
L ✓ ⌃⇤

Formal Languages and Automata

Stephan Schulz & Jan Hladik
stephan.schulz@dhbw-stuttgart.de
jan.hladik@dhbw-stuttgart.de

with contributions from David Suendermann

1

Table of Contents

Introduction
Organisation
Formal languages overview
Formal language basics

Regular Languages and Finite
Automata

Regular Expressions
Finite Automata

Non-Determinism
Regular expressions and
Finite Automata
Minimisation
Equivalence

The Pumping Lemma
Properties of Regular Languages

Scanners and Flex
Formal Grammars and Context-Free
Languages

Formal Grammars
The Chomsky Hierarchy
Right-linear Grammars
Context-free Grammars
Push-Down Automata
Properties of Context-free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Turing Machines
Unrestricted Grammars
Linear Bounded Automata
Properties of Type-0-languages

Lecture-specific material
Lecture 1
Lecture 2
Lecture 3

Lecture 4
Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18

Bonus Exercises

Selected Solutions

2

Outline

Introduction
Organisation
Formal languages overview
Formal language basics

Regular Languages and Finite
Automata

Scanners and Flex

Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

3

Outline

Introduction
Organisation
Formal languages overview
Formal language basics

Regular Languages and Finite
Automata

Scanners and Flex

Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

4

Introduction

▶ Stephan Schulz
▶ Dipl.-Inform., U. Kaiserslautern, 1995
▶ Dr. rer. nat., TU München, 2000
▶ Visiting professor, U. Miami, 2002
▶ Visiting professor, U. West Indies, 2005
▶ Lecturer (Hildesheim, Offenburg, . . .) since 2009
▶ Industry experience: Building Air Traffic Control systems

▶ System engineer, 2005
▶ Project manager, 2007
▶ Product Manager, 2013

▶ Professor, DHBW Stuttgart, 2014

Research: Logic & Automated Reasoning

5

Introduction

▶ Jan Hladik
▶ Dipl.-Inform.: RWTH Aachen, 2001
▶ Dr. rer. nat.: TU Dresden, 2007
▶ Industry experience: SAP Research

▶ Work in publicly funded research projects
▶ Collaboration with SAP product groups
▶ Supervision of Bachelor, Master, and PhD students

▶ Professor: DHBW Stuttgart, 2014

Research: Semantic Web, Semantic Technologies,
Automated Reasoning

6

Literature

▶ Scripts
▶ The most up-to-date version of this document as well as auxiliary

material will be made available online at
http://wwwlehre.dhbw-stuttgart.de/˜sschulz/
fla2022.html

▶ Books
▶ John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman: Introduction

to Automata Theory, Languages, and Computation [4]
▶ Michael Sipser: Introduction to the Theory of Computation [5]
▶ Dirk W. Hoffmann: Theoretische Informatik [3]
▶ Ulrich Hedtstück: Einführung in die theoretische Informatik [2]

7

http://wwwlehre.dhbw-stuttgart.de/~sschulz/fla2022.html
http://wwwlehre.dhbw-stuttgart.de/~sschulz/fla2022.html

Computing Environment

▶ For practical exercises, you will need a Linux/UNIX environment.
If you do not run one natively, there are several options:
▶ You can install VirtualBox (https://www.virtualbox.org)

and then install e.g. Ubuntu (http://www.ubuntu.com/) on a
virtual machine

▶ For Windows, you can install the complete UNIX emulation
package Cygwin from http://cygwin.com or use Microsofts
WSL

▶ For MacOS, you can install MacPorts
(https://www.macports.org/) or Homebrew
(https://brew.sh) and the necessary tools

▶ You will need at least flex, bison, gcc, make, and a good text
editor

▶ There are some example programs in Python on the course web
page

8

https://www.virtualbox.org
http://www.ubuntu.com/
http://cygwin.com
https://www.macports.org/
https://brew.sh

Outline of the Lecture

Introduction
Organisation
Formal languages
overview
Formal language
basics

Regular Languages and
Finite Automata

Regular Expressions
Finite Automata
The Pumping Lemma
Properties of Regular
Languages

Scanners and Flex
Formal Grammars and
Context-Free Languages

Formal Grammars
The Chomsky
Hierarchy
Right-linear Grammars

Context-free
Grammars
Push-Down Automata
Properties of
Context-free
Languages

Parsers and Bison
Turing Machines and
Languages of Type 1 and
0

Turing Machines
Unrestricted
Grammars
Linear Bounded
Automata
Properties of
Type-0-languages

Lecture-specific material
Lecture 1

Lecture 2
Lecture 3
Lecture 4
Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18

Bonus Exercises

Selected Solutions
9

Outline

Introduction
Organisation
Formal languages overview
Formal language basics

Regular Languages and Finite
Automata

Scanners and Flex

Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

10

Formal language concepts

Alphabet: finite set Σ of symbols (characters)
▶ {a, b, c}

Word: finite sequence w of characters (string)
▶ ab ̸= ba

Language: (possibly infinite) set L of words
▶ {ab, ba, abc} = {ba, abc, ab}

Formal: L defined precisely
▶ in contrast to natural languages, where there are

borderline cases

11

Some formal languages

Example

▶ (the set of all) names in a phone directory
▶ (the set of all) phone numbers in a phone directory
▶ (the set of all) legal C identifiers
▶ (the set of all) legal C programs
▶ (the set of all) legal HTML 4.01 Transitional documents
▶ the empty set
▶ (the set of all) ASCII strings
▶ (the set of all) Unicode strings

More?

12

Language classes

This course: four classes of different complexity and expressivity
1 regular languages: limited power, but easy to handle

▶ “strings that start with a letter, followed by up to 7 letters or digits”
▶ legal C identifiers
▶ phone numbers

2 context-free languages: more expressive, but still feasible
▶ “every <token> is matched by </token>”
▶ nested dependencies
▶ (most aspects of) legal C programs
▶ many natural languages (English, German)

Jan says that we
let
the children

help
Hans

paint
the house

Jan sagt, dass wir
die Kinder

dem Hans
das Haus
anstreichen

helfen
ließen

13

Language classes (cont’)
3 context-sensitive languages: even more expressive, difficult to

handle computationally
▶ “every variable has to be declared before it is used”

(arbitrary sequence, arbitrary amounts of code in between)
▶ cross-serial dependencies
▶ (remaining aspects of) legal C programs
▶ most remaining natural languages (Swiss German)

Jan säit das mer
d’chind

em Hans
es huus

lönd
helfe
aastriche

Jan says that we
the children

Hans
the house

let
help

paint

4 recursively enumerable languages: most general (Chomsky)
class; undecidable
▶ all (valid) mathematical theorems (in first-order logic)
▶ programs terminating on a particular input

14

Automata

▶ Automata are formal models for computation
▶ Automata are characterised by

▶ A set of states
▶ Rules for the transition between states
▶ A set of letters or characters (or, for control automata, events)
▶ External memory

▶ Two main applications for automate
▶ Control: process sequences of events
▶ Languages (focus of this course): process finite sequences

(words) of characters

15

Automata and Languages

▶ Automata for language processing. . .
▶ . . . process words
▶ . . . potentially accept words

For every language class discussed in this course, a machine model
exists such that for every language L there is an automaton A(L) that
accepts exactly the words in L.

regular ; finite automaton/finite state machine
context-free ; pushdown automaton
context-sensitive ; linearly bounded Turing machine
recursively enumerable ; (unbounded) Turing machine

16

Example: Finite Automaton

Off On
click

click

States

Initial state Transitions

17

Example: Finite Automaton

Formally:
▶ Q = {Off,On} is the set of states
▶ Σ = {click} is the alphabet
▶ The transition function δ is given by

δ click
Off On
On Off

▶ The initial state is Off

▶ There are no accepting states

Off On
click

click

States

Initial state Transitions

18

ATC scenario
•

Theoretische Grundlagen des Software Engineering

•

Stephan Schulz

3

ATC Center
(controllers)

Aggregator

19

ATC redundancy
•

Theoretische Grundlagen des Software Engineering

•

Stephan Schulz

4

ATC

Sensors

Ser-
ver
B

Aktive server:
- Accepts sensor data
- Provides ASP
- Sends “alive”

messages

Ser-
ver
A

Passive server
- Ignores sensor data
- Monitors “alive”

messages
- Takes over in case of

failure

20

Finite automaton to the rescue

q0 alive

q1

timeout
 alive

q2

timeout

 alive

q3

timeout

 alive

 timeout

▶ Two events (“letters”)
▶ timeout: 0.1 seconds have passed
▶ alive: message from active server

▶ States q0, q1, q2: Server is passive
▶ No processing of input
▶ No sending of alive messages

▶ State q3: Server becomes active
▶ Process input, provide output to ATC
▶ Send alive messages every 0.1

seconds

21

Exercise: Finite automaton

q0

b

q1
e

q2g

q4
n

q3
i

n

d

Does this automaton accept the words begin, end, bind, bend?

22

Turing Machine

“Universal computer”
▶ Very simple model of a computer

▶ Infinite tape, one read/write head
▶ Tape can store letters from a alphabet
▶ Finite automaton controls read/write and

movement operations
▶ Very powerful model of a computer

▶ Can compute anything any real computer
can compute

▶ Can compute anything an “ideal” real
computer can compute

▶ Can compute everything a human can
compute (?)

23

Formal grammars

Formalism to generate (rather than accept) words over alphabet
terminal symbols: may appear in the produced word (alphabet)

non-terminal symbols: may not appear in the produced word
(temporary symbols)

production rules: l→ r means: l can be replaced by r anywhere
in the word

Example

Grammar for arithmetic expressions over {0, 1}

Σ = {0, 1,+, ·, (,)}
N = {E}
P = {E → 0,E → 1,

E → (E)
E → E + E
E → E · E}

24

Exercise: Grammars

Using
▶ the non-terminal symbols S,B,D,E,G, I,N

▶ the terminal symbols b, d, e, g, i, n

▶ the production rules S→ BEGIN,
BEG→ E, IN → IND, IN → N,EG→ EGG,GGG→ B,
B→ b,D→ d,E → e,G→ g, I → i,N → n

can you generate the words bend and end starting from the symbol S?

▶ If yes, how many steps do you need?
▶ If no, why not?

25

Questions about formal languages

▶ For a given language L, how can we find
▶ a corresponding automaton AL?
▶ a corresponding grammar GL?

▶ What is the simplest automaton for L?
▶ “simplest” meaning: weakest possible language class
▶ “simplest” meaning: least number of elements

▶ How can we use formal descriptions of languages for compilers?
▶ detecting legal words/reserved words
▶ testing if the structure is legal
▶ understanding the meaning by analysing the structure

26

More questions about formal languages

Closure properties: if L1 and L2 are in a class, does this also hold for
▶ the union of L1 and L2,
▶ the intersection of L1 and L2,
▶ the concatenation of L1 and L2,
▶ the complement of L1?

Decision problems: for a word w and languages L1 and L2 (given by
grammars or automata),
▶ does w ∈ L1 hold?
▶ is L1 finite?
▶ is L1 empty?
▶ does L1 = L2 hold?

27

Abandon all hope. . .

28

Example applications for formal languages and
automata

▶ HTML and web browsers
▶ Speech recognition and understanding grammars
▶ Dialog systems and AI (Siri, Alexa, Hey Google, Watson)
▶ Regular expression matching
▶ Compilers and interpreters of programming languages

End lecture 1

29

Outline

Introduction
Organisation
Formal languages overview
Formal language basics

Regular Languages and Finite
Automata

Scanners and Flex

Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

30

Alphabets

Definition (Alphabet)

An alphabet Σ is a finite, non-empty set of characters (symbols,
letters).

Σ = {c1, . . . , cn}

Example

1 Σbin = {0, 1} can express integers in the binary system.
2 The English language is based on Σen = {a, . . . ,z,A, . . . ,Z}.
3 ΣASCII = {0, . . . , 127} represents the set of ASCII characters

[American Standard Code for Information Interchange] coding
letters, digits, and special and control characters.

31

Alphabets: ASCII code chart

32

Words

Definition (Word)

▶ A word over the alphabet Σ is a finite sequence (list) of
characters of Σ:

w = c1 . . . cn with c1, . . . , cn ∈ Σ.

▶ The empty word with no characters is written as ε.
▶ The set of all words over an alphabet Σ is represented by Σ∗.

In programming languages, words are often referred to as strings.

33

Words

Example

1 Using Σbin, we can define the words w1,w2 ∈ Σ∗
bin:

w1 = 01100 and w2 = 11001

2 Using Σen, we can define the word w ∈ Σ∗
en:

w = example

34

Properties of words

Definition (Length, character access)

▶ The length |w| of a word w is the number of characters in w.
▶ The number of occurrences of a character c in w is denoted as
|w|c.

▶ The individual characters within words are accessed using w[i]
with i ∈ {1, 2, . . . , |w|}.

Example

▶ |example| = 7 and |ε| = 0

▶ |example|e = 2 and |example|k = 0

▶ example[4] = m

35

Appending words

Definition (Concatenation of words)

For words w1 and w2, the concatenation w1 · w2 is defined as w1
followed by w2.

w1 · w2 is often simply written as w1w2.

Example

Let w1 = 01 and w2 = 10.
Then the following holds:

w1w2 = 0110 and w2w1 = 1001

36

Iterated concatenation

We denote the set of natural numbers {0, 1, . . .} by N.

Definition (Power of a word)

For n ∈ N, the n-th power wn of a word w concatenates the same word
n times:

w0 = ε

wn = wn−1 · w if n > 0

Example

Let w = ab. Then:

w0 = ε

w1 = ab

w3 = ababab
37

Exercise: Operations on words

Given the alphabet Σ = {a, b, c} and the words
▶ u = abc

▶ v = aa

▶ w = cb

what is denoted by the following expressions?
1 u2 · w
2 v · ε · w · u0

3 |u3|a
4 v · a2 · (v[4])
5 (v · a2 · v)[4]
6 |w0|
7 |w0 · w|

38

Formal languages

Definition (Formal language)

For an alphabet Σ, a formal language over Σ is a subset L ⊆ Σ∗.

Example

Let LN = {1w | w ∈ Σ∗
bin} ∪ {0}.

Then LN is the set of all words that represent integers using the
binary system (all words starting with 1 and the word 0):

100 ∈ LN but 010 ̸∈ LN.

39

Numeric value of a binary word

Definition (Numeric value)

We define the function
n : LN → N

as the function returning the numeric value of a word in the language
LN. This means
(a) n(0) = 0,
(b) n(1) = 1,
(c) n(w0) = 2 · n(w) for |w| > 0,
(d) n(w1) = 2 · n(w) + 1 for |w| > 0.

40

Prime numbers as a language

Definition (Prime numbers)

We define the language LP as the language representing prime
numbers in the binary system:

LP = {w ∈ LN | n(w) ∈ P}.

One way to formally express the set of all prime numbers is

P = {p ∈ N≥2 | {t ∈ N | ∃k ∈ N : k · t = p} = {1, p}}.

41

C functions as a language

Definition
We define the language LC ⊂ Σ∗

ASCII as the set of all C function
definitions with a declaration of the form:

char∗ f (char∗ x);

(where f and x are legal C identifiers).
Then LC contains the ASCII code of all those definitions of C
functions processing and returning a string.

Examples

▶ char* f(char* x){return x;} ∈ LC

▶ char* f(char* x){return "";} ∈ LC

▶ char* f(char* x, int y){return "";} /∈ LC

▶ Harakiri /∈ LC
42

C function evaluations as a language

Definition
Using the alphabet ΣASCII+ = ΣASCII ∪ {†}, we define the universal
language

Lu = {f †x†y | (a) and (b) and (c)} with

(a) f ∈ LC (i.e. f is a C function mapping strings to strings),
(b) x, y ∈ Σ∗

ASCII,
(c) applying f to x terminates and returns y.

Examples

▶ char* f(char* x){return x;}†aaa†aaa ∈ Lu

▶ char* f(char* x){return x;}†aaa†bbb /∈ Lu

▶ char* f(char* x){return "";}†aaa† ∈ Lu
43

Formal languages can be highly complex

Formal languages have a wide scope:
▶ Testing whether a word belongs to

LN is straightforward
▶ The same test for LP is more

complex
▶ The test for LC requires a proper C

parser
▶ Later we will see that there is no

algorithm that will correctly perform
the membership test for Lu

def inN (x) :
i f x== ” 0 ” :

return True
i f x== ” ” :

return False
i f x [0] ! = ” 1 ” :

return False
for c in x [1 :] :

i f c != ” 0 ” and c != ” 1 ” :
return False

return True

44

Abandon all hope. . .

45

Product

Definition (Product of formal languages)

Given an alphabet Σ and the formal languages L1,L2 ⊆ Σ∗, we define
the product

L1 · L2 = {w1 · w2 | w1 ∈ L1,w2 ∈ L2}.

Example

Using the alphabet Σen, we define the languages

L1 = {ab,bc} and L2 = {ac,cb}.

The product is

L1 · L2 = {abac,abcb,bcac,bccb}.

46

Power

Definition (Power of a language)

Given an alphabet Σ, a formal language L ⊆ Σ∗, and an integer
n ∈ N, we define the n-th power of L (recursively) as follows:

L0 = {ε}
Ln = Ln−1 · L

Example

Using the alphabet Σen, we define the language L = {ab,ba}. Thus:

L0 = {ε}
L1 = {ε} · {ab,ba} = {ab,ba}
L2 = {ab,ba} · {ab,ba} = {abab,abba,baab,baba}

47

The Kleene Star operator

Definition (Kleene Star)

Given an alphabet Σ and a formal language L ⊆ Σ∗, we define the
Kleene star operator as

L∗ =
⋃
n∈N

Ln.

Example

Using the alphabet Σen, we define the language L = {a}. Thus:

L∗ = {an | n ∈ N}.

48

Exercise: formal languages

Given
▶ the alphabet Σbin,
▶ the function n(w) mapping binary words to numbers as defined

on page 40, and
▶ the language L = {1},

formally describe the following:
a) the language M = L∗\{ε}
b) the set N = {n(w) | w ∈ M}
c) the language M− = {w | n(w)− 1 ∈ N}
d) the language M+ = {w | n(w) + 1 ∈ N}

Hinweis: N ̸= N

49

Outline

Introduction
Regular Languages and Finite
Automata

Regular Expressions
Finite Automata
The Pumping Lemma
Properties of Regular Languages

Scanners and Flex

Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

50

Outline

Introduction
Regular Languages and Finite
Automata

Regular Expressions
Finite Automata
The Pumping Lemma
Properties of Regular Languages

Scanners and Flex

Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

51

Regular expressions

Compact and convenient way to represent a set of strings
▶ Characterize tokens for compilers
▶ Describe search terms for a database
▶ Filter through genomic data
▶ Extract URLs from web pages
▶ Extract email addresses from web pages

The set of all regular expressions (over an alphabet)
is a formal language

Each single regular expression describes a formal language

52

Introductory Examples

Consider Σbin = {0, 1}. With regular expressions we can conveniently
and rigorously describe many languages:
▶ 1(0 + 1)∗ – all words beginning with a 1 (also known as LN\{0})
▶ 11∗ – all words consisting of one ore more letters 1 (M from the

last exercise)
▶ 0(10)∗ + (10)∗ + 1(01)∗ + (01)∗ – the language of all words where

no two subsequent characters are the same

53

Reminder: Power sets

Definition (Power set of a set)

▶ Assume a set S. Then the power set of S, written as 2S, is the set
of all subsets of S.

▶ In particular, if Σ is an alphabet, 2Σ
∗

is the set of all subsets of Σ∗

and hence the set of all possible formal languages over Σ.

Example

2Σbin = 2{0,1} = {{}, {0}, {1}, {0,1}},
2Σ

∗
bin = 2{ε,0,1,00,01,...}

= {{}, {ε}, {0}, {1}, {00}, {01}, . . .
. . . {ε,0}, {ε,1}, {ε,00}, {ε,01}, . . .
. . . {010,1110,10101}, . . .}.

54

Regular expressions and formal languages

A regular expression over Σ. . .
▶ . . . is a word over the extended alphabet Σ ∪ {∅, ε,+, ·, ∗, (,)}

▶ Note that we implicitly assume that {∅, ε,+, ·, ∗, (,)} ∩ Σ = {}
▶ ∅ denotes a regular expression (syntax)
▶ {} denotes the empty set (semantics)

▶ . . . describes a formal language over Σ

Terminology

The following terms are defined on the next slides:
▶ RΣ is the set of all regular expressions over the alphabet Σ.
▶ The function L : RΣ → 2Σ

∗
assigns a formal language L(r) ⊆ Σ∗

to each regular expression r.

55

Regular expressions and their languages (1)

Definition (Regular expressions)

The set of regular expressions RΣ over the alphabet Σ is defined as
follows:

1 The regular expression ∅ denotes the empty language.
∅ ∈ RΣ and L(∅) = {}

2 The regular expression ε denotes the language containing only
the empty word.
ε ∈ RΣ and L(ε) = {ε}

3 Each symbol in the alphabet Σ is a regular expression.
c ∈ Σ⇒ c ∈ RΣ and L(c) = {c}

56

Regular expressions and their languages (2)

Definition (Regular expressions (cont’))

4 The operator + denotes the union of the languages of r1 and r2.
r1 ∈ RΣ, r2 ∈ RΣ ⇒ r1 + r2 ∈ RΣ and L(r1 + r2) = L(r1) ∪ L(r2)

5 The operator · denotes the product of the languages of r1 and r2.
r1 ∈ RΣ, r2 ∈ RΣ ⇒ r1 · r2 ∈ RΣ and L(r1 · r2) = L(r1) · L(r2)

6 The Kleene star of a regular expression r denotes the Kleene
star of the language of r.
r ∈ RΣ ⇒ r∗ ∈ RΣ and L(r∗) = (L(r))∗

7 Brackets can be used to group regular expressions without
changing their language.
r ∈ RΣ ⇒ (r) ∈ RΣ and L((r)) = L(r)

57

Equivalence of regular expressions

Definition (Equivalence and precedence)

▶ Two regular expressions r1 and r2 are equivalent if they denote
the same language: r1

.
= r2 if and only if L(r1) = L(r2)

▶ The operators have the following precedence:
(. . .) > ∗ > · > +

▶ The product operator · can be omitted.

Example

a + b · c∗ .
= a + (b · (c∗))

ac + bc∗ .
= a · c + b · c∗

Note: Some authors (and tools) use | as the union operator.
58

Examples for regular expressions

Example

Let Σabc = {a,b,c}.
▶ The regular expression r1 = (a+ b+ c)(a+ b+ c)

describes all the words of exactly two symbols:

L(r1) = {w ∈ Σ∗
abc

∣∣ |w| = 2}

▶ The regular expression r2 = (a+ b+ c)(a+ b+ c)∗

describes all the words of one or more symbols:

L(r2) = {w ∈ Σ∗
abc

∣∣ |w| ≥ 1}

59

Exercise: regular expressions

1 Using the alphabet Σabc = {a,b,c}, give a regular expression r1
for all the words w ∈ Σ∗

abc containing exactly one a or exactly
one b.

2 Formally describe L(r1) as a set.
3 Using the alphabet Σabc = {a,b,c}, give a regular expression r2

for all the words containing at least one a and at least one b.
4 Using the alphabet Σbin = {0,1}, give a regular expression for all

the words whose third last symbol is 1.
5 Using the alphabet Σbin, give a regular expression for all the

words not containing the string 110.
6 Which language is described by the regular expression

r6 = (1+ ε)(00∗1)∗0∗?

End lecture 2

60

Algebraic operations on regular expressions

Theorem

1 r1 + r2
.
= r2 + r1 (commutative law)

2 (r1 + r2) + r3
.
= r1 + (r2 + r3) (associative law)

3 (r1r2)r3
.
= r1(r2r3) (associative law)

4 ∅r .
= ∅ and r∅ .

= ∅
5 εr .

= r and rε .
= r

6 ∅+ r .
= r

7 (r1 + r2)r3
.
= r1r3 + r2r3 (distributive law)

8 r1(r2 + r3)
.
= r1r2 + r1r3 (distributive law)

61

Proof of some rules

Proof of Rule 1 (r1 + r2
.
= r2 + r1).

L(r1 + r2) = L(r1) ∪ L(r2) = L(r2) ∪ L(r1) = L(r2 + r1)

Proof of Rule 4 (∅r .
= ∅).

L(∅r) Def. concat
= L(∅) · L(r)

Def. empty regexp
= {} · L(r)

Def. product
= {w1w2 | w1 ∈ {},w2 ∈ L(r)}
= {}

Def. empty regexp
= L(∅)

62

Algebraic operations on regular expressions (cont.)

Theorem

9 r + r .
= r

10 (r∗)∗ .
= r∗

11 ∅∗ .
= ε

12 ε∗
.
= ε

13 r∗ .
= ε+ r∗r

14 r∗ .
= (ε+ r)∗

15 ε ̸∈ L(s) and r .
= rs + t −→ r .

= ts∗ (proof by Arto Salomaa)
16 r∗r .

= rr∗ (see Lemma: Kleene Star below)
17 ε ̸∈ L(s) and r .

= sr + t −→ r .
= s∗t (Arden’s Lemma)

63

Lemma: Kleene Star (1)

Lemma (Kleene Star)

u∗u .
= uu∗

Proof of Case 1: ε /∈ L(u).
u∗u .

= (ε+ u∗u)u (by 13. (r)∗ .
= ε+ (r)∗r)

.
= (u∗u + ε)u (by 1. r1 + r2

.
= r2 + r1)

.
= u∗uu + u (by 7. (r1 + r2)r3

.
= r1r3 + r2r3)

.
= uu∗ (by 15. r .

= rs + t with r = u∗u, s = u, t = u)

64

Lemma: Kleene Star (2)

Proof of Case 2: ε ∈ L(u).

We show L(u∗u) = L(u∗) = L(uu∗)

a) Proof of L(u∗u) ⊆ L(u∗)
L(u∗u) = L(u∗) · L(u)
= (L(u))∗ · L(u)
= (

⋃
i≥0 L(u)i) · L(u)

=
⋃

i≥0(L(u)
i · L(u))

=
⋃

i≥1 L(u)i

⊆ L(u∗)

b) Proof of L(u∗u) ⊇ L(u∗)
L(u∗u) = {tv | t ∈ L(u∗), v ∈ L(u)}
⊇ {tv | t ∈ L(u∗), v = ε}
= {t | t ∈ L(u∗)}
= L(u∗)

▶ a) and b) imply L(u∗u) = L(u∗)

▶ L(uu∗) = L(u∗): strictly analoguous

65

A note on Arto/Arden

▶ Arto: ε ̸∈ L(s) and r .
= rs + t −→ r .

= ts∗

▶ Why do we need ε ̸∈ L(s)?
▶ This guarantees that only words of the form ts∗ are in L(r)
▶ Example: r .

= rs + t with s = b∗, t = a.
▶ If we could apply Arto, the result would be r .

= a(b∗)∗
.
= ab∗

▶ But L = {ab∗} ∪ {b∗} also fulfills the equation, i.e. there is no single
unique solution in this case

▶ Intuitively: ε ∈ L(s) is a second escape from the recursion that
bypasses t

▶ The case for Arden’s lemma (ε ̸∈ L(s) and r .
= sr + t −→ r .

= s∗t)
is analoguous

66

Exercise: Algebra on regular expressions

1 Prove the equivalence using only algebraic operations:

r∗ .
= ε+ r∗.

2 Simplify the regular expression s using only algebraic operations:

s = 0(ε+ 0+ 1)∗ + (ε+ 1)(1+ 0)∗ + ε.

3 Prove the equivalence using only algebraic equivalences:

10(10)∗
.
= 1(01)∗0.

Solutions

End lecture 3

67

Outline

Introduction
Regular Languages and Finite
Automata

Regular Expressions
Finite Automata
The Pumping Lemma
Properties of Regular Languages

Scanners and Flex

Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

68

Finite Automata: Motivation

▶ Simple model of computation
▶ Can recognize regular languages
▶ Equivalent to regular expressions

▶ We can automatically generate a FA from a RE
▶ We can automatically generate an RE from an FA

▶ Two variants:
▶ Deterministic (DFA, now)
▶ Non-deterministic (NFA, later)

▶ Easy to implement in actual programs

69

Deterministic Finite Automata: Idea

i n p u t

Deterministic finite automaton (DFA)
▶ is in one of finitely many states
▶ starts in the initial state
▶ processes input from left to right

▶ changes state depending on
character read

▶ determined by transition function
▶ no rewinding!
▶ no writing!

▶ accepts input if
▶ after reading the entire input
▶ an accepting state is reached

70

DFA A for a∗ba∗

Example (Automaton A)

A is a simple DFA recognizing the regular language a∗ba∗.

0 1

a

2
bb

a a, b

▶ A has three states, 0, 1 and 2.
▶ It operates on the alphabet {a, b}.
▶ The transition function is indicated by the arrows.
▶ 0 is the initial state (with an arrow pointing at it out of nowhere).
▶ 1 is an accepting state (represented as a double circle).
▶ 2 is also called a junk state (once it is reached, the word can

never be accepted).
71

DFA: formal definition

Definition (Deterministic Finite Automaton)

A deterministic finite automaton (DFA) is a quintuple
A = (Q,Σ, δ, q0,F) with the following components
▶ Q is a finite set of states.
▶ Σ is the (finite) input alphabet.
▶ δ : Q× Σ→ Q is the transition function.
▶ q0 ∈ Q is the initial state.
▶ F ⊆ Q is the set of final (or accepting) states.

Notes:
▶ δ is a total function – there has to be a transition from every state

for every letter
▶ . . . but automata with partial transition functions can be “repaired”

into a proper DFA by adding a junk state
72

Formal definition of A

Example

0 1

a

2
bb

a a, b

A is expressed as (Q,Σ, δ, q0,F) with
▶ Q = {0, 1, 2}
▶ Σ = {a,b}
▶ δ(0,a) = 0; δ(0,b) = 1, δ(1,a) = 1; δ(1,b) = δ(2,a) = δ(2,b) = 2

▶ q0 = 0

▶ F = {1}

73

Language accepted by an DFA

Definition (Language accepted by an automaton)

The state transition function δ is generalised to a function δ′ whose
second argument is a word as follows:
▶ δ′ : Q× Σ∗ → Q

▶ δ′(q, ε) = q for every q ∈ Q

▶ δ′(q,wc) = δ(δ′(q,w), c) with c ∈ Σ;w ∈ Σ∗

The language accepted by a DFA A = (Q,Σ, δ, q0,F) is defined as

L(A) = {w ∈ Σ∗ | δ′(q0,w) ∈ F}.

74

Language accepted by A

Example

0 1

a

2
bb

a a, b

▶ δ′(0, aa) = δ(δ′(0, a), a) = δ(δ(δ′(0, ε), a), a) = 0

▶ δ′(1, aaa) = 1

▶ δ′(0, bb) = δ′(1, b) = 2

▶ L(A) = {w ∈ {a, b}∗ | w = anbam and n,m ∈ N}

75

Run of a DFA

Definition (Configuration, Run)

Let A = (Q,Σ, δ, q0,F) be a DFA.

A configuration of A is a pair (q,w) with q ∈ Q and w ∈ Σ∗.

A run of A on a word w = c1 · c2 · · · cn is a sequence of configurations:

((q0, c1 · c2 · · · cn), (q1, c2 · · · cn), . . . , (qn, ε))

where
▶ qi ∈ Q holds for 1 ≤ i ≤ n and
▶ δ(qi−1, ci) = qi holds for 1 ≤ i ≤ n.

A run is accepting if qn ∈ F holds.

The language accepted by A can alternatively be defined as the set
of all words for which there exists an accepting run of A.

76

Exercise: DFA

1 Given this graphical representation of a DFA A:

0

2

b
4

a

3
a,b

b

1
a

a

b

a,b

a) Give a regular expression describing L(A).
b) Give a formal definition of A.

77

Exercise: DFA

2 Give
▶ a regular expression,
▶ a graphical representation of a DFA, and
▶ a formal definition

for the language L ⊂ {a,b}∗ containing all those words featuring
the substring ab

a) at the beginning,
b) at an arbitrary position,
c) at the end.

78

Another example

Example

q0 q3 0,1q1
0

q4

1

q2
0

1

1

0

0,1

Which language is recognized by the DFA?

79

Tabular representation of a DFA

q0 q3 0,1q1
0

q4

1

q2
0

1

1

0

0,1

A = (Q,Σ, δ, q0,F)

▶ Q = {q0, q1, q2, q3, q4}
▶ Σ = {0, 1}
▶ Initial state: q0

▶ F = {q3}

δ 0 1
→ q0 q0 q1 q4

q1 q1 q2 q4

q2 q2 q4 q3

∗ q3 q3 q3 q3

q4 q4 q4 q4

80

DFA: Tabular representation in practice

Delta | 0 1

-> q0 | q1 q4

q1 | q2 q4
q2 | q4 q3

* q3 | q3 q3
q4 | q4 q4

> easim.py fsa001.txt 10101
Processing: 10101
q0 :: 1 -> q4
q4 :: 0 -> q4
q4 :: 1 -> q4
q4 :: 0 -> q4
q4 :: 1 -> q4
Rejected

> easim.py fsa001.txt 101
Processing: 101
q0 :: 1 -> q4
q4 :: 0 -> q4
q4 :: 1 -> q4
Rejected

81

DFAs in tabular form: exercise

▶ Give the following DFA . . .
▶ as a formal 5-tuple
▶ as a diagram

parity | 0 1

-> even | even odd

* odd | odd even

▶ Characterize the language accepted by the DFA

82

DFA exercise

▶ Assume
▶ Σ = {a, b, c}
▶ L1 = {ubw | u ∈ Σ∗,w ∈ Σ}
▶ L2 = {ubw | u ∈ Σ,w ∈ Σ∗}

▶ Group 1 (your family name starts with A-M):
Find a DFA A with L(A) = L1

▶ Group 2 (your family name does not start with A-M):
Find a DFA A with L(A) = L2

End lecture 4

83

Outline

Introduction
Regular Languages and Finite
Automata

Regular Expressions
Finite Automata

Non-Determinism
Regular expressions and Finite Automata
Minimisation
Equivalence

The Pumping Lemma
Properties of Regular Languages

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

84

Drawbacks of deterministic automata

Deterministic automata:
▶ Transition function δ

▶ exactly one transition from every configuration
▶ can be complex even for simple languages

Example (DFA A for (a+ b)∗b(a+ b)(a+ b))

q0

q3

a

q1

b

q5
q2

a
q4b

q6

a

b

q7

a
b

a

b

a

b

a

b

a

b

85

Non-Determinism

▶ FA can be simplified if one input can lead to
▶ one transition,
▶ multiple transitions, or
▶ no transition.

▶ Intuitively, such an FA selects its next state from a set of states
depending on the current state and the input
▶ and always chooses the “right” one

▶ This is called a non-deterministic finite automaton (NFA)

Example (NFA B for (a+ b)∗b(a+ b)(a+ b))

q0 q3

a,b

q1
b q2

a,b a,b

86

Non-Deterministic automata

Example (Transitions in B)

q0 q3

a,b

q1
b q2

a,b a,b

▶ In state q0 with input b, the FA has to “guess” the next state.
▶ The string abab can be read in three ways:

1 q0
a7→ q0

b7→ q0
a7→ q0

b7→ q0 (failure)
2 q0

a7→ q0
b7→ q0

a7→ q0
b7→ q1 (failure)

3 q0
a7→ q0

b7→ q1
a7→ q2

b7→ q3 (success)

▶ An NFA accepts an input w if there exists an accepting run on w!

87

NFA: non-deterministic transitions and ε-transitions

▶ Non-deterministic transitions allow an NFA to go to more than
one successor state
▶ Instead of a function δ, an NFA has a transition relation ∆

▶ An NFA can additionally change its current state without reading
an input symbol: q1

ε7→ q2.

▶ This is called a spontaneous transition or ε-transition
▶ Thus, ∆ is a relation on Q× (Σ ∪ {ε})× Q

Example (NFA with ε-transitions)

q0 q7

ε

q1
ε

q2

ε

q3
b

q4
a

q5
a

q6
b

ε

ε

88

NFA: Formal definition

Definition (NFA)

An NFA is a quintuple A = (Q,Σ,∆, q0,F) with the following
components:

1 Q is the finite set of states.
2 Σ is the input alphabet.
3 ∆ is a relation over Q× (Σ ∪ {ε})× Q.
4 q0 ∈ Q is the initial state.
5 F ⊆ Q is the set of final states.

89

Run of a nondeteterministic automaton

Definition (Configuration, Run of an NFA)

Let A = (Q,Σ,∆, q0,F) be an NFA.

A configuration of A is a pair (q,w) as for a DFA.

A run of A on a word w0 = c1 · c2 · · · cn is a sequence of transitions

r = ((q0,w0), (q1,w1), . . . , (qm, ε))

such that the following conditions are satisfied:
▶ qi ∈ Q for all 1 ≤ i ≤ m,
▶ if r contains the configurations (qi,wi), (qi+1,wi+1), then

▶ there is a transition (qi, c, qi+1) ∈ ∆ with c ∈ Σ ∪ {ε}
▶ wi = c · wi+1.

The run r is accepting if qm is a final state.

The slightly more complex definition is necessary to handle
ε-transitions.

90

Language recognized by an NFA

Definition (Language recognized by an NFA)

Let A = (Q,Σ,∆, q0,F) be an NFA. The language accepted by A is

L(A) = {w | there is an accepting run of A on w}

Note:
▶ Only existence of one accepting run is required
▶ It does not matter if there are also non-accepting runs on w

91

Example: NFA definition

Example (Formal definition of B)

q0 q3

a,b

q1
b q2

a,b a,b

B = (Q,Σ,∆, q0,F) with
Q = {q0, q1, q2, q3}
Σ = {a,b}
F = {q3}

∆ = {(q0,a, q0), (q0,b, q0), (q0,b, q1),
(q1,a, q2), (q1,b, q2),
(q2,a, q3), (q2,b, q3)}

∆ a b ε

q0 {q0} {q0, q1} {}
q1 {q2} {q2} {}
q2 {q3} {q3} {}
q3 {} {} {}

92

Exercise: NFA

Develop an NFA A whose language L(A) ⊂ {a,b}∗ contains all those
words featuring the substring aba. Give:
▶ a regular expression representing L(A),
▶ a graphical representation of A,
▶ a formal definition of A.

93

Equivalence of DFA and NFA

Theorem (Equivalence of DFA and NFA)

NFAs and DFAs recognize the same class of languages.
▶ For every DFA A there is an an NFA B with L(A) = L(B).
▶ For every NFA B there is an an DFA A with L(B) = L(A).

▶ The direction DFA to NFA is trivial:
▶ Every DFA is (essentially) an NFA
▶ . . . since every function is a relation

▶ What about the other direction?

94

Equivalence of DFA and NFA

Equivalence of DFAs and NFAs can be shown by transforming
▶ an NFA A
▶ into a DFA det(A) accepting the same language.

Method:
▶ states of det(A) represent sets of states of A
▶ a transition from q1 to q2 with character c in det(A) is possible if

▶ in A there is a transition with c
▶ from one of the states that q1 represents
▶ to one of the states that q2 represents.

▶ a state in det(A) is accepting if it contains an accepting state

To this end, we define three auxiliary functions.
▶ ec to compute the ε closure of a state
▶ δ∗ to compute possible successors of a state
▶ δ̂, the new transition function for the generated DFA

95

Step 1: ε closure of an NFA

The ε closure of a state q contains all states the NFA can change to
by means of ε transitions starting from q.

Definition (ε closure)

The function ec : Q→ 2Q is the smallest function with the properties:
▶ q ∈ ec(q)

▶ p ∈ ec(q) ∧ (p, ε, r) ∈ ∆ ⇒ r ∈ ec(q)

96

Example: ε closure

Example

q0 q7

ε

q1
ε

q2

ε

q3
b

q4
a

q5
a

q6
b

ε

ε

▶ ec(q0) = {q0, q1, q2},
▶ ec(q1) = {q1},
▶ ec(q2) = {q2},
▶ ec(q3) = {q3},

▶ ec(q4) = {q4},
▶ ec(q5) = {q5, q7, q0, q1, q2},
▶ ec(q6) = {q6, q7, q0, q1, q2},
▶ ec(q7) = {q7, q0, q1, q2}.

97

Step 2: Successor state function for NFAs

The function δ∗ maps
▶ a pair (q, c) (state and character)
▶ to the set of all states the NFA can change to from q with c

▶ followed by any number of ε transitions.

Definition (Successor state function)

The function δ∗ : Q× Σ→ 2Q is defined as follows:

δ∗(q, c) =
⋃

r∈Q : (q,c,r)∈∆

ec(r)

98

Example: successor state function

Example

q0 q7

ε

q1
ε

q2

ε

q3
b

q4
a

q5
a

q6
b

ε

ε

δ∗(q, c) =
⋃

r∈Q : (q,c,r)∈∆

ec(r)

▶ δ∗(q0,a) = {},
▶ δ∗(q1,b) = {q3},
▶ δ∗(q3,a) = {q5, q7, q0, q1, q2},
▶ . . .

99

Step 3: extended transition function

The function δ̂ maps
▶ a pair (M, c) consisting of a set of states M and a character c

▶ to the set N of states that are reachable from any state of M via
∆ by reading the character c

▶ possibly followed by ε transitions.

Definition (Extended transition function)

The function δ̂ : 2Q × Σ→ 2Q is defined as follows:

δ̂(M, c) =
⋃

q∈M

δ∗(q, c).

100

Example: extended transition function

Example

q0 q7

ε

q1
ε

q2

ε

q3
b

q4
a

q5
a

q6
b

ε

ε

▶ δ∗(q0,a) = {}
▶ δ∗(q1,b) = {q3}
▶ δ∗(q3,a) = {q5, q7, q0, q1, q2}
▶ . . .

▶ δ̂({q0, q1, q2},a) = {q4}
▶ δ̂({q3},a) = {q5, q7, q0, q1, q2}
▶ δ̂({q3},b) = {}
▶ . . .

101

Equivalence of DFA and NFA: formal definition

Using the auxiliary functions ec, δ̂, we can define det(A).

Definition
For an NFA A = (Q,Σ,∆, q0,F), the deterministic Automaton det(A)
is defined as

(2Q,Σ, δ̂, ec(q0), F̂)

with F̂ = {M ∈ 2Q | M ∩ F ̸= {}}.

The set of final states F̂ is the set of all subsets of Q containing a final
state.

Remark
In practice, we use a more efficient stepwise construction that only
builds the reachable states, not all of 2Q!

102

Example: transformation into DFA

Example (NFA B for (a+ b)∗b(a+ b)(a+ b))

q0 q3

a,b

q1
b q2

a,b a,b

B = ({q0, q1, q2, q3}, {a, b},∆, q0, {q3})
det(B) = (Q̂, {a, b}, δ̂, S0, F̂)

▶ Initial state: S0 := ec(q0) = {q0}

103

Example: transformation into DFA (cont’)

Example

q0 q3

a,b

q1
b q2

a,b a,b

▶ δ̂(S0,a) = {q0} = S0

▶ δ̂(S0,b) = {q0, q1} =: S1

▶ δ̂(S1,a) = {q0, q2} =: S2

▶ δ̂(S1,b) = {q0, q1, q2} =: S4

▶ δ̂(S2,a) = {q0, q3} =: S3

▶ δ̂(S2,b) = {q0, q1, q3} =: S5

▶ δ̂(S4,a) = {q0, q2, q3} =: S6

▶ δ̂(S4,b) = {q0, q1, q2, q3} =: S7

▶ δ̂(S3,a) = {q0} = S0

▶ δ̂(S3,b) = {q0, q1} = S1

▶ δ̂(S5,a) = {q0, q2} = S2

▶ δ̂(S5,b) = {q0, q1, q2} = S4

▶ δ̂(S6,a) = {q0, q3} = S3

▶ δ̂(S6,b) = {q0, q1, q3} = S5

▶ δ̂(S7,a) = {q0, q2, q3} = S6

▶ δ̂(S7,b) = {q0, q1, q2, q3} = S7

104

Example: transformation into DFA (cont’)

Example

We can now define the DFA det(B) = (Q̂,Σ, δ̂, S0, F̂) as follows:
▶ the set of states Q̂ = {S0, · · · , S7},
▶ the state transition function δ̂ is:

δ̂ S0 S1 S2 S3 S4 S5 S6 S7

a S0 S2 S3 S0 S6 S2 S3 S6

b S1 S4 S5 S1 S7 S4 S5 S7

▶ and the set of final states F̂ = {S3, S5, S6, S7}.

105

Example: transformation into DFA (cont’)

q0

q3

a

q1

b

q5
q2

a
q4b

q6

a

b

q7

a
b

a

b

a

b

a

b

a

b

106

Exercise: Transformation into DFA

Given the following NFA A:

q0 q7

ε

q1
ε

q2

ε

q3
b

q4
a

q5
a

q6
b

ε

ε

a) Determine det(A).
b) Draw det(A)’s graphical representation
c) Give a regular expression representing the same language as A.

Solution End lecture 5

107

Outline

Introduction
Regular Languages and Finite
Automata

Regular Expressions
Finite Automata

Non-Determinism
Regular expressions and Finite Automata
Minimisation
Equivalence

The Pumping Lemma
Properties of Regular Languages

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

108

Regular expressions and Finite Automata

▶ Regular expressions describe regular languages
▶ For each regular language L, there is an regular expression r with

L(r) = L
▶ For every regular expression r, L(r) is a regular language

▶ Finite automata describe regular languages
▶ For each regular language L, there is a FA A with L(A) = L
▶ For every finite automaton A, L(A) is a regular language

▶ Now: constructive proof of equivalence between REs and FAs
▶ We already know that DFAs and NFAs are equivalent
▶ Now: Equivalence of NFAs and REs

109

Transformation of regular expressions into NFAs

▶ For a regular expression r, derive NFA A(r) with L(A(r)) = L(r).
▶ Idea:

▶ Construct NFAs for the elementary REs (∅, ε, c ∈ Σ)
▶ We combine NFAs for subexpressions to generate NFAs for

composite REs
▶ All NFAs we construct have a number of special properties:

▶ There are no transitions to the initial state.
▶ There is only a single final state.
▶ There are no transitions from the final state.

We can easily achieve this with ε-transitions!

110

Reminder: Regular Expression

Let Σ be an alphabet.
▶ The elementary regular expressions over Σ are:

▶ ∅ with L(∅) = {}
▶ ε with L(ε) = {ε}
▶ c ∈ Σ with L(c) = {c}

▶ Let r1 and r2 be regular expressions over Σ.
Then the following are also regular expressions over Σ:
▶ r1 + r2 with L(r1 + r2) = L(r1) ∪ L(r2)
▶ r1 · r2 with L(r1 · r2) = L(r1) · L(r2)
▶ r∗1 with L(r∗1) = (L(r1))

∗

111

NFAs for elementary REs

Let Σ be the alphabet which r is based on.
1 A(∅) = ({q0, q1},Σ, {}, q0, {q1})

q0 q1

2 A(ε) = ({q0, q1},Σ, {(q0, ε, q1)}, q0, {q1})

q0 q1
ε

3 A(c) = ({q0, q1},Σ, {(q0, c, q1)}, q0, {q1}) for all c ∈ Σ

q0 q1
c

112

NFAs for composite REs (general)

▶ Assume in the following:
▶ A(r1) = (Q1,Σ,∆1, q1, {q2})
▶ A(r2) = (Q2,Σ,∆2, q3, {q4})
▶ Q1 ∩ Q2 = {}
▶ q0, q5 /∈ Q1 ∪ Q2

▶ A(r1) is visualised by a square box with two explicit states
▶ The initial state q1 is on the left
▶ The unique accepting state q2 on the right
▶ All other states and transitions are implicit
▶ We mark initial/accepting states only for the composite automaton

A(r1)

q1 q2

113

NFAs for composite REs (concatenation)

4 A(r1 · r2) = (Q1 ∪ Q2,Σ,∆1 ∪∆2 ∪ {(q2, ε, q3)}, q1, {q4})

A(r1) A(r2)

q1 q2 q3
ε q4

Reminder:
▶ A(r1) = (Q1,Σ,∆1, q1, {q2})
▶ A(r2) = (Q2,Σ,∆2, q3, {q4})

114

NFAs for composite REs (alternatives)

5 A(r1 + r2) = ({q0, q5} ∪ Q1 ∪ Q2,Σ,∆, q0, {q5})
∆ = ∆1 ∪∆2 ∪ {(q0, ε, q1), (q0, ε, q3), (q2, ε, q5), (q4, ε, q5)}

A(r1)

A(r2)
q0

q1
ε

q3

ε

q2

q5

ε

q4

ε

Reminder:
▶ A(r1) = (Q1,Σ,∆1, q1, {q2})
▶ A(r2) = (Q2,Σ,∆2, q3, {q4})

115

NFAs for composite REs (Kleene Star)

6 A(r∗1) = ({q0, q5} ∪ Q1,Σ,∆, q0, {q5})
∆ = ∆1 ∪ {(q0, ε, q1), (q2, ε, q1), (q0, ε, q5), (q2, ε, q5)}

A(r1)

q0

q1ε

q5ε

q2
ε

ε

Reminder:
▶ A(r1) = (Q1,Σ,∆1, q1, {q2})

116

Result: NFAs can simulate REs

The previous construction produces for each regular expression r an
NFA A with L(A) = L(r).

Corollary

Every language described by a regular expression can be accepted
by a non-deterministic finite automaton.

117

Exercise: transformation of RE into NFA

▶ Systematically construct an NFA accepting the same language
as the regular expression

(a+ b)a∗b

▶ Find arbitrary w1,w2 ∈ L((a+ b)a∗b) with |w1|, |w2| ≥ 5 and find
an accepting run for each

Solution

118

Overview and orientation

▶ Claim: NFAs, DFAs and REs all
describe the same language class

▶ Previous transformations:
▶ REs into equivalent NFAs
▶ NFAs into equivalent DFAs
▶ (DFAs to equivalent NFAs)

Todo: convert DFA to equivalent RE

▶ Given a DFA A,
derive a regular expression r(A)
accepting the same language:

L(r(A)) = L(A)

NFADFA

RE

119

Convert DFA into RE

▶ Goal: transform DFA A = (Q,Σ, δ, q0,F)
into RE r(A) with L(r(A)) = L(A)

▶ Idea:
▶ For each state q generate an equation describing the language Lq

▶ that is accepted when starting from q,
▶ depending on the languages accepted at neighbouring states.

▶ Method:
▶ For each transition with c to q′: generate alternative c · Lq′

▶ For final states: additionally ε

▶ Solve the resulting system for Lq0

▶ Result: RE describing Lq0 = L(A)
▶ Convention:

▶ States are named {0, 1, . . . , n}
▶ Initial state is 0

120

Convert DFA to RE: Example

0

2

b

3

a

b

1
a

b

a

a,b

▶ L0
.
= aL1 + bL2

▶ L1
.
= aL1 + bL2

▶ L2
.
= aL3 + bL0 + ε

▶ L3
.
= (a + b)L3

4 equations, 4 unknowns

What now?

121

Insert: Arden’s Lemma

Lemma:

ε ̸∈ L(s) and r .
= sr + t −→ r .

= s∗t

Compare Arto Salomaa:

ε ̸∈ L(s) and r .
= rs + t −→ r .

= ts∗

Arden, Dean N.:
Delayed-logic
and finite-state
machines,
Proceedings of
the Second
Annual
Symposium on
Switching
Circuit Theory
and Logical
Design, 1961,
pp. 133–151,
IEEE

122

Convert DFA to RE: Example

0

2

b

3

a

b

1
a

b

a

a,b

▶ L0
.
= aL1 + bL2

▶ L1
.
= aL1 + bL2

▶ L2
.
= aL3 + bL0 + ε

▶ L3
.
= (a + b)L3

L3
.
= (a + b)L3 + ∅ [neutral el.]
.
= (a + b)∗∅ [Arden]
.
= ∅ [absorbing el.]

L2
.
= a∅+ bL0 + ε [replace L3]
.
= ∅+ bL0 + ε [absorbing el.]
.
= bL0 + ε [neutral el.]

L1
.
= aL1 + b(bL0 + ε) [replace L2]
.
= a∗b(bL0 + ε) [Arden]

123

Convert DFA to RE: Example (continued)

0

2

b

3

a

b

1
a

b

a

a,b

▶ L0
.
= aL1 + bL2

▶ L1
.
= a∗b(bL0 + ε)

▶ L2
.
= bL0 + ε

▶ L3
.
= ∅

L0
.
= a(a∗b(bL0 + ε)) + b(bL0 + ε) [replace L1,L2]
.
= aa∗bbL0 + aa∗b + bbL0 + b [dist.]
.
= (aa∗bb + bb)L0 + aa∗b + b [comm.,dist.]
.
= (aa∗bb + bb)∗(aa∗b + b) [Arden]
.
= ((aa∗ + ε)bb)∗((aa∗ + ε)b) [dist.]
.
= (a∗bb)∗(a∗b) [rr∗ + ε

.
= r∗]

Therefore: L(A) = L((a∗bb)∗(a∗b))
124

Exercise: conversion from DFA to RE

Transform the following DFA into a regular expression accepting the
same language:

q0 q2

b

a

b

q1

a a
b

125

Resume: Finite automata and regular expressions

▶ We have learned how to convert
▶ REs to equivalent NFAs
▶ NFAs to equivalent DFAs
▶ (DFAs to equivalent NFAs)
▶ DFAs to equivalent REs

REs, NFAs and DFAs describe the
same class of languages –

regular languages!

NFADFA

RE

126

End lecture 6

127

Outline

Introduction
Regular Languages and Finite
Automata

Regular Expressions
Finite Automata

Non-Determinism
Regular expressions and Finite Automata
Minimisation
Equivalence

The Pumping Lemma
Properties of Regular Languages

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

128

Efficient Automata: Minimisation of DFAs

Given the DFA
A = (Q,Σ, δ, q0,F),

we want to derive a DFA

A− = (Q−,Σ, δ−, q0,F−),

accepting the same language:

L(A) = L(A−)

for which the number of states (elements of Q−) is minimal, i.e. there
is no DFA accepting L(A) with fewer states.

129

Minimisation of DFAs: example/exercise

q0

q1a

q2

b

q3
a,b

q4
a,b

a,b

a,b

How small can we make it?

130

Minimisation of DFAs

Basic idea:
▶ Two states with both

▶ . . . the same acceptance status (accepting/not accepting)
▶ . . . exactly the same transitions

are equivalent and can be merged
▶ This is also true if the transitions are not exactly the same, but

are equivalent

Realisation: For a DFA A = (Q,Σ, δ, q0,F), identify pairs of
necessarily distinct states
▶ Base case: Two states p, q are necessarily distinct if:

▶ one of them is accepting, the other is not accepting
▶ Inductive case: Two states p, q are necessarily distinct if

▶ there is a c ∈ Σ such that δ(p, c) = p′, δ(q, c) = q′

▶ and p′, q′ are already necessarily distinct

131

Identification of distinct/equivalent states

Definition (Necessarily distinct states)

For a DFA A = (Q,Σ, δ, q0,F), V is the smallest set of pairs with
▶ {(p, q) ∈ (Q× Q) | p ∈ F, q /∈ F} ⊆ V

▶ {(p, q) ∈ (Q× Q) | p /∈ F, q ∈ F} ⊆ V

▶ if δ(p, c) = p′, δ(q, c) = q′, (p′, q′) ∈ V for some c ∈ Σ,
then (p, q) ∈ V.

▶ We identifify pairs of necessarily distinct states
▶ Pairs of states that are not necessarily distinct are equivalent

and can be merged

132

Minimisation of DFAs

1 Initialize V with all those pairs for which one member is a final
state and the other is not:

V = {(p, q) ∈ Q× Q | (p ∈ F ∧ q ̸∈ F) ∨ (p ̸∈ F ∧ q ∈ F)}.

2 While there exists
▶ a new pair of states (p, q) and a symbol c
▶ such that the states δ(p, c) and δ(q, c) are necessarily distinct,
▶ add this pair and its inverse to V:

while(∃(p, q) ∈ Q× Q ∃c ∈ Σ | (δ(p, c), δ(q, c)) ∈ V ∧ (p, q) ̸∈ V)
{

V = V ∪ {(p, q), (q, p)}
}

133

Minimisation of DFAs: merging States

▶ If there is a pair of states (p, q) such that for every word w ∈ Σ∗

▶ reading w results in equivalent successor states,
▶ then p and q are equivalent.

(p, q) /∈ V ⇒ ∀w ∈ Σ∗ : δ(p,w) and δ(q,w)) are indistinguishable.

▶ Equivalent states p, q can be merged
▶ Replace all transitions to p by transitions to q
▶ Remove p

▶ This process can be iterated to identify and merge all pairs of
equivalent states

134

Minimisation of DFAs: example

We want to minimize this DFA with 5 states:

q0

q1a

q2

b

q3
a,b

q4
a,b

a,b

a,b

135

Minimisation of DFAs: example (cont.)

This is the formal definition of the DFA:

A = (Q,Σ, δ, q0,F)

with
1 Q = {q0, q1, q2, q3, q4}
2 Σ = {a,b}
3 δ = . . . (skipped to save space, see graph)
4 F = {q3, q4}

Represent the set V by means of a two-dimensional table with
▶ the elements of Q as columns and rows
▶ the elements of V are marked with ×
▶ pairs that are definitely not members of V are marked with ◦

136

Minimisation of DFAs: example (cont.)

1 the initial state of V is obtained by using F = {q3, q4} and
Q\F = {q0, q1, q2}:

q0 q1 q2 q3 q4

q0 × ×
q1 × ×
q2 × ×
q3 × × ×
q4 × × ×

q0

q1a

q2

b

q3
a,b

q4
a,b

a,b

a,b

137

Minimisation of DFAs: example (cont.)

2 The elements of {(qi, qi) | i ∈ {0, · · · , 4} are not contained in V
since every state is equivalent to itself:

q0 q1 q2 q3 q4

q0 ◦ × ×
q1 ◦ × ×
q2 ◦ × ×
q3 × × × ◦
q4 × × × ◦

q0

q1a

q2

b

q3
a,b

q4
a,b

a,b

a,b

There are eight remaining empty fields. Since the table is symmetric,
four pairs of states have to be checked.

138

Minimisation of DFAs: example (cont.)

3 Check the transitions of every
remaining state-pair for every letter.

q0

q1a

q2

b

q3
a,b

q4
a,b

a,b

a,b

1 δ(q0,a) = q1; δ(q1,a) = q3; (q1, q3) ∈ V → (q0, q1), (q1, q0) ∈ V
2 δ(q0,a) = q1; δ(q2,a) = q4; (q1, q4) ∈ V → (q0, q2), (q2, q0) ∈ V
3 δ(q1,a) = q3; δ(q2,a) = q4; (q3, q4) ̸∈ V (as of yet)

δ(q1,b) = q3; δ(q2,b) = q4; (q3, q4) ̸∈ V (as of yet)
4 δ(q3,a) = q1; δ(q4,a) = q2; (q1, q2) ̸∈ V (as of yet)

δ(q3,b) = q1; δ(q4,b) = q2; (q1, q2) ̸∈ V (as of yet)

139

Minimisation of DFAs: example (cont.)

4 Mark the newly found distinct pairs with ×:

q0 q1 q2 q3 q4

q0 ◦ × × × ×
q1 × ◦ × ×
q2 × ◦ × ×
q3 × × × ◦
q4 × × × ◦

Two pairs remain to be checked.

140

Minimisation of DFAs: example (cont.)

5 Check the remaining pairs.
6 Since no additional necessarily distinct state pairs are found, fill

empty cells with ◦:

q0 q1 q2 q3 q4

q0 ◦ × × × ×
q1 × ◦ ◦ × ×
q2 × ◦ ◦ × ×
q3 × × × ◦ ◦
q4 × × × ◦ ◦

From the table, we can derive the following pairs of equivalent states
(omitting trivial and symmetric ones):
▶ (q1, q2),
▶ (q3, q4).

141

Minimisation of DFAs: example (cont.)

▶ This is the minimized DFA after merging equivalent states:

q0 q1
a,b q3

a,b

a,b

142

Minimisation of DFAs: exercise

Derive a minimal DFA accepting the language

L(a(ba)∗).

Solve the exercise in three steps:
1 Derive an NFA accepting L.
2 Transform the NFA into a DFA.
3 Minimize the DFA.

143

Uniqueness of minimal DFA

Theorem (The minimal DFA is unique)

Assume an arbitrary regular language L. Then there is a unique (up
to the the renaming of states) minimal DFA A with L(A) = L.

▶ States can easily be systematically renamed to make equivalent
minimal automata strictly equal

▶ The unique minimal DFA for L can be constructed by minimizing
an arbitrary DFA that accepts L

144

Outline

Introduction
Regular Languages and Finite
Automata

Regular Expressions
Finite Automata

Non-Determinism
Regular expressions and Finite Automata
Minimisation
Equivalence

The Pumping Lemma
Properties of Regular Languages

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

145

Equivalence of regular expressions

▶ Different regular expressions can describe the same language
▶ Algebraic transformation rules can be used to prove equivalence

▶ requires human interaction
▶ can be very difficult
▶ non-equivalence cannot be shown

▶ Now: straight-forward algorithm proving equivalence of REs
based on FA

▶ The algorithm is described in the textbook by John E. Hopcroft,
Rajeev Motwani, Jeffrey D. Ullman: Introduction to Automata
Theory, Languages, and Computation (3rd edition), 2007 (and
earlier editions)

146

Equivalence of regular expressions: algorithm

1 Given the REs r1 and r2, derive NFAs A1 and A2 accepting their
respective languages:

L(r1) = L(A1) and L(r2) = L(A2).

2 Transform the NFAs A1 and A2 into the DFAs D1 and D2.
3 Minimize the DFAs D1 and D2 yielding the DFAsM1 andM2.
4 r1

.
= r2 holds iffM1 andM2 are identical (modulo renaming of

states)

Note: If equivalence can be shown in any intermediate stage of the
algorithm, this is sufficient to prove r1

.
= r2 (e.g. if A1 = A2).

147

Exercise: Equivalence of regular expressions

Reusing an exercise from an earlier section, prove the following
equivalence (by conversion to minimal DFAs):

10(10)∗
.
= 1(01)∗0

Solution End lecture 7

148

Outline

Introduction
Regular Languages and Finite
Automata

Regular Expressions
Finite Automata
The Pumping Lemma
Properties of Regular Languages

Scanners and Flex

Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

149

Non-regular languages

For some simple languages, there is no obvious FA:

Example (Naive automaton A for L = {anbn | n ∈ N})
A has an infinite number of states:

0

1

2
a

b 4
a

3
b

b 6
a

5
b

b ...
a

7
b

b

...
b

▶ Is there a better solution?
▶ If no, how can this be shown?

150

Pumping Lemma: Idea

1 Every regular language L is accepted by a finite
Automaton AL.

2 If L contains arbitrarily long words, then AL must
contain a cycle.
▶ L contains arbitrarily long words iff L is infinite.

3 If AL contains a cycle, then the cycle can be traversed
arbitrarily often (and the resulting word will be
accepted).

Example (Cyclic Automaton C)

0

1

u

2o

r

3m 4a

▶ C accepts uroma
▶ C also accepts ururur...oma

151

The Pumping Lemma

Lemma
Let L be a regular language.
Then there exists a k ∈ N such that for every word s ∈ L with |s| ≥ k
the following holds:

1 ∃u, v,w ∈ Σ∗(s = u · v · w),
i.e. s consists of prolog u, cycle v and epilog w,

2 v ̸= ε,
i.e. the cycle has a length of at least 1,

3 |u · v| ≤ k,
i.e. prolog and cycle combined have a length of at most k,

4 ∀h ∈ N(u · vh · w ∈ L),
i.e. an arbitrary number of cycle transitions results in a word of
the language L.

152

The Pumping Lemma visualised

0

1

u

2o

r

3m 4a

▶ C has 5 states k = 5

▶ uroma has 5 letters s = uroma

▶ There is a segmentation s = u · v · w u = ε v = ur w = oma

▶ such that v ̸= ε v = ur

▶ and |u · v| ≤ k |ε · ur| = 2 ≤ 5

▶ and ∀h ∈ N(u · vh · w ∈ L(C)) (ur)∗oma ⊆ L(C)

153

Using the Pumping Lemma

▶ The Pumping Lemma describes a property of regular languages
▶ If L is regular, then some words can be pumped up.

▶ Goal: proof of irregularity of a language
▶ If L has property X, then L is not regular.

▶ How can the Pumping Lemma help?

Theorem (Contraposition)

A→ B ⇔ ¬B→ ¬A

154

Contraposition of the Pumping Lemma

The Pumping Lemma in formal logic:

reg(L) → ∃k ∈ N ∀s ∈ L : (|s| ≥ k→
∃u, v,w : (s = u · v · w ∧ v ̸= ε ∧ |u · v| ≤ k ∧
∀h ∈ N : (u · vh · w ∈ L)))

Contraposition of the PL:

¬(∃k ∈ N ∀s ∈ L(|s| ≥ k→
∃u, v,w(s = u · v · w ∧ v ̸= ε ∧ |u · v| ≤ k ∧

∀h ∈ N(u · vh · w ∈ L)))) → ¬reg(L)

After pushing negation inward and doing some propositional
transformations:

∀k ∈ N ∃s ∈ L(|s| ≥ k ∧
∀u, v,w(s = u · v · w ∧ v ̸= ε ∧ |u · v| ≤ k →

∃h ∈ N(u · vh · w /∈ L))) → ¬reg(L)

155

What does it mean?

∀k ∈ N ∃s ∈ L(|s| ≥ k ∧
∀u, v,w(s = u · v · w ∧ v ̸= ε ∧ |u · v| ≤ k →

∃h ∈ N (u · vh · w /∈ L))) → ¬reg(L)

If for each natural number k there is a word s with length at least k
and for every segmentation u · v · w of s (with v ̸= ε and |u · v| ≤ k)
there is a number h such that u · vh · w does not belong to L,
then L is not regular.

156

Proving Irregularity for a Language

We have to show:
▶ For every natural number k

▶ For an unspecified
arbitrary natural number k

▶ there is a word s ∈ L
that is longer than k

▶ such that
every segmentation
u · v · w = s
with |u · v| ≤ k and |v| ≠ ε

▶ can be pumped up into a
word u · vh · w /∈ L.

Example (L = anbn)

▶ Choose s = akbk. It follows:

s = ai︸︷︷︸
u

· aj︸︷︷︸
v

· aℓ · bk︸ ︷︷ ︸
w

▶ i + j + ℓ = k
▶ since |u · v| ≤ k holds,

u and v consist only of as
▶ v ̸= ε implies j ≥ 1

▶ Choose h = 0. It follows:
▶ u · vh · w = u · w = ai+ℓbk

▶ j ≥ 1 implies i + ℓ < k
▶ ai+ℓbk /∈ L

157

Regarding quantifiers

Four quantifiers:
▶ In the lemma:

∃k∀s∃u, v,w∀h(u · vh · w ∈ L)

▶ To show irregularity:

∀k∃s∀u, v,w∃h(u · vh · w /∈ L)

To do:
1 Find a word s depending on the length k.
2 Find an h depending on the segmentation u · v · w.
3 Prove that u · vh · w /∈ L holds.

158

Exercise: The Pumping Game

Play the pumping game at http://weitz.de/pump/.

Remark: Weitz uses a slightly stronger variant of the pumping lemma,
where the string uv can be anywhere in the word, not just at the beginning.

159

http://weitz.de/pump/

Exercise: anbm with n < m

Use the pumping lemma to show that

L = {anbm | n < m}
is not regular.

Reminder:
1 Find a word s depending on the length k.
2 Find an h depending on the segmentation u · v · w.
3 Prove that u · vh · w /∈ L holds.

Solution

160

Challenging exercise / homework

Let L be the number containing all words of the form ap where p is a
prime number:

L = {ap | p ∈ P}.
Prove that L is not a regular language.

Hint: let h = p + 1
Solution

161

Practical relevance of irregularity

Finite automata cannot count arbitrarily high.

Examples (Nested dependencies)

C for every { there is a }
XML for every <token> there is a </token>

LATEX for every \begin{env} there is a \end{env}
German for every subject there is a predicate

Erinnern Sie sich,
wie der Krieger,

der die Botschaft,
die den Sieg,

den die Griechen bei Marathon
errungen hatten,

verkündete,
brachte,

starb!

162

Pumping Lemma: Summary

▶ Every regular language is accepted by a DFA A (with k states).
▶ Pumping lemma: words with at least k letters can be pumped up.
▶ If it is possible to pump up a word w ∈ L and obtain a word

w′ /∈ L, then L is not regular.
▶ Make sure to handle quantifiers correctly!

▶ Practical relevance
▶ FAs cannot count arbitrarily high.
▶ Nested structures are not regular.

▶ programming languages
▶ natural languages

▶ More powerful tools are needed to handle these languages.

163

Outline

Introduction
Regular Languages and Finite
Automata

Regular Expressions
Finite Automata
The Pumping Lemma
Properties of Regular Languages

Scanners and Flex

Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

164

Regular languages: Closure properties

Reminder:
▶ Formal languages are sets of words (over a finite alphabet)
▶ A formal language L is a regular language if any of the following

holds:
▶ There exists an NFA A with L(A) = L
▶ There exists a DFA A with L(A) = L
▶ There exists a regular expression r with L(r) = L
▶ There exists a regular grammar G with L(G) = L

▶ Pumping lemma: not all languages are regular

Question
What can we do to regular languages
and be sure the result is still regular?

165

Closure properties (Question)

Question: If L1 and L2 are regular languages, does the same hold for

L1 ∪ L2? (closure under union)
L1 ∩ L2? (closure under intersection)
L1 · L2? (closure under concatenation)
L1, i.e. Σ∗ \ L1? (closure under complement)
L∗

1? (closure under Kleene-star)

Meta-Question: How do we answer these questions?

166

Closure properties (Theorem)

Theorem (Closure properties of regular languages)

Let L1 and L2 be regular languages. Then the following langages are
also regular:
▶ L1 ∪ L2

▶ L1 ∩ L2

▶ L1 · L2

▶ L1, i.e. Σ∗ \ L1

▶ L∗
1

Proof.
Idea: using (disjoint) finite automata for L1 and L2, construct an
automaton for the different languages above.

167

Closure under union, concatenation, and Kleene-star

We use the same construction that was used to generate NFAs for
regular expressions:
Let AL1 and AL2 be automata for L1 and L2.
L1 ∪ L2 new initial and final states,

ε-transitions to initial/final states of AL1 and AL2

L1 · L2 ε-transition from final state of AL1 to initial state of AL2

(L1)
∗ ▶ new initial and final states (with ε-transitions),

▶ ε-transitions from the original final states to the original
initial state,

▶ ε-transition from the new initial to the new final state.

168

Visual refresher

L1 ∪ L2

AL1

AL2
q0

q1
ε

q3

ε

q2

q5

ε

q4

ε

L1 ◦ L2

AL1
AL2

q1 q2 q3
ε q4

L∗
1

AL1

q0

q1ε

q5ε

q2
ε

ε

169

Closure under intersection

Let AL1 = (Q1,Σ, δ1, q01 ,F1) and AL2 = (Q2,Σ, δ2, q02 ,F2) be DFAs for
L1 and L2.

An automaton L = (Q,Σ, δ, q0,F) for AL1 ∩ AL2 can be generated as
follows:
▶ Q = Q1 × Q2

▶ δ((q1, q2), a) = (δ1(q1, a), δ2(q2, a)) for all q1 ∈ Q1, q2 ∈ Q2, a ∈ Σ

▶ q0 = (q01 , q02)

▶ F = F1 × F2

This product automaton
▶ starts in state that corresponds to initial states of AL1 and AL2 ,
▶ simulates simultaneous processing in both automata
▶ accepts if both AL1 and AL2 accept.

170

Exercise: Product automaton

Generate automata for
▶ L1 = {w ∈ {0, 1}∗ | |w|1 is divisible by 2}
▶ L2 = {w ∈ {0, 1}∗ | |w|1 is divisible by 3}

Then generate an automaton for L1 ∩ L2.
Solution End lecture 8

171

Closure under complement

Theorem (Closure under complement)

Let L be a regular language over Σ. Then L = Σ∗\L is regular.

Let AL = (Q,Σ, q0, δ,F) be a DFA for the
language L.

Then AL = (Q,Σ, q0, δ,Q \ F) is an automaton
accepting L:
▶ if w ∈ L(A) then δ′(q0,w) ∈ F, i.e.

δ′(q0,w) /∈ Q \ F, which implies w /∈ L(AL).
▶ if w /∈ L(A) then δ′(q0,w) /∈ F, i.e.

δ′(q0,w) ∈ Q \ F, which implies w ∈ L(AL).

Reminder:

δ′ : Q× Σ∗ → Q

δ′(q0,w) is the
final state of the
automaton after
processing w

All we have to do is exchange accepting and non-accepting
states.

172

Closure properties: exercise

Show that L = {w ∈ {a, b}∗ | |w|a = |w|b} is not regular.

Hint: Use the following:
▶ anbn is not regular. (Pumping lemma)
▶ a∗b∗ is regular. (Regular expression)
▶ (one of) the closure properties shown before.

173

Finite languages and automata

Theorem (Regularity of finite languages)

Every finite language, i.e. every language containing only a finite
number of words, is regular.

Proof.
Let L = {w1, . . . ,wn}.
▶ For each wi, generate an automaton Ai with initial state q0i and

final state qfi .
▶ Let q0 be a new state, from which there is an ε-transition to each

q0i .
Then the resulting automaton, with q0 as initial state and all qfi as final
states, accepts L.

174

Example: finite language

Example (L = {if , then, else,while, goto, for} over ΣASCII)

q0

_i

ε
_t

ε

_eε

_w

ε

_g

ε

_f

ε

ii iff

t thht
thee

thenn

ee ell elss elsee

ww whh whii
whil

l
whilee

gg
go

o
got

t

goto
o

f
f

fo
o

for
r

175

Finite languages and regular expressions

Theorem (Regularity of finite languages)

Every finite language is regular.

Alternate proof.

Let L = {w1,w2, . . . ,wn}.
Write L as the regular expression w1 + w2 + . . .+ wn.

Corollary

The class of finite languages is characterised by
▶ acyclic NFAs (or DFAs that have no cycles on any path from the

initial state to an accepting state)
▶ regular expressions without Kleene star.

176

Decision problems

For regular languages L1 and L2 and a word w, answer the following
questions:

Is there a word in L1? emptiness problem
Is w an element of L1? word problem
Is L1 equal to L2? equivalence problem
Is L1 finite? finiteness problem

177

Emptiness problem

Theorem (Emptiness problem for regular languages)

The emptiness problem for regular languages is decidable.

Proof.
Algorithm: Let A be an automaton accepting the language L.
▶ Starting with the initial state q0, mark all states to which there is a

transition from q0 as reachable.
▶ Continue with transitions from states which are already marked

as reachable until either a final state is reached or no further
states are reachable.

▶ If a final (accepting) state is reachable, then L ̸= {} holds.

178

Group exercise: Emptiness problem

▶ Find an alternative algorithm for checking emptiness, using the
results from the chapter on equivalence.

179

Word problem

Theorem (Word problem for regular languages)

The word problem for regular languages is decidable.

Proof.
Let A = (Q,Σ, δ, q0,F) be a DFA accepting L and w = c1c2 . . . cn.
Algorithm:
▶ q1 := δ(q0, c1)

▶ q2 := δ(q1, c2)

▶ . . .
▶ If qn ∈ F holds, then A accepts w.

All we have to do is simulate the run of A on w.
180

Equivalence problem

Theorem (Equivalence problem for regular languages)

The equivalence problem for regular languages is decidable.

We have already shown how to prove this using minimised DFAs for
L1 and L2.

Alternative proof.

One can also use closure properties and decidability of the
emptiness problem:

L1 = L2 iff (L1 ∩ L2)︸ ︷︷ ︸
words that are in L1, but not in L2

∪ (L1 ∩ L2)︸ ︷︷ ︸
words that are not in L1, but in L2

= {}

181

Finiteness problem

Theorem (Finiteness problem for regular languages)

The finiteness problem for regular languages is decidable.

Proof.
Idea: if there is a loop in an accepting run, words of arbitrary length
are accepted.

Let A be a DFA accepting L.
▶ Eliminate from A all states that are not reachable from the initial

state, obtaining Ar.
▶ Eliminate from Ar all states from which no final state is

reachable, obtaining Af .
▶ L is infinite iff Af contains a loop.

Note that Af may be a NFA (because it misses some transitions) 182

Exercise: Finiteness

Consider the following DFA A. Use to previous algorithm to decide if
L(A) is finite. Describe L(A).

q0

q1

q2

b

q5

a

q3

q11

a,b

q4

a,b

q8

q6

b

q9a

a

q10

b

a

b

b

a
a

q7
b

a

b

a

b
a

b

a,b

183

Extensions: look-ahead and back-references

▶ Look-ahead: Only match a RE if another match follows
▶ r1/r2 (“positive look-ahead”)

▶ Back-references: Match a previously matched string again
▶ (a∗)1b\1 matches anban (!)
▶ ((a + b)∗)1\1 matches ww (w ∈ {a, b}∗) (!)

▶ Results:
▶ Look-aheads don’t increase power of REs
▶ Back-references do increase the power of REs
▶ In the presence of back-references, look-aheads increase the

power further (FSCD 2022, [1])

RE = RELA ⊂ REBR ⊂ REBRLA

184

Regular languages: summary

Regular languages
▶ are characterised by

▶ NFAs / DFAs
▶ regular expressions
▶ regular grammars

▶ can be transferred from one formalism to another one
▶ are closed under all operators (considered here)
▶ all decision problems (considered here) are decidable
▶ do not contain several interesting languages (anbn, counting)

▶ see chapter on grammars
▶ can express important features of programming languages

▶ keywords
▶ legal identifiers
▶ numbers

▶ in compilers, these features are used by scanners (next chapter)
End lecture 9

185

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

186

Computing Environment

▶ For practical exercises, you will need a complete Linux/UNIX
environment. If you do not run one natively, there are several
options:
▶ You can install VirtualBox (https://www.virtualbox.org)

and then install e.g. Ubuntu (http://www.ubuntu.com/) on a
virtual machine. Make sure to install the Guest Additions

▶ For Windows, you can install the complete UNIX emulation
package Cygwin from http://cygwin.com

▶ For MacOS, you can install fink
(http://fink.sourceforge.net/) or MacPorts
(https://www.macports.org/) and the necessary tools

▶ You will need at least flex, bison, gcc, make, and a good text
editor

187

https://www.virtualbox.org
http://www.ubuntu.com/
http://cygwin.com
http://fink.sourceforge.net/
https://www.macports.org/

Syntactic Structure of Programming Languages

Most computer languages are mostly context-free
▶ Regular: vocabulary

▶ Keywords, operators, identifiers
▶ Described by regular expressions or regular grammar
▶ Handled by (generated or hand-written) scanner/tokenizer/lexer

▶ Context-free: program structure
▶ Matching parenthesis, block structure, algebraic expressions, . . .
▶ Described by context-free grammar
▶ Handled by (generated or hand-written) parser

▶ Context-sensitive: e.g. declarations
▶ Described by human-readable constraints
▶ Handled in an ad-hoc fashion (e.g. symbol table)

188

High-Level Architecture of a Compiler

Variable Type
a int
b int

Source handler

Lexical analysis
(tokeniser)

Syntactic analysis
(parser)

Semantic analysis

Code generation
(several optimisation passes)

Sequence of characters:
i,n,t, ⏘, a,,, b, ;, a, =, b, +, 1, ;

Sequence of tokens:
(id, “int”), (id, “a”), (id, “b”), (semicolon), (id, “a”), (eq), (id, “b”), (plus), (int, “1”), (semicolon)

e.g. Abstract syntax tree

e.g. AST+symbol table

e.g. assembler code

����
���

���
�

���
�

���
�

���
�

���
�

�

����

���� �����

���� ����������

ld a,b
ld c, 1
add c
...

���
�

���
�

���
�

�

����

�����

����������

189

Source Handler

▶ Handles input files
▶ Provides character-by-character access
▶ May maintain file/line/column (for error messages)
▶ May provide look-ahead

Result: Sequence of characters (with positions)

190

Lexical Analysis/Scanning

▶ Breaks program into tokens
▶ Typical tokens:

▶ Reserved word (if, while)
▶ Identifier (i, database)
▶ Symbols ({, }, (,), +, -, ...)

Result: Sequence of tokens

191

Automatisation with Flex

Variable Type
a int
b int

Source handler

Lexical analysis
(tokeniser)

Syntactic analysis
(parser)

Semantic analysis

Code generation
(several optimisation passes)

Sequence of characters:
i,n,t, ⏘, a,,, b, ;, a, =, b, +, 1, ;

Sequence of tokens:
(id, “int”), (id, “a”), (id, “b”), (semicolon), (id, “a”), (eq), (id, “b”), (plus), (int, “1”), (semicolon)

e.g. Abstract syntax tree

e.g. AST+symbol table

e.g. assembler code

Flex

����
���

���
�

���
�

���
�

���
�

���
�

�

����

���� �����

���� ����������

ld a,b
ld c, 1
add c
...

���
�

���
�

���
�

�

����

�����

����������

192

Flex Overview

▶ Flex is a scanner generator
▶ Input: Specification of a regular language and what to do with it

▶ Definitions - named regular expressions
▶ Rules - patterns+actions
▶ (miscellaneous support code)

▶ Output: Source code of scanner
▶ Scans input for patterns
▶ Executes associated actions
▶ Default action: Copy input to output
▶ Interface for higher-level processing: yylex() function

193

Flex Overview

Development time

 Execution time

!
Definitions
Rules
Miscellanous code

flex+gcc

scanner
!

!
Input

!
!

Tokenized/
processed

output

194

Flex Example Task

▶ Goal: Sum up all numbers in a file, separately for ints and floats
▶ Given: A file with numbers and commands

▶ Ints: Non-empty sequences of digits
▶ Floats: Non-empty sequences of digits, followed by decimal dot,

followed by (potentially empty) sequence of digits
▶ Command print: Print current sums
▶ Command reset: Reset sums to 0.

▶ At end of file, print sums

195

Flex Example Output

Input

12 3.1415
0.33333
print reset
2 11
1.5 2.5 print
1
print 1.0

Output

int: 12 ("12")
float: 3.141500 ("3.1415")
float: 0.333330 ("0.33333")
Current: 12 : 3.474830
Reset
int: 2 ("2")
int: 11 ("11")
float: 1.500000 ("1.5")
float: 2.500000 ("2.5")
Current: 13 : 4.000000
int: 1 ("1")
Current: 14 : 4.000000
float: 1.000000 ("1.0")
Final 14 : 5.000000

196

Basic Structure of Flex Files

▶ Flex files have 3 sections
▶ Definitions
▶ Rules
▶ User Code

▶ Sections are separated by %%
▶ Flex files traditionally use the suffix .l

197

Example Code (definition section)

%option noyywrap

DIGIT [0-9]

%{
int intval = 0;
double floatval = 0.0;

%}

%%

198

Example Code (rule section)

{DIGIT}+ {
printf("int: %d (\"%s\")\n", atoi(yytext), yytext);
intval += atoi(yytext);

}
{DIGIT}+"."{DIGIT}* {

printf("float: %f (\"%s\")\n", atof(yytext),yytext);
floatval += atof(yytext);

}
reset {

intval = 0;
floatval = 0;
printf("Reset\n");

}
print {

printf("Current: %d : %f\n", intval, floatval);
}
\n|. {

/* Skip */
}

199

Example Code (user code section)

%%
int main(int argc, char **argv)
{

++argv, --argc; /* skip over program name */
if (argc > 0)

yyin = fopen(argv[0], "r");
else

yyin = stdin;

yylex();

printf("Final %d : %f\n", intval, floatval);
}

200

Generating a scanner

> flex -t numbers.l > numbers.c
> gcc -c -o numbers.o numbers.c
> gcc numbers.o -o scan_numbers
> ./scan_numbers Numbers.txt
int: 12 ("12")
float: 3.141500 ("3.1415")
float: 0.333330 ("0.33333")
Current: 12 : 3.474830
Reset
int: 2 ("2")
int: 11 ("11")
float: 1.500000 ("1.5")
float: 2.500000 ("2.5")
...

201

Flexing in detail

> flex -tv numbers.l > numbers.c
scanner options: -tvI8 -Cem
37/2000 NFA states
18/1000 DFA states (50 words)
5 rules
Compressed tables always back-up
1/40 start conditions
20 epsilon states, 11 double epsilon states
6/100 character classes needed 31/500 words
of storage, 0 reused
36 state/nextstate pairs created
24/12 unique/duplicate transitions
...
381 total table entries needed

202

Exercise: Building a Scanner

▶ Download the flex example and input from
http://wwwlehre.dhbw-stuttgart.de/˜sschulz/
fla2022.html

▶ Build and execute the program:
▶ Generate the scanner with flex
▶ Compile/link the C code with gcc
▶ Execute the resulting program in the input file
▶ Add a command total that adds the integer sum to the floating

point sum and sets the integer back to 0
▶ Test the modified program

203

http://wwwlehre.dhbw-stuttgart.de/~sschulz/fla2022.html
http://wwwlehre.dhbw-stuttgart.de/~sschulz/fla2022.html

Definition Section

▶ Can contain flex options
▶ Can contain (C) initialization code

▶ Typically #include() directives
▶ Global variable definitions
▶ Macros and type definitions
▶ Initialization code is embedded in %{ and %}

▶ Can contain definitions of regular expressions
▶ Format: NAME RE
▶ Defined NAMES can be referenced later

204

Regular Expressions in Practice (1)

▶ The minimal syntax of REs as discussed before suffices to show
their equivalence to finite state machines

▶ Practical implementations of REs (e.g. in Flex) use a richer and
more powerful syntax

▶ Regular expressions in Flex are based on the ASCII alphabet
▶ We distinguish between the set of operator symbols

O = {.,*,+,?,-,˜,|,(,),[,], {, },<,>,/,\,ˆ,$,"}

and the set of regular expressions
1. c ∈ ΣASCII\O −→ c ∈ R
2. “.”∈ R

any character but newline (\n)

205

Regular Expressions in Practice (2)

3. x ∈ {a,b,f,n,r,t,v} −→ \x ∈ R
defines the following control characters

\a (alert)
\b (backspace)
\f (form feed)
\n (newline)
\r (carriage return)
\t (tabulator)
\v (vertical tabulator)

4. a, b, c ∈ {0, · · · ,7} −→ \abc ∈ R octal representation of a
character’s ASCII code (e.g. \040 represents the empty space “ ”)

206

Regular Expressions in Practice (3)

5. c ∈ O −→ \c ∈ R
escaping operator symbols

6. r1, r2 ∈ R −→ r1r2 ∈ R
concatenation

7. r1, r2 ∈ R −→ r1|r2 ∈ R
infix operation using “|” rather than “+”

8. r ∈ R −→ r* ∈ R
Kleene star

9. r ∈ R −→ r+ ∈ R
(one or more or r)

10. r ∈ R −→ r? ∈ R
optional presence (zero or one r)

207

Regular Expressions in Practice (4)

11. r ∈ R, n ∈ N −→ r{n} ∈ R
concatenation of n times r

12. r ∈ R; m, n ∈ N; m ≤ n −→ r{m, n} ∈ R
concatenation of between m and n times r

13. r ∈ R −→ ˆr ∈ R
r has to be at the beginning of line

14. r ∈ R −→ r$ ∈ R
r has to be at the end of line

15. r1, r2 ∈ R −→ r1/r2 ∈ R
The same as r1r2, however, only the contents of r1 is consumed.
The trailing context r2 can be processed by the next rule.

16. r ∈ R −→ (r) ∈ R
Grouping regular expressions with brackets.

208

Regular Expressions in Practice (5)

17. Ranges
– [aeiou]

.
= a|e|i|o|u

– [a-z]
.
= a|b|c| · · ·|z

– [a-zA-Z0-9]: alphanumeric characters
– [ˆ0-9]: all ASCII characters w/o digits

18. [] ∈ R
empty space

19. w ∈ {ΣASCII\{\,"}}∗ −→ "w" ∈ R
verbatim text (no escape sequences)

209

Regular Expressions in Practice (6)

21. r ∈ R −→ ˜r ∈ R
The upto operator matches the shortest string ending with r.

22. predefined character classes
▶ [:alnum:] [:alpha:] [:blank:]
▶ [:cntrl:] [:digit:] [:graph:]
▶ [:lower:] [:print:] [:punct:]
▶ [:space:] [:upper:] [:xdigit:]

210

Regular Expressions in Practice (precedences)

I. “(”, “)” (strongest)
II. “*”, “+”, “?”

III. concatenation
IV. “|” (weakest)

Example

a*b|c+de
.
= ((a*)b)|(((c+)d)e)

Rule of thumb: *,+,? bind the smallest possible RE.
Use () if in doubt!

211

Regular Expressions in Practice (definitions)

▶ Assume definiton NAME DEF
▶ In later REs. {NAME} is expanded to (DEF)

▶ Example:
DIGIT [0-9]
INTEGER {DIGIT}+
PAIR \({INTEGER},{INTEGER}\)

212

Exercise: extended regular expressions

Given the alphabet Σascii, how would you express the following
practical REs using only the simple REs we have used so far?

1 [a-z]

2 [∧0-9]

3 (r)+

4 (r){3}
5 (r){3,7}
6 (r)?

213

Example Code (definition section) (revisited)

%option noyywrap

DIGIT [0-9]

%{
int intval = 0;
double floatval = 0.0;

%}

%%

214

Rule Section

▶ This is the core of the scanner!
▶ Rules have the form PATTERN ACTION

▶ Patterns are regular expressions
▶ Typically use previous definitions

▶ There has to be white space between pattern and action
▶ Actions are C code

▶ Can be embedded in { and }
▶ Can be simple C statements
▶ For a token-by-token scanner, must include return statement
▶ Inside the action, the variable yytext contains the text matched

by the pattern
▶ Otherwise: Full input file is processed

215

Example Code (rule section) (revisited)

{DIGIT}+ {
printf("int: %d (\"%s\")\n", atoi(yytext), yytext);
intval += atoi(yytext);

}
{DIGIT}+"."{DIGIT}* {

printf("float: %f (\"%s\")\n", atof(yytext),yytext);
floatval += atof(yytext);

}
reset {

intval = 0;
floatval = 0;
printf("Reset\n");

}
print {

printf("Current: %d : %f\n", intval, floatval);
}
\n|. {

/* Skip */
}

216

User code section

▶ Can contain all kinds of code
▶ For stand-alone scanner: must include main()

▶ In main(), the function yylex() will invoke the scanner
▶ yylex() will read data from the file pointer yyin

(so main() must set it up reasonably)

217

Example Code (user code section) (revisited)

%%
int main(int argc, char **argv)
{

++argv, --argc; /* skip over program name */
if (argc > 0)

yyin = fopen(argv[0], "r");
else

yyin = stdin;

yylex();

printf("Final %d : %f\n", intval, floatval);
}

218

A comment on comments

▶ Comments in Flex are complicated
▶ . . . because nearly everything can be a pattern

▶ Simple rules:
▶ Use old-style C comments /* This is a comment */
▶ Never start them in the first column
▶ Comments are copied into the generated code
▶ Read the manual if you want the dirty details

219

Flex Miscellaneous

▶ Flex online:
▶ https://github.com/westes/flex
▶ Manual: https://westes.github.io/flex/manual/
▶ REs: https:

//westes.github.io/flex/manual/Patterns.html

▶ make knows flex
▶ Make will automatically generate file.o from file.l
▶ Be sure to set LEX=flex to enable flex extensions
▶ Makefile example:

LEX=flex
all: scan_numbers
numbers.o: numbers.l

scan_numbers: numbers.o
gcc numbers.o -o scan_numbers

220

https://github.com/westes/flex
https://westes.github.io/flex/manual/
https://westes.github.io/flex/manual/Patterns.html
https://westes.github.io/flex/manual/Patterns.html

Flexercise (1)

A security audit firm needs a tool that scans documents for the
following:
▶ Email addresses

▶ Fomat: String over [A-Za-z0-9 .∼-], followed by @, followed
by a domain name according to RFC-1034,
https://tools.ietf.org/html/rfc1034, Section 3.5 (we
only consider the case that the domain name is not empty)

▶ (simplified) Web addresses
▶ http:// followed by an RFC-1034 domain name, optionally

followed by :<port> (where <port> is a non-empty sequence of
digits), optionally followed by one or several parts of the form
/<str>, where <str> is a non-empty sequence over
[A-Za-z0-9 .∼-]

221

https://tools.ietf.org/html/rfc1034

Flexercise (2)

▶ Bank account numbers
▶ Old-style bank account numbers start with an identifying string,

optionally followed by ., optionally followed by :, optionally
followed by spaces, followed by a non-empty sequence of up to 10
digits. Identifying strings are Konto, Kto, KNr, Ktonr,
Kontonummer

▶ (German) IBANs are strings starting with DE, followed by exactly
20 digits. Human-readable IBANs have spaces after every 4
characters (the last group has only 2 characters)

▶ Examples:
▶ Rosenda@gidwd-39.at.z8o3rw2.zhv
▶ http://jzl.j51g.m-x95.vi5/oj1g_i1/72zz_gt68f
▶ http://iefbottw99.v4gy.zslu9q.zrc2es01nr.dy:8004
▶ Ktonr. 241524
▶ DE26959558703965641174
▶ DE27 0192 8222 4741 4694 55

222

Rosenda@gidwd-39.at.z8o3rw2.zhv
http://jzl.j51g.m-x95.vi5/oj1g_i1/72zz_gt68f
http://iefbottw99.v4gy.zslu9q.zrc2es01nr.dy:8004

Flexercise (3)

▶ Create a programm scanning for the data described above and
printing the found items.

▶ Example input/output data can be found under
http://wwwlehre.dhbw-stuttgart.de/˜sschulz/
fla2022.html

End lecture 10

223

http://wwwlehre.dhbw-stuttgart.de/~sschulz/fla2022.html
http://wwwlehre.dhbw-stuttgart.de/~sschulz/fla2022.html

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Formal Grammars
The Chomsky Hierarchy
Right-linear Grammars
Context-free Grammars

Push-Down Automata
Properties of Context-free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

224

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Formal Grammars
The Chomsky Hierarchy
Right-linear Grammars
Context-free Grammars

Push-Down Automata
Properties of Context-free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

225

Formal Grammars: Motivation

So far, we have seen
▶ regular expressions: compact description of regular languages
▶ finite automata: recognise words of a regular language

Another, more powerful formalism: formal grammars
▶ generate words of a language
▶ contain a set of rules allowing to replace symbols with different

symbols

226

Grammars: examples

Example (Formal grammars)

S→ aA, A→ bB, B→ ε
generates ab (starting from S): S→ aA→ abB→ ab

S→ ε, S→ aSb
generates anbn

227

Grammars: definition

Definition (Grammar according to Chomsky)

A (formal) grammar is a quadruple

G = (N,Σ,P, S)

with
1 the set of non-terminal symbols N,
2 the set of terminal symbols Σ,
3 the set of production rules P of the form

α→ β

with α ∈ V∗NV∗, β ∈ V∗,V = N ∪ Σ

4 the distinguished start symbol S ∈ N.

228

Noam Chomsky (*1928)

▶ Linguist, philosopher, logician, . . .
▶ BA, MA, PhD (1955) at the University of

Pennsylvania
▶ Mainly teaching at MIT (since 1955)

▶ Also Harvard, Columbia University,
Institute of Advanced Studies (Princeton),
UC Berkely, . . .

▶ Currently Laureate Professor of Linguistics
at University of Arizona, Institute Professor
Emeritus at MIT

▶ Opposition to Vietnam War, Essay The
Responsibility of Intellectuals

▶ Most cited academic (1980-1992)
▶ “World’s top public intellectual” (2005)
▶ More than 40 honorary degrees

229

Grammar for C identifiers

Example (C identifiers)

G = (N,Σ,P, S) describes C identifiers:
▶ alpha-numeric words
▶ which must not start with a digit
▶ and may contain an underscore ()

N = {S,R,L,D} (start, rest, letter, digit),
Σ = {a, . . . ,z,A, . . . ,Z,0, . . . ,9, },
P = { S → LR| R

R → LR|DR| R|ε
L → a| . . . |z|A| . . . |Z
D → 0| . . . |9}

α→ β1| . . . |βn is an abbreviation for α→ β1, . . . , α→ βn.
230

Formal grammars: derivation, language

Definition (Derivation, Language of a Grammar)

For a grammar G = (N,Σ,P, S) with V = (Σ ∪ N) and words x, y ∈ V∗,
we say that

G derives y from x in one step (x⇒G y) iff

∃u, v, p, q ∈ V∗ : (x = upv) ∧ (p→ q ∈ P) ∧ (y = uqv)

Moreover, we say that

G derives y from x (x⇒∗
G y) iff

∃w0, . . . ,wn

with w0 = x,wn = y,wi−1 ⇒G wi for i ∈ {1, · · · , n}
The language of G is L(G) = {w ∈ Σ∗ | S⇒∗

G w}

231

Grammars and derivations

Example (G3)

Let G3 = (N,Σ,P, S) with
▶ N = {S},
▶ Σ = {a},
▶ P = {S→ aS, S→ ε}.

Derivations of G3 have the general form

S⇒ aS⇒ aaS⇒ · · · ⇒ anS⇒ an

The language produced by G3 is

L(G3) = {an | n ∈ N}.

232

Grammars and derivations (cont’)

Example (G2)

Let G2 = (N,Σ,P, S) with
▶ N = {S},
▶ Σ = {a,b},
▶ P = {S→ aSb, S→ ε}

Derivations of G2:

S⇒ aSb⇒ aaSbb⇒ · · · ⇒ anSbn ⇒ anbn.

L(G2) = {anbn | n ∈ N}.

Reminder: L(G2) is not regular!
233

Grammars and derivations (cont’)

Example (G1)

Let G1 = (N,Σ,P, S) with
▶ N = {S,B,C},
▶ Σ = {a,b,c},
▶ P: S→ aSBC 1

S→ aBC 2

CB→ BC 3

aB→ ab 4

bB→ bb 5

bC→ bc 6

cC→ cc 7

234

Exercise: Derivations in G1

Example (G1)

Let G1 = (N,Σ,P, S) with
▶ N = {S,B,C},
▶ Σ = {a,b,c},
▶ P:

S→ aSBC 1

S→ aBC 2

CB→ BC 3

aB→ ab 4

bB→ bb 5

bC→ bc 6

cC→ cc 7

▶ Give derivations for 3 different words
in L(G1)

▶ Can you characterize L(G1)?

235

Grammars and derivations (cont.)

Derivations of G1:

S⇒1 aSBC⇒1 aaSBCBC⇒1 · · · ⇒1 a
n−1S(BC)n−1 ⇒2 a

n(BC)n

⇒∗
3 a

nBnCn ⇒∗
4,5 a

nbnCn ⇒∗
6,7 a

nbncn

L(G1) = {anbncn|n ∈ N; n > 0}.

▶ These three derivation examples represent different classes of
grammars or languages characterized by different properties.

▶ A widely used classification scheme of formal grammars and
languages is the Chomsky hierarchy (1956).

236

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Formal Grammars
The Chomsky Hierarchy
Right-linear Grammars
Context-free Grammars

Push-Down Automata
Properties of Context-free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

237

The Chomsky hierarchy (0)

Definition (Grammar of type 0)

Every Chomsky grammar G = (N,Σ,P, S) is of Type 0 or unrestricted.

238

The Chomsky hierarchy (1)

Definition (context-sensitive grammar)

A Chomsky grammar G = (N,Σ,P, S) is of is Type 1
(context-sensitive) if all productions are of the form

α→ β with |α| ≤ |β|

Exception: the rule S→ ε is allowed if S does not appear on the
right-hand side of any rule

▶ Rules never derive shorter words
▶ except possibly for the empty word in the first step

239

Context-sensitive?

▶ What is context-sensitive about grammars as defined on the
previous slides?

▶ Grammars of the type defined on the last slide were originally
called monotonic or non-contracting by Chomsky

▶ Context-sensitive grammars addtionally had to satisfy the
property that all rules are of the form

α1Aα2 → α1βα2 with A ∈ N;α1, α2 ∈ V∗, β ∈ VV∗

▶ rule application can depend on a context α1, α2
▶ context cannot be modified (or moved)
▶ only one NTS can be modified

240

Context-sensitive vs. monotonic grammars

▶ Every monotonic grammar can be rewritten as context-sensitive
▶ AB→ BA is not context-sensitive, but can be replaced by

AB→ AY,AY → XY,XY → XA,XA→ BA, which is
▶ if terminal symbols are involved: replace S→ aB→ ba with

S→ NaB→ . . .NbNa → bNa → ba

▶ Since context preservation is irrelevant for the language class,
we drop the context requirement for this lecture

▶ Since the term “context-sensitive” is generally used in the
literature, we stick with this term (for both grammars and
languages), even if we only require non-monotonicity

241

The Chomsky hierarchy (2)

Definition (context-free grammar)

A Chomsky grammar G = (N,Σ,P, S) is of is Type 2 (context-free) if
all productions are of the form

A→ β with A ∈ N;β ∈ V∗

▶ Only single non-terminals are replaced
▶ independent of their context

▶ Contracting rules are allowed!
▶ context-free grammars are not a subset of context-sensitive

grammars
▶ but: context-free languages are a subset of context-sensitive

languages
▶ reason: contracting rules can be removed from context-free

grammars, but not from context-sensitive ones
242

The Chomsky hierarchy (3)

Definition (right-linear grammar)

A Chomsky grammar G = (N,Σ,P, S) is of Type 3 (right-linear or
regular) if all productions are of the form

A→ aB

with A ∈ N;B ∈ N ∪ {ε}; a ∈ Σ ∪ {ε}

▶ only one NTS on the left
▶ on the right: one TS, one NTS, both, or neither
▶ analogy with automata is obvious

243

Formal grammars and formal languages

Definition (language classes)

A language is called

recursively enumerable, context-sensitive, context-free, or regular,

if it can be generated by a

unrestricted, context-sensitive, context-free, or regular

grammar, respectively.

244

Formal grammars vs. formal languages vs. machines

For each grammar/language type, there is a corresponding type of
machine model:

grammar language machine
Type 0 recursively Turing machine
unrestricted enumerable
Type 1 context-sensitive linear-bounded non-deterministic

Turing machine
Type 2 context-free non-deterministic

pushdown automaton
Type 3 regular finite automaton
right linear

245

The Chomsky Hierarchy for Languages

Type 0
(recursively enumerable)

Type 1
(context-sensitive)

Type 2
(context-free)

Type 3
(regular)

(all languages)

246

The Chomsky Hierarchy for Grammars

Type 0
(unrestricted)

Type 1
(context-sensitive)

Type 2
(context-free)

Type 3
(right linear)

247

The Chomsky hierarchy: examples

Example (C identifiers revisited)

S → LR| R

R → LR|DR| R|ε
L → a| . . . |z|A| . . . |Z
D → 0| . . . |9

This grammar is context-free but not regular.
An equivalent regular grammar:

S → AR| · · · |ZR|aR| · · · |zR| R

R → AR| · · · |ZR|aR| · · · |zR|0R| · · · |9R| R|ε

248

The Chomsky hierarchy: examples revisited

Returning to the three derivation examples:

▶ G3 with P = {S→ aS, S→ ε}
▶ G3 is regular.
▶ So is the produced language L3 = {an | n ∈ N}.

▶ G2 with P = {S→ aSb, S→ ε}
▶ G2 is context-free.
▶ So is the produced language L2 = {anbn | n ∈ N}.

▶ G1 with P = {S→ aSBC, S→ aBC,CB→ BC, . . .}
▶ G1 is context-sensitive.
▶ So is the produced language L1 = {anbncn | n ∈ N; n > 0}.

249

The Chomsky hierarchy: exercises

1 Let G = (N,Σ,P, S) with
▶ N = {S,A,B},
▶ Σ = {a},
▶ P : S→ ε 1

S→ ABA 2
AB→ aa 3
aA→ aaaA 4

A→ a 5

a) What is G’s highest type?
b) Show how G derives the word aaaaa.
c) Formally describe the language L(G).
d) Define a regular grammar G′ equivalent to G.

250

The Chomsky hierarchy: exercises (cont.)

2 An octal constant is a finite sequence of digits starting with 0
followed by at least one digit ranging from 0 to 7. Define a
regular grammar encoding exactly the set of possible octal
constants.

251

The Chomsky hierarchy: exercises (cont.)

3 Let G = (N,Σ,P, S) with
▶ N = {S,A,B},
▶ Σ = {a,b,t},
▶ P : S→ aAS 1

S→ bBS 2
S→ t 3

At→ ta 4
Bt→ tb 5

Aa→ aA 6
Ab→ bA 7
Ba→ aB 8
Bb→ bB 9

a) What is G’s highest type?
b) Formally describe the language L(G).

End lecture 11

252

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Formal Grammars
The Chomsky Hierarchy
Right-linear Grammars
Context-free Grammars

Push-Down Automata
Properties of Context-free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

253

Right-linear grammars and regular languages

NFADFA

RE

RLG

▶ We know:
▶ Regular expression can be converted

to NFAs
▶ NFAs can be converted to DFAs
▶ DFAs can be described by regular

expressions
▶ Hence NFA, DFA, RE are equivalent

and all describe the class of regular
languages

▶ Now: Right-linear grammars
▶ We show:

▶ DFAs can be converted into right-linear
grammars

▶ Right-linear grammars can be
converted into NFAs

254

Regular languages and right-linear grammars

Theorem (right-linear grammars and regular languages)

The class of regular languages (generated by regular expressions,
accepted by finite automata) is exactly the class of languages
generated by right-linear grammars.

Proof.
We constructively prove the theorem by providing algorithms to. . .
▶ Convert a DFA to a right-linear grammar
▶ Convert a right-linear grammar to an NFA

. . . such that the languages of grammar and automaton are the
same.

255

DFA ; right-linear grammar

Algorithm for transforming a DFA

A = (Q,Σ, δ, q0,F)

into a grammar
G = (N,Σ,P, S)

▶ N = Q

▶ S = q0

▶ P = {p→ aq | ((p, a), q) ∈ δ} ∪ {p→ ε | p ∈ F}
▶ (Σ remains the same)

256

Exercise: DFA to right-linear grammar

Consider the following DFA A:

0

2

b

3

a

b

1
a

b

a

a,b

a) Give a formal definition of A
b) Generate a right-linear grammar G with L(G) = L(A)
c) Find a w ∈ L(A) with |w| ≥ 3 and give a run (of A) and a

derivation (with G) for w

257

Right-linear grammar ; NFA

Algorithm for transforming a grammar

G = (N,Σ,P, S)

into an NFA
A = (Q,Σ,∆, q0,F)

▶ Q = N ∪ {qf } (qf /∈ N)

▶ q0 = S

▶ F = {qf }
▶ ∆ = {(A, c,B) | A→ cB ∈ P} ∪

∆ = {(A, c, qf) | A→ c ∈ P} ∪
∆ = {(A, ε,B) | A→ B ∈ P} ∪
∆ = {(A, ε, qf) | A→ ε ∈ P}

258

Exercise: right-linear grammar to NFA

Transform the grammar G = ({S,A,B}, {a, b},P, S) into an NFA.

P : S → aB|ε
A → aB|b
B → A

Which language is generated by G?

259

Right-linear grammars and regular languages

NFADFA

RE

RLG

▶ We now know:
▶ Regular expression can be converted

to NFAs
▶ NFAs can be converted to DFAs
▶ DFAs can be described by regular

expressions
▶ Hence NFA, DFA, RE are equivalent

and all describe the class of regular
languages

▶ DFAs can be converted into right-linear
grammars

▶ Right-linear grammars can be
converted into NFAs

REs, DFAs, NFAs, Right-linear grammars
are all equivalent formalisms to describe
the class of regular languages!

260

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Formal Grammars
The Chomsky Hierarchy
Right-linear Grammars
Context-free Grammars

Push-Down Automata
Properties of Context-free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

261

Context-free grammars

▶ Reminder: G = (N,Σ,P, S) is context-free if all rules in P are of
the form A→ β with
▶ A ∈ N and
▶ β ∈ (Σ ∪ N)∗

▶ Context-free languages/grammars are highly relevant for
practical applications
▶ Core of most programming languages
▶ XML
▶ Algebraic expressions
▶ Many aspects of human language

262

Grammars: equivalence and normal forms

Definition (equivalence)

Two grammars are called equivalent if they generate the same
language.

We will now compute grammars that are equivalent to some given
context-free grammar G but have “nicer” properties
▶ Reduced grammars contain no unproductive symbols
▶ Grammars in Chomsky normal form support efficient decision of

the word problem

I.e. grammars in CNF allow efficient parsing of arbitrary
context-free languages!

263

Reduced grammars

Definition (reduced)

Let G = (N,Σ,P, S) be a context-free grammar.
▶ A ∈ N is called terminating if A⇒∗

G w for some w ∈ Σ∗.
▶ A ∈ N is called reachable if S⇒∗

G uAv for some u, v ∈ V∗.
▶ G is called reduced if N contains only reachable and terminating

symbols.

264

Terminating and reachable symbols

The terminating symbols can be computed as follows:
1 T := {A ∈ N | ∃w ∈ Σ∗ : A→ w ∈ P}
2 add all symbols M to T with a rule M → D with D ∈ (Σ ∪ T)∗

3 repeat step 2 until no further symbols can be added
Now T contains exactly the terminating symbols.

The reachable symbols can be computed as follows:
1 R := {S}
2 for every A ∈ R, add all symbols M with a rule A→ V∗MV∗

3 repeat step 2 until no further symbols can be added
Now R contains exactly the reachable symbols.

265

Reducing context-free grammars

Theorem (reduction of context-free grammars)

Every context-free grammar G can be transformed into an equivalent
reduced context-free grammar Gr.

Proof.

1 generate the grammar GT by removing all non-terminating
symbols (and rules containing them) from G

2 generate the grammar Gr by removing all unreachable symbols
(and rules containing them) from GT

Sequence is important: symbols become unreachable if they only
appear together with non-terminating symbols.

266

Reachable and terminating symbols

Example

Let G = (N,Σ,P, S) with
▶ N = {S,A,B,C,T},
▶ Σ = {a,b,c},
▶ P : S → T|B|C

T → AB

A → a

B → bB

C → c

▶ terminating symbols in G: C,A, S ; GT

▶ reachable symbols in GT : S,C ; Gr

▶ note: A is still reachable in G!

267

Exercise: reducing grammars

Compute the reduced grammar G = (N,Σ,P, S) for the following
grammar G′ = (N′,Σ,P′, S):

1 N′ = {S,A,B,C,D},
2 Σ = {a,b},
3 P′ :

S → A|aS|B
A → a

A → AS

A → Ba

B → Ba

C → Da

D → Cb

D → a

268

Chomsky normal form

Reduced grammars can be further modified to allow for an efficient
decision procedure for the word problem.

Definition (CNF)

A context-free grammar (N,Σ,P, S) is in Chomsky normal form if all
rules are of the kind
▶ N → a with a ∈ Σ

▶ N → AB with A,B ∈ N

▶ S→ ε, if S does not appear on the right-hand side of any rule

Transformation of a reduced grammar into CNF:
1 remove ε-productions
2 remove chain rules (A→ B)
3 introduce auxiliary symbols

269

Removal of ε-productions

Theorem (ε-free grammar)

Every context-free grammar can be transformed into an equivalent cf.
grammar that does not contain rules of the kind A→ ε (except S→ ε
if S does not appear on the rhs).

Procedure:
1 let E = {A ∈ N | A→ ε ∈ P}
2 add all symbols B to E for which there is a rule B→ β with β ∈ E∗

3 repeat step 2 until no further symbols can be added
4 for every rule C→ β1Bβ2 with B ∈ E

▶ add rule C→ β1β2 to P
▶ repeat this process until no new rules are added

5 remove all rules A→ ε from P
6 if S ∈ E

▶ use a new start symbol S0
▶ add rules S0 → ε|S

270

Corollary (Monotonic context-free grammars)

For every context-free language L, there exists a grammar G with
L(G) = L that is both context-free and monotonic.

▶ A context-free grammar for L exists by definition
▶ That grammar can be made ε-free (and hence monotonic) with

the previous algorithm

Corollary (Monotonic right-linear grammars)

For every regular language L, there exists a grammar G with
L(G) = L that is both right-linear and monotonic.

▶ Every right-linear grammar is also context-free, i.e. we can apply
the same algorithem and argument as for context-free languages

271

Interlude: Chomsky-Hierarchy for Grammars (again)

Type 0
(unrestricted)

Type 1
(context-sensitive)

Type 2
(context-free)

Type 3
(right linear)

A! "

▶ For languages, Type-0,
Type-1, Type-2, Type-3
form a real inclusion
hierarchy

▶ Not quite true for
grammars:

▶ A→ ε allowed in
context-free/regular
grammars, not in
context-sensitive
grammars

▶ Eliminating ε-productions
removes this
discrepancy!

End lecture 12

272

Removal of chain rules

Theorem (chain rules)

Every ε-free context-free grammar can be transformed into an
equivalent cf. grammar that does not contain rules of the kind A→ B.

Procedure:
1 for every A ∈ N, compute the set N(A) = {B ∈ N | A⇒∗

G B}
(this can be done iteratively, as shown previously)

2 remove A→ C for any C ∈ N from P
3 add the following production rules to P
{A→ w | w /∈ N and B→ w ∈ P and B ∈ N(A)}

Example

A→ a|B; B→ bb|C; C→ ccc
is equivalent to
A→ a|bb|ccc;B→ bb|ccc;C→ ccc

273

Chomsky normal form

Reminder: Chomsky normal form
A context-free grammar (N,Σ,P, S) is in CNF if all rules are of the
kind
▶ N → a with a ∈ Σ

▶ N → AB with A,B ∈ N

▶ S→ ε, if S does not appear on the right-hand side of any rule

Theorem (transformation into Chomsky normal form)

Every context free grammar can be transformed into an equivalent cf.
grammar in Chomsky normal form.

274

Algorithm for computing Chomsky normal form

1 remove ε rules
2 remove chain rules
3 compute reduced grammar

1 remove non-terminating symbols
2 remove unreachable symbols

4 for all rules A→ w with w /∈ Σ:
▶ for all a ∈ Σ replace all occurrences of a in w by a new

non-terminal symbol Xa

▶ add rules Xa → a
5 replace rules of the form A→ B1B2 . . .Bn with n > 2 with rules

A → B1C1

C1 → B2C2
...

Cn−2 → Bn−1Bn

where the Ci are new non-terminals
275

Exercise: tranformation into CNF

Compute the Chomsky normal form of the following grammar:

G = (N,Σ,P, S)

▶ N = {S,A,B,C,D,E}
▶ Σ = {a,b}
▶ P :

S → AB|SB|BDE

A → Aa

B → bB|BaB|ab

C → SB

D → E

E → ε

Solution

276

Chomsky NF: purpose

Why transform G into Chomsky NF?
▶ in a context-free grammar, derivations can have arbitrary length

▶ if there are contracting rules, a derivation of w can contain words
longer than w

▶ if there are chain rules (C→ B;B→ C), a derivation of w can
contain arbitrarily many steps

▶ word problem is difficult to decide
▶ if G is in CNF, for a word of length n, a derivation has 2n− 1

steps:
▶ n− 1 rule applications A→ BC
▶ n rule applications A→ a

▶ word problem can be decided by checking all derivations of
length 2n− 1

▶ That’s still plenty of derivations!

More efficient algorithm: Cocke-Younger-Kasami (CYK)
277

Cocke-Younger-Kasami algorithm

▶ Eficient algorithm to decide the word problem for context-free
grammars

▶ Core ideas independently developed by
▶ John Cocke (1925—2002): Programming languages and their

compilers: Preliminary notes, 1970 (with Jacob T. Schwartz)
▶ Daniel H. Younger (??–): Recognition and parsing of context-free

languages in time n3, 1967
▶ Tadao Kasami (1930–2007) An efficient recognition and

syntax-analysis algorithm for context-free languages, 1965

▶ Complexity: O(|w|3 · |G|)
▶ Can provide all ways to parse/generate a word
▶ Extends to probabilistic parsing

278

CYK algorithm: idea

Decide the word problem for a context-free grammar G in Chomsky
NF and a word w.
▶ find out which NTS are needed in the end to produce the TS for

w (using production rules A→ a).
▶ iteratively find all NTS that can generate the required sequence

of NTS (using production rules A→ BC).
▶ if S can produce the required sequence, w ∈ L(G) holds.

Mechanism:
▶ operates on a table.
▶ field in row i and column j contains all NTS that can generate the

target word from character i through j.

Example of dynamic programming!

279

CYK algorithm: example

S → a

B → b

B → c

S → SA

A → BS

B → BB

B → BS

w = abacba

i \ j 1 2 3 4 5 6
1 S {} S {} {} S
2 B A,B B B A,B
3 S {} {} S
4 B B A,B
5 B A,B
6 S

w = a b a c b a

280

CYK: method

▶ Core idea: Bottom-Up dynamic programming
▶ For all subwords of w compute the set of all non-terminal symbols

from which it can be derived
▶ Results are stored in the table: Field i, j stores the non-terminals

from which w[i] . . .w[j] can be derived
▶ Start with words of length 1 (on the main diagonal)

▶ Only rules of the form N → t relevant
▶ Fill successive diagonals (going right/up)

▶ Remember: Each field represents the NTS which generate a
subword!

▶ Consider all splits of the subword (by going left to right in the row,
top to bottom in the column)

▶ Consider all combinations of non-terminals for each split
▶ Only rules of the form N → XY relevant: If XY is a combination

generating w[i] . . .w[j], add N at (i.j).

▶ If S generates w[1] . . .w[|w|](= w), then w ∈ L(G)

281

CYK: formal algorithm

for i := 1 to n do
Nii := {A | A→ ai ∈ P}

for d := 1 to n− 1 do
for i := 1 to n− d do

j := i + d
Nij := {}
for k := i to j− 1 do

Nij := Nij ∪ {A | A→ BC ∈ P;B ∈ Nik;C ∈ N(k+1)j}

282

CYK algorithm: exercise

Consider the grammar
G = (N,Σ,P, S) from the previous
exercise
▶ N = {S,A,B,D,X,Y}
▶ Σ = {a,b}

P : S → SB|BD|YB|XY

B → BD|YB|XY

D → XB

X → a

Y → b

Use the CYK algorithm to determine if the following words can be
generated by G:

a) w1 = babaab

b) w2 = abba
Solution End lecture 13

283

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Formal Grammars
The Chomsky Hierarchy
Right-linear Grammars
Context-free Grammars

Push-Down Automata
Properties of Context-free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

284

Pushdown automata: motivation

▶ DFAs/NFAs are weaker than context-free grammars
▶ to accept languages like anbn, an unlimited storage component is

needed
▶ Pushdown automata have an unlimited stack

▶ LIFO: last in, first out
▶ only top symbol can be read
▶ arbitrary amount of symbols can be added to the top

285

PDA: conceptual model

i n p u t

S

A

C

K

T

▶ extends FA by unlimited stack:
▶ transitions can read and write stack
▶ only at the top
▶ stack alphabet Γ
▶ LIFO: last in, first out

▶ acceptance condition
▶ empty stack after reading input
▶ no final states needed

▶ commonalities with FA:
▶ read input from left to right
▶ set of states, input alphabet
▶ initial state

286

PDA transitions

∆ ⊆ Q× Σ ∪ {ε} × Γ× Γ∗ × Q

▶ PDA is in a state
▶ can read next input character or nothing
▶ must read (and remove) top stack symbol
▶ can write arbitrary amout of symbols on top of stack
▶ goes into a new state

A transition (p, c,A,BC, q) can be written as follows:

p c A → BC q

287

Pushdown automata: definition

Definition (pushdown automaton)

A pushdown automaton (PDA) is a 6-tuple (Q,Σ,Γ,∆, q0,Z0) where
▶ Q,Σ, q0 are defined as for NFAs.
▶ Γ is the stack alphabet
▶ Z0 is the initial stack symbol
▶ ∆ ⊆ Q× Σ ∪ {ε} × Γ× Γ∗ × Q is the transition relation

A configuration of a PDA is a triple (q,w, γ) where
▶ q is the current state
▶ w is the input yet unread
▶ γ is the current stack content

A PDA A accepts a word w ∈ Σ∗ if, starting from the configuration
(q0,w,Z0), A can reach the configuration (q, ε, ε) for some q.

288

Example: PDA for anbn

Example (Automaton A)

A = (Q,Σ,Γ,∆, 0,Z)

▶ Q = {0, 1}
▶ Σ = {a, b}
▶ Γ = {A,Z}
▶ ∆ :

0 1

(b,A,ε)

(ε, Z, ε)

(b,A,ε)

(a,Z,AZ)
(a,A,AA)

(ε, Z, ε)

0 ε Z → ε 0 accept empty word
0 a Z → AZ 0 read first a, store A
0 a A → AA 0 read further a, store A
0 b A → ε 1 read first b, delete A
1 b A → ε 1 read further b, delete A
1 ε Z → ε 1 accept if all As have been deleted

289

PDA: example (2)

0 ε Z → ε 0
0 a Z → AZ 0
0 a A → AA 0
0 b A → ε 1
1 b A → ε 1
1 ε Z → ε 1

Process aabb:
1 (0, aabb,Z)

2 (0, abb,AZ)

3 (0, bb,AAZ)

4 (1, b,AZ)

5 (1, ε,Z)

6 (1, ε, ε)

Process abb:
1 (0, abb,Z)

2 (0, bb,AZ)

3 (1, b,Z)

4 (1, b, ε)

5 No rule applicable,
input not read entirely

290

PDAs: important properties

▶ Γ and Σ do not need to be disjoint
▶ Not uncommon: Σ ⊆ Γ
▶ . . . but convention: Σ lowercase letters, Γ uppercase letters

▶ ε transitions are possible
▶ . . . and can modify the stack

▶ PDAs as defined above are non-deterministic
▶ Deterministic PDA: For each situation there is only one applicable

transition (either ε or c)
▶ deterministic PDAs are strictly weaker

▶ We can also define PDAs with acceptance via final states, but. . .
▶ this makes representation of PDAs more complex
▶ makes proofs more difficult

291

PDA: exercise

Define a PDA detecting all palindromes over Σ = {a, b}, i.e. all words

{w · ←−w | w ∈ Σ∗}

where
←−w = an . . . a1 if w = a1 . . . an

Can you define a deterministic automaton?

292

Equivalence of PDAs and Context-Free Grammars

Theorem
The class of languages that can be accepted by a PDA is exactly the
class of languages that can be produced by a context-free grammar.

Proof.

▶ For a cf. grammar G, generate a PDA AG with L(AG) = L(G).
▶ For a PDA A, generate a cf. grammar GA with L(GA) = L(A).

293

From context-free grammars to PDAs

For a grammar G = (N,Σ,P, S), an equivalent PDA is:

AG = ({q},Σ,Σ ∪ N,∆, q, S)

∆ = {(q, ε,A, γ, q) | A→ γ ∈ P} ∪
{(q, a, a, ε, q) | a ∈ Σ}

AG simulates the productions of G in the following way:
▶ a production rule is applied to the top stack symbol if it is an NTS
▶ a TS is removed from the stack if it corresponds to the next input

character

Note:
▶ AG is nondeterministic if there are several rules for one NTS.
▶ AG only has one single state.

▶ Corollary: PDAs need no states, could be written as (Σ,Γ,∆,Z0).
294

From context-free grammars to PDAs: exercise

For the grammar G = ({S}, {a, b},P, S) with

P = {S → aSa

S → bSb

S → ε}

▶ create an equivalent PDA AG,
▶ show how AG processes the input abba.

295

From PDAs to context-free grammars

Transforming a PDA A = (Q,Σ,Γ,∆, q0,Z0) into a grammar
GA = (N,Σ,P, S) is more involved:
▶ N contains symbols [pZq], meaning

▶ A must go from p to q deleting Z from the stack
▶ for a transition (p, a,Z, ε, q) that deletes a stack symbol:

▶ A can switch from p to q and delete Z by reading input a
▶ this can be expressed by a production rule [pZq]→ a.

▶ for transitions (p, a,Z,ABC, q) that produce stack symbols:
▶ test all possible transitions for removing these symbols
▶ [pZt]→ a[qAr][rBs][sCt] for all states r, s, t
▶ intuitive meaning: in order to go from p to t and delete Z, you can

1 read the input a
2 go into state q
3 find states r, s through which you can go from q to t and delete A,B,

and C from the stack.

296

GA: formal definition

For A = (Q,Σ,Γ,∆, q0,Z0) we define GA = (N,Σ,P, S) as follows
▶ N = {S} ∪ {[pZq] | p, q ∈ Q,Z ∈ Γ}
▶ P contains the following rules:

▶ for every q ∈ Q, P contains {S→ [q0Z0q]}
meaning: A has to go from q0 to any state q, deleting Z0.

▶ for each transition (p, a,Z,Y1Y2 . . . Yn, q) with
▶ a ∈ Σ ∪ {ε} and
▶ Z, Y1, Y2 . . . Yn ∈ Γ,

P contains rules

[pZqn]→ a[qY1q1][q1Y2q2] . . . [qn−1Ynqn]

for all possible combinations of states q1, q2, . . . qn ∈ Q.

297

PDA to grammar illustrated

p, a, Z ! Y1Y2 . . . Yn, q

[pZqn]! a[qY1q1][q1Y2q2] . . . [qn�1Ynqn]

q1, . . . qn can be
chosen freely from Q!

p, a, Z ! Y1, qp, a, Z ! ", q

Special case: n = 0 Special case: n = 1

[pZq1]! a[qY1q1][pZq]! a

 |Q|n rules!

 |Q| rules! 1 rule!

298

Exercise: transformation of PDA into grammar

A = (Q,Σ,Γ,∆, 0,Z)

▶ Q = {0, 1}
▶ Σ = {a, b}
▶ Γ = {A,Z}
▶ ∆ :

0 1

(b,A,ε)

(ε, Z, ε)

(b,A,ε)

(a,Z,AZ)
(a,A,AA)

(ε, Z, ε)

0 ε Z → ε 0
0 a Z → AZ 0
0 a A → AA 0
0 b A → ε 1
1 b A → ε 1
1 ε Z → ε 1

▶ Transform A into a grammar GA (and reduce GA).
▶ Show how GA produces the words ε, ab, and aabb.

Solution

299

Bonus Exercises/Homework

▶ Assume Σ = {a, b}.
▶ Find a PDA A1 that accepts L1 = {w ∈ Σ∗ | |w|a = |w|b}.
▶ Give an accepting run of A1 on abbbaa.

▶ Assume Σ = {a, b}.
▶ Find a PDA A2 that accepts L2 = {w ∈ Σ∗ | |w|a < |w|b}.
▶ Give an accepting run of A2 on bbbaaaabb.

▶ Assume Σ = {a, b, c}.
▶ Find a PDA A3 that accepts

L3 = {w ∈ Σ∗ | |w| is odd and w[(|w|+ 1)/2] = a} (the middle
symbol is an a)

▶ Give an accepting run of A3 on cccaabb.
▶ Assume Σ = {a, b, c}.

▶ Find a PDA A4 that accepts L4 = {anbmco | n,m, o ∈ N, n = m + o}
▶ Give an accepting run of A4 on aacc.

End lecture 14

300

Comparison: Regular vs. context-free languages

Regular languages

NFADFA

RE

RLG

Context-free languages

CFG

CNF

PDA

For both language classes there are different but equivalent formal
descriptions, supporting different arguments about the classes!

301

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Formal Grammars
The Chomsky Hierarchy
Right-linear Grammars
Context-free Grammars

Push-Down Automata
Properties of Context-free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

302

Beyond context-free languages

Theorem (Existence of non-context-free languages)

Let Σ be an alphabet. There are languages L ⊆ Σ∗ such that there is
no context-free grammar G with L = L(G).

▶ There are languages that are not context-free
▶ e.g. {anbncn | n ∈ N}
▶ . . . but how do we show this?

▶ For regular languages: Pumping lemma
▶ Finite automata must loop on long words
▶ Loops can be repeated
▶ Hence: A language than cannot be pumped is not regular

▶ For context-free languages?

303

Pumping-lemma for context-free languages

Idea:
▶ If a context-free grammar G can produce words of arbitrary

length, there is at least one repeated NTS in the derivation
▶ If there are n rules in the grammar, at least one rule has to be

used more than once in a derivation of length n + 1
▶ Slightly stronger arguments (based on |N| instead of |P| are

possible)
▶ Hence there is a derivation A =⇒∗ vAx for v, x ∈ (Σ ∪ Γ)∗

▶ . . . and we can repeat this part of the derivation
A =⇒∗ vAx =⇒∗ vvAxx =⇒∗ vvvAxxx

▶ If G has no chain rules, at least one of v, x is non-empty

304

Pumping Lemma I vs. Pumping Lemma II:

▶ PL I (regular languages)
▶ Argument based on accepting automaton
▶ Finite automaton must loop on sufficiently long word
▶ One non-empty segment can be pumped

▶ PL II (context-free languages)
▶ Argument based on generating grammar
▶ At least one non-terminal must repeat in sufficiently long

derivation
▶ Two segments around this NTS can be pumped in parallel, at

least one of which is non-empty

305

Pumping Lemma II

Theorem (Pumping-Lemma for context-free languages)

Let L be a language generated by a context-free grammar
GL = (N,Σ,P, S) without contracting rules or chain rules. Let m = |N|,
r be the maximum length of the rhs of a rule in P, and k = r · (m + 1).
Then:
For every s ∈ L with |s| > k there exists a segmentation
u · v · w · x · y = s such that

1 vx ̸= ε

2 |vwx| ≤ k

3 u · vh · w · xh · y ∈ L for every h ∈ N.

▶ Holds for {anbn}, but not for {anbncn}.
▶ {anbncn} is not context-free, but context-sensitive, as we have

seen before.
306

Group Exercise: anbncn

Use the Pumping Lemma II to show that L = {anbncn | n ∈ N} is not
context-free.

307

Closure properties

Theorem (Closure under ∪, ·,∗)
The class of context-free languages is closed under union,
concatenation, and Kleene star.

For context-free grammars

G1 = (N1,Σ,P1, S1) and G2 = (N2,Σ,P2, S2)

with N1 ∩ N2 = {} (rename NTSs if needed), let S be a new start
symbol.
▶ for L(G1) ∪ L(G2), add productions S→ S1, S→ S2.
▶ for L(G1) · L(G2), add production S→ S1S2.
▶ for L(G1)

∗, add productions S→ ε, S→ S1S.

308

Closure properties (cont.)

Theorem (Closure under ∩)

Context-free languages are not closed under intersection.

Otherwise, {anbncn} would be context-free:
▶ {anbncm} is context-free
▶ {ambncn} is context-free
▶ {anbncn} = {anbncm} ∩ {ambncn}

309

Exercise: closure properties

1 Define context-free grammars for L1 = {anbncm | n,m ≥ 0} and
L2 = {ambncn | n,m ≥ 0}.

2 Use L1, L2 and the known closure properties to show that
context-free languages are not closed under complement.

310

Decision problems: word problem

Theorem (Word problem for cf. languages)

For a word w and a context-free grammar G, it is decidable whether
w ∈ L(G) holds.

Proof.
The CYK algorithm decides the word problem.

311

Decision problems: emptiness problem

Theorem (Emptiness problem for cf. languages)

For a context-free grammar G, it is decidable if L(G) = {} holds.

Proof.
Let G = (N,Σ,P, S).
Iteratively compute productive NTSs, i.e. symbols that produce
terminal words as follows:

1 let Z = Σ

2 add all symbols A to Z for which there is a rule A→ β with β ∈ Z∗

3 repeat step 2 until no further symbols can be added
4 L(G) = {} iff S /∈ Z.

312

Decision problems: equivalence problem

Theorem (Equivalence problem for cf. languages)

For context-free grammars G1,G2, it is undecidable if L(G1) = L(G2)
holds.

This follows from undecidability of Post’s Correspondence Problem.
▶ A PCP can be encoded in grammars such that the PCP has a

solution if and only if the two grammars are equivalent
▶ Since the PCP is undecidable, so is the equivalence problem
▶ Detail? Who needs details?

313

Summary: context-free languages

▶ characterised by
▶ context-free grammars
▶ pushdown automata

▶ closure properties
▶ closed under ∪,∗ , ·
▶ not closed under ∩,M

▶ decision problems
▶ decidable: w ∈ L(G), L(G) = {} (Chomsky NF, CYK algorithm)
▶ undecidable: L(G1) = L(G2)

▶ can describe nested dependencies
▶ structure of programming languages
▶ natural language processing

▶ in compilers, these features are used by parsers (next chapter)
End lecture 15

314

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

315

Parsing: Motivation

Formal grammars describe formal languages
▶ A grammar has a set of rules
▶ Rules replace words with words
▶ A word that can be derived from the start symbol belongs to the

language of the grammar

In the concrete case of programming languages,
“words of the language” are syntactically correct programs!

316

Grammars in Practice

▶ Most programming languages are described by context-free
grammars (with extra “semantic” constraints)

▶ Grammars generate languages
▶ PDAs and e.g. CYK-Parsing recognize words
▶ For compiler we need to . . .

▶ identify correct programs
▶ and understand their structure!

317

Lexing and Parsing

▶ Lexer: Breaks programs into tokens
▶ Smallest parts with semantic meaning
▶ Can be recognized by regular languages/patterns
▶ Example: 1, 2, 53 are all Integers
▶ Example: i, handle, stream are all Identifiers
▶ Example: >, >=, * are all individual operators

▶ Parser: Recognizes program structure
▶ Language described by a grammar that has token types as

terminals, not individual characters
▶ Parser builds parse tree

318

Automatisation with Bison

Variable Type
a int
b int

Source handler

Lexical analysis
(tokeniser)

Syntactic analysis
(parser)

Semantic analysis

Code generation
(several optimisation passes)

Sequence of characters:
i,n,t, ⏘, a,,, b, ;, a, =, b, +, 1, ;

Sequence of tokens:
(id, “int”), (id, “a”), (id, “b”), (semicolon), (id, “a”), (eq), (id, “b”), (plus), (int, “1”), (semicolon)

e.g. Abstract syntax tree

e.g. AST+symbol table

e.g. assembler code

Flex

����
���

���
�

���
�

���
�

���
�

���
�

�

����

���� �����

���� ����������

ld a,b
ld c, 1
add c
...

���
�

���
�

���
�

�

����

�����

����������

Bison

319

YACC/Bison

▶ Yacc - Yet Another Compiler
Compiler
▶ Originally written ≈1971 by

Stephen C. Johnson at AT&T
▶ LALR parser generator
▶ Translates grammar into syntax

analyser

▶ GNU Bison
▶ Written by Robert Corbett in 1988
▶ Yacc-compatibility by Richard

Stallman
▶ Output languages now C, C++,

Java

▶ Yacc, Bison, BYacc, . . . mostly
compatible (POSIX P1003.2)

320

Yacc/Bison Background

▶ By default, Bison constructs a 1 token Look-Ahead Left-to-right
Rightmost-derivation or LALR(1) parser
▶ Input tokens are processed left-to-right
▶ Shift-reduce parser:

▶ Stack holds tokens (terminals) and non-terminals
▶ Tokens are shifted from input to stack. If the top of the stack

contains symbols that represent the right hand side (RHS) of a
grammar rule, the content is reduced to the LHS

▶ Since input is reduced left-to-right, this corresponds to a rightmost
derivation

▶ Ambiguities are solved via look-ahead and special rules
▶ If input can be reduced to start symbol, success!
▶ Error otherwise

▶ LALR(1) is efficient in time and memory
▶ Can parse “all reasonable languages”
▶ For unreasonable languages, Bison (but not Yacc) can also

construct GLR (General LR) parsers
▶ Try all possibilities with back-tracking
▶ Corresponds to the non-determinism of stack machines

321

Yacc/Bison Overview

▶ Bison reads a specification file and converts it into (C) code of a
parser

▶ Specification file: Declarations, grammar rules with actions,
support code
▶ Declarations: C declarations and data model, token names,

associated values, includes
▶ Grammar rules: Non-terminal with alternatives, action associated

with each alternative
▶ Support code: e.g. main() function, error handling. . .
▶ Syntax similar to (F)lex

▶ Sections separated by %%
▶ Special commands start with %

▶ Bison generates function yyparse()

▶ Bison needs function yylex()
▶ Usually provided via (F)lex

322

Yacc/Bison workflow
Bison Input File

<file>.y

Definitions file
<file>.tab.h

Parser Source
<file>.tab.c

Flex Input file
<file>.l

Lexer Source
<file>.c

Lexer object
<file>.o

Parser object
<file>.tab.o

Final executable
parser

Some input
to process

Some output
produced

Bison

Flex

gcc

gcc

linker (gcc)

#include

 Execution time

Development time Bison Input File
<file>.y

Definitions file
<file>.tab.h

Parser Source
<file>.tab.c

Flex Input file
<file>.l

Lexer Source
<file>.c

Lexer object
<file>.o

Parser object
<file>.tab.o

Final executable
parser

Some input
to process

Some output
produced

Bison

Flex

gcc

gcc

linker (gcc)

#include

323

Example task: Desk calculator
▶ Desk calculator

▶ Reads algebraic expressions and assignments
▶ Prints result of expressions
▶ Can store values in registers R0-R99

▶ Example session:

[Shell] ./scicalc
R10=3*(5+4)
> RegVal: 27.000000

(3.1415*R10+3)
> 87.820500

R9=(3.1415*R10+3)
> RegVal: 87.820500

R9+R10
> 114.820500
...

324

Abstract grammar for desk calculator (partial)

GDC = (N,Σ,P, S)

▶ Σ = {PLUS, MULT,
ASSIGN, OPENPAR,
CLOSEPAR, REGISTER,
FLOAT, . . . }
▶ Some terminals are

single characters
(+, =, . . .)

▶ Others are complex
R10, 1.3e7

▶ Terminals (“tokens”)
are generated by
the lexer

▶ N = {stmt, assign,
expr, term, factor,
. . . }

▶ P :
stmt → assign

| expr
assign → REGISTER ASSIGN expr
expr → expr PLUS term

| term
term → term MULT factor

| factor
factor → REGISTER

| FLOAT
| OPENPAR expr CLOSEPAR

▶ S :

▶ For a single statement, S = stmt
▶ In practice, we need to handle

sequences of statements and
empty input lines (not reflected in
the grammar)

325

Parsing statements (1)

▶ Example string: R10 = (4.5+3*7)
▶ Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS

FLOAT MULT FLOAT CLOSEPAR
▶ In the following abbreviated R, A, O, F, P, F, M, F, C

▶ Parsing state:
▶ Unread input (left column)
▶ Current stack (middle column, top element on right)
▶ How state was reached (right column)

▶ Parsing:
Input Stack Comment
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor

. . .
326

Parsing statements (2)
R A O F P F M F C Start
A O F P F M F C R Shift R to stack
O F P F M F C R A Shift A to stack
F P F M F C R A O Shift O to stack
P F M F C R A O F Shift F to stack
P F M F C R A O factor Reduce F
P F M F C R A O term Reduce factor
P F M F C R A O expr LA! Reduce term
F M F C R A O expr P Shift P
M F C R A O expr P F Shift F
M F C R A O expr P factor Reduce F
M F C R A O expr P term Reduce factor
F C R A O expr P term M LA! Shift M
C R A O expr P term M F Shift F
C R A O expr P term M factor Reduce F
C R A O expr P term Reduce tMf
C R A O expr Reduce ePt

R A O expr C Shift C
R A factor Reduce OeC
R A term Reduce factor
R A expr Reduce term
assign Reduce RAe
stmt Reduce assign

327

Lexer interface

▶ Bison parser requires yylex() function
▶ yylex() returns token

▶ Token text is defined by regular expression pattern
▶ Tokens are encoded as integers
▶ Symbolic names for tokens are defined by Bison in generated

header file
▶ By convention: Token names are all CAPITALS

▶ yylex() provides optional semantic value of token
▶ Stored in global variable yylval
▶ Type of yylval defined by Bison in generated header file

▶ Default is int
▶ For more complex situations often a union
▶ For our example: Union of double (for floating point values) and

integer (for register numbers)

328

Lexer for desk calculator (1)

/*
Lexer for a minimal "scientific" calculator.

Copyright 2014 by Stephan Schulz, schulz@eprover.org.

This code is released under the GNU General Public Licence
Version 2.

*/

%option noyywrap

%{
#include "scicalcparse.tab.h"

%}

329

Lexer for desk calculator (2)

DIGIT [0-9]
INT {DIGIT}+
PLAINFLOAT {INT}|{INT}[.]|{INT}[.]{INT}|[.]{INT}
EXP [eE](\+|-)?{INT}
NUMBER {PLAINFLOAT}{EXP}?
REG R{DIGIT}{DIGIT}?

%%

"*" {return MULT;}
"+" {return PLUS;}
"=" {return ASSIGN;}
"(" {return OPENPAR;}
")" {return CLOSEPAR;}
\n {return NEWLINE;}

330

Lexer for desk calculator (3)

{REG} {
yylval.regno = atoi(yytext+1);
return REGISTER;

}

{NUMBER} {
yylval.val = atof(yytext);
return FLOAT;

}

[] { /* Skip whitespace*/ }

/* Everything else is an invalid character. */
. { return ERROR;}

%%

331

Data model of desk calculator

▶ Desk calculator has simple state
▶ 100 floating point registers
▶ R0-R99

▶ Represented in C as array of doubles:
#define MAXREGS 100

double regfile[MAXREGS];

▶ Needs to be initialized in support code

332

Bison code for desk calculator: Declarations

%{
#include <stdio.h>

#define MAXREGS 100

double regfile[MAXREGS];

extern int yyerror(char* err);
extern int yylex(void);

%}

%union {
double val;
int regno;
}

333

Bison code for desk calculator: Tokens

%start stmtseq

%left PLUS
%left MULT
%token ASSIGN
%token OPENPAR
%token CLOSEPAR
%token NEWLINE
%token REGISTER
%token FLOAT
%token ERROR

%%

334

Actions in Bison

▶ Bison is based on syntax rules with associated actions
▶ Whenever a reduce is performed, the action associated with the

rule is executed

▶ Actions can be arbitrary C code
▶ Frequent: semantic actions

▶ The action sets a semantic value based on the semantic value of
the symbols reduced by the rule

▶ For terminal symbols: Semantic value is yylval from Flex
▶ Semantic actions have “historically valuable” syntax

▶ Value of reduced symbol: $$
▶ Value of first symbol in syntax rule body: $1
▶ Value of second symbol in syntax rule body: $2
▶ . . .
▶ Access to named components: $<val>1

335

Bison code for desk calculator: Grammar (1)

stmtseq: /* Empty */
| NEWLINE stmtseq {}
| stmt NEWLINE stmtseq {}
| error NEWLINE stmtseq {}; /* After an error,
start afresh */

▶ Head: sequence of statements
▶ First body line: Skip empty lines
▶ Second body line: separate current statement from rest
▶ Third body line: After parse error, start again with new line

336

Bison code for desk calculator: Grammar (2)

stmt: assign {printf("> RegVal: %f\n", $<val>1);}
|expr {printf("> %f\n", $<val>1);};

assign: REGISTER ASSIGN expr {regfile[$<regno>1] = $<val>3;
$<val>$ = $<val>3;} ;

expr: expr PLUS term {$<val>$ = $<val>1 + $<val>3;}
| term {$<val>$ = $<val>1;};

term: term MULT factor {$<val>$ = $<val>1 * $<val>3;}
| factor {$<val>$ = $<val>1;};

factor: REGISTER {$<val>$ = regfile[$<regno>1];}
| FLOAT {$<val>$ = $<val>1;}
| OPENPAR expr CLOSEPAR {$<val>$ = $<val>2;};

337

Bison code for desk calculator: Support code

int yyerror(char* err)
{
printf("Error: %s\n", err);
return 0;

}

int main (int argc, char* argv[])
{
int i;

for(i=0; i<MAXREGS; i++)
{

regfile[i] = 0.0;
}
return yyparse();

}

338

Bison workflow and dependencies
Bison Input File

<file>.y

Definitions file
<file>.tab.h

Parser Source
<file>.tab.c

Flex Input file
<file>.l

Lexer Source
<file>.c

Lexer object
<file>.o

Parser object
<file>.tab.o

Final executable
parser

Some input
to process

Some output
produced

Bison

Flex

gcc

gcc

linker (gcc)

#include

339

Building the calculator

1 Generate parser C code and include file for lexer
▶ bison -d scicalcparse.y
▶ Generates scicalcparse.tab.c and scicalcparse.tab.h

2 Generate lexer C code
▶ flex -t scicalclex.l > scicalclex.c

3 Compile lexer
▶ gcc -c -o scicalclex.o scicalclex.c

4 Compile parser and support code
▶ gcc -c -o scicalcparse.tab.o scicalcparse.tab.c

5 Link everything
▶ gcc scicalclex.o scicalcparse.tab.o -o scicalc

6 Fun!
▶ ./scicalc

340

Exercise: calculator

▶ Exercise 1:
▶ Go to http://wwwlehre.dhbw-stuttgart.de/˜sschulz/

fla2022.html
▶ Download scicalcparse.y and scicalclex.l
▶ Build the calculator
▶ Run and test the calculator

▶ Exercise 2:
▶ Add support for division and subtraction /, -
▶ Add support for unary minus (the negation operator -)

341

http://wwwlehre.dhbw-stuttgart.de/~sschulz/fla2022.html
http://wwwlehre.dhbw-stuttgart.de/~sschulz/fla2022.html

Derivations

Definition (derivation)

For a grammar G, a derivation of a word wn in L(G) is a sequence
S⇒ w1 ⇒ . . .⇒ wn where S is the start symbol, and each wi is
generated from its predecessor by application of a production of the
grammar

342

Example: derivation

Example (well-formed expressions over x,+, ∗.(,))

Let GE = (N,Σ,P,E) with
▶ N = {E}
▶ Σ = {(,),+, ∗, x}
▶ P:

1 E → x
2 E → (E)
3 E → E + E
4 E → E ∗ E

The following is a derivation of
x + x + x ∗ x (with the replaced
symbol printed bold):

E
⇒ E + E
⇒ E + E + E
⇒ E + E + E ∗ E
⇒ x + E + E ∗ E
⇒ x + x + E ∗ E
⇒ x + x + x ∗ E
⇒ x + x + x ∗ x

343

Rightmost and leftmost Derivations

Definition (rightmost/leftmost)

▶ A derivation is called a rightmost derivation, if at any step it
replaces the rightmost non-terminal in the current word.

▶ A derivation is called a leftmost derivation, if at any step it
replaces the leftmost non-terminal in the current word.

Example

▶ The derivation on the previous slide is neither leftmost nor
rightmost.

▶ A rightmost derivation is:
E⇒ E + E⇒ E + E + E⇒ E + E + E ∗ E⇒ E + E + E ∗ x⇒
E + E + x ∗ x⇒ E + x + x ∗ x⇒ x + x + x ∗ x

344

Parse trees

Definition (parse tree)

A parse tree for a derivation in a grammar G = (N,Σ,P, S) is an
ordered, labelled tree with the following properties:
▶ Each node is labelled with a symbol from N ∪ Σ

▶ The root of the tree is labelled with the start symbol S.
▶ Each inner node is labelled with a single non-terminal symbol

from N

▶ If an inner node with label A has children labelled with symbols
α1, . . . , αn, then there is a production A→ α1 . . . αn in P.

▶ The parse tree represents a derivation of the word formed by the
labels of the leaf nodes

▶ It abstracts from the order in which productions are applied.

345

Example: parse trees

Example

The derivation E⇒ E + E⇒ E + E + E⇒ E + E + E ∗ E⇒
E + E + E ∗ x⇒ E + E + x ∗ x⇒ E + x + x ∗ x⇒ x + x + x ∗ x
can be represented by a sequence of parse trees:

E

E + E

x E + E

x E * E

x x
346

Ambiguity

Definition (ambiguous)

A grammar G = (N,Σ,P, S) is ambiguous if it has multiple different
parse trees for a word w in L(G).

Example

GE is ambiguous since it has several parse trees for x + x + x.

1 E → x

2 E → (E)

3 E → E + E

4 E → E ∗ E

E

E + E

x E + E

x x

E

E + E

E + E x

x x

347

Exercise: Ambiguity is worse. . .

Consider the grammar GE and its parse trees for x + x + x.

1 E → x

2 E → (E)

3 E → E + E

4 E → E ∗ E

E

E + E

x E + E

x x

E

E + E

E + E x

x x

▶ Provide a rightmost derivation for the right tree.
▶ Provide a rightmost derivation for the left tree.
▶ Provide a leftmost derivation for the left tree.
▶ Provide a leftmost derivation for the right tree.

348

Exercise: Eliminating Ambiguity

Consider GE with the following productions:
1 E → x

2 E → (E)

3 E → E + E

4 E → E ∗ E

Define a grammar G′ with L(G) = L(G′) that is not ambiguous, that
respects that ∗ has a higher precedence than +, and that respects
left-associativity for all operators.

349

Abstract Syntax Trees

▶ Abstract Syntax Trees represent the structure of a derivation
without the specific details

▶ Think: “Parse trees without redundant syntactic elements”

Example

Parse Tree:
E

E + E

E + E x

x x

Corresponding AST:

+

+ x

x x

350

High-Level Architecture of a Compiler

Variable Type
a int
b int

Source handler

Lexical analysis
(tokeniser)

Syntactic analysis
(parser)

Semantic analysis

Code generation
(several optimisation passes)

Sequence of characters:
i,n,t, ⏘, a,,, b, ;, a, =, b, +, 1, ;

Sequence of tokens:
(id, “int”), (id, “a”), (id, “b”), (semicolon), (id, “a”), (eq), (id, “b”), (plus), (int, “1”), (semicolon)

e.g. Abstract syntax tree

e.g. AST+symbol table

e.g. assembler code

����
���

���
�

���
�

���
�

���
�

���
�

�

����

���� �����

���� ����������

ld a,b
ld c, 1
add c
...

���
�

���
�

���
�

�

����

�����

����������

351

Syntactic Analysis/Parsing

▶ Description of the language with a context-free grammar
▶ Parsing:

▶ Try to build a parse tree/abstract syntax tree (AST)
▶ Parse tree unambiguously describes structure of a program
▶ AST reflects abstract syntax (can e.g. drop parenthesis)

▶ Methods:
▶ Manual recursive descent parser
▶ Automatic with a table-driven bottom-up parser

Result: Abstract Syntax Tree

352

Semantic Analysis

▶ Analyze static properties of the program
▶ Which variable has which type?
▶ Are all expressions well-typed?
▶ Which names are defined?
▶ Which names are referenced?

▶ Core tool: Symbol table

Result: Annotated AST

353

Optimization

▶ Transform Abstract Syntax Tree to generate better code
▶ Smaller
▶ Faster
▶ Both

▶ Mechanisms
▶ Common sub-expression elimination
▶ Loop unrolling
▶ Dead code/data elimination
▶ . . .

Result: Optimized AST

354

Code Generation

▶ Convert optimized AST into low-level code
▶ Target languages:

▶ Assembly code
▶ Machine code
▶ VM code (z.B. JAVA byte-code, p-Code)
▶ C (as a “portable assembler”)
▶ . . .

Result: Program in target language

355

Summary: parsers

Parsers
▶ recognise structure of programs
▶ receive tokens from scanner
▶ construct parse tree and symbol table
▶ common: shift-reduce parsing

Bison
▶ receives tokens and their semantic values from Flex
▶ uses grammar rules to perform semantic actions
▶ uses look-ahead to resolve conflicts

End lecture 16

356

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison

Turing Machines and Languages of
Type 1 and 0

Turing Machines
Unrestricted Grammars
Linear Bounded Automata
Properties of Type-0-languages

Lecture-specific material

Bonus Exercises

Selected Solutions

357

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison

Turing Machines and Languages of
Type 1 and 0

Turing Machines
Unrestricted Grammars
Linear Bounded Automata
Properties of Type-0-languages

Lecture-specific material

Bonus Exercises

Selected Solutions

358

Turing Machines

359

Turing Machine: Motivation

Four classes of languages described by grammars
and equivalent machine models:

1 regular languages ; finite automata
2 context-free languages ; pushdown automata
3 context-sensitive languages ; ?
4 Type-0-languages ; ?

Type 0
(?)

Type 1
(?)

Type 2
(PDA)

Type 3
(DFA/NFA)

(all languages)

We need a machine model that is more powerful than PDAs:
Turing Machines

360

Turing Machine: history

▶ proposed in 1936 by Alan Turing
▶ paper: On computable numbers, with an

application to the Entscheidungsproblem
▶ uses the TM to show that satisfiability of

first-order formulas is undecidable
▶ model of a universal computer

▶ very simple (and thus easy to describe
formally)

▶ but as powerful as any conceivable machine

361

Turing Machine: conceptual model

t a p e# #

▶ medium: unlimited tape (bidirectional)
▶ initially contains input (and blanks #)
▶ TM can read and write tape
▶ TM can move arbitrarily over tape
▶ serves for input, working, output
▶ output possible

▶ transition relation
▶ read and write current position
▶ moving instructions (l, r, n)

▶ acceptance condition
▶ final state is reached
▶ no transitions possible

▶ commonalities with FA
▶ control unit (finite set of states),
▶ initial and final states
▶ input alphabet

362

Transitions in Turing Machines

∆ ⊆ Q× Γ× Γ× {l, n, r} × Q

▶ TM is in state
▶ reads tape symbol from current position
▶ writes tape symbol on current position
▶ moves to left, right, or stays
▶ goes into a new state

A transition p, a, b, l, q can also be written as

p a → b l q

363

Example: transition

Example (transition 1, t→ c, r, 2)

364

Turing Machine: formal definition

Definition (Turing Machine)

A Turing Machine (TM) is a 6-tuple (Q,Σ,Γ,∆, q0,F) where
▶ Q,Σ, q0,F are defined as for NFAs,
▶ Γ ⊇ Σ ∪ {#} is the tape alphabet,

including at least Σ and the blank symbol,
▶ ∆ ⊆ Q× Γ× Γ× {l, n, r} × Q is the transition relation.

If ∆ contains at most one transition (p, a, b, d, q) for each pair
(p, a) ∈ Q× Σ, the TM is called deterministic. The transition function
is then denoted by δ.

Note:
▶ Γ (the tape alphabet) can contain additional characters
▶ This does not increase the power, but makes developing TMs

easier
365

Configurations of TMs

Definition (configuration)

A configuration c = αqβ of a Turing Machine is given by
▶ the current state q

▶ the tape content α on the left of the read/write head
(except unlimited # sequences)

▶ the tape content β starting with the position of the head
(except unlimited # sequences)

A configuration c = αqβ is accepting if q ∈ F.

A configuration c is a stop configuration if there are no transitions
from c.

366

Example: configuration

Example (configurations)

▶ This TM is in the configuration c2ape.

▶ The configuration 4tape is accepting.
▶ If there are no transitions 4, t→ . . .,

4tape also is a stop configuration.

367

Computations of TMs

Definition (computation, acceptance)

A computation of a TMM on a word w is a sequence of
configurations (according to the transition function) of configurations
ofM, starting from q0w.

M accepts w if there exists a computation ofM on w that leads to an
accepting stop configuration.

▶ Physical Turing maschine:
https://www.youtube.com/watch?v=E3keLeMwfHY&t=13s

▶ Turing machine in Conway’s Game of Life
https://www.youtube.com/watch?v=My8AsV7bA94

368

https://www.youtube.com/watch?v=E3keLeMwfHY&t=13s
https://www.youtube.com/watch?v=My8AsV7bA94

Exercise: Turing Machines

Let Σ = {a, b} and L = {w ∈ Σ∗ | |w|a is even}.

▶ Give a TMM that accepts (exactly) the words in L.
▶ Give the computation ofM on the words abbab and bbab.

369

Example: TM for anbncn

M = (Q,Σ,Γ,∆, start, {f}) with

▶ Q = {start, findb, findc, check, back, end, f}
▶ Σ = {a, b, c} and Γ = Σ ∪ {#, x, y, z}

state read write move state
start # # n f
start a x r findb
findb a a r findb
findb y y r findb
findb b y r findc
findc b b r findc
findc z z r findc
findc c z r check
check c c l back
check # # l end

state read write move state
back z z l back
back b b l back
back y y l back
back a a l back
back x x r start
end z z l end
end y y l end
end x x l end
end # # n f

370

Exercise: Turing Machines (2)

a) Simulate the computations ofM on aabbcc and aabc.

b) Develop a Turing Machine P accepting LP = {wcw | w ∈ {a, b}∗}.
c) How do you have to modify P if you want to recognise inputs of

the form ww?

371

Turing Machines with several tapes

▶ A k-tape TM has k tapes on which the heads can move
independently.

▶ ∆ ⊆ Q× Γk × Γk × {r, l, n}k × Q
▶ It is possible to simulate a k-tape TM with a (1-tape) TM:

▶ use alphabet Γk × {X,#}k

▶ the first k language elements encode the tape content, the
remaining ones the positions of the heads.

372

Nondeterminism

Reminder
▶ just like FAs and PDAs, TMs can be deterministic or

non-deterministic, depending on the transition relation.
▶ for non-deterministic TMs, the machine accepts w if there exists

a sequence of transitions leading to an accepting stop
configuration.

373

Simulating non-deterministic TMs

Theorem (equivalence of deterministic and non-deterministic
TMs)

Deterministic TMs can simulate computations of non-deterministic
TMs; i.e. they describe the same class of languages.

Proof.
Use a 3-tape TM:
▶ tape 1 stores the input w

▶ tape 2 enumerates all possible sequences of non-deterministic
choices (for all non-deterministic transitions)

▶ tape 3 encodes the computation on w with choices stored on
tape 2.

374

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison

Turing Machines and Languages of
Type 1 and 0

Turing Machines
Unrestricted Grammars
Linear Bounded Automata
Properties of Type-0-languages

Lecture-specific material

Bonus Exercises

Selected Solutions

375

Turing Machines and unrestricted grammars

Theorem (equivalence of TMs and unrestricted grammars)

The class of languages that can be accepted by a Turing Machine is
exactly the class of languages that can be generated by unrestricted
Chomsky grammars.

Proof.

1 simulate grammar derivations with a TM
2 simulate a TM computation with a grammar

376

Simulating a Type-0-grammar G with a TM

Use a non-deterministic 2-tape TM:
▶ tape 1 stores input word w
▶ tape 2 simulates the derivations of G, starting with S

▶ (non-deterministically) choose a position
▶ if the word starting at the position, matches α of a rule α→ β,

apply the rule
▶ move tape content if necessary
▶ replace α with β

▶ compare content of tape 2 with tape 1
▶ if they are equal, accept
▶ otherwise continue

377

Simulating a TM with a Type-0-grammar

Goal: transform TM A = (Q,Σ,Γ,∆, q0,F) into grammar G
Technical difficulty:
▶ A receives word as input at the start, possibly modifies it, then

possibly accepts.
▶ G starts with S, applies rules, possibly generating w at the end.

1 generate initial configuration q0w ∈ Σ∗ with blanks left and right
2 simulate the computation of A on w

(p, a, b, r, q) ; pa→ bq

(p, a, b, l, q) ; cpa→ qcb (for all c ∈ Γ)

(p, a, b, n, q) ; pa→ qb

3 if an accepting stop configuration is reached, recreate w
▶ requires a more complex alphabet with a “backup track”

378

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison

Turing Machines and Languages of
Type 1 and 0

Turing Machines
Unrestricted Grammars
Linear Bounded Automata
Properties of Type-0-languages

Lecture-specific material

Bonus Exercises

Selected Solutions

379

Linear bounded automata

▶ context-sensitive grammars do not allow for contracting rules
▶ a linear bounded automaton (LBA) is a TM that only uses the

space originally occupied by the input w.
▶ limits of w are indicated by markers that cannot be passed by the

read/write head

. . . > i n p u t < . . .

380

Equivalence of cs. grammars and LBAs

Transformation of cs. grammar G into LBA:
▶ as for Type-0-grammar: use 2-tape-TM

▶ input on tape 1
▶ simulate operations of G on tape 2

▶ since the productions of G are non-contracting, words longer
than w need not be considered

Transformation of LBA A into cs. grammar:
▶ similar to construction for TM:

▶ generate w without blanks
▶ simulate operation of A on w

▶ rules are non-contracting ✓

381

Closure properties: regular operations

Theorem (closure under ∪, ·,∗)
The class of languages described by context-sensitive grammars is
closed under ∪, ·,∗.

Proof.
Concatenation and Kleene-star are more complex than for cf.
grammars because the context can influence rule applicability.
▶ rename NTSs (as for cf. grammars)
▶ only allow NTSs as context
▶ only allow productions of the kind

▶ N1N2 . . .Nk → M1M2 . . .Mj

▶ N → a

382

Closure properties: intersection and complement

Theorem (closure under ∩)

The class of context-sensitive languages is closed under intersection.

Proof.

▶ use a 2-tape-LBA
▶ simulate computation of A1 on tape 1, A2 on tape 2
▶ accept if both A1 and A2 accept

Theorem (closure under)

The class of context-sensitive languages is closed under
complement.

▶ shown in 1988
383

Context-sensitive grammars: decision problems

Theorem (Word problem for cs. languages)

The word problem for cs. languages is decidable.

Proof.

▶ N, Σ and P are finite
▶ rules are non-contracting
▶ for a word of length n only a finite number of derivations up to

length n has to be considered.

384

Context-sensitive grammars: decision problems (cont’)

Theorem (Emptiness problem for cs. languages)

The emptiness problem for cs. languages is undecidable.

Proof.
Also follows from undecidability of Post’s correspondence
problem.

Theorem (Equivalence problem for cs. languages)

The equivalence problem for cs. languages is undecidable.

Proof.
If this problem was decidable for cs. languages, it would also be
decidable for cf. languages (since every cf. language is also cs.).

385

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison

Turing Machines and Languages of
Type 1 and 0

Turing Machines
Unrestricted Grammars
Linear Bounded Automata
Properties of Type-0-languages

Lecture-specific material

Bonus Exercises

Selected Solutions

386

The universal Turing Machine U

▶ U is a TM that simulates other Turing Machines
▶ since TMs have finite alphabets and state sets, they can be

encoded by a (binary) alphabet by an encoding function c()
▶ Input:

▶ encoding c(A) of a TM A on tape 1
▶ encoding c(w) of an input word w for A on tape 2

▶ with input c(A) and c(w), U behaves exactly like A on w:
▶ U accepts iff A accepts
▶ U halts iff A halts
▶ U runs forever if A runs forever

Every solvable problem can be solved in software.

387

Operation of U

1 encode initial configuration
▶ tape on lhs of head
▶ state
▶ tape on rhs of head

2 use c(A) to find a transition from the current configuration
3 modify the current configuration accordingly
4 accept if A accepts
5 stop if A stops
6 otherwise, continue with step 2

388

The Halting problem

Definition (halting problem)

For a TM A = (Q,Σ,Γ, q0,∆,F) and a word w ∈ Σ∗, does A halt (i.e.
reach a stop configuration) with input w?

Wanted: TMs H1 and H2, such that with input c(A) and c(w)

1 H1 accepts iff A halts on w and
2 H2 accepts iff A does not halt on w.

decision procedure for HP: let H1 and H2 run in parallel

1 U (almost) does what H1 needs to do.
2 Difficult: H2 needs to detect that that A does not terminate.

▶ infinite tape ; infinite number possible configurations
▶ recognising repeated configurations not sufficient.

389

Undecidability of the halting problem

Assumption: there is a TM H2 which, given c(A) and c(w) as input
1 accepts if A does not halt with input w and
2 runs forever if A halts with input w.

If H2 exists, then there is also a TM S accepting exactly those
encodings of TMs that do not accept their own encoding

1 input: TM encoding c(A) on tape 1
2 S copies c(A) to tape 2
3 afterwards S operates like H2

390

Computation of S with input c(S)

Reminder: S accepts c(A) iff A does not accept c(A).

Case 1S accepts c(S). This implies that S does not halt on the input
c(S). Therefore S does not accept c(S).

Case 2S rejects c(S). Since S accepts exactly the encodings of those
TMs that reject their own encoding, this implies that S accepts
the input c(S).

This implies:
1 There is no such TM S.
2 There is no TM H2.

Theorem (Turing 1936)

The halting problem is undecidable.

391

Decision problems

Theorem (Decision problems for Turing Machines)

The word problem, the emptiness problem, and the equivalence
problem are undecidable.

Proof.
If any of these problems were decidable, one could easily derive a
decision procedure for the halting problem.

392

Closure properties

Theorem (closure under)

The class of languages accepted by Turing Machines is not closed
under complement.

Proof.
If it were closed under complement, H2 would exist.

Theorem (closure under ∪, ·,∗ ,∩)

The class of languages accepted by TMs is closed under ∪, ·,∗ ,∩.

Proof.
Analogous to Type-1-grammars / LBAs.

393

Diagonalisation

Challenge of the proof:
show for all possible (infinitely many) TMs that none of them can
decide the halting problem.

TM in
pu

t

c(
A
)

c(
B)

c(
C)

c(
D
)

c(
E)

. . .
A ✗

B ✗

C ✗

D ✗

E ✗
...

. . .

394

Further diagonalisation arguments

Theorem (Cantor diagonalisation, 1891)

The set of real numbers is uncountable.

Theorem (Epimenides paradox, 6th century BC)

Epimenides [the Cretan] says: “[All] Cretans are always liars.”

Theorem (Russell’s paradox, 1903)

R := {T | T /∈ T} Does R ∈ R hold?

Theorem (Gödel’s incompleteness theorem, 1931)

Construction of a sentence in 2nd order predicate logic which states
that itself cannot be proved.

395

Is this important?

▶ What is so bad about not being able to decide if a TM halts?
▶ Isn’t this a purely academic problem?

Ludwig Wittgenstein:
It is very queer that this should have puzzled anyone. [...] If
a man says “I am lying” we say that it follows that he is not
lying, from which it follows that he is lying and so on. Well, so
what? You can go on like that until you are black in the face.
Why not? It doesn’t matter.

(Lectures on the Foundations of Mathematics, Cambridge 1939)

Does it matter in practice?

396

It does not only affect halting

Halting is a fundamental property.
If halting cannot be decided, what can be?

Theorem (Rice, 1953)

Every non-trivial semantic property of TMs is undecidable.

non-trivial satisfied by some TMs, not satisfied by others
semantic referring to the accepted language

397

Undecidability of semantic properties

Example (Property E: TM accepts the set of prime numbers P)

If E is decidable, then so is the halting problem for A and an input wA.
Approach: Turing Machine E , input wE

1 simulate computation of A on wA

2 decide if wE ∈ P

Check if E accepts the set of prime numbers:
yes ; A halts with input wA no ; A does not halt on input wA

398

It does not only affect Turing Machines

Church-Turing-thesis

Every effectively calculable function is a computable function.

computable means calculable by a (Turing) machine
effectively calculable refers to the intuitive idea without reference to a

particular computing model

What holds for Turing Machines also holds for
▶ unrestricted grammars,
▶ while programs,
▶ von Neumann architecture,
▶ Java/C++/Lisp/Prolog programs,
▶ future machines and languages

No interesting property is decidable
for any powerful programming language!

399

Undecidable problems in practice

software development Does the program match the specification?
debugging Does the program have a memory leak?

malware Does the program harm the system?
education Does the student’s TM compute the same

function as the teacher’s TM?
formal languages Do two cf. grammars generate the same

language?
mathematics Hilbert’s tenth problem: find integer solutions

for a polynomial with several variables
logic Satisfiability of formulas in first-order predicate

logic

Yes, it does matter!

400

Some things that are still possible

It is possible because

to translate a program P from
a language into an equivalent
one in another language

one specific program is created for
P.

to detect if a program con-
tains a instruction to write to
the hard disk

this is a syntactic property. Decid-
ing if this instruction is eventually
executed is impossible in general.

to check at runtime if a pro-
gram accesses the hard disk

this corresponds to the simulation
by U . It is undecidable if the code
is never executed.

to write a program that gives
the correct answer in many
“interesting” cases

there will always be cases in which
an incorrect answer or none at all is
given.

401

What can be done?

Can the Turing Machine be “fixed”?
▶ undecidability proof does not use any specific TM properties
▶ only requirement: existence of universal machine U
▶ TM is not to weak, but too powerful
▶ different machine models have the same problem (or are weaker)

Alternatives:
▶ If possible: use weaker formalisms (modal logic, dynamic logic)
▶ use heuristics that work well in many cases, solve remaining

ones manually
▶ interactive programs

402

Turing Machines: summary

▶ Halting problem: does TM A halt on input w?
▶ Turing: no TM can decide the halting problem.
▶ Rice: no TM can decide any non-trivial semantic property of

TMs.
▶ Church-Turing: this holds for every powerful machine model.
▶ No interesting problem of programs in any powerful programming

language is decidable.

Consequences:

/ Computers cannot take all work away from computer scientists.

, Computers will never make computer scientists redundant.

403

Property overview

property regular context-free context-sens. unrestricted
(Type 3) (Type 2) (Type 1) (Type 0)

closure
M ∪, ·,∗ ✓ ✓ ✓ ✓

M ∩ ✓ ✗ ✓ ✓

M M ✓ ✗ ✓ ✗

decidability
M word ✓ ✓ ✓ ✗

M emptiness ✓ ✓ ✗ ✗

M equiv. ✓ ✗ ✗ ✗

deterministic
equivalent to ✓ ✗ ? ✓

non-det.
End lecture 17

404

This is the End. . .

405

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18

Bonus Exercises

Selected Solutions

406

Lecture-specific material

407

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18

Bonus Exercises

Selected Solutions

408

Goals for Lecture 1

▶ Getting acquainted
▶ Clarifying practical issues
▶ Course outline and motivation

▶ Formal languages
▶ Language classes
▶ Grammars
▶ Automata
▶ Questions
▶ Applications

409

Practical Issues

▶ Lecture times (usually, check RAPLA)
▶ Today ;-)
▶ Thursday 10:00 (September 29th: Two afternoon lectures)
▶ Friday 12:15
▶ Really, check RAPLA

▶ Final exam
▶ Written exam (Open-Book or nearly so)
▶ Probably week 47 (November 21rd to 25th)
▶ Probably here

Lecture 1

410

Summary Lecture 1

▶ Clarifying practical issues
▶ You need running flex, bison, C compiler, editor!

▶ Course outline and motivation
▶ Formal languages
▶ Language classes
▶ Grammars
▶ Automata
▶ Questions
▶ Applications

411

Feedback round

▶ What was the best part of todays lecture?
▶ What part of todays lecture has the most potential for

improvement?
▶ Optional: how would you improve it?

412

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18

Bonus Exercises

Selected Solutions

413

Goals for Lecture 2

▶ Review of last lecture
▶ Formal basics of formal languages
▶ Operations on words
▶ Operations on languages
▶ Introduction to regular expressions

▶ Examples
▶ Formal definition

414

Review

▶ Introduction
▶ Language classes
▶ Grammars
▶ Automata
▶ Applications

▶ flex and bison are available via most Open Source install
methods (if not installed by default)
▶ E.g. apt-get install bison (Debian/Ubuntu)
▶ E.g. sudo port install flex (MacPorts)

▶ Check out http://dinosaur.compilertools.net/
▶ Documentation, sources

▶ flex direct: https://github.com/westes/flex
▶ bison direct: https://www.gnu.org/software/bison/

Lecture 2

415

http://dinosaur.compilertools.net/
https://github.com/westes/flex
https://www.gnu.org/software/bison/

Summary

▶ Formal languages
▶ Alphabets
▶ Words
▶ Languages
▶ Examples of languages

▶ Operations on words and languages
▶ Concatenation
▶ Power
▶ Kleene star

▶ Introduction to regular expressions

Remark: Formal languages are sets, and hence we can also apply
set operations like ∪ (union), ∩ (intersection), (complement) to
them!

416

Feedback round

▶ What was the best part of todays lecture?
▶ What part of todays lecture has the most potential for

improvement?
▶ Optional: how would you improve it?

417

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18

Bonus Exercises

Selected Solutions

418

Goals for Lecture 3

▶ Review of last lecture
▶ Understanding regular expressions
▶ Regular expression algebra

▶ Equivalences on regular expressions
▶ Simplifying REs

419

Review (1)

▶ Formal languages
▶ Finite alphabet Σ of symbols/letters
▶ Words are finite sequences of letters from Σ
▶ Languages are (finite or infinite) sets of words

▶ Words - properties and operations
▶ |w|, |w|a,w[k]
▶ w1 · w2,wn

420

Review (2)

▶ Interesting languages
▶ Binary representations of natural numbers
▶ Binary representations of prime numbers
▶ C functions (over strings)
▶ C functions with input/output pairs

▶ Operations on Languages
▶ Product L1 · L2: Concatenation of one word from each language
▶ Power Ln: Concatenation of n words from L
▶ Kleene Star: L∗: Concat any number of words from L

Remark: Formal languages are sets, and hence we can also apply
set operations like ∪ (union), ∩ (intersection), (complement) to
them!

421

Review (3)

▶ Regular expressions RΣ

▶ Base cases:
▶ L(∅) = {}
▶ L(ϵ) = {ϵ }
▶ L(a) = {a} for each a ∈ Σ

▶ Complex cases:
▶ L(r1 + r2) = L(r1) ∪ L(r2)
▶ L(r1 · r2) = L(r1r2) = L(r1) · L(r2)
▶ L(r∗) = L(r)∗

▶ L((r)) = L(r) (brackets are used to group expressions)

Lecture 3

422

Summary

▶ Regular expression algebra
▶ REs are equivalent if they describe the same language
▶ REs can be simplified applying equivalences
▶ Recursive definitions: Lemmas of Arden/Salomaa

423

Feedback round

▶ What was the best part of todays lecture?
▶ What part of todays lecture has the most potential for

improvement?
▶ Optional: how would you improve it?

424

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18

Bonus Exercises

Selected Solutions

425

Goals for Lecture 4

▶ Review of last lecture
▶ Warmup exercise
▶ Finite Automata

▶ Graphical representation
▶ Formal definition
▶ Language recognized by an automata
▶ Tabular representation
▶ Exercises

426

Review (1)

▶ Regular expressions RΣ

▶ Base cases:
▶ L(∅) = {}
▶ L(ϵ) = {ϵ }
▶ L(a) = {a} for each a ∈ Σ

▶ Complex cases:
▶ L(r1 + r2) = L(r1) ∪ L(r2)
▶ L(r1 · r2) = L(r1r2) = L(r1) · L(r2)
▶ L(r∗) = L(r)∗

▶ L((r)) = L(r) (brackets are used to group expressions)

427

Review (2)

▶ Regular expression algebra
▶ REs are equivalent if they describe the same language
▶ REs can be simplified applying equivalences
▶ 17 equivalences

▶ Commutativity of +, associativity of +, ·, distributivity (!)
▶ Arden/Salomaa
▶ . . .

428

Warmup Exercise

▶ Assume Σ = {a, b}
▶ Find a regular expression for the language L1 of all words over Σ

with at least 3 characters and where the third character is an “a”.
▶ Describe L1 formally (i.e. as a set)
▶ Find a regular expression for the language L2 of all words over Σ

with at least 3 characters and where the third character is the
same as the third-last character

▶ Describe L2 formally.
Lecture 4

429

Summary

▶ REs revisited (with exercise)
▶ Finite Automata

▶ Graphical representation
▶ Formal definition
▶ Language recognized by an automata
▶ Tabular representation
▶ Exercises

430

Feedback round

▶ What was the best part of todays lecture?
▶ What part of todays lecture has the most potential for

improvement?
▶ Optional: how would you improve it?

431

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18

Bonus Exercises

Selected Solutions

432

Goals for Lecture 5

▶ Review of last lecture
▶ Introduction to Nondeterministic Finite Automata

▶ Definitions
▶ Exercises

▶ Equivalency of deterministic and nondeterministic finite
automata
▶ Converting NFAs to DFAs
▶ Exercises

433

Review

▶ Finite Automata
▶ Graphical representation
▶ Formal definition

▶ Q: Set of states
▶ Σ: Alphabet
▶ δ: Transition function
▶ q0: Initial state
▶ F: Final (accepting) states

▶ Language recognized by an automata
▶ w ∈ L(A) if δ′(w) ∈ F or there exist an accepting run of A for w

▶ Tabular representation
▶ Exercises

Lecture 5

434

Summary

▶ Nondeterministic Finite Automata
▶ Q: Set of states
▶ Σ: Alphabet
▶ ∆: Transition relation (with ε-transitions!)
▶ q0: Initial state
▶ F: Final (accepting) states

▶ NFAs and DFAs accept the same class of languages!
▶ Converting NFA to DFA

▶ States of det(A) are elements of 2Q

▶ . . .

435

Feedback round

▶ What was the best part of todays lecture?
▶ What part of todays lecture has the most potential for

improvement?
▶ Optional: how would you improve it?

436

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18

Bonus Exercises

Selected Solutions

437

Goals for Lecture 6

▶ Review of last lecture
▶ Equivalency of regular expressions and NFAs

▶ Construction of an NFA from a regular expression
▶ Extraction of an RE from a DFA

438

Review

▶ Nondeterministic Finite Automata
▶ Q: Set of states
▶ Σ: Alphabet
▶ ∆: Transition relation (with ε-transitions!)
▶ q0: Initial state
▶ F: Final (accepting) states

▶ NFAs and DFAs accept the same class of languages!
▶ Converting NFA to DFA

▶ States of det(A) are elements of 2Q

▶ . . .
Lecture 6

439

Summary

▶ Equivalency of regular expressions and NFAs
▶ Construction of an NFA from a regular expression

▶ Base cases each result in a trivial 2-state automaton
▶ Compose automata for composite regular expressions
▶ Glue automata together with ε-Transitions

▶ Extraction of an RE for a DFA
▶ Determine system of equations
▶ For each state add one alternative for each transition
▶ For accepting states add ε.
▶ Solve the system of equations, handling loops with Arden’s lemma

440

Feedback round

▶ What was the best part of todays lecture?
▶ What part of todays lecture has the most potential for

improvement?
▶ Optional: how would you improve it?

441

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18

Bonus Exercises

Selected Solutions

442

Goals for Lecture 7

▶ Review of last lecture
▶ Minimizing DFAs

▶ . . . and a first application

▶ Exercises

443

Review

▶ Central result: REs, NFAs and DFAs describe the same class of
lanuguages (namely regular languages)
▶ Proof via construcive algorithms

▶ NFA to DFA already done
▶ RE to NFA and DFA to RE new

▶ Construction of an NFA from a regular expression
▶ Base cases each result in a trivial 2-state automaton
▶ Compose automata for composite regular expressions
▶ Glue automata together with ε-Transitions

▶ Extraction of an RE for a DFA
▶ Determine system of equations describing language accepted at

each state
▶ For each state add one alternative for each transition
▶ For accepting states add ε.

▶ Solve the system of equations, handling loops with Arden’s lemma
Lecture 7

444

Homework assignment

▶ Get access to an operational Linux/UNIX enviroment
▶ You can install VirtualBox (https://www.virtualbox.org)

and then install e.g. Ubuntu (http://www.ubuntu.com/) on a
virtual machine

▶ For Windows, you can install the complete UNIX emulation
package Cygwin from http://cygwin.com

▶ For MacOS, you can install fink
(http://fink.sourceforge.net/) or MacPorts
(https://www.macports.org/) and the necessary tools

▶ You will need at least flex, bison, gcc, grep, sed, AWK,
make, and a good text editor of your choice

445

https://www.virtualbox.org
http://www.ubuntu.com/
http://cygwin.com
http://fink.sourceforge.net/
https://www.macports.org/

Summary

▶ Minimizing DFAs
▶ Identify and merge equivalent states
▶ Result is unique (up to names of states)
▶ Equivalency of REs can be decided by comparison of

corresponding minimal DFAs

▶ Homework: Get ready for flexing...

446

Feedback round

▶ What was the best part of todays lecture?
▶ What part of todays lecture has the most potential for

improvement?
▶ Optional: how would you improve it?

447

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18

Bonus Exercises

Selected Solutions

448

Goals for Lecture 8

▶ Review of last lecture
▶ Beyond regular languages: The Pumping Lemma

▶ Motivation/Lemma
▶ Application of the lemma
▶ Implications

▶ Properties of regular languages
▶ Which operations leave regular languages regular?

449

Review

▶ Minimizing DFAs
▶ Identify and merge equivalent states
▶ Result is unique (up to names of states)
▶ Equivalency of REs can be decided by comparison of

corresponding minimal DFAs
Lecture 8

450

Reminder: Homework assignment

▶ Install an operational UNIX/Linux environment on your computer
▶ You can install VirtualBox (https://www.virtualbox.org)

and then install e.g. Ubuntu (http://www.ubuntu.com/) on a
virtual machine

▶ For Windows, you can install the complete UNIX emulation
package Cygwin from http://cygwin.com

▶ For MacOS, you can install fink
(http://fink.sourceforge.net/) or MacPorts
(https://www.macports.org/) and the necessary tools

▶ You will need at least flex, bison, gcc, grep, sed, AWK,
make, and a good text editor of your choice

451

https://www.virtualbox.org
http://www.ubuntu.com/
http://cygwin.com
http://fink.sourceforge.net/
https://www.macports.org/

Summary

▶ Beyond regular languages: The Pumping Lemma
▶ Motivation/Lemma
▶ Application of the lemma (anbn, anbm, n < m)
▶ Implications (Nested structures are not regular)

▶ Properties of regular languages
▶ Closure properties (union, intersection, . . .)
▶ Proof per construction of suitable NFA (union, concatenation,

Kleene Star)
▶ Proof per construction of product automaton (intersection)

452

Feedback round

▶ What was the best part of todays lecture?
▶ What part of todays lecture has the most potential for

improvement?
▶ Optional: how would you improve it?

453

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18

Bonus Exercises

Selected Solutions

454

Goals for Lecture 9

▶ Completing the theory of regular languages
▶ Complement
▶ Finite languages
▶ Decision problems: Emptiness, word problem, . . .
▶ Decision problems: Equivalence, finiteness, . . .
▶ Wrap-up

455

Review

▶ The Pumping Lemma
▶ Motivation/Lemma

▶ For every regular language L there exits a k such that any word s
with |s| ≥ k can be split into s = uvw with |uv| ≤ k and v ̸= ε and
uvhw ∈ L for all h ∈ N

▶ Use in proofs by contradiction: Assume a language is regular, then
derive contradiction

▶ Application of the lemma (anbn, anbm, n < m)
▶ Implications (Nested structures are not regular)

▶ Properties of regular languages
▶ The union of two regular languages is regular
▶ The intersection of two regular languages is regular (Solution:

Product automaton!)
▶ The concatenation of two regular languages is regular
▶ The Kleene star of a regular language is regular
▶ (The complement of a regular language is regular)

Lecture 9

456

Summary

▶ Completing the theory of regular languages
▶ Complement
▶ All finite languages are regular
▶ Decidable for regular languages: Emptiness, word problem
▶ Decidable for regular languages: Equivalence, finiteness
▶ Wrap-up

457

Feedback round

▶ What was the best part of todays lecture?
▶ What part of todays lecture has the most potential for

improvement?
▶ Optional: how would you improve it?

458

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18

Bonus Exercises

Selected Solutions

459

Goals for Lecture 10

▶ Review of last lecture
▶ Scanning in practice

▶ Scanners in context
▶ Practical regular expressions
▶ Automatic scanner creation with flex
▶ Flex exercise

460

Review

▶ Completing the theory of regular languages
▶ Complement
▶ All finite languages are regular
▶ Decidable for regular languages: Emptiness, word problem
▶ Decidable for regular languages: Equivalence, finiteness
▶ Use of properties to prove statements (e.g. non-regularity, e.g.

reducing emptyness question to equivalency)
▶ Wrap-up

Lecture 10

461

Summary

▶ Scanners in context
▶ Practical regular expressions

▶ Basic characters, escapes, ranges, escape with \
▶ Richer operators, z.B. +, {4},?. . .

▶ Flex
▶ Definition section
▶ Rule section
▶ User code section/yylex()

▶ Exercise

462

Feedback round

▶ What was the best part of todays lecture?
▶ What part of todays lecture has the most potential for

improvement?
▶ Optional: how would you improve it?

463

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18

Bonus Exercises

Selected Solutions

464

Goals for Lecture 11

▶ Review of last lecture
▶ Grammars and languages

▶ Formal grammars
▶ Derivations
▶ Languages

▶ The Chomsky-Hierarchy

465

Review

▶ Scanners in context
▶ Practical regular expressions

▶ Basic characters, escapes, ranges, escape with \
▶ Richer operators, z.B. +, {4},?. . .

▶ Flex
▶ Definition section
▶ Rule section
▶ User code section/yylex()

▶ make

▶ Exercise
Lecture 11

466

Summary

▶ Grammars and languages
▶ Formal grammars
▶ Derivations
▶ Languages
▶ Grammars can describe non-regular languages

▶ The Chomsky-Hierarchy
▶ Type 0: Unrestricted grammars
▶ Type 1: Context-sensitive/monotonic grammars
▶ Type 2: Context-free grammars
▶ Type 3: Right-linear/regular grammars

467

Feedback round

▶ What was the best part of todays lecture?
▶ What part of todays lecture has the most potential for

improvement?
▶ Optional: how would you improve it?

468

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18

Bonus Exercises

Selected Solutions

469

Goals for Lecture 12

▶ Review of last lecture
▶ Right-linear grammars

▶ Equivalence with finite automata
▶ Context-free grammars

▶ Equivalency for grammars
▶ Reducing grammars
▶ Eliminating ε-Productions
▶ Chomsky-hierarchy revisited

470

Reviews

▶ Grammars and languages
▶ Formal grammars (N,Σ,P, S)
▶ Derivations
▶ Languages L(G) = {w ∈ Σ∗ | S⇒∗ w}
▶ Grammars can describe non-regular languages

▶ The Chomsky-Hierarchy
▶ Type 0: Unrestricted grammars
▶ Type 1: Context-sensitive/monotonic grammars (non-shortening

rules)
▶ Type 2: Context-free grammars (Only one non-terminal on LHS)
▶ Type 3: Right-linear/regular grammars (limited RHS)

Lecture 12

471

Summary

▶ Right-linear grammars: N → aB, a ∈ Σ ∪ {ϵ}
▶ Convert DFA to right-linear grammar
▶ Convert right-linear grammar to NFA

▶ Context-free grammars
▶ Chomsky Normal Form
▶ Towards CNF

▶ Remove non-terminating symbols and corresponding rules
▶ Remove non-reachable symbols and corresponding rules
▶ Inline ε-rules

472

Feedback round

▶ What was the best part of todays lecture?
▶ What part of todays lecture has the most potential for

improvement?
▶ Optional: how would you improve it?

473

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18

Bonus Exercises

Selected Solutions

474

Goals for Lecture 13

▶ Review of last lecture
▶ Completing Chomsky Normal Form tranformation

▶ Eliminating chain rules
▶ Bring right hand sides into normalform

▶ Solving the word problem for context-free grammars
▶ Derivations in CNF
▶ Parsing with Dynamic Programming: Cocke-Younger-Kasami

475

Review

▶ Right-linear grammars: N → aB, a ∈ Σ ∪ {ϵ}
▶ Convert DFA to right-linear grammar (N ∼ Q, δ ∼ P)
▶ Convert right-linerar grammar to NFA

▶ Context-free grammars
▶ Chomsky Normal Form
▶ Towards CNF

▶ Remove non-terminating symbols and corresponding rules
▶ Remove non-reachable symbols and corresponding rules
▶ Inline ε-rules
▶ . . .

Lecture 13

476

Summary

▶ Chomsky Normal Form tranformation
▶ Inline ε-rules
▶ Inline chain rules
▶ Reduce grammar
▶ Introduce NTS names for terminals
▶ Break long RHS via introduction of definitions/intermediate rules

▶ Solving the word problem for context-free grammars
▶ Derivations in CNF
▶ Cocke-Younger-Kasami

▶ Systematically consider all decompositions of w
▶ Tabulate all NTS for given subwords bottom-up
▶ Example of dynamic programming

477

Feedback round

▶ What was the best part of todays lecture?
▶ What part of todays lecture has the most potential for

improvement?
▶ Optional: how would you improve it?

478

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18

Bonus Exercises

Selected Solutions

479

Goals for Lecture 14

▶ Review of last lecture
▶ Pushdown automata

▶ NFA+unlimited stack
▶ Equivalence of context-free grammars and PDAs

▶ From grammar to PDA
▶ From PDA to grammar

480

Review

▶ Chomsky Normal Form tranformation
▶ Inline ε-rules
▶ Inline chain rules
▶ Reduce grammar
▶ Introduce NTS names for terminals
▶ Break long RHS via introduction of definitions/intermediate rules

▶ Solving the word problem for context-free grammars
▶ Derivations in CNF
▶ Cocke-Younger-Kasami

▶ Systematically consider all decompositions of w
▶ Tabulate all NTS for given subwords bottom-up
▶ Complexity: O(n3) with n = |w|

Lecture 14

481

Summary

▶ Pushdown automata
▶ Transitions must read/can write unlimited stack
▶ Transition can read characters from word (left-to-right only)
▶ Acceptance: Empty stack, empty word

▶ Equivalence of context-free grammars and PDAs
▶ From grammar to PDA

▶ Simulate grammar rules on the stack
▶ Highly non-deterministic

▶ From PDA to grammar
▶ Non-terminals represent state changes with removal of a symbols

from stack
▶ Complex encoding of transition relation into grammar rules

482

Feedback round

▶ What was the best part of todays lecture?
▶ What part of todays lecture has the most potential for

improvement?
▶ Optional: how would you improve it?

483

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18

Bonus Exercises

Selected Solutions

484

Goals for Lecture 15

▶ Review of last lecture
▶ Limits of context-free languages

▶ Pumping Lemma II

▶ Closure properties of context-free languages
▶ Decision problems for context-free languages

485

Review

▶ Pushdown automata
▶ Transitions must read/can write unlimited stack
▶ Transition can read characters from word (left-to-right only)
▶ Acceptance: Empty stack, empty word

▶ Equivalence of context-free grammars and PDAs
▶ From grammar to PDA

▶ Simulate grammar rules on the stack
▶ Highly non-deterministic

▶ From PDA to grammar
▶ Non-terminals represent state changes with removal of a symbols

from stack
▶ Complex encoding of transition relation into grammar rules

Lecture 15

486

Summary

▶ Limits of context-free languages
▶ Pumping Lemma II

▶ Closure properties of context-free languages
▶ The class of context-free languages is closed under ∪, ·,∗
▶ The class of context-free languages is not closed under ∩,

complement
▶ Decision problems for context-free languages

▶ Decidable: Word problem, emptiness problem
▶ Undeciable: Equivalence

487

Feedback round

▶ What was the best part of todays lecture?
▶ What part of todays lecture has the most potential for

improvement?
▶ Optional: how would you improve it?

488

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18

Bonus Exercises

Selected Solutions

489

Goals for Lecture 16

▶ Review of last lecture
▶ Introduction to parsing
▶ YACC/Bison

▶ Automatic parser generation
▶ Example: desk calculator

▶ LALR(1) shift/reduce parsing
▶ Parse trees and abstract syntax trees

490

Review

▶ Limits of context-free languages
▶ Pumping Lemma II

▶ Sufficiently long words require correspondingly long derivations
▶ Sufficiently long derivations will contain at least one duplicate NTS A
▶ The partial derivation from A to uAv can be repeated

▶ Closure properties of context-free languages
▶ The class of context-free languages is closed under ∪, ·,∗
▶ The class of context-free languages is not closed under ∩,

complement
▶ Decision problems for context-free languages

▶ Decidable: Word problem, emptiness problem
▶ Undeciable: Equivalence

Lecture 16

491

Summary

▶ Introduction to parsing
▶ Recognize words (programs) in L(G)
▶ Understand structure of words

▶ YACC/Bison
▶ Automatic parser generation

▶ Core: Syntax rules with actions (C code)
▶ Whenever input can be reduced, action is executed
▶ Often: Manipulation of semantic values

▶ Example: desk calculator
▶ LALR(1) shift/reduce parsing

▶ Shift input to stack
▶ Reduce RHS to LHS
▶ Use lookahead to reduce ambiguity

▶ Parse trees and abstract syntax trees
▶ Parse trees: Represents not just word but derivation
▶ AST: “parse tree without syntactic details

492

Feedback round

▶ What was the best part of todays lecture?
▶ What part of todays lecture has the most potential for

improvement?
▶ Optional: how would you improve it?

493

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18

Bonus Exercises

Selected Solutions

494

Goals for Lecture 17

▶ Review of last lecture
▶ Beyond context-free languages: Turing Machines

▶ Idea
▶ Definition
▶ Examples
▶ Variants

▶ Context-sensitive languages
▶ Linear bounded Turing Machine (LBA)
▶ Closure properties
▶ Decision problems

▶ Type-0 languages
▶ The Universal Turing Machine
▶ The Halting Problem

▶ Thesis of Church-Turing
▶ . . . and practical applications

495

Review

▶ Introduction to parsing
▶ Recognize words (programs) in L(G)
▶ Understand structure of words

▶ YACC/Bison
▶ Automatic parser generation

▶ Core: Syntax rules with actions (C code)
▶ Whenever input can be reduced, action is executed
▶ Often: Manipulation of semantic values

▶ Example: desk calculator
▶ LALR(1) shift/reduce parsing

▶ Shift input to stack
▶ Reduce RHS to LHS
▶ Use lookahead to reduce ambiguity

▶ Parse trees and abstract syntax trees
▶ Parse trees: Represents not just word but derivation
▶ AST: “parse tree without syntactic details

Lecture 17

496

Summary

▶ Turing Machines
▶ Unbounded tape memory
▶ Finite automaton controls head movement, writing based on

current state and input at current tape location
▶ Configurations (general, stopping and accepting)
▶ TM for anbncn

▶ Context-sensitive languages
▶ Linear bounded Turing Machine (LBA)
▶ Closure properties: Closed under ∪, ·,∗ ,∩,
▶ Decision problems: Word yes, emptiness, equivalence no

▶ Type-0 languages
▶ The Universal Turing Machine
▶ The Halting Problem

▶ Thesis of Church-Turing: All “strong” computing models are
equivalent
▶ . . . and so may be humans (!)

497

Feedback round

▶ What was the best part of todays lecture?
▶ What part of todays lecture has the most potential for

improvement?
▶ Optional: how would you improve it?

498

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18

Bonus Exercises

Selected Solutions

499

Test Exam

500

Summary

▶ Review of last lecture
▶ Test exam
▶ Solutions

501

Final feedback round

▶ What was the best part of the course?
▶ What part of the course that has the most potential for

improvement?
▶ Optional: how would you improve it?

502

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

503

Bonus Exercises
Assume Σ = {a, b}. Consider the
automaton A.

▶ Give a formal description of A.

▶ Which language L(A) is
accepted by A? Give a formal
description.

▶ Where does L(A) reside in the
Chomsky-hierarchy?

▶ Manually find a regular
expression R with L(R) = L(A).

▶ Generate a system of equations
for A and generate a regular
expression RS for L(A) by solving
this. Compare your result the the
previous one.

▶ Convert A into a regular
grammar G with L(A) = L(G).

0

b

1
a

a

b

▶ Can L(A) be pumped? If yes,
provide an example of a
pumpable word.

▶ Generalize A to recognize L3 =
{w ∈ Σ∗ | |w|a modulo 3 = 0}

▶ Form the product automaton P to
find L(A) ∩ L3.

▶ Minmize P.

▶ Systematically construct a NFA
DA for RS.

▶ Convert DR to a DFA. 504

Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0

Lecture-specific material

Bonus Exercises

Selected Solutions

505

Equivalence of regular expressions

Solution to Exercise: Algebra on regular expressions (1)
▶ Claim: r∗ .

= ε+ r∗

Proof:
ε+ r∗ .

= ε+ ε+ r∗r (13)
.
= ε+ r∗r (9)
.
= r∗ (13)

506

Simplification of regular expressions

Solution to Exercise: Algebra on regular expressions (2)

r = 0(ε+ 0+ 1)∗ + (ε+ 1)(1+ 0)∗ + ε
14,1.
= 0(0+ 1)∗ + (ε+ 1)(0+ 1)∗ + ε
7.
= 0(0+ 1)∗ + ε(0+ 1)∗ + 1(0+ 1)∗ + ε
5.
= 0(0+ 1)∗ + (0+ 1)∗ + 1(0+ 1)∗ + ε
1,7.
= ε+ (0+ 1)(0+ 1)∗ + (0+ 1)∗

16.
= ε+ (0+ 1)∗(0+ 1) + (0+ 1)∗

13.
= (0+ 1)∗ + (0+ 1)∗

9.
= (0+ 1)∗.

507

Application of Arto’s lemma

Solution to Exercise: Algebra on regular expressions (3)
▶ Show that u = 10(10)∗

.
= 1(01)∗0

▶ Idea: u is of the form ts∗ with:
▶ t = 10
▶ s = 10
▶ This suggest Arto’s Lemma. To apply the lemma, we must show

that r = 1(01)∗0
.
= rs + t

▶ So:

rs + t = 1(01)∗010+ 10
.
= 1((01)∗010+ 0) (factor out 1)
.
= 1((01)∗01+ ε)0 (factor out 0)
.
= 1(01)∗0 (1),(13)
= r

▶ Since L(s) = {10} (and hence ε /∈ L(s)), we can apply Arto and
rewrite r .

= ts∗ .
= 10(10)∗.

Back

508

Transformation into DFA (1)

▶ Incremental computation of Q̂ and δ̂:
▶ Initial state S0 = ec(q0) = {q0, q1, q2}
▶ δ̂(S0, a) = δ∗(q0, a)∪δ∗(q1, a)∪δ∗(q2, a) = {}∪{}∪{q4} = {q4} = S1

▶ δ̂(S0, b) = {q3} = S2

▶ δ̂(S1, a) = {} = S3

▶ δ̂(S1, b) = ec(q6) = {q6, q7, q0, q1, q2} = S4

▶ δ̂(S2, a) = {q5, q7, q0, q1, q2} = S5

▶ δ̂(S2, b) = {} = S3

▶ δ̂(S3, a) = {} = S3

▶ δ̂(S3, b) = {} = S3

▶ δ̂(S4, a) = {q4} = S1

▶ δ̂(S4, b) = {q3} = S2

▶ δ̂(S5, a) = {q4} = S1

▶ δ̂(S5, b) = {q3} = S2

▶ F̂ = {S4, S5} (since q7 ∈ S4, q7 ∈ S5)

509

Transformation into DFA (2)

▶ det(A) = (Q̂,Σ, δ̂, S0, F̂)
▶ Q̂ = {S0, S1, S2, S3, S4, S5}
▶ F̂ = (S4, S5}
▶ δ̂ given by the table below

δ̂ a b
→ S0 S1 S2

S1 S3 S4
S2 S5 S3
S3 S3 S3
∗S4 S1 S2
∗S5 S1 S2

▶ Regexp:
L(A) = L((ab + ba)(ab + ba)∗)

S0

S4

S1

a

S2

b

S5

a

b

a

b

b

S3

a

a

b

a,b

Back to exercise

510

Transformation of RE into NFA

Systematically construct an NFA accepting the same language as the
regular expression (a+ b)a∗b.

Solution:

q0 q11
q1 q6

ε

q2ε

q4

ε

q3 ε
a

q5

ε
b

q7 q10
εε

q8

ε

q9

ε

ε

a

b

Corresponding DFA:

S0
S4 S5

a

b
S3

b

aS2

b

a

S1

b

a

b

a

a

b

Back to exercise

511

Solution: NFA to DFA “aba”

S0 S3

a

S4b

S5a

b

a
b

S2
ab

S1

baa

b

512

Show 10(10)∗
.
= 1(01)∗0 via minimal DFAs (1)

▶ Step 1: NFA for 10(10)∗:

epsilon 0 1
-> q0 | {} {} {q1}

q1 | {q2} {} {}
q2 | {} {q3} {}
q3 | {q4} {} {}
q4 | {q5,q6} {} {}

* q5 | {} {} {}
q6 | {} {} {q7}
q7 | {q8} {} {}
q8 | {} {q9} {}
q9 | {q5,q6} {} {}

q0 q5q1 q2
ε1 q3 q4

ε0

ε

q6

ε

q7 q8
ε1 q9

ε

ε

0

513

Show 10(10)∗
.
= 1(01)∗0 via minimal DFAs (2)

▶ Step 2: DFA A for 10(10)∗:

▶ Step 3: Minimizing of A
S0 S1 S2 S3 S4 S5

S0 o x x x x x
S1 x o x x o x
S2 x x o x x x
S3 x x x o x o
S4 x o x x o x
S5 x x x o x o

Result: (S1, S4) and (S3, S5) can
be merged

S0

S3
S2

0

S4

1 S5
0

1

1
0

S1
0

1

0

1

0

1

S0

S3 S2
0

S1 1

1

0

0

1

0

1

514

Show 10(10)∗
.
= 1(01)∗0 via minimal DFAs (3)

▶ Step 4: NFA zu 1(01)∗0:

epsilon 0 1
-> q0 | {} {} {q1}

q1 | {q2} {} {}
q2 | {q3,q4} {} {}
q3 | {q8} {} {}
q4 | {} {q5} {}
q5 | {q6} {} {}
q6 | {} {} {q7}
q7 | {q4,q3} {} {}
q8 | {} {} {q9}

* q9 | {} {} {}

q0 q9q1 q2
ε1 q3 q8

ε

ε

q4

ε

q5 q6
ε0 q7

ε

ε

1

0

515

Show 10(10)∗
.
= 1(01)∗0 via minimal DFAs (4)

▶ Step 5: DFA B for 1(01)∗0

▶ Step 6: Minimization of B
S0 S1 S2 S3 S4

S0 o x x x x
S1 x o x x o
S2 x x o x x
S3 x x x o x
S4 x o x x o

Result: (S1, S4) can be
merged

S0

S3
S2

0

S4

1

1

0

S1
0

1

0

1

0

1

S0

S3 S2
0

S1 1

1

0

0

1

0

1

516

Show 10(10)∗
.
= 1(01)∗0 via minimal DFAs (5)

▶ Step 7: Comparision of A− and B−

A−

S0

S3 S2
0

S1 1

1

0

0

1

0

1

B−

S0

S3 S2
0

S1 1

1

0

0

1

0

1

▶ Result: The two automata are identical, hence the two original
regular expressions describe the same languages.

Back to exercise

Back to review

517

Pumping lemma

Solution to anbm with n < m

▶ Proposition: L = {anbm | n < m} is not regular.
▶ Proof by contradiction. We assume L is regular
▶ Then: ∃k ∈ N with:

▶ ∀s ∈ L with |s| ≥ k : ∃u, v,w ∈ Σ∗ such that
▶ s = uvw
▶ |uv| ≤ k
▶ v ̸= ε
▶ uvhw ∈ L for all h ∈ N

▶ We consider the word s = akbk+1 ∈ L
▶ Since |uv| ≤ k: u = ai, v = aj,w = albk+1 and j > 0, i + j + l = k
▶ Now consider s′ = uv2w. According to the pumping lemma, s′ ∈ L.

But s′ = aiajajalbk+1 = ai+j+l+jbk+1 = ak+jbk+1. Since j ∈ N, j > 0:
k + j ̸< k + 1. Hence s′ /∈ L. This is a contradiction. Hence the
assumption is wrong, and the original proposition is true. q.e.d.

Back to exercise

518

Solution: Pumping lemma (Prime numbers)

▶ Proposition: L = {ap | p ∈ P} is not regular (where P is the set of
all prime numbers)

▶ Proof: By contradiction, using the pumping lemma.
▶ Assumption: L is regular. Then there exist a k such that all words

in L with at least length k can be pumped.
▶ Consider the word s = ap, where p ∈ P, p ≥ k

▶ Then there are u, v,w ∈ Σ∗ with uvw = s, |uv| ≤ k, v ̸= ε, and
uvhw ∈ L for all h ∈ N.

▶ We can write u = ai, v = aj,w = al with i + j + l = p
▶ So s = aiajal and aiaj·hal ∈ L for all h ∈ N.
▶ Consider h = p + 1. Then aiaj·(p+1)al ∈ L
▶ aiaj·(p+1)al = aiajp+jal = aiajpajal = aiajalajp = apajp = a(j+1)p

▶ But (j + 1)p /∈ P, since j + 1 > 1 and p > 1, and (j + 1)p thus has
(at least)two non-trivial divisors.

▶ Thus a(j+1)p /∈ L. This violates the pumping lemma and hence
contradicts the assumption. Thus the assumption is wrong and
the proposition holds. q.e.d.

Back to exercise

519

Solution: Product automaton for L1 ∩ L2

Solution to Exercise: Product automaton

A1: A1 × A2 for L1 ∩ L2:

q0

0

q1
1

1

0

(q0,r0)

0
(q1,r1)

1
(q0,r1)

0

(q1,r2)

1
(q0,r2)

0

(q1,r0)
1 1

0

1

0

1

0

A2: Equivalent Automaton for L1 ∩ L2:

r0

0
r11

0

r2

1

1

0

Q0

0

Q11 Q4

0

Q5

1Q2

0

Q3
1 1

0

1

0

1

0

Back to exercise

520

Solution: Transformation to Chomsky Normal Form (1)

Compute the Chomsky normal form of the following grammar:
G = (N,Σ,P, S)

▶ N = {S,A,B,C,D,E}
▶ Σ = {a,b}

▶ P :
S → AB|SB|BDE C → SB
A → Aa D → E
B → bB|BaB|ab E → ε

Step 1: ε-Elimination
▶ Nullable NTS: N = {E,D}

▶ New rules:

S→ BD (from S→ BDE, β1 = BD, β2 = ε)
S→ BE (from S→ BDE, β1 = B, β2 = E)
S→ B (from S→ BD or S→ BE, β1 = B, β2 = ε)
D→ ε (from D→ E, β1 = ε, β2 = ε)

▶ Remove E → ε, D→ ε

521

Solution: Transformation to Chomsky Normal Form (2)

Step 2: Elimination of Chain Rules.
▶ Current chain rules: S→ B, D→ E
▶ Eliminate S→ B:

▶ N(S) = {B}
▶ New rules: S→ bB, S→ BaB, S→ ab

▶ Eliminate D→ E
▶ N(D) = {E}
▶ E has no rule, therefore no new rules!

▶ Current state of P:

S → AB|SB|BDE|BD|BE|bB|BaB|ab C → SB
A → Aa B → bB|BaB|ab

522

Solution: Transformation to Chomsky Normal Form (3)

Step 3: Reducing the grammar
▶ Terminating symbols: T = {S,B,C} (A,D,E do not terminate)

▶ Remove all rules that contain A,E,D. Remaining:

S → SB|bB|BaB|ab C → SB
B → bB|BaB|ab

▶ Reachable symbols: R = {S,B} (C is not reachable)
▶ Remove all rules containing C. Remaining:

S → SB|bB|BaB|ab
B → bB|BaB|ab

523

Solution: Transformation to Chomsky Normal Form (4)

Step 4: Introduce new non-terminals for terminals
▶ New rules: Xa → a,Xb → b. Result:

S → SB|XbB|BXaB|XaXb Xa → a
B → XbB|BXaB|XaXb Xb → b

Step 5: Introduce new non-terminals to break up long right hand
sides:
▶ Problematic RHS: BXaB (in two rules)
▶ New rule: C1 → XaB. Result:

S → SB|XbB|BC1|XaXb Xa → a
B → XbB|BC1|XaXb Xb → b
C1 → XaB

524

Solution: Transformation to Chomsky Normal Form (5)

Final grammar: G′ = (N′,Σ,P′, S) with
▶ N′ = {S,B,C1,Xa,Xb}
▶ Σ = {a, b}

▶ P′ :
S → SB|XbB|BC1|XaXb Xa → a
B → XbB|BC1|XaXb Xb → b
C1 → XaB

Back to exercise

525

Solution: CYK

+-----+-----+-----+-----+-----+-----+-----+
| | 1 | 2 | 3 | 4 | 5 | 6 |
+-----+-----+-----+-----+-----+-----+-----+
| 1 | Y | - | S,B | - | - | S,B |
+-----+-----+-----+-----+-----+-----+-----+
| 2 | | X | S,B | - | - | S,B |
+-----+-----+-----+-----+-----+-----+-----+
| 3 | | | Y | - | - | - |
+-----+-----+-----+-----+-----+-----+-----+
| 4 | | | | X | - | D |
+-----+-----+-----+-----+-----+-----+-----+
| 5 | | | | | X | S,B |
+-----+-----+-----+-----+-----+-----+-----+
| 6 | | | | | | Y |
+-----+-----+-----+-----+-----+-----+-----+
| w | b | a | b | a | a | b |
+-----+-----+-----+-----+-----+-----+-----+

S → SB|BD|YB|XY

B → BD|YB|XY

D → XB

X → a

Y → b

Therefore babaab∈ L(G)

526

Solution: CYK

+-----+-----+-----+-----+-----+
| | 1 | 2 | 3 | 4 |
+-----+-----+-----+-----+-----+
| 1 | X | S,B | - | - |
+-----+-----+-----+-----+-----+
| 2 | | Y | - | - |
+-----+-----+-----+-----+-----+
| 3 | | | Y | - |
+-----+-----+-----+-----+-----+
| 4 | | | | X |
+-----+-----+-----+-----+-----+
| w | a | b | b | a |
+-----+-----+-----+-----+-----+

S → SB|BD|YB|XY

B → BD|YB|XY

D → XB

X → a

Y → b

Therefore abba/∈ L(G)
Back

527

Solution: PDA to Grammar (1)

A = (Q,Σ,Γ,∆, 0,Z)

▶ Q = {0, 1}
▶ Σ = {a, b}
▶ Γ = {A,Z}

∆ :

(1) 0 ε Z → ε 0
(2) 0 a Z → AZ 0
(3) 0 a A → AA 0
(4) 0 b A → ε 1
(5) 1 b A → ε 1
(6) 1 ε Z → ε 1

G = (N,Σ,P, S)
▶ N = {S, [0A0], [0A1], [1A0], [1A1], [0Z0], [0Z1], [1Z0], [1Z1]}
▶ Σ and S as given

▶ Start rules for P:
▶ S→ [0Z0]
▶ S→ [0Z1]

▶ From transitions:
▶ From (1): [0Z0]→ ε
▶ From (4): [0A1]→ b
▶ From (5): [1A1]→ b
▶ From (6): [1Z1]→ ε
▶ (2) and (3): Next page

528

Solution: PDA to Grammar (2)

A = (Q,Σ,Γ,∆, 0,Z)

▶ Q = {0, 1}
▶ Σ = {a, b}
▶ Γ = {A,Z}

∆ :

(1) 0 ε Z → ε 0
(2) 0 a Z → AZ 0
(3) 0 a A → AA 0
(4) 0 b A → ε 1
(5) 1 b A → ε 1
(6) 1 ε Z → ε 11

Computing of P continued:

▶ From (2):
▶ [0Z0]→ a[0A0][0Z0]
▶ [0Z0]→ a[0A1][1Z0]
▶ [0Z1]→ a[0A0][0Z1]
▶ [0Z1]→ a[0A1][1Z1]

▶ From (3):
▶ [0A0]→ a[0A0][0A0]
▶ [0A0]→ a[0A1][1A0]
▶ [0A1]→ a[0A0][0A1]
▶ [0A1]→ a[0A1][1A1]

529

Solution: PDA to Grammar (3)
Full grammar G = {N,Σ,P, S}
▶ N = {S, [0A0], [0A1], [1A0],

[1A1], [0Z0], [0Z1], [1Z0], [1Z1]}
▶ Σ = {a, b}
▶ P:

▶ S → [0Z0]
▶ S → [0Z1]
▶ [0Z0] → ε
▶ [0A1] → b
▶ [1A1] → b
▶ [1Z1] → ε
▶ [0Z0] → a[0A0][0Z0]
▶ [0Z0] → a[0A1][1Z0]
▶ [0Z1] → a[0A0][0Z1]
▶ [0Z1] → a[0A1][1Z1]
▶ [0A0] → a[0A0][0A0]
▶ [0A0] → a[0A1][1A0]
▶ [0A1] → a[0A0][0A1]
▶ [0A1] → a[0A1][1A1]

▶ Terminating: T = {[0Z0], [0A1],
[1A1], 1Z1], S, [0Z1]}

▶ Remaining rules:
1 S → [0Z0]
2 S → [0Z1]
3 [0Z0] → ε
4 [0A1] → b
5 [1A1] → b
6 [1Z1] → ε
7 [0Z1] → a[0A1][1Z1]
8 [0A1] → a[0A1][1A1]

▶ Reachable:
R = {S, [0Z0], [0Z1],
[0A1], [1Z1], [1A1]}
▶ No change!

530

Solution: PDA to Grammar (4)

▶ P:
1 S → [0Z0]
2 S → [0Z1]
3 [0Z0] → ε
4 [0A1] → b
5 [1A1] → b
6 [1Z1] → ε
7 [0Z1] → a[0A1][1Z1]
8 [0A1] → a[0A1][1A1]

▶ Derivation of ε:
▶ S⇒1 [0Z0]⇒3 ε

▶ Derivation of ab:
▶ S⇒2 [0Z1]⇒7 a[0A1][1Z1]⇒4

ab[1Z1]⇒6 ab

▶ Derivation of aabb:
▶ S⇒2 [0Z1]⇒7 a[0A1][1Z1]⇒8

aa[0A1][1A1][1Z1]⇒4
aab[1A1][1Z1]⇒5 aabb[1Z1]⇒6
aabb

Back to exercise

531

Bibliography

Nariyoshi Chida and Tachio Terauchi.
On Lookaheads in Regular Expressions with Backreferences.
In Amy P. Felty, editor, 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022),
volume 228 of Leibniz International Proceedings in Informatics (LIPIcs), pages 15:1–15:18, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

Ulrich Hedstück.
Einführung in die Theoretische Informatik: Formale Sprachen und Automatentheorie.
Oldenbourg Wissenschaftsverlag, 5th edition, 2012.

Dirk W. Hoffmann.
Theoretische Informatik.
Carl Hanser Verlag GmbH & Co. KG, 5th edition, 2022.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman.
Introduction to Automata Theory, Languages and Computation.
Pearson Addison-Wesley, 3 edition, 2007.

Michael Sipser.
Introduction to the Theory of Computation.
Cenage Learning, 3rd edition, 2012.

Back to Introduction

532

	Introduction
	Organisation
	Formal languages overview
	Formal language basics

	Regular Languages and Finite Automata
	Regular Expressions
	Finite Automata
	The Pumping Lemma
	Properties of Regular Languages

	Scanners and Flex
	Formal Grammars and Context-Free Languages
	Formal Grammars
	The Chomsky Hierarchy
	Right-linear Grammars
	Context-free Grammars
	Push-Down Automata
	Properties of Context-free Languages

	Parsers and Bison
	Turing Machines and Languages of Type 1 and 0
	Turing Machines
	Unrestricted Grammars
	Linear Bounded Automata
	Properties of Type-0-languages

	Lecture-specific material
	Lecture 1
	Lecture 2
	Lecture 3
	Lecture 4
	Lecture 5
	Lecture 6
	Lecture 7
	Lecture 8
	Lecture 9
	Lecture 10
	Lecture 11
	Lecture 12
	Lecture 13
	Lecture 14
	Lecture 15
	Lecture 16
	Lecture 17
	Lecture 18

	Bonus Exercises
	Selected Solutions

