars

Push-Down Automata Properties of Context-free Languages

Parsers and Bison Turing Machines and Languages of Type 1 and 0 Lecture-specific material Bonus Exercises

Selected Solutions

Theorem (Existence of non-context-free languages)

Let Σ be an alphabet. There are languages $L \subseteq \Sigma^*$ such that there is no context-free grammar *G* with L = L(G).

There are languages that are not context-free

- ▶ e.g. $\{a^nb^nc^n \mid n \in \mathbb{N}\}$
- ... but how do we show this?
- For regular languages: Pumping lemma
 - Finite automata must loop on long words
 - Loops can be repeated
 - Hence: A language than cannot be pumped is not regular
- For context-free languages?

Idea:

- ► If a context-free grammar *G* can produce words of arbitrary length, there is at least one repeated NTS in the derivation
 - ▶ If there are *n* rules in the grammar, at least one rule has to be used more than once in a derivation of length *n* + 1
 - Slightly stronger arguments (based on |N| instead of |P| are possible)
- Hence there is a derivation $A \Longrightarrow^* vAx$ for $v, x \in (\Sigma \cup \Gamma)^*$
 - ... and we can repeat this part of the derivation
 - $A \Longrightarrow^* vAx \Longrightarrow^* vvAxx \Longrightarrow^* vvvAxxx$
 - ▶ If G has no chain rules, at least one of v, x is non-empty

Pumping Lemma I vs. Pumping Lemma II:

PL I (regular languages)

- Argument based on accepting automaton
- ▶ Finite automaton must loop on sufficiently long word
- One non-empty segment can be pumped
- PL II (context-free languages)
 - Argument based on generating grammar
 - At least one non-terminal must repeat in sufficiently long derivation
 - Two segments around this NTS can be pumped in parallel, at least one of which is non-empty

Pumping Lemma II

Theorem (Pumping-Lemma for context-free languages)

Let *L* be a language generated by a context-free grammar $G_L = (N, \Sigma, P, S)$ without contracting rules or chain rules. Let m = |N|, *r* be the maximum length of the rhs of a rule in *P*, and $k = r \cdot (m + 1)$. Then:

For every $s \in L$ with |s| > k there exists a segmentation $u \cdot v \cdot w \cdot x \cdot y = s$ such that

1
$$vx \neq \varepsilon$$

$$|vwx| \le k$$

3 $u \cdot v^h \cdot w \cdot x^h \cdot y \in L$ for every $h \in \mathbb{N}$.

Pumping Lemma II

Theorem (Pumping-Lemma for context-free languages)

Let *L* be a context-free language. Then there exists $k \in \mathbb{N}$ with the following property:

```
For every s \in L with |s| > k there exists a segmentation

u \cdot v \cdot w \cdot x \cdot y = s such that

1 vx \neq \varepsilon

2 |vwx| \leq k

3 u \cdot v^h \cdot w \cdot x^h \cdot y \in L for every h \in \mathbb{N}.
```

Pumping Lemma II

Theorem (Pumping-Lemma for context-free languages)

Let *L* be a context-free language. Then there exists $k \in \mathbb{N}$ with the following property:

```
For every s \in L with |s| > k there exists a segmentation u \cdot v \cdot w \cdot x \cdot y = s such that
```

1
$$vx \neq \varepsilon$$

$$|vwx| \le k$$

3
$$u \cdot v^h \cdot w \cdot x^h \cdot y \in L$$
 for every $h \in \mathbb{N}$.

• Holds for $\{a^n b^n\}$, but not for $\{a^n b^n c^n\}$.

► $\{a^n b^n c^n\}$ is not context-free, but context-sensitive, as we have seen before.

Use the Pumping Lemma II to show that $L = \{a^n b^n c^n \mid n \in \mathbb{N}\}$ is not context-free.

Theorem (Closure under $\cup,\cdot,^*)$

The class of context-free languages is closed under union, concatenation, and Kleene star.

Theorem (Closure under $\cup, \cdot, ^*$)

The class of context-free languages is closed under union, concatenation, and Kleene star.

For context-free grammars

$$G_1 = (N_1, \Sigma, P_1, S_1)$$
 and $G_2 = (N_2, \Sigma, P_2, S_2)$

with $N_1 \cap N_2 = \{\}$ (rename NTSs if needed), let *S* be a new start symbol.

Theorem (Closure under $\cup, \cdot, ^*$)

The class of context-free languages is closed under union, concatenation, and Kleene star.

For context-free grammars

$$G_1 = (N_1, \Sigma, P_1, S_1)$$
 and $G_2 = (N_2, \Sigma, P_2, S_2)$

with $N_1 \cap N_2 = \{\}$ (rename NTSs if needed), let *S* be a new start symbol.

- ▶ for $L(G_1) \cup L(G_2)$, add productions $S \to S_1, S \to S_2$.
- ▶ for $L(G_1) \cdot L(G_2)$, add production $S \rightarrow S_1S_2$.
- ▶ for $L(G_1)^*$, add productions $S \to \varepsilon, S \to S_1S$.

Theorem (Closure under \cap)

Context-free languages are not closed under intersection.

Theorem (Closure under \cap)

Context-free languages are not closed under intersection.

Otherwise, $\{a^n b^n c^n\}$ would be context-free:

- ▶ $\{a^n b^n c^m\}$ is context-free
- \blacktriangleright { $a^m b^n c^n$ } is context-free
- ▶ $\{a^n b^n c^n\} = \{a^n b^n c^m\} \cap \{a^m b^n c^n\}$

- 1 Define context-free grammars for $L_1 = \{a^n b^n c^m \mid n, m \ge 0\}$ and $L_2 = \{a^m b^n c^n \mid n, m \ge 0\}.$
- 2 Use L₁, L₂ and the known closure properties to show that context-free languages are not closed under complement.

Theorem (Word problem for cf. languages)

For a word *w* and a context-free grammar *G*, it is decidable whether $w \in L(G)$ holds.

Theorem (Word problem for cf. languages)

For a word *w* and a context-free grammar *G*, it is decidable whether $w \in L(G)$ holds.

Proof.

The CYK algorithm decides the word problem.

Decision problems: emptiness problem

Theorem (Emptiness problem for cf. languages)

For a context-free grammar *G*, it is decidable if $L(G) = \{\}$ holds.

Decision problems: emptiness problem

Theorem (Emptiness problem for cf. languages)

For a context-free grammar G, it is decidable if $L(G) = \{\}$ holds.

Proof.

Let $G = (N, \Sigma, P, S)$.

Iteratively compute productive NTSs, i.e. symbols that produce terminal words as follows:

1 let
$$Z = \Sigma$$

2 add all symbols A to Z for which there is a rule $A \rightarrow \beta$ with $\beta \in Z^*$

3 repeat step 2 until no further symbols can be added

4
$$L(G) = \{\}$$
 iff $S \notin Z$.

Theorem (Equivalence problem for cf. languages)

For context-free grammars G_1, G_2 , it is undecidable if $L(G_1) = L(G_2)$ holds.

Theorem (Equivalence problem for cf. languages)

For context-free grammars G_1, G_2 , it is undecidable if $L(G_1) = L(G_2)$ holds.

This follows from undecidability of Post's Correspondence Problem.

- A PCP can be encoded in grammars such that the PCP has a solution if and only if the two grammars are equivalent
- Since the PCP is undecidable, so is the equivalence problem
- Detail? Who needs details?

Summary: context-free languages

- characterised by
 - context-free grammars
 - pushdown automata
- closure properties
 - ▶ closed under \cup ,*, ·
 - ▶ not closed under ∩,
- decision problems
 - ▶ decidable: $w \in L(G)$, $L(G) = \{\}$ (Chomsky NF, CYK algorithm)
 - undecidable: $L(G_1) = L(G_2)$
- can describe nested dependencies
 - structure of programming languages
 - natural language processing
- in compilers, these features are used by parsers (next chapter)

End lecture 15

Introduction Regular Languages and Finite Automata

Scanners and Flex Formal Grammars and Context-Free Languages

Parsers and Bison

Turing Machines and Languages of Type 1 and 0 Lecture-specific material Bonus Exercises Selected Solutions Formal grammars describe formal languages

- A grammar has a set of rules
- Rules replace words with words
- A word that can be derived from the start symbol belongs to the language of the grammar

Formal grammars describe formal languages

- A grammar has a set of rules
- Rules replace words with words
- A word that can be derived from the start symbol belongs to the language of the grammar

In the concrete case of programming languages, "words of the language" are syntactically correct programs!

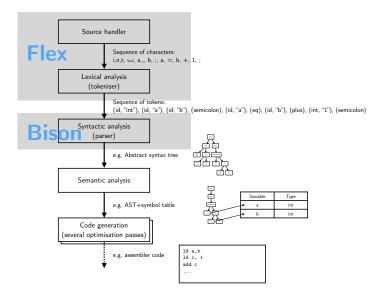
- Most programming languages are described by context-free grammars (with extra "semantic" constraints)
- Grammars generate languages
- PDAs and e.g. CYK-Parsing recognize words
- ▶ For compiler we need to ...
 - identify correct programs
 - and understand their structure!

Lexing and Parsing

Lexer: Breaks programs into tokens

- Smallest parts with semantic meaning
- Can be recognized by regular languages/patterns
- ▶ Example: 1, 2, 53 are all Integers
- Example: i, handle, stream are all Identifiers
- Example: >, >=, * are all individual operators
- Parser: Recognizes program structure
 - Language described by a grammar that has token types as terminals, not individual characters
 - Parser builds parse tree

Automatisation with Bison



YACC/Bison

- Yacc Yet Another Compiler Compiler
 - ▶ Originally written ≈1971 by Stephen C. Johnson at AT&T
 - LALR parser generator
 - Translates grammar into syntax analyser

YACC/Bison

- Yacc Yet Another Compiler Compiler
 - ▶ Originally written ≈1971 by Stephen C. Johnson at AT&T
 - LALR parser generator
 - Translates grammar into syntax analyser

- GNU Bison
 - Written by Robert Corbett in 1988
 - Yacc-compatibility by Richard Stallman
 - Output languages now C, C++, Java
- Yacc, Bison, BYacc, ... mostly compatible (POSIX P1003.2)

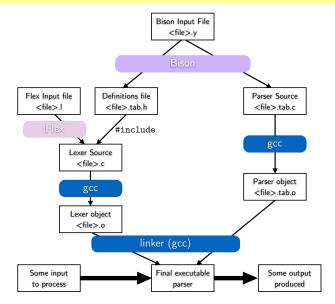
Yacc/Bison Background

- By default, Bison constructs a 1 token Look-Ahead Left-to-right Rightmost-derivation or LALR(1) parser
 - Input tokens are processed left-to-right
 - ▶ Shift-reduce parser:
 - Stack holds tokens (terminals) and non-terminals
 - Tokens are shifted from input to stack. If the top of the stack contains symbols that represent the right hand side (RHS) of a grammar rule, the content is reduced to the LHS
 - Since input is reduced left-to-right, this corresponds to a rightmost derivation
 - Ambiguities are solved via look-ahead and special rules
 - If input can be reduced to start symbol, success!
 - Error otherwise
- LALR(1) is efficient in time and memory
 - Can parse "all reasonable languages"
 - For unreasonable languages, Bison (but not Yacc) can also construct GLR (General LR) parsers
 - Try all possibilities with back-tracking
 - Corresponds to the non-determinism of stack machines

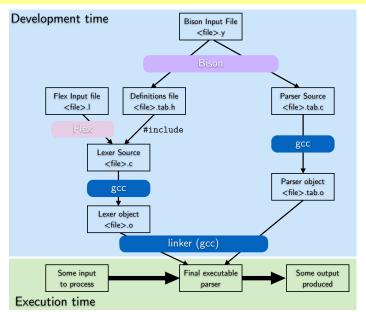
Yacc/Bison Overview

- Bison reads a specification file and converts it into (C) code of a parser
- Specification file: Declarations, grammar rules with actions, support code
 - Declarations: C declarations and data model, token names, associated values, includes
 - Grammar rules: Non-terminal with alternatives, action associated with each alternative
 - Support code: e.g. main() function, error handling...
 - Syntax similar to (F)lex
 - Sections separated by %%
 - Special commands start with %
- Bison generates function yyparse()
- Bison needs function yylex()
 - Usually provided via (F)lex

Yacc/Bison workflow



Yacc/Bison workflow



- Desk calculator
 - Reads algebraic expressions and assignments
 - Prints result of expressions
 - Can store values in registers R0-R99

- Desk calculator
 - Reads algebraic expressions and assignments
 - Prints result of expressions
 - Can store values in registers R0-R99
- Example session:

```
[Shell] ./scicalc
R10=3*(5+4)
> RegVal: 27.000000
```

- Desk calculator
 - Reads algebraic expressions and assignments
 - Prints result of expressions
 - Can store values in registers R0-R99
- Example session:

```
[Shell] ./scicalc
R10=3*(5+4)
> RegVal: 27.000000
(3.1415*R10+3)
> 87.820500
```

- Desk calculator
 - Reads algebraic expressions and assignments
 - Prints result of expressions
 - Can store values in registers R0-R99
- Example session:

```
[Shell] ./scicalc
R10=3*(5+4)
> RegVal: 27.000000
(3.1415*R10+3)
> 87.820500
R9=(3.1415*R10+3)
> RegVal: 87.820500
```

- Desk calculator
 - Reads algebraic expressions and assignments
 - Prints result of expressions
 - Can store values in registers R0-R99
- Example session:

```
[Shell] ./scicalc
R10=3*(5+4)
> RegVal: 27.00000
(3.1415 \times R10 + 3)
> 87.820500
R9 = (3.1415 \times R10 + 3)
> RegVal: 87.820500
R9+R10
> 114.820500
```

 $G_{DC} = (N, \Sigma, P, S)$

- ▷ ∑ = {PLUS, MULT, ASSIGN, OPENPAR, CLOSEPAR, REGISTER, FLOAT,...}
 - Some terminals are single characters (+, =, ...)
 - Others are complex R10, 1.3e7
 - Terminals ("tokens") are generated by the lexer

```
N = {stmt, assign,
expr, term, factor,
...}
```

► P :

 $G_{DC} = (N, \Sigma, P, S)$

- ∑ = {PLUS, MULT, ASSIGN, OPENPAR, CLOSEPAR, REGISTER, FLOAT,...}
 - Some terminals are single characters (+, =, ...)
 - Others are complex R10, 1.3e7
 - Terminals ("tokens") are generated by the lexer

```
N = {stmt, assign,
expr, term, factor,
...}
```

- $G_{DC} = (N, \Sigma, P, S)$
 - ► ∑ = {PLUS, MULT, ASSIGN, OPENPAR, CLOSEPAR, REGISTER, FLOAT,...}
 - ► Some terminals are single characters (+, =, ...)
 - Others are complex R10, 1.3e7
 - Terminals ("tokens") are generated by the lexer

▶
$$P:$$

stmt → assign

expr

- $G_{DC} = (N, \Sigma, P, S)$
 - ▷ ∑ = {PLUS, MULT, ASSIGN, OPENPAR, CLOSEPAR, REGISTER, FLOAT,...}

► <i>P</i> :				
stmt	\rightarrow	assign		
		expr		
assign	\rightarrow	REGISTER	ASSIGN	expr

- Some terminals are single characters (+, =, ...)
- Others are complex R10, 1.3e7
- Terminals ("tokens") are generated by the lexer

- $G_{DC} = (N, \Sigma, P, S)$
 - ∑ = {PLUS, MULT, ASSIGN, OPENPAR, CLOSEPAR, REGISTER, FLOAT,...}
- $\begin{array}{cccc} \blacktriangleright P: \\ \text{stmt} & \rightarrow & \text{assign} \\ & \mid & \text{expr} \\ \text{assign} & \rightarrow & \text{REGISTER ASSIGN expr} \\ \text{expr} & \rightarrow & \text{expr PLUS term} \\ & \mid & \text{term} \end{array}$
 - Some terminals are single characters (+, =, ...)
 - Others are complex R10, 1.3e7
 - Terminals ("tokens") are generated by the lexer

- $G_{DC} = (N, \Sigma, P, S)$
 - ∑ = {PLUS, MULT, ASSIGN, OPENPAR, CLOSEPAR, REGISTER, FLOAT,...}
 - Some terminals are single characters (+, =, ...)
 - Others are complex R10, 1.3e7
 - Terminals ("tokens") are generated by the lexer
 - N = {stmt, assign, expr, term, factor, ...}

► P :		
stmt	\rightarrow	assign
		expr
assign	\rightarrow	REGISTER ASSIGN expr
expr	\rightarrow	expr PLUS term
		term
term	\rightarrow	term MULT factor
		factor

- $G_{DC} = (N, \Sigma, P, S)$
 - ▶ $\Sigma = \{$ PLUS, MULT, ASSIGN, OPENPAR, CLOSEPAR, REGISTER, FLOAT, ... $\}$
 - Some terminals are single characters (+, =, ...)
 - Others are complex R10, 1.3e7
 - Terminals ("tokens") are generated by the lexer

► <i>P</i> :		
stmt	\rightarrow	assign
		expr
assign	\rightarrow	REGISTER ASSIGN expr
expr	\rightarrow	expr PLUS term
		term
term	\rightarrow	term MULT factor
		factor
factor	\rightarrow	REGISTER
		FLOAT
		OPENPAR expr CLOSEPAR

- $G_{DC} = (N, \Sigma, P, S)$
 - ▶ $\Sigma = \{$ PLUS, MULT, ASSIGN, OPENPAR, CLOSEPAR, REGISTER, FLOAT, ... $\}$
 - Some terminals are single characters (+, =, ...)
 - Others are complex R10, 1.3e7
 - Terminals ("tokens") are generated by the lexer

▶ P: stmt → assign | expr assign → REGISTER ASSIGN expr expr → expr PLUS term | term term → term MULT factor | factor factor → REGISTER | FLOAT | OPENPAR expr CLOSEPAR

► S:

- ▶ For a single statement, S = stmt
- In practice, we need to handle sequences of statements and empty input lines (not reflected in the grammar)

- Example string: R10 = (4.5+3*7)
- ► Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS FLOAT MULT FLOAT CLOSEPAR
 - In the following abbreviated R, A, O, F, P, F, M, F, C
- Parsing state:
 - Unread input (left column)
 - Current stack (middle column, top element on right)
 - How state was reached (right column)

- Example string: R10 = (4.5+3*7)
- ► Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS FLOAT MULT FLOAT CLOSEPAR
 - In the following abbreviated R, A, O, F, P, F, M, F, C
- Parsing state:
 - Unread input (left column)
 - Current stack (middle column, top element on right)
 - How state was reached (right column)
- Parsing:

Input Stack R A O F P F M F C Comment Start

- Example string: R10 = (4.5+3*7)
- ► Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS FLOAT MULT FLOAT CLOSEPAR
 - In the following abbreviated R, A, O, F, P, F, M, F, C
- Parsing state:
 - Unread input (left column)
 - Current stack (middle column, top element on right)
 - How state was reached (right column)

Parsing:

 Input
 Stack

 R
 A
 O
 F
 P
 F
 M
 F
 C

 A
 O
 F
 P
 F
 M
 F
 C
 R

Comment Start Shift R to stack

- Example string: R10 = (4.5+3*7)
- ► Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS FLOAT MULT FLOAT CLOSEPAR
 - In the following abbreviated R, A, O, F, P, F, M, F, C
- Parsing state:
 - Unread input (left column)
 - Current stack (middle column, top element on right)
 - How state was reached (right column)

Parsing:

In	put	t							Stack
R	А	0	F	Ρ	F	М	F	С	
А	0	F	Ρ	F	М	F	С		R
0	F	Ρ	F	М	F	С			RΑ

Comment Start Shift R to stack Shift A to stack

- Example string: R10 = (4.5+3*7)
- ► Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS FLOAT MULT FLOAT CLOSEPAR
 - In the following abbreviated R, A, O, F, P, F, M, F, C
- Parsing state:
 - Unread input (left column)
 - Current stack (middle column, top element on right)
 - How state was reached (right column)

Parsing:

In	put	t	Stack						
R	А	0	F	Ρ	F	М	F	С	
А	0	F	Ρ	F	М	F	С		R
0	F	Ρ	F	М	F	С			R A
F	Ρ	F	М	F	С				RAO

Comment Start Shift R to stack Shift A to stack Shift O to stack

- Example string: R10 = (4.5+3*7)
- ► Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS FLOAT MULT FLOAT CLOSEPAR
 - In the following abbreviated R, A, O, F, P, F, M, F, C
- Parsing state:
 - Unread input (left column)
 - Current stack (middle column, top element on right)
 - How state was reached (right column)
- Parsing:

In	put	t	Stack						
R	А	0	F	Ρ	F	М	F	С	
А	0	F	Ρ	F	М	F	С		R
0	F	Ρ	F	М	F	С			R A
F	Ρ	F	М	F	С				RAO
Ρ	F	М	F	С					RAOF

Comment Start Shift R to stack Shift A to stack Shift O to stack Shift F to stack

- Example string: R10 = (4.5+3*7)
- ► Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS FLOAT MULT FLOAT CLOSEPAR
 - In the following abbreviated R, A, O, F, P, F, M, F, C
- Parsing state:
 - Unread input (left column)
 - Current stack (middle column, top element on right)
 - How state was reached (right column)
- Parsing:

In	put	t							Stack	Comment
R	А	0	F	Ρ	F	М	F	С		Start
А	0	F	Ρ	F	М	F	С		R	Shift R to stack
0	F	Ρ	F	М	F	С			R A	Shift A to stack
F	Ρ	F	М	F	С				R A O	Shift O to stack
Ρ	F	М	F	С					RAOF	Shift F to stack
Ρ	F	М	F	С					R A O factor	Reduce F

- Example string: R10 = (4.5+3*7)
- ► Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS FLOAT MULT FLOAT CLOSEPAR
 - In the following abbreviated R, A, O, F, P, F, M, F, C
- Parsing state:
 - Unread input (left column)
 - Current stack (middle column, top element on right)
 - How state was reached (right column)
- Parsing:

In	put	t						Stack					
R	А	0	F	Ρ	F	М	F	С					
А	0	F	Ρ	F	М	F	С		R				
0	F	Ρ	F	М	F	С			R A				
F	Ρ	F	М	F	С				R A O				
Ρ	F	М	F	С					RAOF				
Ρ	F	М	F	С					R A O factor				
Ρ	F	М	F	С					R A O term				

Comment Start Shift R to stack Shift A to stack Shift O to stack Shift F to stack Reduce F Reduce factor

- Example string: R10 = (4.5+3*7)
- ► Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS FLOAT MULT FLOAT CLOSEPAR
 - In the following abbreviated R, A, O, F, P, F, M, F, C
- Parsing state:
 - Unread input (left column)
 - Current stack (middle column, top element on right)
 - How state was reached (right column)
- Parsing:

. . .

In	put	t							Stack						
R	А	0	F	Ρ	F	М	F	С							
А	0	F	Ρ	F	М	F	С		R						
0	F	Ρ	F	М	F	С			R A						
F	Ρ	F	М	F	С				R A O						
Ρ	F	М	F	С					R A O F						
Ρ	F	М	F	С					R A O factor						
Ρ	F	М	F	С					R A O term						

Comment Start Shift R to stack Shift A to stack Shift O to stack Shift F to stack Reduce F Reduce factor

R	А	0	F	Ρ	F	М	F	С				
А	0	F	Ρ	F	М	F	С		R			
0	F	Ρ	F	М	F	С			R	А		
F	Ρ	F	М	F	С				R	А	0	
Ρ	F	М	F	С					R	А	0	F
Ρ	F	М	F	С					R	А	0	factor
Ρ	F	М	F	С					R	А	0	term

Start Shift R to stack Shift A to stack Shift O to stack Shift F to stack Reduce F Reduce factor

R	Α	0	F	Ρ	F	М	F	С				
А	0	F	Ρ	F	М	F	С		R			
0	F	Ρ	F	М	F	С			R	А		
F	Ρ	F	М	F	С				R	А	0	
Ρ	F	М	F	С					R	Α	0	F
Ρ	F	М	F	С					R	А	0	factor
Ρ	F	М	F	С					R	А	0	term
Ρ	F	М	F	С					R	А	0	expr

Start Shift R to stack Shift A to stack Shift O to stack Shift F to stack Reduce F Reduce factor LA! Reduce term

R	А	0	F	Ρ	F	М	F	С					
Α	0	F	Ρ	F	М	F	С]	R			
0	F	Ρ	F	М	F	С]	R	А		
F	Ρ	F	М	F	С]	R	А	0	
Ρ	F	М	F	С]	R	А	0	F
Ρ	F	М	F	С]	R	А	0	factor
Ρ	F	М	F	С					1	R	А	0	term
Ρ	F	М	F	С]	R	А	0	expr
F	М	F	С]	R	А	0	expr P

Start Shift R to stack Shift A to stack Shift O to stack Shift F to stack Reduce F Reduce factor LA! Reduce term Shift P

R	А	0	F	Ρ	F	М	F	С						
А	0	F	Ρ	F	М	F	С		R					
0	F	Ρ	F	М	F	С			R	А				
F	Ρ	F	М	F	С				R	А	0			
Ρ	F	М	F	С					R	А	0	F		
Ρ	F	М	F	С					R	А	0	facto	or	
Ρ	F	М	F	С					R	А	0	term		
Ρ	F	М	F	С					R	А	0	expr		
F	М	F	С						R	А	0	expr	Ρ	
М	F	С							R	А	0	expr	Ρ	F

Start Shift R to stack Shift A to stack Shift O to stack Shift F to stack Reduce F Reduce factor LA! Reduce term Shift P Shift F

R	А	0	F	Ρ	F	М	F	С					
А	0	F	Ρ	F	М	F	С			R			
0	F	Ρ	F	М	F	С				R	А		
F	Ρ	F	М	F	С					R	А	0	
Ρ	F	М	F	С						R	А	0	F
Ρ	F	М	F	С						R	А	0	fa
Ρ	F	М	F	С						R	А	0	te
Ρ	F	М	F	С						R	А	0	ex
F	М	F	С							R	А	0	ex
М	F	С								R	А	0	ex
М	F	С								R	А	0	ex
	A O F P P P F M	A 0 0 F P F P F P F F M M F	A O F O F P F P F P F M P F M P F M P F M	A O F P O F P F F P F M P F M F P F M F P F M F F M F F M F C M F C	A O F P F M F P F M F P F M F C P F M F C P F M F C P F M F C F M F C M F C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 F P F M F C F P F M F C P F M F C P F M F C P F M F C P F M F C P F M F C P F M F C P F M F C P F M F C P F M F C M F C C M F C C	A O F P F M F C O F P F M F C F P F M F C P F M F C P F M F C P F M F C P F M F C F M F C F M F C F M F C M F C	A O F P F M F C R O F P F M F C R F P F M F C R P F M F C R F M F C R	A O F P F M F C R A O F P F M F C R A F P F M F C R A P F M F C R A P F M F C R A P F M F C R A P F M F C R A P F M F C R A P F M F C R A P F M F C R A M F M F C R A M F C R A	A O F P F M F C R A O F P F M F C R A F P F M F C R A O P F M F C R A O P F M F C R A O P F M F C R A O P F M F C R A O P F M F C R A O P F M F C R A O P F M F C R A O P F M F C R A O M F C R A O M F C R A O

R A A O A A O F A A O factor A A O term A A O expr A A O expr P A A O expr P F A A O expr P factor Start Shift R to stack Shift A to stack Shift O to stack Shift F to stack Reduce F Reduce factor LA! Reduce term Shift F Reduce F

R	А	0	F	Ρ	F	М	F	С					
A	0	F	Ρ	F	М	F	С		R				
0	F	Ρ	F	М	F	С			R	А			
F	Ρ	F	М	F	С				R	Α	0		
Ρ	F	М	F	С					R	Α	0	F	
Ρ	F	М	F	С					R	А	0	facto	or
Р	F	М	F	С					R	А	0	term	
Ρ	F	М	F	С					R	А	0	expr	
F	М	F	С						R	А	0	expr	Ρ
М	F	С							R	А	0	expr	Ρ
М	F	С							R	А	0	expr	Ρ
М	F	С							R	А	0	expr	Ρ

F factor

term

Start Shift R to stack Shift A to stack Shift O to stack Shift F to stack Reduce F Reduce factor LA! Reduce term Shift F Reduce F Reduce F Reduce factor

R	Α	0	F	Ρ	F	М	F	С							
Α	0	F	Ρ	F	М	F	С		R						
0	F	Ρ	F	М	F	С			R	А					
F	Ρ	F	М	F	С				R	Α	0				
P	F	М	F	С					R	А	0	F			
Ρ	F	М	F	С					R	Α	0	facto	or		
Р	F	М	F	С					R	А	0	term			
Р	F	М	F	С					R	А	0	expr			
F	М	F	С						R	Α	0	expr	Ρ		
М	F	С							R	Α	0	expr	Ρ	F	
М	F	С							R	А	0	expr	Ρ	facto	or
М	F	С							R	А	0	expr	Ρ	term	
F	С								R	A	0	expr	Ρ	term	М

Start Shift R to stack Shift A to stack Shift O to stack Shift F to stack Reduce F Reduce term Shift F Reduce F Reduce F Reduce factor LA! Shift M

F P P	O F P F F F F F F F F F F	F P F M M F C C	P F M F F F F	F M F C C	M F	F	FC	С	R R R R R R R	A A A A A A A A A		facto term expr expr expr expr expr expr	P P P P	factor term		Start Shift R to stack Shift A to stack Shift O to stack Shift F to stack Reduce F Reduce factor LA! Reduce term Shift F Reduce F Reduce F Reduce factor LA! Shift M
F C	С								R		0	expr	Ρ	term M term M	F	

P F M F CR A O exprLA! ReduceF M F CR A O expr PShift PM F CR A O expr P FShift FM F CR A O expr P factorReduce FM F CR A O expr P termReduce factorF CR A O expr P termReduce factorF CR A O expr P termReduce factorF CR A O expr P termLA! Shift N	actor
C RAO expr P term M F Shift F	IVI
C R A O expr P term M factor Reduce F	:

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R R A R A O R A O F R A O factor R A O term	Start Shift R to stack Shift A to stack Shift O to stack Shift F to stack Reduce F Reduce factor
PFMFC	R A O expr	LA! Reduce term
FMFC	R A O expr P	Shift P
MFC	R A O expr P F	Shift F
MFC	R A O expr P factor	Reduce F
MFC	R A O expr P term	Reduce factor
F C	R A O expr P term M	LA! Shift M
С	R A O expr P term M F	Shift F
С	R A O expr P term M factor	Reduce F
С	R A O expr P term	Reduce tMf

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C R R A R A 0 R A	factor term	Start Shift R to stack Shift A to stack Shift O to stack Shift F to stack Reduce F Reduce factor LA! Reduce term Shift F Reduce F Reduce F Reduce F Reduce factor LA! Shift M Shift F
C	R A O	-	Reduce tMf
C	R A O		Reduce ePt

R A O F P F M F C A O F P F M F C O F P F M F C	R R A	Start Shift R to stack Shift A to stack
FPFMFC	RAO	Shift O to stack
PFMFC	RAOF	Shift F to stack
PFMFC	R A O factor	Reduce F
PFMFC	R A O term	Reduce factor
PFMFC	R A O expr	LA! Reduce term
FMFC	R A O expr P	Shift P
M F C	R A O expr P F	Shift F
MFC	R A O expr P factor	Reduce F
MFC	R A O expr P term	Reduce factor
F C	R A O expr P term M	LA! Shift M
С	R A O expr P term M F	Shift F
С	R A O expr P term M factor	Reduce F
С	R A O expr P term	Reduce tMf
С	R A O expr	Reduce ePt
	R A O expr C	Shift C
	R A factor	Reduce OeC

R	A	0	F	Ρ	F	М	F	С									Start
А	0	F	Ρ	F	М	F	С		R								Shift R to stack
0	F	Ρ	F	М	F	С			R	А							Shift A to stack
F	Ρ	F	М	F	С				R	А	0						Shift O to stack
Ρ	F	М	F	С					R	А	0	F					Shift F to stack
Ρ	F	М	F	С					R	А	0	facto	or				Reduce F
Р	F	М	F	С					R	А	0	term					Reduce factor
Ρ	F	М	F	С					R	А	0	expr					LA! Reduce term
F	М	F	С						R	А	0	expr	Ρ				Shift P
М	F	С							R	А	0	expr	Ρ	F			Shift F
М	F	С							R	А	0	expr	Ρ	factor	r		Reduce F
М	F	С							R	Α	0	expr	Ρ	term			Reduce factor
F	С								R	А	0	expr	Ρ	term M	M		LA! Shift M
С									R	А	0	expr	Ρ	term M	M 1	F	Shift F
С									R	А	0	expr	Ρ	term M	M :	factor	Reduce F
С									R	А	0	expr	Ρ	term			Reduce tMf
С									R	А	0	expr					Reduce ePt
									R	А	0	expr	С				Shift C
									R	А	fā	actor					Reduce OeC
									R	Α	te	erm					Reduce factor

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R R A R A O R A O F R A O factor R A O term R A O expr R A O expr P R A O expr P F R A O expr P factor R A O expr P term R A O expr P term M R A O expr P term M F R A O expr P term M F R A O expr P term M factor R A O expr P term R A O expr P term R A O expr C R A factor R A term	Reduce tMf Reduce ePt Shift C Reduce OeC
	-	Reduce OeC Reduce factor Reduce term
	-	

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R R A R A O R A O F R A O factor R A O term R A O expr R A O expr P R A O expr P F R A O expr P factor R A O expr P term R A O expr P term M R A O expr P term M F R A O expr P term M factor R A O expr P term R A O expr P term R A O expr P term R A O expr C R A factor R A term	Start Shift R to stack Shift A to stack Shift O to stack Shift F to stack Reduce F Reduce factor LA! Reduce term Shift F Reduce F Reduce F Reduce F Reduce F Reduce F Reduce F Reduce F Reduce F Reduce Pt Shift C Reduce OeC Reduce factor
	R A factor	
	R A term	Reduce factor
	R A expr	Reduce term
	assign	Reduce RAe

P F F F M F F F M M F C C C C	M M F C	-	2				F F F F F F F F F F F F F F F F F F F		A A A A A A A A A A A A A A A A A A A	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	fac ter exp exp exp exp exp exp exp exp exp exp	m r r r r r r r	P P P P P P P P	F facto term term term term	M M	or	Shift F to stack Reduce F Reduce factor LA! Reduce term Shift F Reduce F Reduce factor LA! Shift M Shift F Reduce F Reduce F Reduce F Reduce Pt Shift C Reduce OeC Reduce OeC Reduce factor Reduce term Reduce RAe
										.gr	-						Reduce RAe
							S	tı	mt								Reduce assign
							ā	IS	si	gr	-						Reduce RAe

Lexer interface

- Bison parser requires yylex() function
- yylex() returns token
 - Token text is defined by regular expression pattern
 - ▶ Tokens are encoded as integers
 - Symbolic names for tokens are defined by Bison in generated header file
 - ► By convention: Token names are all CAPITALS
- yylex() provides optional semantic value of token
 - Stored in global variable yylval
 - Type of yylval defined by Bison in generated header file
 - Default is int
 - For more complex situations often a union
 - For our example: Union of double (for floating point values) and integer (for register numbers)

```
/*
Lexer for a minimal "scientific" calculator.
```

Copyright 2014 by Stephan Schulz, schulz@eprover.org.

This code is released under the GNU General Public Licence Version 2. */

```
%option noyywrap
```

```
%{
    #include "scicalcparse.tab.h"
%}
```

Lexer for desk calculator (2)

DIGIT	[0-9]
INT	{DIGIT}+
PLAINFLOAT	{INT} {INT} [.] {INT} [.] {INT} [.] {INT}
EXP	[eE](\+ -)?{INT}
NUMBER	{PLAINFLOAT}{EXP}?
REG	R{DIGIT}{DIGIT}?

응응

"*"	{return	MULT; }
"+"	{return	PLUS; }
"="	{return	ASSIGN; }
"("	{return	OPENPAR; }
")"	{return	CLOSEPAR; }
∖n	{return	NEWLINE; }

Lexer for desk calculator (3)

```
{REG} {
 yylval.regno = atoi(yytext+1);
 return REGISTER;
}
{NUMBER} {
 yylval.val = atof(yytext);
 return FLOAT;
}
[ ] { /* Skip whitespace*/ }
/* Everything else is an invalid character. */
. { return ERROR; }
```

Desk calculator has simple state

- 100 floating point registers
- ▶ R0-R99
- Represented in C as array of doubles:

#define MAXREGS 100

double regfile[MAXREGS];

Needs to be initialized in support code

Bison code for desk calculator: Declarations

```
8{
  #include <stdio.h>
  #define MAXREGS 100
 double regfile[MAXREGS];
 extern int yyerror(char* err);
 extern int yylex (void);
8}
%union {
 double val;
  int reqno;
  }
```

Bison code for desk calculator: Tokens

%start stmtseq

- %left PLUS
- %left MULT
- %token ASSIGN
- %token OPENPAR
- %token CLOSEPAR
- %token NEWLINE
- %token REGISTER
- %token FLOAT
- %token ERROR

Actions in Bison

- Bison is based on syntax rules with associated actions
 - Whenever a reduce is performed, the action associated with the rule is executed
- Actions can be arbitrary C code
- Frequent: semantic actions
 - The action sets a semantic value based on the semantic value of the symbols reduced by the rule
 - ► For terminal symbols: Semantic value is yylval from Flex
 - Semantic actions have "historically valuable" syntax
 - Value of reduced symbol: \$\$
 - Value of first symbol in syntax rule body: \$1
 - Value of second symbol in syntax rule body: \$2
 - ▶ ...
 - Access to named components: \$<val>1

Bison code for desk calculator: Grammar (1)

```
stmtseq: /* Empty */
   | NEWLINE stmtseq {}
   | stmt NEWLINE stmtseq {}
   | error NEWLINE stmtseq {}; /* After an error,
   start afresh */
```

- ► Head: sequence of statements
- First body line: Skip empty lines
- Second body line: separate current statement from rest
- Third body line: After parse error, start again with new line

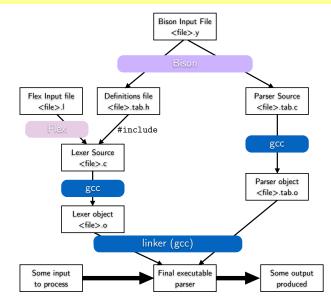
Bison code for desk calculator: Grammar (2)

```
stmt: assign {printf("> RegVal: %f\n", $<val>1);}
        lexpr {printf("> %f\n", $<val>1);};
assign: REGISTER ASSIGN expr {reqfile[$<reqno>1] = $<val>3;
          s_{val>s} = s_{val>3};
expr: expr PLUS term \{\$ < val > \$ = \$ < val > 1 + \$ < val > 3; \}
        L term {$<val>$ = $<val>1:}:
term: term MULT factor {$<val>$ = $<val>1 * $<val>3;}
        | factor {$<val>$ = $<val>1;};
factor: REGISTER {$<val>$ = regfile[$<regno>1];}
        | FLOAT {$<val>$ = $<val>1;}
        | OPENPAR expr CLOSEPAR {$<val>$ = $<val>2;};
```

Bison code for desk calculator: Support code

```
int yyerror(char* err)
  printf("Error: %s\n", err);
  return 0;
int main (int argc, char* argv[])
  int i;
  for(i=0; i<MAXREGS; i++)</pre>
    reqfile[i] = 0.0;
  return yyparse();
```

Bison workflow and dependencies



Building the calculator

Generate parser C code and include file for lexer

- ▶ bison -d scicalcparse.y
- ▶ Generates scicalcparse.tab.c and scicalcparse.tab.h
- 2 Generate lexer C code

flex -t scicalclex.l > scicalclex.c

- 3 Compile lexer
 - ▶ gcc -c -o scicalclex.o scicalclex.c
- 4 Compile parser and support code

▶ gcc -c -o scicalcparse.tab.o scicalcparse.tab.c

5 Link everything

▶ gcc scicalclex.o scicalcparse.tab.o -o scicalc

6 Fun!

▶ ./scicalc

Exercise: calculator

Exercise 1:

- Go to http://wwwlehre.dhbw-stuttgart.de/~sschulz/ fla2022.html
- Download scicalcparse.y and scicalclex.l
- Build the calculator
- Run and test the calculator
- Exercise 2:
 - ▶ Add support for division and subtraction /, -
 - ► Add support for unary minus (the negation operator –)

Definition (derivation)

For a grammar *G*, a derivation of a word w_n in L(G) is a sequence $S \Rightarrow w_1 \Rightarrow \ldots \Rightarrow w_n$ where *S* is the start symbol, and each w_i is generated from its predecessor by application of a production of the grammar

Example (well-formed expressions over x, +, *.(,))

```
Let G_E = (N, \Sigma, P, E) with

N = \{E\}

\Sigma = \{(, ), +, *, x\}

P:

1 \quad E \to x

2 \quad E \to (E)

3 \quad E \to E + E

4 \quad E \to E * E
```

Example (well-formed expressions over x, +, *.(,))

Let
$$G_E = (N, \Sigma, P, E)$$
 with
 $N = \{E\}$
 $\Sigma = \{(,), +, *, x\}$
 $P:$
 $1 \quad E \to x$
 $2 \quad E \to (E)$
 $3 \quad E \to E + E$
 $4 \quad E \to E * E$

The following is a derivation of x + x + x * x (with the replaced symbol printed bold):

E

Example (well-formed expressions over x, +, *.(,))

Let
$$G_E = (N, \Sigma, P, E)$$
 with
 $N = \{E\}$
 $\Sigma = \{(,), +, *, x\}$
 $P:$
 $1 \quad E \to x$
 $2 \quad E \to (E)$
 $3 \quad E \to E + E$
 $4 \quad E \to E * E$

$$\begin{array}{c} \mathbf{E} \\ \Rightarrow \quad \mathbf{E} + E \end{array}$$

Example (well-formed expressions over x, +, *.(,))

Let
$$G_E = (N, \Sigma, P, E)$$
 with
 $N = \{E\}$
 $\Sigma = \{(,), +, *, x\}$
 $P:$
 $1 \quad E \rightarrow x$
 $2 \quad E \rightarrow (E)$
 $3 \quad E \rightarrow E + E$
 $4 \quad E \rightarrow E * E$

$$\begin{array}{r} \mathbf{E} \\ \Rightarrow \quad \mathbf{E} + E \\ \Rightarrow \quad E + E + \mathbf{E} \end{array}$$

Example (well-formed expressions over x, +, *.(,))

Let
$$G_E = (N, \Sigma, P, E)$$
 with
 $N = \{E\}$
 $\Sigma = \{(,), +, *, x\}$
 $P:$
 $1 \quad E \rightarrow x$
 $2 \quad E \rightarrow (E)$
 $3 \quad E \rightarrow E + E$
 $4 \quad E \rightarrow E * E$

$$\begin{array}{rcl}
\mathbf{E} \\
\Rightarrow & \mathbf{E} + E \\
\Rightarrow & E + E + \mathbf{E} \\
\Rightarrow & \mathbf{E} + E + E * E
\end{array}$$

Example (well-formed expressions over x, +, *.(,))

Let
$$G_E = (N, \Sigma, P, E)$$
 with
 $N = \{E\}$
 $\Sigma = \{(,), +, *, x\}$
 $P:$
 $1 \quad E \to x$
 $2 \quad E \to (E)$
 $3 \quad E \to E + E$
 $4 \quad E \to E * E$

	Ε
\Rightarrow	$\mathbf{E} + E$
\Rightarrow	$E + E + \mathbf{E}$
\Rightarrow	$\mathbf{E} + E + E * E$
\Rightarrow	$x + \mathbf{E} + E * E$

Example (well-formed expressions over x, +, *.(,))

Let
$$G_E = (N, \Sigma, P, E)$$
 with
 $N = \{E\}$
 $\Sigma = \{(,), +, *, x\}$
 $P:$
 $1 \quad E \to x$
 $2 \quad E \to (E)$
 $3 \quad E \to E + E$
 $4 \quad E \to E * E$

	Ε
\Rightarrow	$\mathbf{E} + E$
\Rightarrow	$E + E + \mathbf{E}$
\Rightarrow	$\mathbf{E} + E + E * E$
\Rightarrow	$x + \mathbf{E} + E * E$
\rightarrow	$\mathbf{r} + \mathbf{r} + \mathbf{E} * F$

Example (well-formed expressions over x, +, *.(,))

Let
$$G_E = (N, \Sigma, P, E)$$
 with
 $N = \{E\}$
 $\Sigma = \{(,), +, *, x\}$
 $P:$
 $1 \quad E \to x$
 $2 \quad E \to (E)$
 $3 \quad E \to E + E$
 $4 \quad E \to E * E$

	Ε
\Rightarrow	$\mathbf{E} + E$
\Rightarrow	$E + E + \mathbf{E}$
\Rightarrow	$\mathbf{E} + E + E * E$
\Rightarrow	$x + \mathbf{E} + E * E$
\Rightarrow	$x + x + \mathbf{E} * E$
\rightarrow	$r + r + r * \mathbf{E}$

Example (well-formed expressions over x, +, *.(,))

Let
$$G_E = (N, \Sigma, P, E)$$
 with
 $N = \{E\}$
 $\Sigma = \{(,), +, *, x\}$
 $P:$
 $1 \quad E \to x$
 $2 \quad E \to (E)$
 $3 \quad E \to E + E$
 $4 \quad E \to E * E$

	Ε
\Rightarrow	$\mathbf{E} + E$
\Rightarrow	$E + E + \mathbf{E}$
\Rightarrow	$\mathbf{E} + E + E * E$
\Rightarrow	$x + \mathbf{E} + E * E$
\Rightarrow	$x + x + \mathbf{E} * E$
\Rightarrow	$x + x + x * \mathbf{E}$
\Rightarrow	x + x + x * x

Rightmost and leftmost Derivations

Definition (rightmost/leftmost)

- A derivation is called a rightmost derivation, if at any step it replaces the rightmost non-terminal in the current word.
- A derivation is called a leftmost derivation, if at any step it replaces the leftmost non-terminal in the current word.

Rightmost and leftmost Derivations

Definition (rightmost/leftmost)

- A derivation is called a rightmost derivation, if at any step it replaces the rightmost non-terminal in the current word.
- A derivation is called a leftmost derivation, if at any step it replaces the leftmost non-terminal in the current word.

Example

- The derivation on the previous slide is neither leftmost nor rightmost.
- A rightmost derivation is:

 $\mathbf{E} \Rightarrow E + \mathbf{E} \Rightarrow E + E + \mathbf{E} \Rightarrow E + E + E * \mathbf{E} \Rightarrow E + E + \mathbf{E} * x \Rightarrow E + \mathbf{E} + x * x \Rightarrow \mathbf{E} + x + x * x \Rightarrow x + x + x * x$

Parse trees

Definition (parse tree)

A parse tree for a derivation in a grammar $G = (N, \Sigma, P, S)$ is an ordered, labelled tree with the following properties:

- ▶ Each node is labelled with a symbol from $N \cup \Sigma$
- ▶ The root of the tree is labelled with the start symbol *S*.
- Each inner node is labelled with a single non-terminal symbol from N
- ▶ If an inner node with label *A* has children labelled with symbols $\alpha_1, \ldots, \alpha_n$, then there is a production $A \rightarrow \alpha_1 \ldots \alpha_n$ in *P*.

Parse trees

Definition (parse tree)

A parse tree for a derivation in a grammar $G = (N, \Sigma, P, S)$ is an ordered, labelled tree with the following properties:

- ▶ Each node is labelled with a symbol from $N \cup \Sigma$
- ▶ The root of the tree is labelled with the start symbol *S*.
- Each inner node is labelled with a single non-terminal symbol from N
- ▶ If an inner node with label *A* has children labelled with symbols $\alpha_1, \ldots, \alpha_n$, then there is a production $A \rightarrow \alpha_1 \ldots \alpha_n$ in *P*.
- The parse tree represents a derivation of the word formed by the labels of the leaf nodes
- ▶ It abstracts from the order in which productions are applied.

Example: parse trees

Example

The derivation $\mathbf{E} \Rightarrow E + \mathbf{E} \Rightarrow E + E + \mathbf{E} \Rightarrow E + E + E * \mathbf{E} \Rightarrow E + E + \mathbf{E} * x \Rightarrow E + \mathbf{E} + \mathbf{x} * x \Rightarrow \mathbf{E} + \mathbf{E} + x * x \Rightarrow \mathbf{E} + x + x * x \Rightarrow x + x + x * x$ can be represented by a sequence of parse trees:

Example: parse trees

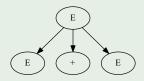
Example

The derivation $\mathbf{E} \Rightarrow E + \mathbf{E} \Rightarrow E + E + \mathbf{E} \Rightarrow E + E + E \Rightarrow E + E + E * \mathbf{E} \Rightarrow E + E + \mathbf{E} * x \Rightarrow E + \mathbf{E} + x * x \Rightarrow \mathbf{E} + x + x * x \Rightarrow x + x + x * x$ can be represented by a sequence of parse trees:

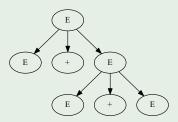
Example: parse trees

Example

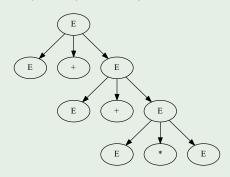
The derivation $\mathbf{E} \Rightarrow E + \mathbf{E} \Rightarrow E + E + \mathbf{E} \Rightarrow E + E + E * \mathbf{E} \Rightarrow E + E + \mathbf{E} * \mathbf{x} \Rightarrow E + \mathbf{E} + \mathbf{x} * \mathbf{x} \Rightarrow \mathbf{E} + \mathbf{E} + \mathbf{x} * \mathbf{x} \Rightarrow \mathbf{E} + \mathbf{x} + \mathbf{x} * \mathbf{x} \Rightarrow \mathbf{x} + \mathbf{x} + \mathbf{x} * \mathbf{x}$ can be represented by a sequence of parse trees:



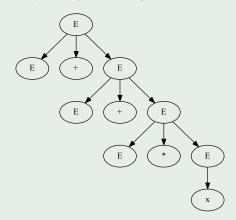
Example



Example



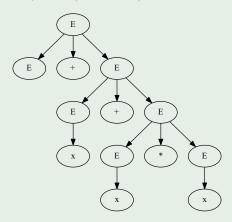
Example



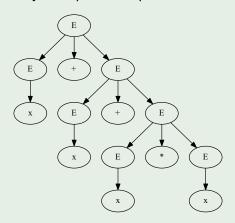
Example



Example



Example



Ambiguity

Definition (ambiguous)

A grammar $G = (N, \Sigma, P, S)$ is ambiguous if it has multiple different parse trees for a word *w* in L(G).

Ambiguity

Definition (ambiguous)

A grammar $G = (N, \Sigma, P, S)$ is ambiguous if it has multiple different parse trees for a word *w* in L(G).

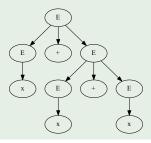
Example

 G_E is ambiguous since it has several parse trees for x + x + x.

1 $E \rightarrow x$

 $3 \quad E \to E + E$

4 $E \rightarrow E * E$



Ambiguity

Definition (ambiguous)

A grammar $G = (N, \Sigma, P, S)$ is ambiguous if it has multiple different parse trees for a word *w* in L(G).

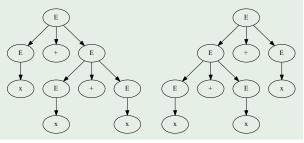
Example

 G_E is ambiguous since it has several parse trees for x + x + x.

1 $E \rightarrow x$

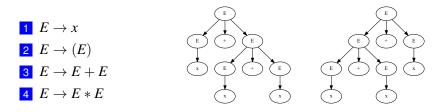
 $2 E \to (E)$

- $3 \quad E \to E + E$
- 4 $E \rightarrow E * E$



Exercise: Ambiguity is worse...

Consider the grammar G_E and its parse trees for x + x + x.



- Provide a rightmost derivation for the right tree.
- Provide a rightmost derivation for the left tree.
- Provide a leftmost derivation for the left tree.
- Provide a leftmost derivation for the right tree.

Consider G_E with the following productions:

- 1 $E \rightarrow x$
- $2 E \to (E)$
- $3 \quad E \to E + E$
- $4 \quad E \to E * E$

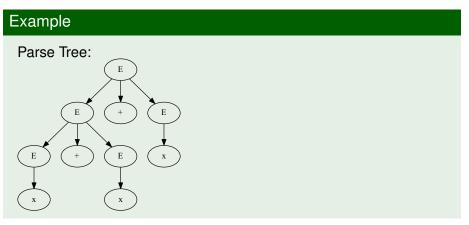
Define a grammar G' with L(G) = L(G') that is not ambiguous, that respects that * has a higher precedence than +, and that respects left-associativity for all operators.

Abstract Syntax Trees

- Abstract Syntax Trees represent the structure of a derivation without the specific details
- > Think: "Parse trees without redundant syntactic elements"

Abstract Syntax Trees

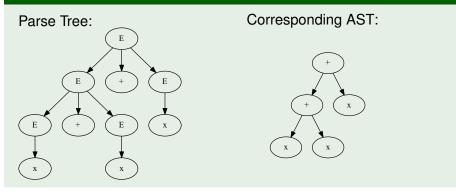
- Abstract Syntax Trees represent the structure of a derivation without the specific details
- Think: "Parse trees without redundant syntactic elements"



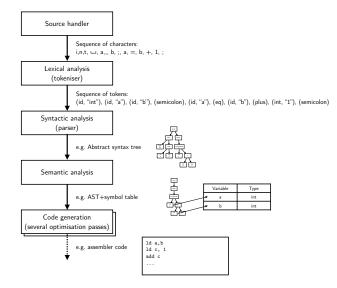
Abstract Syntax Trees

- Abstract Syntax Trees represent the structure of a derivation without the specific details
- Think: "Parse trees without redundant syntactic elements"

Example



High-Level Architecture of a Compiler



Description of the language with a context-free grammar

- Parsing:
 - Try to build a parse tree/abstract syntax tree (AST)
 - Parse tree unambiguously describes structure of a program
 - AST reflects abstract syntax (can e.g. drop parenthesis)
- Methods:
 - Manual recursive descent parser
 - Automatic with a table-driven bottom-up parser

Description of the language with a context-free grammar

- Parsing:
 - Try to build a parse tree/abstract syntax tree (AST)
 - Parse tree unambiguously describes structure of a program
 - AST reflects abstract syntax (can e.g. drop parenthesis)
- Methods:
 - Manual recursive descent parser
 - Automatic with a table-driven bottom-up parser

Result: Abstract Syntax Tree

Semantic Analysis

Analyze static properties of the program

- Which variable has which type?
- Are all expressions well-typed?
- Which names are defined?
- Which names are referenced?
- Core tool: Symbol table

Semantic Analysis

Analyze static properties of the program

- Which variable has which type?
- Are all expressions well-typed?
- Which names are defined?
- Which names are referenced?
- Core tool: Symbol table

Result: Annotated AST

Transform Abstract Syntax Tree to generate better code

- Smaller
- Faster
- Both
- Mechanisms
 - Common sub-expression elimination
 - Loop unrolling
 - Dead code/data elimination
 - ▶ ...

Transform Abstract Syntax Tree to generate better code

- Smaller
- Faster
- Both
- Mechanisms
 - Common sub-expression elimination
 - Loop unrolling
 - Dead code/data elimination
 - ▶ ...

Result: Optimized AST

Code Generation

- Convert optimized AST into low-level code
- Target languages:
 - Assembly code
 - Machine code
 - VM code (z.B. JAVA byte-code, p-Code)
 - C (as a "portable assembler")

▶ ...

Code Generation

- Convert optimized AST into low-level code
- Target languages:
 - Assembly code
 - Machine code
 - VM code (z.B. JAVA byte-code, p-Code)
 - C (as a "portable assembler")
 - ▶ ...

Result: Program in target language

Parsers

- recognise structure of programs
- receive tokens from scanner
- construct parse tree and symbol table
- common: shift-reduce parsing

Parsers

- recognise structure of programs
- receive tokens from scanner
- construct parse tree and symbol table
- common: shift-reduce parsing

Bison

- receives tokens and their semantic values from Flex
- uses grammar rules to perform semantic actions
- uses look-ahead to resolve conflicts

Parsers

- recognise structure of programs
- receive tokens from scanner
- construct parse tree and symbol table
- common: shift-reduce parsing

Bison

- receives tokens and their semantic values from Flex
- uses grammar rules to perform semantic actions
- uses look-ahead to resolve conflicts

End lecture 16

Introduction Regular Languages and Finite Automata

Scanners and Flex Formal Grammars and Context-Free Languages

Parsers and Bison

Turing Machines and Languages of Type 1 and 0

Turing Machines Unrestricted Grammars Linear Bounded Automata Properties of Type-0-languages

Lecture-specific material

Bonus Exercises

Selected Solutions

Introduction Regular Languages and Finite Automata

Scanners and Flex Formal Grammars and Context-Free Languages

Parsers and Bison

Turing Machines and Languages of Type 1 and 0 Turing Machines

Unrestricted Grammars Linear Bounded Automata Properties of Type-0-languages

Lecture-specific material

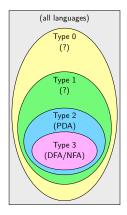
Bonus Exercises

Selected Solutions

Turing Machines

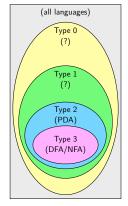
Four classes of languages described by grammars and equivalent machine models:

- 1 regular languages → finite automata
- 2 context-free languages ~> pushdown automata
- 3 context-sensitive languages \sim ?
- 4 Type-0-languages \sim ?



Four classes of languages described by grammars and equivalent machine models:

- 1 regular languages → finite automata
- 2 context-free languages ~> pushdown automata
- 3 context-sensitive languages \sim ?
- 4 Type-0-languages \sim ?

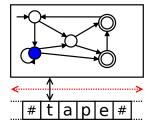


We need a machine model that is more powerful than PDAs: Turing Machines

proposed in 1936 by Alan Turing

- paper: On computable numbers, with an application to the Entscheidungsproblem
- uses the TM to show that satisfiability of first-order formulas is undecidable
- model of a universal computer
 - very simple (and thus easy to describe formally)
 - but as powerful as any conceivable machine

Turing Machine: conceptual model



- medium: unlimited tape (bidirectional)
 - initially contains input (and blanks #)
 - TM can read and write tape
 - TM can move arbitrarily over tape
 - serves for input, working, output
 - output possible
- transition relation
 - read and write current position
 - moving instructions (I, r, n)
- acceptance condition
 - final state is reached
 - no transitions possible
- commonalities with FA
 - control unit (finite set of states),
 - initial and final states
 - input alphabet

Transitions in Turing Machines

$\Delta \subseteq Q \times \Gamma \times \Gamma \times \{l, n, r\} \times Q$

- TM is in state
- reads tape symbol from current position
- writes tape symbol on current position
- moves to left, right, or stays
- goes into a new state

Transitions in Turing Machines

$\Delta \subseteq Q \times \Gamma \times \Gamma \times \{l, n, r\} \times Q$

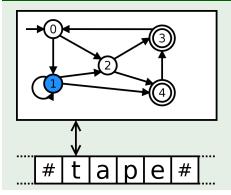
- TM is in state
- reads tape symbol from current position
- writes tape symbol on current position
- moves to left, right, or stays
- goes into a new state

A transition p, a, b, l, q can also be written as

$$p \quad a \quad \rightarrow \quad b \quad l \quad q$$

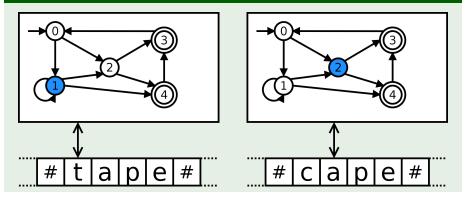
Example: transition

Example (transition $1, t \rightarrow c, r, 2$)



Example: transition

Example (transition $1, t \rightarrow c, r, 2$)



Turing Machine: formal definition

Definition (Turing Machine)

A Turing Machine (TM) is a 6-tuple $(Q, \Sigma, \Gamma, \Delta, q_0, F)$ where

- ▶ Q, Σ, q_0, F are defined as for NFAs,
- Γ ⊇ Σ ∪ {#} is the tape alphabet, including at least Σ and the blank symbol,
- ▶ $\Delta \subseteq Q \times \Gamma \times \Gamma \times \{l, n, r\} \times Q$ is the transition relation.

Turing Machine: formal definition

Definition (Turing Machine)

A Turing Machine (TM) is a 6-tuple $(Q, \Sigma, \Gamma, \Delta, q_0, F)$ where

- Q, Σ, q_0, F are defined as for NFAs,
- Γ ⊇ Σ ∪ {#} is the tape alphabet, including at least Σ and the blank symbol,
- $\Delta \subseteq Q \times \Gamma \times \Gamma \times \{l, n, r\} \times Q$ is the transition relation.

If Δ contains at most one transition (p, a, b, d, q) for each pair $(p, a) \in Q \times \Sigma$, the TM is called deterministic. The transition function is then denoted by δ .

Turing Machine: formal definition

Definition (Turing Machine)

A Turing Machine (TM) is a 6-tuple $(Q, \Sigma, \Gamma, \Delta, q_0, F)$ where

- Q, Σ, q_0, F are defined as for NFAs,
- Γ ⊇ Σ ∪ {#} is the tape alphabet, including at least Σ and the blank symbol,
- ▶ $\Delta \subseteq Q \times \Gamma \times \Gamma \times \{l, n, r\} \times Q$ is the transition relation.

If Δ contains at most one transition (p, a, b, d, q) for each pair $(p, a) \in Q \times \Sigma$, the TM is called deterministic. The transition function is then denoted by δ .

Note:

- \blacktriangleright Γ (the tape alphabet) can contain additional characters
- This does not increase the power, but makes developing TMs easier

Configurations of TMs

Definition (configuration)

- A configuration $c = \alpha q \beta$ of a Turing Machine is given by
 - ▶ the current state *q*
 - the tape content α on the left of the read/write head (except unlimited # sequences)
 - the tape content β starting with the position of the head (except unlimited # sequences)

Configurations of TMs

Definition (configuration)

A configuration $c = \alpha q \beta$ of a Turing Machine is given by

- ▶ the current state q
- the tape content α on the left of the read/write head (except unlimited # sequences)
- the tape content β starting with the position of the head (except unlimited # sequences)

A configuration $c = \alpha q \beta$ is accepting if $q \in F$.

Definition (configuration)

A configuration $c = \alpha q \beta$ of a Turing Machine is given by

- ▶ the current state q
- the tape content α on the left of the read/write head (except unlimited # sequences)
- the tape content β starting with the position of the head (except unlimited # sequences)

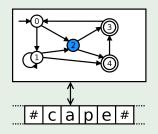
A configuration $c = \alpha q \beta$ is accepting if $q \in F$.

A configuration c is a stop configuration if there are no transitions from c.

Example: configuration

Example: configuration

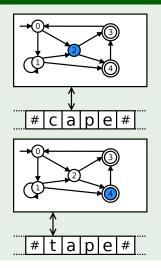
Example (configurations)



• This TM is in the configuration c2ape.

Example: configuration

Example (configurations)



• This TM is in the configuration c2ape.

- ▶ The configuration 4*tape* is accepting.
- If there are no transitions 4, t → ..., 4tape also is a stop configuration.

Definition (computation, acceptance)

A computation of a TM \mathcal{M} on a word w is a sequence of configurations (according to the transition function) of configurations of \mathcal{M} , starting from q_0w .

Definition (computation, acceptance)

A computation of a TM \mathcal{M} on a word w is a sequence of configurations (according to the transition function) of configurations of \mathcal{M} , starting from q_0w .

 \mathcal{M} accepts *w* if there exists a computation of \mathcal{M} on *w* that leads to an accepting stop configuration.

Definition (computation, acceptance)

A computation of a TM \mathcal{M} on a word w is a sequence of configurations (according to the transition function) of configurations of \mathcal{M} , starting from q_0w .

 \mathcal{M} accepts *w* if there exists a computation of \mathcal{M} on *w* that leads to an accepting stop configuration.

Physical Turing maschine:

https://www.youtube.com/watch?v=E3keLeMwfHY&t=13s

Turing machine in Conway's Game of Life https://www.youtube.com/watch?v=My8AsV7bA94 Let $\Sigma = \{a, b\}$ and $L = \{w \in \Sigma^* \mid |w|_a \text{ is even}\}.$

- Give a TM \mathcal{M} that accepts (exactly) the words in *L*.
- Give the computation of \mathcal{M} on the words *abbab* and *bbab*.

Example: TM for $a^n b^n c^n$

 $\mathcal{M} = (\mathcal{Q}, \Sigma, \Gamma, \Delta, \text{start}, \{\text{f}\})$ with

▶ $Q = \{$ start, findb, findc, check, back, end, f $\}$

>
$$\Sigma = \{a, b, c\}$$
 and $\Gamma = \Sigma \cup \{\#, x, y, z\}$

state	read	write	move	state	state	read	write	move	state
start	#	#	n	f	back	Z	Z	I	back
start	а	х	r	findb	back	b	b	I	back
findb	а	а	r	findb	back	у	у	I	back
findb	у	у	r	findb	back	а	а	1	back
findb	b	у	r	findc	back	Х	Х	r	start
findc	b	b	r	findc	end	Z	Z	I	end
findc	Z	z	r	findc	end	у	у	I	end
findc	С	z	r	check	end	х	Х	I	end
check	С	С	1	back	end	#	#	n	f
check	#	#	I	end					

- a) Simulate the computations of \mathcal{M} on *aabbcc* and *aabc*.
- b) Develop a Turing Machine \mathcal{P} accepting $L_{\mathcal{P}} = \{wcw \mid w \in \{a, b\}^*\}.$
- C) How do you have to modify \mathcal{P} if you want to recognise inputs of the form *ww*?

- A k-tape TM has k tapes on which the heads can move independently.
- $\blacktriangleright \ \Delta \subseteq Q \times \Gamma^k \times \Gamma^k \times \{r,l,n\}^k \times Q$
- It is possible to simulate a k-tape TM with a (1-tape) TM:
 - ▶ use alphabet $\Gamma^k \times \{X, \#\}^k$
 - the first k language elements encode the tape content, the remaining ones the positions of the heads.

Reminder

- just like FAs and PDAs, TMs can be deterministic or non-deterministic, depending on the transition relation.
- for non-deterministic TMs, the machine accepts w if there exists a sequence of transitions leading to an accepting stop configuration.

Theorem (equivalence of deterministic and non-deterministic TMs)

Deterministic TMs can simulate computations of non-deterministic TMs; i.e. they describe the same class of languages.

Simulating non-deterministic TMs

Theorem (equivalence of deterministic and non-deterministic TMs)

Deterministic TMs can simulate computations of non-deterministic TMs; i.e. they describe the same class of languages.

Proof.

Use a 3-tape TM:

- tape 1 stores the input w
- tape 2 enumerates all possible sequences of non-deterministic choices (for all non-deterministic transitions)
- tape 3 encodes the computation on w with choices stored on tape 2.

Introduction Regular Languages and Finite Automata

Scanners and Flex Formal Grammars and Context-Free Languages

Parsers and Bison

Turing Machines and Languages of Type 1 and 0 Turing Machines Unrestricted Grammars Linear Bounded Automata Properties of Type-0-languages Lecture-specific material Bonus Exercises Selected Solutions

Theorem (equivalence of TMs and unrestricted grammars)

The class of languages that can be accepted by a Turing Machine is exactly the class of languages that can be generated by unrestricted Chomsky grammars.

Theorem (equivalence of TMs and unrestricted grammars)

The class of languages that can be accepted by a Turing Machine is exactly the class of languages that can be generated by unrestricted Chomsky grammars.

Proof. 1 simulate grammar derivations with a TM 2 simulate a TM computation with a grammar

Use a non-deterministic 2-tape TM:

- tape 1 stores input word w
- ▶ tape 2 simulates the derivations of *G*, starting with *S*
 - (non-deterministically) choose a position
 - ▶ if the word starting at the position, matches α of a rule $\alpha \rightarrow \beta$, apply the rule
 - move tape content if necessary
 - replace α with β
 - compare content of tape 2 with tape 1
 - ▶ if they are equal, accept
 - otherwise continue

Simulating a TM with a Type-0-grammar

Goal: transform TM $\mathcal{A} = (Q, \Sigma, \Gamma, \Delta, q_0, F)$ into grammar *G* Technical difficulty:

- A receives word as input at the start, possibly modifies it, then possibly accepts.
- ► *G* starts with *S*, applies rules, possibly generating *w* at the end.

Simulating a TM with a Type-0-grammar

Goal: transform TM $\mathcal{A} = (Q, \Sigma, \Gamma, \Delta, q_0, F)$ into grammar *G* Technical difficulty:

- A receives word as input at the start, possibly modifies it, then possibly accepts.
- ► *G* starts with *S*, applies rules, possibly generating *w* at the end.
- **1** generate initial configuration $q_0 w \in \Sigma^*$ with blanks left and right

2 simulate the computation of \mathcal{A} on w

$$\begin{array}{rcl} (p,a,b,r,q) & \sim & pa \to bq \\ (p,a,b,l,q) & \sim & cpa \to qcb \text{ (for all } c \in \Gamma) \\ (p,a,b,n,q) & \sim & pa \to qb \end{array}$$

if an accepting stop configuration is reached, recreate w
 requires a more complex alphabet with a "backup track"

Introduction Regular Languages and Finite Automata

Scanners and Flex Formal Grammars and Context-Free Languages

Parsers and Bison

Turing Machines and Languages of Type 1 and 0 Turing Machines Unrestricted Grammars Linear Bounded Automata Properties of Type-0-languages Lecture-specific material Bonus Exercises

Selected Solutions

- context-sensitive grammars do not allow for contracting rules
- a linear bounded automaton (LBA) is a TM that only uses the space originally occupied by the input w.
- limits of w are indicated by markers that cannot be passed by the read/write head

- context-sensitive grammars do not allow for contracting rules
- a linear bounded automaton (LBA) is a TM that only uses the space originally occupied by the input w.
- limits of w are indicated by markers that cannot be passed by the read/write head

$$\dots$$
 > i n p u t < \dots

Transformation of cs. grammar G into LBA:

- ▶ as for Type-0-grammar: use 2-tape-TM
 - input on tape 1
 - simulate operations of G on tape 2
- since the productions of G are non-contracting, words longer than w need not be considered

Transformation of cs. grammar G into LBA:

- ▶ as for Type-0-grammar: use 2-tape-TM
 - input on tape 1
 - simulate operations of G on tape 2
- since the productions of G are non-contracting, words longer than w need not be considered

Transformation of LBA \mathcal{A} into cs. grammar:

- similar to construction for TM:
 - generate w without blanks
 - simulate operation of A on w
 - rules are non-contracting

Closure properties: regular operations

Theorem (closure under $\cup, \cdot, *$)

The class of languages described by context-sensitive grammars is closed under $\cup, \cdot, ^*$.

Closure properties: regular operations

Theorem (closure under $\cup, \cdot, ^*$)

The class of languages described by context-sensitive grammars is closed under $\cup,\cdot,^*.$

Proof.

Concatenation and Kleene-star are more complex than for cf. grammars because the context can influence rule applicability.

- rename NTSs (as for cf. grammars)
- only allow NTSs as context
- only allow productions of the kind

$$\triangleright N_1N_2\ldots N_k \to M_1M_2\ldots M_j$$

$$\triangleright N \rightarrow a$$

Closure properties: intersection and complement

Theorem (closure under \cap)

The class of context-sensitive languages is closed under intersection.

Closure properties: intersection and complement

Theorem (closure under \cap)

The class of context-sensitive languages is closed under intersection.

Proof.

- use a 2-tape-LBA
- simulate computation of A_1 on tape 1, A_2 on tape 2
- accept if both A_1 and A_2 accept

Closure properties: intersection and complement

Theorem (closure under \cap)

The class of context-sensitive languages is closed under intersection.

Proof.

- use a 2-tape-LBA
- simulate computation of A_1 on tape 1, A_2 on tape 2
- accept if both A₁ and A₂ accept

Theorem (closure under —)

The class of context-sensitive languages is closed under complement.

Closure properties: intersection and complement

Theorem (closure under \cap)

The class of context-sensitive languages is closed under intersection.

Proof.

- use a 2-tape-LBA
- simulate computation of A_1 on tape 1, A_2 on tape 2
- accept if both A_1 and A_2 accept

Theorem (closure under —)

The class of context-sensitive languages is closed under complement.

Context-sensitive grammars: decision problems

Theorem (Word problem for cs. languages)

The word problem for cs. languages is decidable.

Theorem (Word problem for cs. languages)

The word problem for cs. languages is decidable.

Proof.

- \triangleright N, Σ and P are finite
- rules are non-contracting
- for a word of length n only a finite number of derivations up to length n has to be considered.

Context-sensitive grammars: decision problems (cont')

Theorem (Emptiness problem for cs. languages)

The emptiness problem for cs. languages is undecidable.

Proof.

Also follows from undecidability of Post's correspondence problem.

Context-sensitive grammars: decision problems (cont')

Theorem (Emptiness problem for cs. languages)

The emptiness problem for cs. languages is undecidable.

Proof.

Also follows from undecidability of Post's correspondence problem.

Theorem (Equivalence problem for cs. languages)

The equivalence problem for cs. languages is undecidable.

Proof.

If this problem was decidable for cs. languages, it would also be decidable for cf. languages (since every cf. language is also cs.).

Introduction Regular Languages and Finite Automata

Scanners and Flex Formal Grammars and Context-Free Languages

Parsers and Bison

Turing Machines and Languages of Type 1 and 0

Turing Machines Unrestricted Grammars Linear Bounded Automata Properties of Type-0-languages

Lecture-specific material Bonus Exercises Selected Solutions

- $\blacktriangleright~\mathcal{U}$ is a TM that simulates other Turing Machines
- since TMs have finite alphabets and state sets, they can be encoded by a (binary) alphabet by an encoding function c()
- Input:
 - ▶ encoding c(A) of a TM A on tape 1
 - ▶ encoding c(w) of an input word w for A on tape 2
- with input c(A) and c(w), U behaves exactly like A on w:
 - $\blacktriangleright \ \mathcal{U} \text{ accepts iff } \mathcal{A} \text{ accepts}$
 - $\blacktriangleright \ \mathcal{U} \text{ halts iff } \mathcal{A} \text{ halts}$
 - *U* runs forever if *A* runs forever

- $\blacktriangleright~\mathcal{U}$ is a TM that simulates other Turing Machines
- since TMs have finite alphabets and state sets, they can be encoded by a (binary) alphabet by an encoding function c()
- Input:
 - ▶ encoding c(A) of a TM A on tape 1
 - ▶ encoding c(w) of an input word w for A on tape 2
- with input c(A) and c(w), U behaves exactly like A on w:
 - ▶ \mathcal{U} accepts iff \mathcal{A} accepts
 - $\blacktriangleright \ \mathcal{U} \text{ halts iff } \mathcal{A} \text{ halts}$
 - U runs forever if A runs forever

Every solvable problem can be solved in software.

encode initial configuration

- tape on lhs of head
- state
- tape on rhs of head
- **2** use c(A) to find a transition from the current configuration
- 3 modify the current configuration accordingly
- 4 accept if A accepts
- **5** stop if \mathcal{A} stops
- 6 otherwise, continue with step 2

Definition (halting problem)

For a TM $\mathcal{A} = (Q, \Sigma, \Gamma, q_0, \Delta, F)$ and a word $w \in \Sigma^*$, does \mathcal{A} halt (i.e. reach a stop configuration) with input *w*?

Definition (halting problem)

For a TM $\mathcal{A} = (Q, \Sigma, \Gamma, q_0, \Delta, F)$ and a word $w \in \Sigma^*$, does \mathcal{A} halt (i.e. reach a stop configuration) with input *w*?

Wanted: TMs $\mathcal{H}1$ and $\mathcal{H}2$, such that with input $c(\mathcal{A})$ and c(w)

Definition (halting problem)

For a TM $\mathcal{A} = (Q, \Sigma, \Gamma, q_0, \Delta, F)$ and a word $w \in \Sigma^*$, does \mathcal{A} halt (i.e. reach a stop configuration) with input *w*?

Wanted: TMs H_1 and H_2 , such that with input c(A) and c(w)

1 $\mathcal{H}1$ accepts iff \mathcal{A} halts on w and

Definition (halting problem)

For a TM $\mathcal{A} = (Q, \Sigma, \Gamma, q_0, \Delta, F)$ and a word $w \in \Sigma^*$, does \mathcal{A} halt (i.e. reach a stop configuration) with input *w*?

Wanted: TMs H_1 and H_2 , such that with input c(A) and c(w)

- **1** $\mathcal{H}1$ accepts iff \mathcal{A} halts on w and
- **2** $\mathcal{H}2$ accepts iff \mathcal{A} does not halt on w.

Definition (halting problem)

For a TM $\mathcal{A} = (Q, \Sigma, \Gamma, q_0, \Delta, F)$ and a word $w \in \Sigma^*$, does \mathcal{A} halt (i.e. reach a stop configuration) with input *w*?

Wanted: TMs $\mathcal{H}1$ and $\mathcal{H}2$, such that with input $c(\mathcal{A})$ and c(w)

- **1** $\mathcal{H}1$ accepts iff \mathcal{A} halts on w and
- **2** $\mathcal{H}2$ accepts iff \mathcal{A} does not halt on w.

decision procedure for HP: let $\mathcal{H}1$ and $\mathcal{H}2$ run in parallel

Definition (halting problem)

For a TM $\mathcal{A} = (Q, \Sigma, \Gamma, q_0, \Delta, F)$ and a word $w \in \Sigma^*$, does \mathcal{A} halt (i.e. reach a stop configuration) with input *w*?

Wanted: TMs $\mathcal{H}1$ and $\mathcal{H}2$, such that with input $c(\mathcal{A})$ and c(w)

- **1** $\mathcal{H}1$ accepts iff \mathcal{A} halts on w and
- **2** $\mathcal{H}2$ accepts iff \mathcal{A} does not halt on w.

decision procedure for HP: let $\mathcal{H}1$ and $\mathcal{H}2$ run in parallel

1 \mathcal{U} (almost) does what $\mathcal{H}1$ needs to do.

Definition (halting problem)

For a TM $\mathcal{A} = (Q, \Sigma, \Gamma, q_0, \Delta, F)$ and a word $w \in \Sigma^*$, does \mathcal{A} halt (i.e. reach a stop configuration) with input *w*?

Wanted: TMs $\mathcal{H}1$ and $\mathcal{H}2$, such that with input $c(\mathcal{A})$ and c(w)

- **1** $\mathcal{H}1$ accepts iff \mathcal{A} halts on w and
- **2** $\mathcal{H}2$ accepts iff \mathcal{A} does not halt on w.

decision procedure for HP: let $\mathcal{H}1$ and $\mathcal{H}2$ run in parallel

- \mathcal{U} (almost) does what $\mathcal{H}1$ needs to do.
- **2** Difficult: \mathcal{H}_2 needs to detect that that \mathcal{A} does not terminate.
 - infinite tape \sim infinite number possible configurations
 - recognising repeated configurations not sufficient.

- **1** accepts if \mathcal{A} does not halt with input w and
- **2** runs forever if A halts with input w.

- **1** accepts if \mathcal{A} does not halt with input w and
- **2** runs forever if A halts with input w.

If ${\cal H}2$ exists, then there is also a TM ${\cal S}$ accepting exactly those encodings of TMs that do not accept their own encoding

- **1** accepts if \mathcal{A} does not halt with input w and
- **2** runs forever if A halts with input w.

If ${\cal H}2$ exists, then there is also a TM ${\cal S}$ accepting exactly those encodings of TMs that do not accept their own encoding

1 input: TM encoding c(A) on tape 1

- **1** accepts if \mathcal{A} does not halt with input w and
- **2** runs forever if A halts with input w.

If ${\cal H}2$ exists, then there is also a TM ${\cal S}$ accepting exactly those encodings of TMs that do not accept their own encoding

- **1** input: TM encoding c(A) on tape 1
- **2** S copies c(A) to tape 2

- **1** accepts if \mathcal{A} does not halt with input w and
- **2** runs forever if \mathcal{A} halts with input w.

If ${\cal H}2$ exists, then there is also a TM ${\cal S}$ accepting exactly those encodings of TMs that do not accept their own encoding

- 1 input: TM encoding c(A) on tape 1
- **2** S copies c(A) to tape **2**
- 3 afterwards S operates like H2

Reminder: S accepts c(A) iff A does not accept c(A).

Reminder: S accepts c(A) iff A does not accept c(A).

Ca S accepts c(S). This implies that S does not halt on the input c(S). Therefore S does not accept c(S).

Reminder: S accepts c(A) iff A does not accept c(A).

- **C**₂ S accepts c(S). This implies that S does not halt on the input c(S). Therefore S does not accept c(S).

Reminder: S accepts c(A) iff A does not accept c(A).

- **Ca** S accepts c(S). This implies that S does not halt on the input c(S). Therefore S does not accept c(S).

This implies:

1 There is no such TM S.

Reminder: S accepts c(A) iff A does not accept c(A).

- **Ca** S accepts c(S). This implies that S does not halt on the input c(S). Therefore S does not accept c(S).

This implies:

- 1 There is no such TM S.
- 2 There is no TM $\mathcal{H}2$.

Reminder: S accepts c(A) iff A does not accept c(A).

- **C**₂ S accepts c(S). This implies that S does not halt on the input c(S). Therefore S does not accept c(S).

This implies:

- 1 There is no such TM S.
- 2 There is no TM $\mathcal{H}2$.

Theorem (Turing 1936)

The halting problem is undecidable.

Theorem (Decision problems for Turing Machines)

The word problem, the emptiness problem, and the equivalence problem are undecidable.

Theorem (Decision problems for Turing Machines)

The word problem, the emptiness problem, and the equivalence problem are undecidable.

Proof.

If any of these problems were decidable, one could easily derive a decision procedure for the halting problem.

Theorem (closure under)

The class of languages accepted by Turing Machines is not closed under complement.

Theorem (closure under)

The class of languages accepted by Turing Machines is not closed under complement.

Proof.

If it were closed under complement, $\mathcal{H}2$ would exist.

Theorem (closure under)

The class of languages accepted by Turing Machines is not closed under complement.

Proof.

If it were closed under complement, H2 would exist.

Theorem (closure under $\cup, \cdot, *, \cap$)

The class of languages accepted by TMs is closed under $\cup, \cdot, *, \cap$.

Theorem (closure under)

The class of languages accepted by Turing Machines is not closed under complement.

Proof.

If it were closed under complement, H2 would exist.

Theorem (closure under $\cup, \cdot, *, \cap$)

The class of languages accepted by TMs is closed under $\cup, \cdot, ^*, \cap$.

Proof.

Analogous to Type-1-grammars / LBAs.

Challenge of the proof: show for all possible (infinitely many) TMs that none of them can decide the halting problem. Challenge of the proof:

show for all possible (infinitely many) TMs that none of them can decide the halting problem.

ТМ	input	$c(\mathcal{A})$	$c(\mathcal{B})$	$c(\mathcal{C})$	$c(\mathcal{D})$	$c(\mathcal{E})$	
\mathcal{A}		X					
B C			X				
\mathcal{C}				X			
\mathcal{D}					X		
E						×	
:							÷.,

Further diagonalisation arguments

Theorem (Cantor diagonalisation, 1891)

The set of real numbers is uncountable.

Theorem (Epimenides paradox, 6th century BC)

Epimenides [the Cretan] says: "[All] Cretans are always liars."

Theorem (Russell's paradox, 1903)

 $R := \{T \mid T \notin T\}$ Does $R \in R$ hold?

Theorem (Gödel's incompleteness theorem, 1931)

Construction of a sentence in 2nd order predicate logic which states that itself cannot be proved.

Is this important?

- What is so bad about not being able to decide if a TM halts?
- Isn't this a purely academic problem?

What is so bad about not being able to decide if a TM halts?

Isn't this a purely academic problem?

Ludwig Wittgenstein:

It is very queer that this should have puzzled anyone. [...] If a man says "I am lying" we say that it follows that he is not lying, from which it follows that he is lying and so on. Well, so what? You can go on like that until you are black in the face. Why not? It doesn't matter.

(Lectures on the Foundations of Mathematics, Cambridge 1939)

What is so bad about not being able to decide if a TM halts?

Isn't this a purely academic problem?

Ludwig Wittgenstein:

It is very queer that this should have puzzled anyone. [...] If a man says "I am lying" we say that it follows that he is not lying, from which it follows that he is lying and so on. Well, so what? You can go on like that until you are black in the face. Why not? It doesn't matter.

(Lectures on the Foundations of Mathematics, Cambridge 1939)

Does it matter in practice?

Halting is a fundamental property. If halting cannot be decided, what can be? Halting is a fundamental property. If halting cannot be decided, what can be?

Theorem (Rice, 1953)

Every non-trivial semantic property of TMs is undecidable.

Halting is a fundamental property. If halting cannot be decided, what can be?

Theorem (Rice, 1953)

Every non-trivial semantic property of TMs is undecidable.

non-trivial satisfied by some TMs, not satisfied by others semantic referring to the accepted language

Example (Property E: TM accepts the set of prime numbers P)

If *E* is decidable, then so is the halting problem for A and an input w_A . Approach: Turing Machine \mathcal{E} , input $w_{\mathcal{E}}$

Example (Property E: TM accepts the set of prime numbers P)

If *E* is decidable, then so is the halting problem for A and an input w_A . Approach: Turing Machine \mathcal{E} , input $w_{\mathcal{E}}$

- **1** simulate computation of A on w_A
- **2** decide if $w_{\mathcal{E}} \in P$

Example (Property E: TM accepts the set of prime numbers P)

If *E* is decidable, then so is the halting problem for A and an input w_A . Approach: Turing Machine \mathcal{E} , input $w_{\mathcal{E}}$

1 simulate computation of A on w_A

2 decide if
$$w_{\mathcal{E}} \in P$$

Check if \mathcal{E} accepts the set of prime numbers:

yes $\rightsquigarrow A$ halts with input w_A no $\rightsquigarrow A$ does not halt on input w_A

Church-Turing-thesis

Every effectively calculable function is a computable function.

Church-Turing-thesis

Every effectively calculable function is a computable function.

computable means calculable by a (Turing) machine effectively calculable refers to the intuitive idea without reference to a particular computing model

Church-Turing-thesis

Every effectively calculable function is a computable function.

computable means calculable by a (Turing) machine effectively calculable refers to the intuitive idea without reference to a particular computing model

What holds for Turing Machines also holds for

- unrestricted grammars,
- while programs,
- von Neumann architecture,

Church-Turing-thesis

Every effectively calculable function is a computable function.

computable means calculable by a (Turing) machine effectively calculable refers to the intuitive idea without reference to a particular computing model

What holds for Turing Machines also holds for

- unrestricted grammars,
- while programs,
- von Neumann architecture,
- Java/C++/Lisp/Prolog programs,

Church-Turing-thesis

Every effectively calculable function is a computable function.

computable means calculable by a (Turing) machine effectively calculable refers to the intuitive idea without reference to a particular computing model

What holds for Turing Machines also holds for

- unrestricted grammars,
- while programs,
- von Neumann architecture,
- Java/C++/Lisp/Prolog programs,
- future machines and languages

Church-Turing-thesis

Every effectively calculable function is a computable function.

computable means calculable by a (Turing) machine effectively calculable refers to the intuitive idea without reference to a particular computing model

What holds for Turing Machines also holds for

- unrestricted grammars,
- while programs,
- von Neumann architecture,
- Java/C++/Lisp/Prolog programs,
- future machines and languages

No interesting property is decidable for any powerful programming language!

Undecidable problems in practice

software development Does the program match the specification? debugging Does the program have a memory leak? malware Does the program harm the system? education Does the student's TM compute the same function as the teacher's TM? formal languages Do two cf. grammars generate the same language? mathematics Hilbert's tenth problem: find integer solutions for a polynomial with several variables logic Satisfiability of formulas in first-order predicate logic

Undecidable problems in practice

software development Does the program match the specification? debugging Does the program have a memory leak? malware Does the program harm the system? education Does the student's TM compute the same function as the teacher's TM? formal languages Do two cf. grammars generate the same language? mathematics Hilbert's tenth problem: find integer solutions for a polynomial with several variables logic Satisfiability of formulas in first-order predicate logic

Yes, it does matter!

It is possible

to translate a program *P* from a language into an equivalent one in another language

It is possible

because

to translate a program *P* from a language into an equivalent one in another language

one specific program is created for *P*.

It is possible

because

to translate a program *P* from a language into an equivalent one in another language

to detect if a program contains a instruction to write to the hard disk one specific program is created for *P*.

It is possible

to translate a program *P* from a language into an equivalent one in another language

to detect if a program contains a instruction to write to the hard disk

because

one specific program is created for *P*.

this is a syntactic property. Deciding if this instruction is eventually executed is impossible in general.

It is possible

to translate a program *P* from a language into an equivalent one in another language

to detect if a program contains a instruction to write to the hard disk

to check at runtime if a program accesses the hard disk because

one specific program is created for *P*.

this is a syntactic property. Deciding if this instruction is eventually executed is impossible in general.

It is possible

to translate a program *P* from a language into an equivalent one in another language

to detect if a program contains a instruction to write to the hard disk

to check at runtime if a program accesses the hard disk because

one specific program is created for *P*.

this is a syntactic property. Deciding if this instruction is eventually executed is impossible in general.

this corresponds to the simulation by \mathcal{U} . It is undecidable if the code is never executed.

It is possible

to translate a program *P* from a language into an equivalent one in another language

to detect if a program contains a instruction to write to the hard disk

to check at runtime if a program accesses the hard disk

to write a program that gives the correct answer in many "interesting" cases because

one specific program is created for *P*.

this is a syntactic property. Deciding if this instruction is eventually executed is impossible in general.

this corresponds to the simulation by \mathcal{U} . It is undecidable if the code is never executed.

It is possible

to translate a program *P* from a language into an equivalent one in another language

to detect if a program contains a instruction to write to the hard disk

to check at runtime if a program accesses the hard disk

to write a program that gives the correct answer in many "interesting" cases because

one specific program is created for *P*.

this is a syntactic property. Deciding if this instruction is eventually executed is impossible in general.

this corresponds to the simulation by \mathcal{U} . It is undecidable if the code is never executed.

there will always be cases in which an incorrect answer or none at all is given.

Can the Turing Machine be "fixed"?

undecidability proof does not use any specific TM properties

- undecidability proof does not use any specific TM properties
- ▶ only requirement: existence of universal machine U

- undecidability proof does not use any specific TM properties
- ▶ only requirement: existence of universal machine U
- TM is not to weak, but too powerful

- undecidability proof does not use any specific TM properties
- only requirement: existence of universal machine \mathcal{U}
- TM is not to weak, but too powerful
- different machine models have the same problem (or are weaker)

- undecidability proof does not use any specific TM properties
- only requirement: existence of universal machine \mathcal{U}
- ► TM is not to weak, but too powerful
- different machine models have the same problem (or are weaker)

Alternatives:

► If possible: use weaker formalisms (modal logic, dynamic logic)

- undecidability proof does not use any specific TM properties
- only requirement: existence of universal machine \mathcal{U}
- ► TM is not to weak, but too powerful
- different machine models have the same problem (or are weaker)

Alternatives:

- If possible: use weaker formalisms (modal logic, dynamic logic)
- use heuristics that work well in many cases, solve remaining ones manually

- undecidability proof does not use any specific TM properties
- only requirement: existence of universal machine \mathcal{U}
- ► TM is not to weak, but too powerful
- different machine models have the same problem (or are weaker)

Alternatives:

- If possible: use weaker formalisms (modal logic, dynamic logic)
- use heuristics that work well in many cases, solve remaining ones manually
- interactive programs

- ► Halting problem: does TM A halt on input w?
- ► Turing: no TM can decide the halting problem.
- Rice: no TM can decide any non-trivial semantic property of TMs.
- Church-Turing: this holds for every powerful machine model.
- No interesting problem of programs in any powerful programming language is decidable.

- ► Halting problem: does TM A halt on input w?
- Turing: no TM can decide the halting problem.
- Rice: no TM can decide any non-trivial semantic property of TMs.
- Church-Turing: this holds for every powerful machine model.
- No interesting problem of programs in any powerful programming language is decidable.

Consequences:

- © Computers cannot take all work away from computer scientists.
- © Computers will never make computer scientists redundant.

Property overview

property	regular (Type 3)	context-free (Type 2)	context-sens. (Type 1)	unrestricted (Type 0)
closure				
$\cup,\cdot,^*$	 Image: A second s	✓	✓	1
\cap	 Image: A second s	×	✓	1
	 Image: A second s	×	1	×
decidability				
word	 Image: A second s	 Image: A second s	✓	×
emptiness	1	 Image: A second s	×	×
equiv.	1	×	×	×
deterministic equivalent to non-det.	1	×	?	 Image: A start of the start of

Property overview

property	regular	context-free	context-sens.	unrestricted
	(Type 3)	(Type 2)	(Type 1)	(Type 0)
closure				
$\cup,\cdot,^*$	1	✓	✓	 Image: A second s
\cap	1	×	✓	 Image: A second s
	1	×	✓	×
decidability				
word	 Image: A second s	✓	✓	×
emptiness	1	1	×	×
equiv.	1	×	×	×
deterministic				
equivalent to	 Image: A second s	×	?	1
non-det.				
End lecture 17	1			

This is the End...

Introduction Regular Languages and Finite Automata Scanners and Flex Formal Grammars and Context-Free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0

Lecture-specific material

Lecture 1 Lecture 2 Lecture 3 Lecture 4

Lecture-specific material

Introduction Regular Languages and Finite Automata Scanners and Flex Formal Grammars and Context-Free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0

Lecture-specific material

Lecture 1 Lecture 2 Lecture 3 Lecture 4

Goals for Lecture 1

- Getting acquainted
- Clarifying practical issues
- Course outline and motivation
 - Formal languages
 - Language classes
 - Grammars
 - Automata
 - Questions
 - Applications

Practical Issues

Lecture times (usually, check RAPLA)

- ► Today ;-)
- Thursday 10:00 (September 29th: Two afternoon lectures)
- ▶ Friday 12:15
- Really, check RAPLA
- Final exam
- Written exam (Open-Book or nearly so)
- Probably week 47 (November 21rd to 25th)
- Probably here

Summary Lecture 1

Clarifying practical issues

▶ You need running flex, bison, C compiler, editor!

Course outline and motivation

- Formal languages
- Language classes
- Grammars
- Automata
- Questions
- Applications

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
 - Optional: how would you improve it?

Introduction Regular Languages and Finite Automata Scanners and Flex Formal Grammars and Context-Free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0

Lecture-specific material

Lecture 1 Lecture 2 Lecture 3 Lecture 4

- Review of last lecture
- Formal basics of formal languages
- Operations on words
- Operations on languages
- Introduction to regular expressions
 - Examples
 - Formal definition

Review

Introduction

- Language classes
- Grammars
- Automata
- Applications
- flex and bison are available via most Open Source install methods (if not installed by default)
 - ▶ E.g. apt-get install bison (Debian/Ubuntu)
 - E.g. sudo port install flex (MacPorts)
- Check out http://dinosaur.compilertools.net/
 - Documentation, sources
- flex direct: https://github.com/westes/flex
- bison direct: https://www.gnu.org/software/bison/

Lecture 2

Summary

- Formal languages
 - Alphabets
 - Words
 - Languages
 - Examples of languages
- Operations on words and languages
 - Concatenation
 - Power
 - Kleene star
- Introduction to regular expressions

Summary

- Formal languages
 - Alphabets
 - Words
 - Languages
 - Examples of languages
- Operations on words and languages
 - Concatenation
 - Power
 - Kleene star
- Introduction to regular expressions

Remark: Formal languages are *sets*, and hence we can also apply set operations like \cup (union), \cap (intersection), $^-$ (complement) to them!

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
 - Optional: how would you improve it?

Introduction Regular Languages and Finite Automata Scanners and Flex Formal Grammars and Context-Free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0

Lecture-specific material

Lecture 1 Lecture 2 Lecture 3 Lecture 4

Goals for Lecture 3

- Review of last lecture
- Understanding regular expressions
- Regular expression algebra
 - Equivalences on regular expressions
 - Simplifying REs

Formal languages

- Finite alphabet Σ of symbols/letters
- Words are finite sequences of letters from Σ
- Languages are (finite or infinite) sets of words
- Words properties and operations

$$\blacktriangleright |w|, |w|_a, w[k]$$

$$\blacktriangleright w_1 \cdot w_2, w^n$$

Review (2)

Interesting languages

- Binary representations of natural numbers
- Binary representations of prime numbers
- C functions (over strings)
- C functions with input/output pairs
- Operations on Languages
 - Product $L_1 \cdot L_2$: Concatenation of one word from each language
 - Power Lⁿ: Concatenation of n words from L
 - Kleene Star: L*: Concat any number of words from L

Review (2)

Interesting languages

- Binary representations of natural numbers
- Binary representations of prime numbers
- C functions (over strings)
- C functions with input/output pairs
- Operations on Languages
 - ▶ Product *L*₁ · *L*₂: Concatenation of one word from each language
 - Power Lⁿ: Concatenation of n words from L
 - ▶ Kleene Star: L*: Concat any number of words from L

Remark: Formal languages are *sets*, and hence we can also apply set operations like \cup (union), \cap (intersection), $^-$ (complement) to them!

• Regular expressions R_{Σ}

Base cases:

$$L(\emptyset) = \{ \}$$

$$L(\epsilon) = \{ \epsilon \}$$

$$L(a) = \{ a \} \text{ for each } a \in \Sigma$$

Complex cases:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1r_2) = L(r_1) \cdot L(r_2)$$

$$\blacktriangleright L(r^*) = L(r)^*$$

▶ L((r)) = L(r) (brackets are used to group expressions)

Lecture 3

Regular expression algebra

- ▶ REs are equivalent if they describe the same language
- REs can be simplified applying equivalences
- Recursive definitions: Lemmas of Arden/Salomaa

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
 - Optional: how would you improve it?

Introduction Regular Languages and Finite Automata Scanners and Flex Formal Grammars and Context-Free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0

Lecture-specific material

Lecture 1 Lecture 2 Lecture 3 Lecture 4

Goals for Lecture 4

- Review of last lecture
- ► Warmup exercise
- Finite Automata
 - Graphical representation
 - Formal definition
 - Language recognized by an automata
 - Tabular representation
 - Exercises

• Regular expressions R_{Σ}

Base cases:

$$L(\emptyset) = \{\}$$

$$\blacktriangleright L(\epsilon) = \{\epsilon\}$$

•
$$L(a) = \{a\}$$
 for each $a \in \Sigma$

▶ Complex cases:

▶
$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

▶ $L(r_1 \cdot r_2) = L(r_1r_2) = L(r_1) \cdot L(r_2)$

$$\blacktriangleright L(r^*) = L(r)^*$$

▶ L((r)) = L(r) (brackets are used to group expressions)

Regular expression algebra

- ▶ REs are equivalent if they describe the same language
- REs can be simplified applying equivalences
- 17 equivalences
 - ▶ Commutativity of +, associativity of +, ·, distributivity (!)
 - Arden/Salomaa
 - ▶ ...

Warmup Exercise

Assume $\Sigma = \{a, b\}$

- Find a regular expression for the language L₁ of all words over Σ with at least 3 characters and where the third character is an "a".
- Describe L_1 formally (i.e. as a set)
- ► Find a regular expression for the language L₂ of all words over ∑ with at least 3 characters and where the third character is the same as the third-last character
- ▶ Describe *L*₂ formally.

Warmup Exercise

Assume $\Sigma = \{a, b\}$

- ► Find a regular expression for the language L₁ of all words over ∑ with at least 3 characters and where the third character is an "a".
- Describe L_1 formally (i.e. as a set)
- ► Find a regular expression for the language L₂ of all words over ∑ with at least 3 characters and where the third character is the same as the third-last character
- ▶ Describe *L*₂ formally.

- REs revisited (with exercise)
- Finite Automata
 - Graphical representation
 - Formal definition
 - Language recognized by an automata
 - Tabular representation
 - Exercises

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
 - Optional: how would you improve it?

Introduction Regular Languages and Finite Automata Scanners and Flex Formal Grammars and Context-I

Parsers and Bison Turing Machines and Languages of Type 1 and 0

Lecture-specific material

Lecture 1 Lecture 2 Lecture 3 Lecture 4

Lecture 5

_ecture 6

_ecture 7

_ecture 8

_ecture 9

Lecture 10

Lecture 11

Lecture 12

Lecture 13

Lecture 14

Lecture 15

Lecture 16

Lecture 17

Lecture 18

Bonus Exercises

- Review of last lecture
- Introduction to Nondeterministic Finite Automata
 - Definitions
 - Exercises
- Equivalency of deterministic and nondeterministic finite automata
 - Converting NFAs to DFAs
 - Exercises

Review

Finite Automata

- Graphical representation
- Formal definition
 - Q: Set of states
 - Σ: Alphabet
 - δ: Transition function
 - ▶ q₀: Initial state
 - F: Final (accepting) states
- Language recognized by an automata
 - ▶ $w \in L(A)$ if $\delta'(w) \in F$ or there exist an accepting run of A for w
- Tabular representation
- Exercises

Review

Finite Automata

- Graphical representation
- Formal definition
 - Q: Set of states
 - Σ: Alphabet
 - δ: Transition function
 - ▶ q₀: Initial state
 - F: Final (accepting) states
- Language recognized by an automata
 - ▶ $w \in L(A)$ if $\delta'(w) \in F$ or there exist an accepting run of A for w
- Tabular representation
- Exercises

Nondeterministic Finite Automata

- Q: Set of states
- Σ: Alphabet
- Δ : Transition *relation* (with ε -transitions!)
- ▶ q₀: Initial state
- ▶ F: Final (accepting) states
- NFAs and DFAs accept the same class of languages!
- Converting NFA to DFA
 - ▶ States of det(A) are elements of 2^Q
 - ▶ ...

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
 - ▶ Optional: how would you improve it?

Introduction Regular Languages and Finite Automata Scanners and Flex

Formal Grammars and Context-Free Languages

Parsers and Bison Turing Machines and Languages of Type 1 and 0

Lecture-specific material

Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 6

Goals for Lecture 6

- Review of last lecture
- Equivalency of regular expressions and NFAs
 - Construction of an NFA from a regular expression
 - Extraction of an RE from a DFA

Review

Nondeterministic Finite Automata

- Q: Set of states
- ► Σ: Alphabet
- Δ : Transition *relation* (with ε -transitions!)
- ▶ q₀: Initial state
- ▶ F: Final (accepting) states
- NFAs and DFAs accept the same class of languages!
- Converting NFA to DFA
 - ► States of det(A) are elements of 2^Q

▶ ...

Lecture 6

Equivalency of regular expressions and NFAs

- Construction of an NFA from a regular expression
 - Base cases each result in a trivial 2-state automaton
 - Compose automata for composite regular expressions
 - Glue automata together with ε-Transitions
- Extraction of an RE for a DFA
 - Determine system of equations
 - For each state add one alternative for each transition
 - For accepting states add ε .
 - Solve the system of equations, handling loops with Arden's lemma

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
 - Optional: how would you improve it?

Introduction Regular Languages and Finite Automata

Scanners and Flex

Formal Grammars and Context-Free Languages

Parsers and Bison Turing Machines and Languages of Type 1 and 0

Lecture-specific material

Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 7

Goals for Lecture 7

- Review of last lecture
- Minimizing DFAs
 - ...and a first application
- Exercises

Review

- Central result: REs, NFAs and DFAs describe the same class of lanuguages (namely regular languages)
 - Proof via construcive algorithms
 - NFA to DFA already done
 - RE to NFA and DFA to RE new
- Construction of an NFA from a regular expression
 - Base cases each result in a trivial 2-state automaton
 - Compose automata for composite regular expressions
 - Glue automata together with ε -Transitions
- Extraction of an RE for a DFA
 - Determine system of equations describing language accepted at each state
 - For each state add one alternative for each transition
 - For accepting states add ε .
 - Solve the system of equations, handling loops with Arden's lemma

Homework assignment

Get access to an operational Linux/UNIX environment

- You can install VirtualBox (https://www.virtualbox.org) and then install e.g. Ubuntu (http://www.ubuntu.com/) on a virtual machine
- For Windows, you can install the complete UNIX emulation package Cygwin from http://cygwin.com
- For MacOS, you can install fink
 (http://fink.sourceforge.net/) or MacPorts
 (https://www.macports.org/) and the necessary tools
- You will need at least flex, bison, gcc, grep, sed, AWK, make, and a good text editor of your choice

Minimizing DFAs

- Identify and merge equivalent states
- Result is unique (up to names of states)
- Equivalency of REs can be decided by comparison of corresponding minimal DFAs
- Homework: Get ready for flexing...

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
 - Optional: how would you improve it?

Introduction Regular Languages and Finite Automata

Scanners and Flex

Formal Grammars and Context-Free Languages

Parsers and Bison Turing Machines and Languages of Type 1 and 0

Lecture-specific material

Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 8

- Review of last lecture
- Beyond regular languages: The Pumping Lemma
 - Motivation/Lemma
 - Application of the lemma
 - Implications
- Properties of regular languages
 - ▶ Which operations leave regular languages regular?

Minimizing DFAs

- Identify and merge equivalent states
- Result is unique (up to names of states)
- Equivalency of REs can be decided by comparison of corresponding minimal DFAs

Lecture 8

Reminder: Homework assignment

Install an operational UNIX/Linux environment on your computer

- You can install VirtualBox (https://www.virtualbox.org) and then install e.g. Ubuntu (http://www.ubuntu.com/) on a virtual machine
- For Windows, you can install the complete UNIX emulation package Cygwin from http://cygwin.com
- For MacOS, you can install fink
 (http://fink.sourceforge.net/) or MacPorts
 (https://www.macports.org/) and the necessary tools
- You will need at least flex, bison, gcc, grep, sed, AWK, make, and a good text editor of your choice

Beyond regular languages: The Pumping Lemma

- Motivation/Lemma
- ▶ Application of the lemma $(a^n b^n, a^n b^m, n < m)$
- Implications (Nested structures are not regular)
- Properties of regular languages
 - ▶ Closure properties (union, intersection, ...)
 - Proof per construction of suitable NFA (union, concatenation, Kleene Star)
 - Proof per construction of product automaton (intersection)

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
 - Optional: how would you improve it?

Introduction Regular Languages and Finite Automata

Scanners and Flex

Formal Grammars and Context-Free Languages

Parsers and Bison Turing Machines and Languages of Type 1 and 0

Lecture-specific material

Lecture 1 Lecture 2 Lecture 3 Lecture 4

- Lecture 5
- Lecture /
- Lecture 8

Lecture 9

- Lecture 10
- Lecture 11
- Lecture 12
- Lecture 13
- Lecture 14
- Lecture 15
- Lecture 16
- Lecture 17
- Lecture 18

Bonus Exercises

Goals for Lecture 9

Completing the theory of regular languages

- Complement
- Finite languages
- Decision problems: Emptiness, word problem, ...
- Decision problems: Equivalence, finiteness,
- Wrap-up

Review

The Pumping Lemma

- Motivation/Lemma
 - For every regular language L there exits a k such that any word s with |s| ≥ k can be split into s = uvw with |uv| ≤ k and v ≠ ε and uv^hw ∈ L for all h ∈ N
 - Use in proofs by contradiction: Assume a language is regular, then derive contradiction
- ▶ Application of the lemma $(a^n b^n, a^n b^m, n < m)$
- Implications (Nested structures are not regular)

Properties of regular languages

- The union of two regular languages is regular
- The intersection of two regular languages is regular (Solution: Product automaton!)
- ▶ The concatenation of two regular languages is regular
- The Kleene star of a regular language is regular
- (The complement of a regular language is regular)

Completing the theory of regular languages

- Complement
- All finite languages are regular
- Decidable for regular languages: Emptiness, word problem
- Decidable for regular languages: Equivalence, finiteness
- Wrap-up

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
 - Optional: how would you improve it?

Introduction Regular Languages and Finite Automata

Scanners and Flex

Formal Grammars and Context-Free Languages

Parsers and Bison Turing Machines and Languages of Type 1 and 0

Lecture-specific material

Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 10

Goals for Lecture 10

- Review of last lecture
- Scanning in practice
 - Scanners in context
 - Practical regular expressions
 - Automatic scanner creation with flex
 - Flex exercise

Completing the theory of regular languages

- Complement
- All finite languages are regular
- Decidable for regular languages: Emptiness, word problem
- Decidable for regular languages: Equivalence, finiteness
- Use of properties to prove statements (e.g. non-regularity, e.g. reducing emptyness question to equivalency)
- Wrap-up

Lecture 10

- Scanners in context
- Practical regular expressions
 - $\blacktriangleright\,$ Basic characters, escapes, ranges, escape with $\setminus\,$
 - ▶ Richer operators, z.B. +, {4},?...
- Flex
 - Definition section
 - Rule section
 - ▶ User code section/yylex()
- Exercise

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
 - Optional: how would you improve it?

Introduction Regular Languages and Finite Automata

Scanners and Flex

Formal Grammars and Context-Free Languages

Parsers and Bison Turing Machines and Languages of Type 1 and 0

Lecture-specific material

Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 11

Goals for Lecture 11

- Review of last lecture
- Grammars and languages
 - ▶ Formal grammars
 - Derivations
 - Languages
- ► The Chomsky-Hierarchy

Review

Scanners in context

- Practical regular expressions
 - ▶ Basic characters, escapes, ranges, escape with \
 - ▶ Richer operators, z.B. +, {4},?...
- Flex
 - Definition section
 - Rule section
 - ▶ User code section/yylex()
- 🕨 make
- Exercise

Grammars and languages

- Formal grammars
- Derivations
- Languages
- ▶ Grammars can describe non-regular languages
- The Chomsky-Hierarchy
 - ▶ Type 0: Unrestricted grammars
 - Type 1: Context-sensitive/monotonic grammars
 - ▶ Type 2: Context-free grammars
 - Type 3: Right-linear/regular grammars

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
 - Optional: how would you improve it?

Introduction Regular Languages and Finite Automata

Scanners and Flex

Formal Grammars and Context-Free Languages

Parsers and Bison Turing Machines and Languages of Type 1 and 0

Lecture-specific material

Lecture 1 Lecture 2 Lecture 3 Lecture 4

- Lecture 5 Lecture 6 Lecture 7 Lecture 8 Lecture 9
- _ecture 10
- Lecture 11

Lecture 12

- Lecture 13
- Lecture 14
- Lecture 15
- Lecture 16
- Lecture 17
- Lecture 18

Bonus Exercises

- Review of last lecture
- Right-linear grammars
 - Equivalence with finite automata
- Context-free grammars
 - Equivalency for grammars
 - Reducing grammars
 - Eliminating ε-Productions
 - Chomsky-hierarchy revisited

Reviews

Grammars and languages

- Formal grammars (N, Σ, P, S)
- Derivations
- ▶ Languages $L(G) = \{w \in \Sigma^* \mid S \Rightarrow^* w\}$
- Grammars can describe non-regular languages
- The Chomsky-Hierarchy
 - Type 0: Unrestricted grammars
 - Type 1: Context-sensitive/monotonic grammars (non-shortening rules)
 - Type 2: Context-free grammars (Only one non-terminal on LHS)
 - Type 3: Right-linear/regular grammars (limited RHS)

Lecture 12

- ▶ Right-linear grammars: $N \rightarrow aB$, $a \in \Sigma \cup {\epsilon}$
 - Convert DFA to right-linear grammar
 - Convert right-linear grammar to NFA
- Context-free grammars
 - Chomsky Normal Form
 - Towards CNF
 - Remove non-terminating symbols and corresponding rules
 - Remove non-reachable symbols and corresponding rules
 - Inline ε-rules

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
 - Optional: how would you improve it?

Introduction Regular Languages and Finite Automata

Scanners and Flex

Formal Grammars and Context-Free Languages

Parsers and Bison Turing Machines and Languages of Type 1 and 0

Lecture-specific material

Lecture 1 Lecture 2 Lecture 3 Lecture 4

- Lecture 5 Lecture 6 Lecture 7 Lecture 8 Lecture 9 Lecture 10
- Lecture 11
- Lecture 12

Lecture 13

- Lecture 14
- Lecture 15
- Lecture 16
- Lecture 17
- Bonus Exercises

Selected Solutions

- Review of last lecture
- Completing Chomsky Normal Form tranformation
 - Eliminating chain rules
 - Bring right hand sides into normalform
- Solving the word problem for context-free grammars
 - Derivations in CNF
 - Parsing with Dynamic Programming: Cocke-Younger-Kasami

- ▶ Right-linear grammars: $N \to aB$, $a \in \Sigma \cup \{\epsilon\}$
 - ▶ Convert DFA to right-linear grammar ($N \sim Q, \delta \sim P$)
 - Convert right-linerar grammar to NFA
- Context-free grammars
 - Chomsky Normal Form
 - Towards CNF
 - Remove non-terminating symbols and corresponding rules
 - Remove non-reachable symbols and corresponding rules
 - ► Inline ε-rules
 - ▶ ...

Chomsky Normal Form tranformation

- Inline ε-rules
- Inline chain rules
- Reduce grammar
- Introduce NTS names for terminals
- Break long RHS via introduction of definitions/intermediate rules
- Solving the word problem for context-free grammars
 - Derivations in CNF
 - Cocke-Younger-Kasami
 - Systematically consider all decompositions of w
 - Tabulate all NTS for given subwords bottom-up
 - Example of dynamic programming

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
 - Optional: how would you improve it?

Introduction Regular Languages and Finite Automata

Scanners and Flex

Formal Grammars and Context-Free Languages

Parsers and Bison Turing Machines and Languages of Type 1 and 0

Lecture-specific material

Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 14

- Review of last lecture
- Pushdown automata
 - NFA+unlimited stack
- Equivalence of context-free grammars and PDAs
 - ▶ From grammar to PDA
 - From PDA to grammar

Chomsky Normal Form tranformation

- Inline ε-rules
- Inline chain rules
- Reduce grammar
- Introduce NTS names for terminals
- Break long RHS via introduction of definitions/intermediate rules
- Solving the word problem for context-free grammars
 - Derivations in CNF
 - Cocke-Younger-Kasami
 - Systematically consider all decompositions of w
 - Tabulate all NTS for given subwords bottom-up
 - Complexity: $O(n^3)$ with n = |w|

Pushdown automata

- Transitions must read/can write unlimited stack
- Transition can read characters from word (left-to-right only)
- Acceptance: Empty stack, empty word
- Equivalence of context-free grammars and PDAs
 - From grammar to PDA
 - Simulate grammar rules on the stack
 - Highly non-deterministic
 - From PDA to grammar
 - Non-terminals represent state changes with removal of a symbols from stack
 - Complex encoding of transition relation into grammar rules

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
 - Optional: how would you improve it?

Introduction Regular Languages and Finite Automata Scanners and Flex Formal Grammars and Context-F Languages

Parsers and Bison Turing Machines and Languages of Type 1 and 0

Lecture-specific material

Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 15

Selected Solutions

- Review of last lecture
- Limits of context-free languages
 - Pumping Lemma II
- Closure properties of context-free languages
- Decision problems for context-free languages

Pushdown automata

- Transitions must read/can write unlimited stack
- Transition can read characters from word (left-to-right only)
- Acceptance: Empty stack, empty word
- Equivalence of context-free grammars and PDAs
 - From grammar to PDA
 - Simulate grammar rules on the stack
 - Highly non-deterministic
 - From PDA to grammar
 - Non-terminals represent state changes with removal of a symbols from stack
 - Complex encoding of transition relation into grammar rules

Limits of context-free languages

- Pumping Lemma II
- Closure properties of context-free languages
 - $\blacktriangleright\,$ The class of context-free languages is closed under $\cup,\cdot,^*$
 - ► The class of context-free languages is not closed under ∩, complement
- Decision problems for context-free languages
 - Decidable: Word problem, emptiness problem
 - Undeciable: Equivalence

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
 - Optional: how would you improve it?

Introduction Regular Languages and Finite Automata Scanners and Flex Formal Grammars and Context-Free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0

Lecture-specific material

Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 16

Selected Solutions

- Review of last lecture
- Introduction to parsing
- YACC/Bison
 - Automatic parser generation
 - Example: desk calculator
- LALR(1) shift/reduce parsing
- Parse trees and abstract syntax trees

Limits of context-free languages

- Pumping Lemma II
 - Sufficiently long words require correspondingly long derivations
 - Sufficiently long derivations will contain at least one duplicate NTS A
 - The partial derivation from A to uAv can be repeated
- Closure properties of context-free languages
 - \blacktriangleright The class of context-free languages is closed under $\cup,\cdot,^*$
 - ► The class of context-free languages is not closed under ∩, complement
- Decision problems for context-free languages
 - ▶ Decidable: Word problem, emptiness problem
 - Undeciable: Equivalence

Summary

- Introduction to parsing
 - Recognize words (programs) in L(G)
 - Understand structure of words
- YACC/Bison
 - Automatic parser generation
 - Core: Syntax rules with actions (C code)
 - ▶ Whenever input can be *reduced*, action is executed
 - Often: Manipulation of semantic values
 - Example: desk calculator
- LALR(1) shift/reduce parsing
 - Shift input to stack
 - Reduce RHS to LHS
 - Use lookahead to reduce ambiguity
- Parse trees and abstract syntax trees
 - Parse trees: Represents not just word but derivation
 - AST: "parse tree without syntactic details

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
 - Optional: how would you improve it?

Introduction Regular Languages and Finite Automata Scanners and Flex Formal Grammars and Context-Free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0

Lecture-specific material

Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 17

Goals for Lecture 17

- Review of last lecture
- Beyond context-free languages: Turing Machines
 - Idea
 - Definition
 - Examples
 - Variants
- Context-sensitive languages
 - Linear bounded Turing Machine (LBA)
 - Closure properties
 - Decision problems
- Type-0 languages
 - ▶ The Universal Turing Machine
 - The Halting Problem
- Thesis of Church-Turing
 - ... and practical applications

- Introduction to parsing
 - ▶ Recognize words (programs) in L(G)
 - Understand structure of words
- YACC/Bison
 - Automatic parser generation
 - Core: Syntax rules with actions (C code)
 - ▶ Whenever input can be *reduced*, action is executed
 - Often: Manipulation of semantic values
 - Example: desk calculator
- LALR(1) shift/reduce parsing
 - Shift input to stack
 - Reduce RHS to LHS
 - Use lookahead to reduce ambiguity
- Parse trees and abstract syntax trees
 - Parse trees: Represents not just word but derivation
 - AST: "parse tree without syntactic details

Summary

Turing Machines

- Unbounded tape memory
- Finite automaton controls head movement, writing based on current state and input at current tape location
- Configurations (general, stopping and accepting)
- TM for $a^n b^n c^n$
- Context-sensitive languages
 - Linear bounded Turing Machine (LBA)
 - ► Closure properties: Closed under ∪, ·,*, ∩,
 - Decision problems: Word yes, emptiness, equivalence no
- Type-0 languages
 - ▶ The Universal Turing Machine
 - ► The Halting Problem
- Thesis of Church-Turing: All "strong" computing models are equivalent
 - ▶ ... and so may be humans (!)

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
 - Optional: how would you improve it?

Introduction Regular Languages and Finite Automata Scanners and Flex Formal Grammars and Context-Free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0

Lecture-specific material

Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 18

Bonus Exercises Selected Solutions

Test Exam

- Review of last lecture
- Test exam
- Solutions

- What was the best part of the course?
- What part of the course that has the most potential for improvement?
 - ▶ Optional: how would you improve it?

Introduction Regular Languages and Finite Automata

Scanners and Flex Formal Grammars and Context-Free Languages Parsers and Bison Turing Machines and Languages of Type 1 and 0 Lecture-specific material

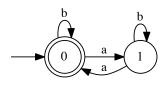
Bonus Exercises

Selected Solutions

Bonus Exercises

Assume $\Sigma = \{a, b\}$. Consider the automaton *A*.

- ▶ Give a formal description of *A*.
- Which language L(A) is accepted by A? Give a formal description.
- ► Where does *L*(*A*) reside in the Chomsky-hierarchy?
- Manually find a regular expression R with L(R) = L(A).
- ➤ Generate a system of equations for A and generate a regular expression R_S for L(A) by solving this. Compare your result the the previous one.
- Convert A into a regular grammar G with L(A) = L(G).



- Can L(A) be pumped? If yes, provide an example of a pumpable word.
- Generalize A to recognize $L_3 = \{w \in \Sigma^* \mid |w|_a \text{ modulo } 3 = 0\}$
- Form the product automaton P to find L(A) ∩ L₃.
- Minmize P.
- Systematically construct a NFA D_A for R_S .
- Convert D_R to a DFA. 504

Introduction Regular Languages and Finite Automata Scanners and Flex Formal Grammars and Context-Fr Parsers and Bison Turing Machines and Languages of Type 1 and 0 Lecture-specific material Bonus Exercises Selected Solutions Solution to Exercise: Algebra on regular expressions (1)

► Claim:
$$r^* \doteq \varepsilon + r^*$$

 $\varepsilon + r^* \doteq \varepsilon + \varepsilon + r^*r$ (13)
Proof: $\doteq \varepsilon + r^*r$ (9)
 $\doteq r^*$ (13)

Simplification of regular expressions

r

Solution to Exercise: Algebra on regular expressions (2)

$$\begin{array}{rcl} &=& 0(\varepsilon+0+1)^{*}+(\varepsilon+1)(1+0)^{*}+\varepsilon \\ &\stackrel{14,1}{\doteq} & 0(0+1)^{*}+(\varepsilon+1)(0+1)^{*}+\varepsilon \\ &\stackrel{7}{\doteq} & 0(0+1)^{*}+\varepsilon(0+1)^{*}+1(0+1)^{*}+\varepsilon \\ &\stackrel{5}{\doteq} & 0(0+1)^{*}+(0+1)^{*}+1(0+1)^{*}+\varepsilon \\ &\stackrel{1,7}{\doteq} & \varepsilon+(0+1)(0+1)^{*}+(0+1)^{*} \\ &\stackrel{16}{\doteq} & \varepsilon+(0+1)^{*}(0+1)+(0+1)^{*} \\ &\stackrel{13}{\doteq} & (0+1)^{*}+(0+1)^{*} \\ &\stackrel{9}{\doteq} & (0+1)^{*}. \end{array}$$

Application of Arto's lemma

Solution to Exercise: Algebra on regular expressions (3)

- Show that $u = 10(10)^* \doteq 1(01)^*0$
- ldea: u is of the form ts^* with:

- ▶ *s* = 10
- ► This suggest Arto's Lemma. To apply the lemma, we must show that $r = 1(01)^* 0 \doteq rs + t$

$$rs + t = 1(01)*010 + 10$$

$$\doteq 1((01)*010 + 0) \quad \text{(factor out 1)}$$

So:

$$\doteq 1((01)*01 + \varepsilon)0 \quad \text{(factor out 0)}$$

$$\doteq 1(01)*0 \qquad (1),(13)$$

$$= r$$

Since L(s) = {10} (and hence ε ∉ L(s)), we can apply Arto and rewrite r ≐ ts* ≐ 10(10)*.

Back

Transformation into DFA (1)

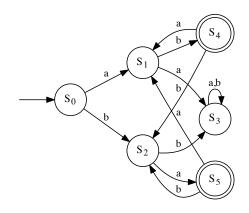
► Incremental computation of \hat{Q} and $\hat{\delta}$:

Initial state
$$S_0 = ec(q_0) = \{q_0, q_1, q_2\}$$
 $\hat{\delta}(S_0, a) = \delta^*(q_0, a) \cup \delta^*(q_1, a) \cup \delta^*(q_2, a) = \{\} \cup \{\} \cup \{q_4\} = \{q_4\} = S_1$
 $\hat{\delta}(S_0, b) = \{q_3\} = S_2$
 $\hat{\delta}(S_1, a) = \{\} = S_3$
 $\hat{\delta}(S_1, b) = ec(q_6) = \{q_6, q_7, q_0, q_1, q_2\} = S_4$
 $\hat{\delta}(S_2, a) = \{q_5, q_7, q_0, q_1, q_2\} = S_5$
 $\hat{\delta}(S_2, b) = \{\} = S_3$
 $\hat{\delta}(S_3, a) = \{\} = S_3$
 $\hat{\delta}(S_3, a) = \{\} = S_3$
 $\hat{\delta}(S_4, a) = \{q_4\} = S_1$
 $\hat{\delta}(S_4, a) = \{q_4\} = S_1$
 $\hat{\delta}(S_5, a) = \{q_4\} = S_1$
 $\hat{\delta}(S_5, b) = \{q_3\} = S_2$
 $\hat{\delta}(S_5, b) = \{q_3\} = S_2$
 $\hat{F} = \{S_4, S_5\} \text{ (since } q_7 \in S_4, q_7 \in S_5)$

Transformation into DFA (2)

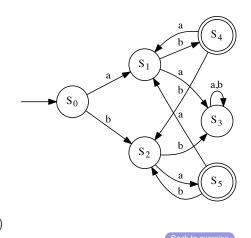
Regexp:

 $L(\mathcal{A}) = L((ab + ba)(ab + ba)^*)$



Transformation into DFA (2)

▶ Regexp: L(A) = L((ab + ba)(ab + ba)*)

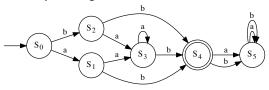


Transformation of RE into NFA

Systematically construct an NFA accepting the same language as the regular expression $(a + b)a^*b$.

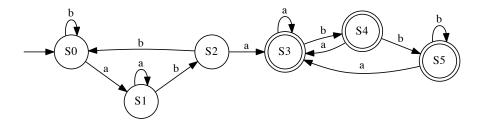
Solution: $(q_0) \xrightarrow{\epsilon} (q_2) \xrightarrow{a} (q_3) \xrightarrow{\epsilon} (q_1) \xrightarrow{\epsilon} (q_6) \xrightarrow{\epsilon} (q_7) \xrightarrow{\epsilon} (q_1) \xrightarrow{b} (q_{11}) \xrightarrow{\epsilon} (q_{10}) \xrightarrow{b} (q_{11}) \xrightarrow{\epsilon} (q_{10}) \xrightarrow$

Corresponding DFA:



Back to exercise

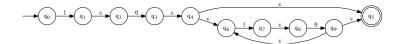
Solution: NFA to DFA "aba"



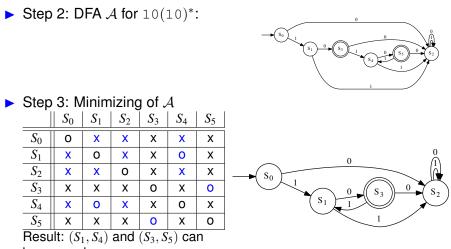
Show $10(10)^* \doteq 1(01)^*0$ via minimal DFAs (1)

▶ Step 1: NFA for 10(10)*:

			epsilon	0	1
->	q0		{ }	{ }	{q1}
	q1		{q2}	{ }	{ }
	q2		{ }	{q3}	{ }
	q3		{q4}	{ }	{ }
	q4		{q5,q6}	{ }	{ }
*	q5		{ }	{ }	{ }
	q6		{ }	{ }	{q7}
	q7		{q8}	{ }	{ }
	q8		{ }	{q9}	{ }
	q9	Ι	{q5,q6}	{ }	{ }



Show $10(10)^* \doteq 1(01)^*0$ via minimal DFAs (2)

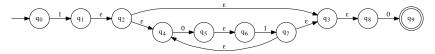


be merged

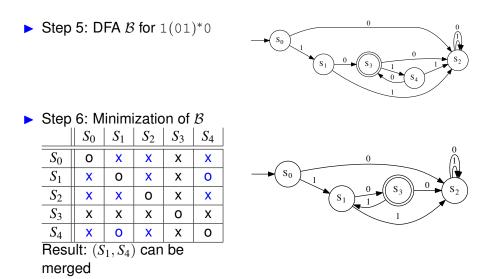
Show $10(10)^* \doteq 1(01)^*0$ via minimal DFAs (3)

Step 4: NFA zu 1(01)*0:

	I	epsilon	0	1
-> q0		{ }	{ }	{q1}
q1		{q2}	{ }	{ }
q2		{q3,q4}	{ }	{ }
q3		{q8}	{ }	{ }
q4		{ }	{q5}	{ }
q5		{q6}	{ }	{ }
q6		{ }	{ }	{q7}
q7		{q4,q3}	{ }	{ }
d8		{ }	{ }	{q9}
* q9	I	{ }	{ }	{ }

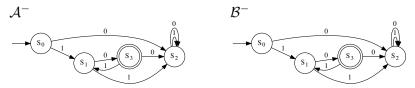


Show $10(10)^* \doteq 1(01)^*0$ via minimal DFAs (4)



Show $10(10)^* \doteq 1(01)^*0$ via minimal DFAs (5)

▶ Step 7: Comparision of A^- and B^-



Result: The two automata are identical, hence the two original regular expressions describe the same languages.

Back to exercise Back to review

Pumping lemma

Solution to $a^n b^m$ with n < m

- ▶ Proposition: $L = \{a^n b^m \mid n < m\}$ is not regular.
- ▶ Proof by contradiction. We assume *L* is regular
- ▶ Then: $\exists k \in \mathbb{N}$ with:
 - ▶ $\forall s \in L \text{ with } |s| \ge k : \exists u, v, w \in \Sigma^* \text{ such that }$
 - \blacktriangleright s = uvw
 - $|uv| \leq k$
 - $\blacktriangleright v \neq \varepsilon$
 - ▶ $uv^h w \in L$ for all $h \in \mathbb{N}$

• We consider the word $s = a^k b^{k+1} \in L$

- ▶ Since $|uv| \le k$: $u = a^i, v = a^j, w = a^l b^{k+1}$ and j > 0, i+j+l = k
- ▶ Now consider $s' = uv^2 w$. According to the pumping lemma, $s' \in L$. But $s' = a^i a^j a^j a^l b^{k+1} = a^{i+j+l+j} b^{k+1} = a^{k+j} b^{k+1}$. Since $j \in \mathbb{N}, j > 0$: $k + j \neq k + 1$. Hence $s' \notin L$. This is a contradiction. Hence the assumption is wrong, and the original proposition is true. q.e.d.

Pumping lemma

Solution to $a^n b^m$ with n < m

- ▶ Proposition: $L = \{a^n b^m \mid n < m\}$ is not regular.
- ▶ Proof by contradiction. We assume *L* is regular
- ▶ Then: $\exists k \in \mathbb{N}$ with:
 - ▶ $\forall s \in L \text{ with } |s| \ge k : \exists u, v, w \in \Sigma^* \text{ such that }$
 - \blacktriangleright s = uvw
 - ▶ $|uv| \le k$
 - $\blacktriangleright \ v \neq \varepsilon$
 - ▶ $uv^h w \in L$ for all $h \in \mathbb{N}$

• We consider the word $s = a^k b^{k+1} \in L$

- ▶ Since $|uv| \le k$: $u = a^{i}, v = a^{j}, w = a^{l}b^{k+1}$ and j > 0, i+j+l = k
- ▶ Now consider $s' = uv^2 w$. According to the pumping lemma, $s' \in L$. But $s' = a^i a^j a^j a^l b^{k+1} = a^{i+j+l+j} b^{k+1} = a^{k+j} b^{k+1}$. Since $j \in \mathbb{N}, j > 0$: $k+j \not\leq k+1$. Hence $s' \notin L$. This is a contradiction. Hence the assumption is wrong, and the original proposition is true. q.e.d.

Solution: Pumping lemma (Prime numbers)

- ▶ Proposition: $L = \{a^p \mid p \in \mathbb{P}\}$ is not regular (where \mathbb{P} is the set of all prime numbers)
- Proof: By contradiction, using the pumping lemma.
 - Assumption: L is regular. Then there exist a k such that all words in L with at least length k can be pumped.
- Consider the word $s = a^p$, where $p \in \mathbb{P}, p \ge k$
 - ▶ Then there are $u, v, w \in \Sigma^*$ with $uvw = s, |uv| \le k, v \ne \varepsilon$, and $uv^h w \in L$ for all $h \in \mathbb{N}$.
 - We can write $u = a^i, v = a^j, w = a^l$ with i + j + l = p
 - ▶ So $s = a^i a^j a^l$ and $a^i a^{j \cdot h} a^l \in L$ for all $h \in \mathbb{N}$.
 - Consider h = p + 1. Then $a^i a^{j \cdot (p+1)} a^l \in L$
 - $a^i a^{j \cdot (p+1)} a^l = a^i a^{jp+j} a^l = a^i a^{jp} a^j a^l = a^i a^j a^l a^{jp} = a^p a^{jp} = a^{(j+1)p}$
 - But (j + 1)p ∉ P, since j + 1 > 1 and p > 1, and (j + 1)p thus has (at least)two non-trivial divisors.
 - ► Thus a^{(j+1)p} ∉ L. This violates the pumping lemma and hence contradicts the assumption. Thus the assumption is wrong and the proposition holds. *q.e.d.*

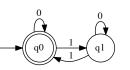
Solution: Pumping lemma (Prime numbers)

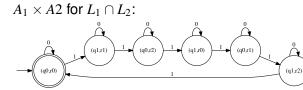
- ▶ Proposition: $L = \{a^p \mid p \in \mathbb{P}\}$ is not regular (where \mathbb{P} is the set of all prime numbers)
- Proof: By contradiction, using the pumping lemma.
 - Assumption: L is regular. Then there exist a k such that all words in L with at least length k can be pumped.
- Consider the word $s = a^p$, where $p \in \mathbb{P}, p \ge k$
 - ▶ Then there are $u, v, w \in \Sigma^*$ with $uvw = s, |uv| \le k, v \ne \varepsilon$, and $uv^h w \in L$ for all $h \in \mathbb{N}$.
 - ▶ We can write $u = a^i, v = a^j, w = a^l$ with i + j + l = p
 - ▶ So $s = a^i a^j a^l$ and $a^i a^{j \cdot h} a^l \in L$ for all $h \in \mathbb{N}$.
 - Consider h = p + 1. Then $a^i a^{j \cdot (p+1)} a^l \in L$
 - $a^i a^{j \cdot (p+1)} a^l = a^i a^{jp+j} a^l = a^i a^{jp} a^j a^l = a^i a^j a^l a^{jp} = a^p a^{jp} = a^{(j+1)p}$
 - But (*j* + 1)*p* ∉ P, since *j* + 1 > 1 and *p* > 1, and (*j* + 1)*p* thus has (at least)two non-trivial divisors.
 - ► Thus a^{(j+1)p} ∉ L. This violates the pumping lemma and hence contradicts the assumption. Thus the assumption is wrong and the proposition holds. *q.e.d.*

Solution: Product automaton for $L_1 \cap L_2$

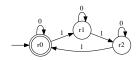
Solution to Exercise: Product automaton

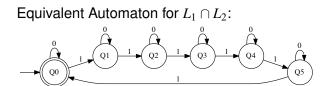
 A_1 :





 A_2 :

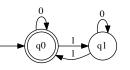


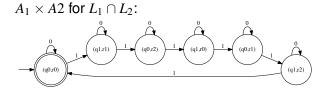


Solution: Product automaton for $L_1 \cap L_2$

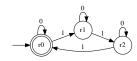
Solution to Exercise: Product automaton

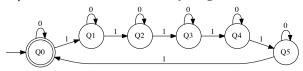
 A_1 :





 A_2 :





Solution: Transformation to Chomsky Normal Form (1)

Compute the Chomsky normal form of the following grammar: $G = (N, \Sigma, P, S)$

$$\triangleright N = \{S, A, B, C, D, E\}$$

$$\triangleright \Sigma = \{a, b\}$$

Step 1: *c*-Elimination

• Remove $E \to \varepsilon$, $D \to \varepsilon$

Solution: Transformation to Chomsky Normal Form (2)

Step 2: Elimination of Chain Rules.

- ▶ Current chain rules: $S \rightarrow B$, $D \rightarrow E$
- ▶ Eliminate $S \rightarrow B$:
 - $\blacktriangleright N(S) = \{B\}$
 - ▶ New rules: $S \rightarrow bB, S \rightarrow BaB, S \rightarrow ab$
- $\blacktriangleright \text{ Eliminate } D \to E$
 - $\blacktriangleright \ N(D) = \{E\}$
 - E has no rule, therefore no new rules!
- Current state of P:

$$S \rightarrow AB|SB|BDE|BD|BE|bB|BaB|ab$$
 $C \rightarrow SB$
 $A \rightarrow Aa$ $B \rightarrow bB|BaB|ab$

Solution: Transformation to Chomsky Normal Form (3)

Step 3: Reducing the grammar

- ▶ Terminating symbols: $T = \{S, B, C\}$ (*A*, *D*, *E* do not terminate)
 - ▶ Remove all rules that contain A, E, D. Remaining:
 - $S \rightarrow SB|bB|BaB|ab \qquad C \rightarrow SB$
 - $B \rightarrow bB|BaB|ab$
- ▶ Reachable symbols: $R = \{S, B\}$ (*C* is not reachable)
 - ▶ Remove all rules containing *C*. Remaining:
 - $S \rightarrow SB|bB|BaB|ab$
 - $B \rightarrow bB|BaB|ab$

Solution: Transformation to Chomsky Normal Form (4)

Step 4: Introduce new non-terminals for terminals

▶ New rules: $X_a \rightarrow a, X_b \rightarrow b$. Result:

 $S \rightarrow SB|X_bB|BX_aB|X_aX_b \qquad X_a \rightarrow a$ $B \rightarrow X_bB|BX_aB|X_aX_b \qquad X_b \rightarrow b$

Step 5: Introduce new non-terminals to break up long right hand sides:

- Problematic RHS: BX_aB (in two rules)
- ▶ New rule: $C_1 \rightarrow X_a B$. Result:

Solution: Transformation to Chomsky Normal Form (5)

Final grammar: $G' = (N', \Sigma, P', S)$ with $N' = \{S, B, C_1, X_a, X_b\}$ $\Sigma = \{a, b\}$ $S \rightarrow SB|X_bB|BC_1|X_aX_b$ $X_a \rightarrow a$ $P': B \rightarrow X_bB|BC_1|X_aX_b$ $X_b \rightarrow b$ $C_1 \rightarrow X_aB$

Back to exercise

Solution: CYK

+		+	+	+	+	+	++	-
Ι		1	2	3	4	5	6	
+	1						++ S,B	$S \rightarrow SB BD YB XY$
+	2						++ S,B	$D \rightarrow DD ID \Lambda I$
					+		++	
				+		+	++	
+		ı +	 +				++	$Y \rightarrow b$
 +	5	 +	 +	 +		X +	S,B ++	-
	6		 +	l +		 +	Y	Therefore babaab $\in L(G)$
I	W	b	a	b	a	a	b	
+		+	+	+	+	+	++	-

Solution: CYK

+		+	+		+	+		+
1		1	1	2	1	3		4
+		+	+		+	+		+
	1	1	Х	S,B	1	-		-
+		+	+		+	+		+
	2	1		Y	1	-		-
+		+	+		+	+		+
	3	1	- 1		1	Y		-
+		+	+		+	+	+	+
1	4	1	- 1		1			Х
+		+	+		+	+	+	+
1	W	1	a	b	1	b		a
+		+	+		+	+		+

- $S \rightarrow SB|BD|YB|XY$
- $B \rightarrow BD|YB|XY$
- $D \rightarrow XB$
- $X \rightarrow a$
- $Y \rightarrow b$

Therefore
$$abba \notin L(G)$$

Solution: PDA to Grammar (1)

- $\mathcal{A} = (Q, \Sigma, \Gamma, \Delta, 0, Z)$ $\mathbf{P} = \{0, 1\}$ $\mathbf{P} = \{a, b\}$ $\mathbf{P} = \{A, Z\}$ $(1) \quad 0 \quad \varepsilon \quad Z \quad \rightarrow \quad \varepsilon \quad 0$ $(2) \quad 0 \quad a \quad Z \quad \rightarrow \quad AZ \quad 0$ $(3) \quad 0 \quad a \quad A \quad \rightarrow \quad AA \quad 0$ $(4) \quad 0 \quad b \quad A \quad \rightarrow \quad \varepsilon \quad 1$ $(5) \quad 1 \quad b \quad A \quad \rightarrow \quad \varepsilon \quad 1$ $(6) \quad 1 \quad \varepsilon \quad Z \quad \rightarrow \quad \varepsilon \quad 1$
- $G = (N, \Sigma, P, S)$ $\blacktriangleright N = \{S, [0A0], [0A1], [1A0], [1A1], [0Z0], [0Z1], [1Z0], [1Z1]\}$ $\blacktriangleright \Sigma \text{ and } S \text{ as given}$
 - Start rules for P:
 - ▶ $S \rightarrow [0Z0]$
 - ▶ $S \rightarrow [0Z1]$

- From transitions:
 - From (1): $[0Z0] \rightarrow \varepsilon$
 - From (4): $[0A1] \rightarrow b$
 - From (5): $[1A1] \rightarrow b$
 - ▶ From (6): $[1Z1] \rightarrow \varepsilon$
 - ▶ (2) and (3): Next page

Solution: PDA to Grammar (2)

$$A = (Q, \Sigma, \Gamma, \Delta, 0, Z)$$

$$Q = \{0, 1\}$$

$$\Sigma = \{a, b\}$$

$$\Gamma = \{A, Z\}$$

Computing of *P* continued:

- ► From (2):
 - ▶ $[0Z0] \rightarrow a[0A0][0Z0]$
 - $\blacktriangleright \quad [0Z0] \to a[0A1][1Z0]$
 - $\blacktriangleright \quad [0Z1] \to a[0A0][0Z1]$
 - ▶ $[0Z1] \rightarrow a[0A1][1Z1]$

From (3):

- ▶ $[0A0] \rightarrow a[0A0][0A0]$
- $\blacktriangleright \quad [0A0] \to a[0A1][1A0]$
- $\blacktriangleright \quad [0A1] \to a[0A0][0A1]$
- ▶ $[0A1] \rightarrow a[0A1][1A1]$

Solution: PDA to Grammar (3)

Full grammar $G = \{N, \Sigma, P, S\}$

 N = {S, [0A0], [0A1], [1A0], [1A1], [0Z0], [0Z1], [1Z0], [1Z1]}
 ∑ = {a, b}

► *P*:

- $\blacktriangleright \ S \to [0Z0]$
- ▶ $S \rightarrow [0Z1]$
- $\blacktriangleright \quad [0Z0] \to \varepsilon$
- $[0A1] \rightarrow b$ $[1A1] \rightarrow b$
- ▶ $[1Z1] \rightarrow \varepsilon$
- ▶ $[0Z0] \rightarrow a[0A0][0Z0]$
- $\blacktriangleright \quad [0Z0] \rightarrow a[0A1][1Z0]$
- $\blacktriangleright \quad [0Z1] \rightarrow a[0A0][0Z1]$
- $\blacktriangleright \quad [0Z1] \rightarrow a[0A1][1Z1]$
- $[0A0] \rightarrow a[0A0][0A0]$
- $[0A0] \rightarrow a[0A1][1A0]$
- $[0A1] \rightarrow a[0A0][0A1]$
- ▶ $[0A1] \rightarrow a[0A1][1A1]$

- Terminating: $T = \{[0Z0], [0A1], [1A1], 1Z1], S, [0Z1]\}$
- Remaining rules:
 - $\begin{array}{ccc} 1 & S \rightarrow [0Z0] \\ 2 & S \rightarrow [0Z1] \\ \end{array}$
 - $\begin{array}{c} \mathbf{3} \quad [0Z0] \to \varepsilon \\ \mathbf{4} \quad [0A1] \to b \end{array}$
 - $\begin{bmatrix} 0.11 \\ 0 \end{bmatrix} \rightarrow b$
 - $\begin{bmatrix} 1Z1 \end{bmatrix} \to \varepsilon$
 - 7 $[0Z1] \rightarrow a[0A1][1Z1]$ 8 $[0A1] \rightarrow a[0A1][1A1]$
- Reachable: R = {S, [0Z0], [0Z1], [0A1], [1Z1], [1A1]}
 - No change!

Solution: PDA to Grammar (4)

 $\triangleright P:$ $\begin{array}{c|c}
1 & S \to [0Z0] \\
2 & S \to [0Z1] \\
3 & [0Z0] \to \varepsilon \\
4 & [0A1] \to b \\
5 & [1A1] \to b \\
6 & [1Z1] \to \varepsilon \\
7 & [0Z1] \to a[0A1][1Z1] \\
8 & [0A1] \to a[0A1][1A1] \end{array}$

Derivation of ε:

$$\blacktriangleright S \Rightarrow_1 [0Z0] \Rightarrow_3 \varepsilon$$

- Derivation of *ab*:
 - ► $S \Rightarrow_2 [0Z1] \Rightarrow_7 a[0A1][1Z1] \Rightarrow_4 ab[1Z1] \Rightarrow_6 ab$
- Derivation of *aabb*:
 - ► $S \Rightarrow_2 [0Z1] \Rightarrow_7 a[0A1][1Z1] \Rightarrow_8 aa[0A1][1A1][1Z1] \Rightarrow_4 aab[1A1][1Z1] \Rightarrow_5 aabb[1Z1] \Rightarrow_6 aabb$

Back to exercise

Bibliography

i

Nariyoshi Chida and Tachio Terauchi.

On Lookaheads in Regular Expressions with Backreferences.

In Amy P. Felty, editor, 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022), volume 228 of Leibniz International Proceedings in Informatics (LIPIcs), pages 15:1–15:18, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

Ulrich Hedstück.

Einführung in die Theoretische Informatik: Formale Sprachen und Automatentheorie. Oldenbourg Wissenschaftsverlag, 5th edition, 2012.

Dirk W. Hoffmann.

Theoretische Informatik. Carl Hanser Verlag GmbH & Co. KG, 5th edition, 2022.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and Computation. Pearson Addison-Wesley, 3 edition, 2007.

Michael Sipser.

Introduction to the Theory of Computation. Cenage Learning, 3rd edition, 2012.

Back to Introduction