Formal Languages and Automata

Stephan Schulz \& Jan Hladik

stephan.schulz@dhbw-stuttgart.de jan.hladik@dhbw-stuttgart.de
with contributions from David Suendermann

DHBW Stuttgart

Table of Contents

Introduction
Organisation
Formal languages overview
Formal language basics
Regular Languages and Finite
Automata
Regular Expressions
Finite Automata
Non-Determinism
Regular expressions and Finite Automata
Minimisation
Equivalence
The Pumping Lemma
Properties of Regular Languages
Scanners and Flex
Formal Grammars and Context-Free
Languages

Formal Grammars
The Chomsky Hierarchy
Right-linear Grammars
Context-free Grammars
Push-Down Automata
Properties of Context-free
Languages
Parsers and Bison
Turing Machines and Languages of
Type 1 and 0
Turing Machines
Unrestricted Grammars
Linear Bounded Automata
Properties of Type-0-languages
Lecture-specific material
Lecture 1
Lecture 2
Lecture 3

Lecture 4
Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18
Bonus Exercises
Selected Solutions

Outline

Introduction

Organisation
Formal languages overview
Formal language basics

Regular Languages and Finite

 AutomataScanners and Flex

Formal Grammars and Context-Free Languages
Parsers and Bison
Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Bonus Exercises
Selected Solutions

Outline

Introduction
Organisation
Formal languages overview
Formal language basics

Regular Languages and Finite

 AutomataScanners and Flex

Formal Grammars and Context-Free
Languages
Parsers and Bison
Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Bonus Exercises
Selected Solutions

Introduction

- Stephan Schulz
- Dipl.-Inform., U. Kaiserslautern, 1995
- Dr. rer. nat., TU München, 2000
- Visiting professor, U. Miami, 2002
- Visiting professor, U. West Indies, 2005
- Lecturer (Hildesheim, Offenburg, ...) since 2009
- Industry experience: Building Air Traffic Control systems
- System engineer, 2005
- Project manager, 2007
- Product Manager, 2013
- Professor, DHBW Stuttgart, 2014

Introduction

- Stephan Schulz
- Dipl.-Inform., U. Kaiserslautern, 1995
- Dr. rer. nat., TU München, 2000
- Visiting professor, U. Miami, 2002
- Visiting professor, U. West Indies, 2005
- Lecturer (Hildesheim, Offenburg, ...) since 2009
- Industry experience: Building Air Traffic Control systems
- System engineer, 2005
- Project manager, 2007
- Product Manager, 2013
- Professor, DHBW Stuttgart, 2014

Research: Logic \& Automated Reasoning

Introduction

- Jan Hladik
- Dipl.-Inform.: RWTH Aachen, 2001
- Dr. rer. nat.: TU Dresden, 2007
- Industry experience: SAP Research
- Work in publicly funded research projects
- Collaboration with SAP product groups
- Supervision of Bachelor, Master, and PhD students
- Professor: DHBW Stuttgart, 2014

Introduction

- Jan Hladik
- Dipl.-Inform.: RWTH Aachen, 2001
- Dr. rer. nat.: TU Dresden, 2007
- Industry experience: SAP Research
- Work in publicly funded research projects
- Collaboration with SAP product groups
- Supervision of Bachelor, Master, and PhD students
- Professor: DHBW Stuttgart, 2014

Research: Semantic Web, Semantic Technologies, Automated Reasoning

Literature

- Scripts
- The most up-to-date version of this document as well as auxiliary material will be made available online at

```
http://wwwlehre.dhbw-stuttgart.de/~sschulz/
fla2023.html
```

- Books
- John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman: Introduction to Automata Theory, Languages, and Computation [4]
- Michael Sipser: Introduction to the Theory of Computation [5]
- Dirk W. Hoffmann: Theoretische Informatik [3]
- Ulrich Hedtstück: Einführung in die theoretische Informatik [2]

Computing Environment

- For practical exercises, you will need a Linux/UNIX environment. If you do not run one natively, there are several options:
- You can install VirtualBox (https://www.virtualbox.org) and then install e.g. Ubuntu (http://www.ubuntu.com/) on a virtual machine
- For Windows, you can install the complete UNIX emulation package Cygwin from http: / / cygwin. com or use Microsofts WSL
- For MacOS, you can install MacPorts
(https://www.macports.org/) or Homebrew (https://brew.sh) and the necessary tools
- You will need at least flex, bison, gcc, make, and a good text editor
- There are some example programs in Python on the course web page

Outline of the Lecture

Introduction
Organisation
Formal languages
overview
Formal language
basics
Regular Languages and
Finite Automata
Regular Expressions
Finite Automata
The Pumping Lemma
Properties of Regular
Languages
Scanners and Flex
Formal Grammars and
Context-Free Languages
Formal Grammars
The Chomsky
Hierarchy
Right-linear Grammars

Context-free
Grammars
Push-Down Automata
Properties of
Context-free
Languages
Parsers and Bison
Turing Machines and
Languages of Type 1 and 0

Turing Machines
Unrestricted
Grammars
Linear Bounded
Automata
Properties of
Type-0-languages
Lecture-specific material
Lecture 1

Lecture 2
Lecture 3
Lecture 4
Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18
Bonus Exercises
Selected Solutions

Outline

Introduction
Organisation
Formal languages overview
Formal language basics

Regular Languages and Finite

 AutomataScanners and Flex

Formal Grammars and Context-Free
Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Bonus Exercises
Selected Solutions

Formal language concepts

Alphabet: Non-emptyu finite set Σ of symbols (characters)

- $\{a, b, c\}$

Word: finite sequence w of characters (string)

- $a b \neq b a$

Language: (possibly infinite) set L of words

- $\{a b, b a, a b c\}=\{b a, a b c, a b\}$

Formal: L defined precisely

- in contrast to natural languages, where there are borderline cases

Some formal languages

Example

- (the set of all) names in a phone directory
- (the set of all) phone numbers in a phone directory
- (the set of all) legal C identifiers
- (the set of all) legal C programs
- (the set of all) legal HTML 4.01 Transitional documents
- the empty set
- (the set of all) ASCII strings
- (the set of all) Unicode strings

Some formal languages

Example

- (the set of all) names in a phone directory
- (the set of all) phone numbers in a phone directory
- (the set of all) legal C identifiers
- (the set of all) legal C programs
- (the set of all) legal HTML 4.01 Transitional documents
- the empty set
- (the set of all) ASCII strings
- (the set of all) Unicode strings

More?

Language classes

This course: four classes of different complexity and expressivity
1 regular languages: limited power, but easy to handle

- "strings that start with a letter, followed by up to 7 letters or digits"
- legal C identifiers
- phone numbers

Language classes

This course: four classes of different complexity and expressivity
1 regular languages: limited power, but easy to handle

- "strings that start with a letter, followed by up to 7 letters or digits"
- legal C identifiers
- phone numbers

2 context-free languages: more expressive, but still feasible

- "every <token> is matched by </token>"
- nested dependencies
- (most aspects of) legal C programs
- many natural languages (English, German)

```
Jan says that we
    let
    the children
        help
        Hans
        paint
        the house
```

```
Jan sagt, dass wir
    die Kinder
    dem Hans
        das Haus
        anstreichen
        helfen
    ließen
```


Language classes (cont')

3 context-sensitive languages: even more expressive, difficult to handle computationally

- "every variable has to be declared before it is used" (arbitrary sequence, arbitrary amounts of code in between)
- cross-serial dependencies
- (remaining aspects of) legal C programs
- most remaining natural languages

Language classes (cont')

3 context-sensitive languages: even more expressive, difficult to handle computationally

- "every variable has to be declared before it is used" (arbitrary sequence, arbitrary amounts of code in between)
- cross-serial dependencies
- (remaining aspects of) legal C programs
- most remaining natural languages (Swiss German)

```
Jan säit das mer
    d'chind
    em Hans
        es huus
    lönd
    helfe
        aastriche
```


Language classes (cont')

3 context-sensitive languages: even more expressive, difficult to handle computationally

- "every variable has to be declared before it is used" (arbitrary sequence, arbitrary amounts of code in between)
- cross-serial dependencies
- (remaining aspects of) legal C programs
- most remaining natural languages (Swiss German)

```
Jan säit das mer
    d'chind
    em Hans
        es huus
    lönd
    helfe
        aastriche
```

```
Jan says that we
```

Jan says that we
the children
the children
Hans
Hans
the house
the house
let
let
help
help
paint

```
        paint
```


Language classes (cont')

3 context-sensitive languages: even more expressive, difficult to handle computationally

- "every variable has to be declared before it is used" (arbitrary sequence, arbitrary amounts of code in between)
- cross-serial dependencies
- (remaining aspects of) legal C programs
- most remaining natural languages (Swiss German)

```
Jan säit das mer
    d'chind
    em Hans
        es huus
    lönd
    helfe
        aastriche
```

```
Jan says that we
```

Jan says that we
the children
the children
Hans
Hans
the house
the house
let
let
help
help
paint

```
    paint
```

4 recursively enumerable languages: most general (Chomsky) class; undecidable

- all (valid) mathematical theorems (in first-order logic)
- programs terminating on a particular input

Automata

- Automata are formal models for computation
- Automata are characterised by
- A set of states
- Rules for the transition between states
- A set of letters or characters (or, for control automata, events)
- External memory

Automata

- Automata are formal models for computation
- Automata are characterised by
- A set of states
- Rules for the transition between states
- A set of letters or characters (or, for control automata, events)
- External memory
- Two main applications for automate
- Control: process sequences of events
- Languages (focus of this course): process finite sequences (words) of characters

Automata and Languages

- Automata for language processing...
- ... process words
- ... potentially accept words

Automata and Languages

- Automata for language processing...
- ... process words
- . . . potentially accept words

For every language class discussed in this course, a machine model exists such that for every language L there is an automaton $\mathcal{A}(L)$ that accepts exactly the words in L.

Automata and Languages

- Automata for language processing...
- ...process words
- . . . potentially accept words

For every language class discussed in this course, a machine model exists such that for every language L there is an automaton $\mathcal{A}(L)$ that accepts exactly the words in L.
regular
context-free
context-sensitive
recursively enumerable
\leadsto finite automaton/finite state machine
\sim pushdown automaton
$~$ linearly bounded Turing machine (unbounded) Turing machine

Example: Finite Automaton

Example: Finite Automaton

Example: Finite Automaton

Example: Finite Automaton

Example: Finite Automaton

Formally:

- $Q=\{\mathrm{Off}, \mathrm{On}\}$ is the set of states
- $\Sigma=\{$ click $\}$ is the alphabet
- The transition function δ is given by

δ	click
Off	On
On	Off

- The initial state is Off
- There are no accepting states

ATC scenario

ATC redundancy

Aktive server:

- Accepts sensor data
- Provides ASP
- Sends "alive" messages

Sensors

Passive server

- Ignores sensor data
- Monitors "alive" messages
- Takes over in case of failure

Finite automaton to the rescue

- Two events ("letters")
- timeout: 0.1 seconds have passed
- alive: message from active server
- States q_{0}, q_{1}, q_{2} : Server is passive
- No processing of input
- No sending of alive messages
- State q_{3} : Server becomes active
- Process input, provide output to ATC
- Send alive messages every 0.1 seconds

Exercise: Finite automaton

Does this automaton accept the words begin, end, bind, bend?

Turing Machine

"Universal computer"

- Very simple model of a computer
- Infinite tape, one read/write head
- Tape can store letters from a alphabet
- Finite automaton controls read/write and movement operations
- Very powerful model of a computer

- Can compute anything any real computer can compute
- Can compute anything an "ideal" real computer can compute
- Can compute everything a human can compute (?)

Formal grammars

Formalism to generate (rather than accept) words over alphabet
terminal symbols: may appear in the produced word (alphabet)
non-terminal symbols: may not appear in the produced word (temporary symbols)
production rules: $l \rightarrow r$ means: l can be replaced by r anywhere in the word

Formal grammars

Formalism to generate (rather than accept) words over alphabet
terminal symbols: may appear in the produced word (alphabet) non-terminal symbols: may not appear in the produced word (temporary symbols)
production rules: $l \rightarrow r$ means: l can be replaced by r anywhere in the word

Example

Grammar for arithmetic expressions over $\{0,1\}$

$$
\begin{aligned}
\Sigma= & \{0,1,+, \cdot,(,)\} \\
N= & \{E\} \\
P= & \{E \rightarrow 0, E \rightarrow 1, \\
& E \rightarrow(E) \\
& E \rightarrow E+E \\
& E \rightarrow E \cdot E\}
\end{aligned}
$$

Exercise: Grammars

Using

- the non-terminal symbols S, B, D, E, G, I, N
- the terminal symbols b, d, e, g, i, n
- the production rules $S \rightarrow$ BEGIN,

$$
\begin{aligned}
& B E G \rightarrow E, I N \rightarrow I N D, I N \rightarrow N, E G \rightarrow E G G, G G G \rightarrow B, \\
& B \rightarrow b, D \rightarrow d, E \rightarrow e, G \rightarrow g, I \rightarrow i, N \rightarrow n
\end{aligned}
$$

can you generate the words bend and end starting from the symbol S ?

- If yes, how many steps do you need?
- If no, why not?

Questions about formal languages

- For a given language L, how can we find
$>$ a corresponding automaton \mathcal{A}_{L} ?
- a corresponding grammar G_{L} ?
- What is the simplest automaton for L ?
- "simplest" meaning: weakest possible language class
- "simplest" meaning: least number of elements
- How can we use formal descriptions of languages for compilers?
- detecting legal words/reserved words
$>$ testing if the structure is legal
- understanding the meaning by analysing the structure

More questions about formal languages

Closure properties: if L_{1} and L_{2} are in a class, does this also hold for

- the union of L_{1} and L_{2},
- the intersection of L_{1} and L_{2},
- the concatenation of L_{1} and L_{2},
the complement of L_{1} ?

More questions about formal languages

Closure properties: if L_{1} and L_{2} are in a class, does this also hold for

- the union of L_{1} and L_{2},
- the intersection of L_{1} and L_{2},
- the concatenation of L_{1} and L_{2},
- the complement of L_{1} ?

Decision problems: for a word w and languages L_{1} and L_{2} (given by grammars or automata),

- does $w \in L_{1}$ hold?
- is L_{1} finite?
- is L_{1} empty?
- does $L_{1}=L_{2}$ hold?

Abandon all hope...

Example applications for formal languages and automata

- HTML and web browsers
- Speech recognition and understanding grammars
- Dialog systems and AI (Siri, Alexa, Hey Google, Watson)
- Regular expression matching
- Compilers and interpreters of programming languages

Example applications for formal languages and automata

- HTML and web browsers
- Speech recognition and understanding grammars
- Dialog systems and AI (Siri, Alexa, Hey Google, Watson)
- Regular expression matching
- Compilers and interpreters of programming languages

Outline

Introduction
Organisation
Formal languages overview
Formal language basics

Regular Languages and Finite

 AutomataScanners and Flex

> Formal Grammars and Context-Free Languages

Parsers and Bison
Turing Machines and Languages of Type 1 and 0
Lecture-specific material
Bonus Exercises
Selected Solutions

Alphabets

Definition (Alphabet)

An alphabet Σ is a finite, non-empty set of characters (symbols, letters).

$$
\Sigma=\left\{c_{1}, \ldots, c_{n}\right\}
$$

Alphabets

Definition (Alphabet)

An alphabet Σ is a finite, non-empty set of characters (symbols, letters).

$$
\Sigma=\left\{c_{1}, \ldots, c_{n}\right\}
$$

Example

$1 \Sigma_{\text {bin }}=\{0,1\}$ can express integers in the binary system.
2 The English language is based on $\Sigma_{\text {en }}=\{a, \ldots, z, A, \ldots, z\}$.
$3 \Sigma_{\text {ASCII }}=\{0, \ldots, 127\}$ represents the set of ASCII characters [American Standard Code for Information Interchange] coding letters, digits, and special and control characters.

Alphabets: ASCII code chart

ASCII Code Chart

	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0	NUL	SOH	STX	ETX	E0T	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	S0	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2		!	"	\#	\$	\%	\&	'	$($)	*	+	,	-	-	/
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4	@	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
5	P	0	R	S	T	U	V	W	X	Y	Z	[\}]	^	-
6	,	a	b	c	d	e	f	g	h	i	j	k	1	m	n	0
7	p	q	r	s	t	u	v	w	x	y	z	\{	I	\}	\sim	DEL

Words

Definition (Word)

- A word over the alphabet Σ is a finite sequence (list) of characters of Σ :

$$
w=c_{1} \ldots c_{n} \text { with } c_{1}, \ldots, c_{n} \in \Sigma
$$

- The empty word with no characters is written as ε.
- The set of all words over an alphabet Σ is represented by Σ^{*}.

Words

Definition (Word)

- A word over the alphabet Σ is a finite sequence (list) of characters of Σ :

$$
w=c_{1} \ldots c_{n} \text { with } c_{1}, \ldots, c_{n} \in \Sigma
$$

- The empty word with no characters is written as ε.
- The set of all words over an alphabet Σ is represented by Σ^{*}.

In programming languages, words are often referred to as strings.

Words

Example

1 Using Σ_{bin}, we can define the words $w_{1}, w_{2} \in \Sigma_{\text {bin }}^{*}$:

$$
w_{1}=01100 \text { and } w_{2}=11001
$$

2 Using $\Sigma_{\text {en }}$, we can define the word $w \in \Sigma_{\text {en }}^{*}$:

$$
w=\text { example }
$$

Properties of words

Definition (Length, character access)

- The length $|w|$ of a word w is the number of characters in w.
- The number of occurrences of a character c in w is denoted as $|w|_{c}$.
- The individual characters within words are accessed using $w[i]$ with $i \in\{1,2, \ldots,|w|\}$.

Properties of words

Definition (Length, character access)

- The length $|w|$ of a word w is the number of characters in w.
- The number of occurrences of a character c in w is denoted as $|w|_{c}$.
- The individual characters within words are accessed using $w[i]$ with $i \in\{1,2, \ldots,|w|\}$.

Example

- |example $=7$ and $|\varepsilon|=0$
- |example ${ }_{e}=2$ and |example $\left.\right|_{k}=0$
- example[4] = m

Appending words

Definition (Concatenation of words)

For words w_{1} and w_{2}, the concatenation $w_{1} \cdot w_{2}$ is defined as w_{1} followed by w_{2}.

Appending words

Definition (Concatenation of words)

For words w_{1} and w_{2}, the concatenation $w_{1} \cdot w_{2}$ is defined as w_{1} followed by w_{2}.
$w_{1} \cdot w_{2}$ is often simply written as $w_{1} w_{2}$.

Appending words

Definition (Concatenation of words)

For words w_{1} and w_{2}, the concatenation $w_{1} \cdot w_{2}$ is defined as w_{1} followed by w_{2}.
$w_{1} \cdot w_{2}$ is often simply written as $w_{1} w_{2}$.

Example

Let $w_{1}=01$ and $w_{2}=10$.
Then the following holds:

$$
w_{1} w_{2}=0110 \quad \text { and } \quad w_{2} w_{1}=1001
$$

Iterated concatenation

We denote the set of natural numbers $\{0,1, \ldots\}$ by \mathbb{N}.

Definition (Power of a word)

For $n \in \mathbb{N}$, the n-th power w^{n} of a word w concatenates the same word n times:

$$
\begin{aligned}
& w^{0}=\varepsilon \\
& w^{n}=w^{n-1} \cdot w \quad \text { if } n>0
\end{aligned}
$$

Iterated concatenation

We denote the set of natural numbers $\{0,1, \ldots\}$ by \mathbb{N}.

Definition (Power of a word)

For $n \in \mathbb{N}$, the n-th power w^{n} of a word w concatenates the same word n times:

$$
\begin{aligned}
& w^{0}=\varepsilon \\
& w^{n}=w^{n-1} \cdot w \quad \text { if } n>0
\end{aligned}
$$

Example

Let $w=a b$. Then:

$$
\begin{aligned}
w^{0} & =\varepsilon \\
w^{1} & =a b \\
w^{3} & =a b a b a b
\end{aligned}
$$

Exercise: Operations on words

Given the alphabet $\Sigma=\{a, b, c\}$ and the words

- $u=a b c$
- $v=a a$
- $w=c b$
what is denoted by the following expressions?
$1 u^{2} \cdot w$
$2 v \cdot \varepsilon \cdot w \cdot u^{0}$
(3) $\left|u^{3}\right|_{a}$
$4 v \cdot a^{2} \cdot(v[4])$
$5\left(v \cdot a^{2} \cdot v\right)[4]$
$6\left|w^{0}\right|$
$7\left|w^{0} \cdot w\right|$

Formal languages

Definition (Formal language)

For an alphabet Σ, a formal language over Σ is a subset $L \subseteq \Sigma^{*}$.

Formal languages

Definition (Formal language)

For an alphabet Σ, a formal language over Σ is a subset $L \subseteq \Sigma^{*}$.

Example

Let $L_{\mathbb{N}}=\left\{1 w \mid w \in \Sigma_{\text {bin }}^{*}\right\} \cup\{0\}$.
Then $L_{\mathbb{N}}$ is the set of all words that represent integers using the binary system (all words starting with 1 and the word 0):

$$
100 \in L_{\mathbb{N}} \text { but } 010 \notin L_{\mathbb{N}}
$$

Numeric value of a binary word

Definition (Numeric value)

We define the function

$$
n: L_{\mathbb{N}} \rightarrow \mathbb{N}
$$

as the function returning the numeric value of a word in the language $L_{\mathbb{N}}$. This means
(a) $n(0)=0$,
(b) $n(1)=1$,
(c) $n(w 0)=2 \cdot n(w)$ for $|w|>0$,
(d) $n(w 1)=2 \cdot n(w)+1$ for $|w|>0$.

Prime numbers as a language

Definition (Prime numbers)

We define the language $L_{\mathbb{P}}$ as the language representing prime numbers in the binary system:

$$
L_{\mathbb{P}}=\left\{w \in L_{\mathbb{N}} \mid n(w) \in \mathbb{P}\right\} .
$$

Prime numbers as a language

Definition (Prime numbers)

We define the language $L_{\mathbb{P}}$ as the language representing prime numbers in the binary system:

$$
L_{\mathbb{P}}=\left\{w \in L_{\mathbb{N}} \mid n(w) \in \mathbb{P}\right\}
$$

One way to formally express the set of all prime numbers is

$$
\mathbb{P}=\left\{p \in \mathbb{N}^{\geq 2} \mid\{t \in \mathbb{N} \mid \exists k \in \mathbb{N}: k \cdot t=p\}=\{1, p\}\right\}
$$

C functions as a language

Definition

We define the language $L_{C} \subset \Sigma_{\text {ASCII }}^{*}$ as the set of all C function definitions with a declaration of the form:

$$
\text { char* } f \text { (char* } x \text {); }
$$

(where f and x are legal C identifiers).
Then L_{C} contains the ASCII code of all those definitions of C functions processing and returning a string.

C functions as a language

Definition

We define the language $L_{C} \subset \Sigma_{\text {ASCII }}^{*}$ as the set of all C function definitions with a declaration of the form:

$$
\text { char* } f \text { (char* } x \text {); }
$$

(where f and x are legal C identifiers).
Then L_{C} contains the ASCII code of all those definitions of C functions processing and returning a string.

Examples

- char* $f($ char* $x)\{$ return $x ;\} \in L_{C}$
- char* $f($ char* $x)\{r e t u r n ~ " " ;\} \in L_{C}$
- char* $f(c h a r * x$, int $y)\{r e t u r n ~ " " ;\} \notin L_{C}$
- Harakiri $\notin L_{C}$

C function evaluations as a language

Definition

Using the alphabet $\Sigma_{\text {ASCII }+}=\Sigma_{\text {ASCII }} \cup\{\dagger\}$, we define the universal language

$$
L_{u}=\{f \dagger x \dagger y \mid \text { (a) and (b) and (c) }\} \text { with }
$$

(a) $f \in L_{C}$ (i.e. f is a C function mapping strings to strings),
(b) $x, y \in \Sigma_{\text {ASCII }}^{*}$,
(c) applying f to x terminates and returns y.

C function evaluations as a language

Definition

Using the alphabet $\Sigma_{\text {ASCII }+}=\Sigma_{\text {ASCII }} \cup\{\dagger\}$, we define the universal language

$$
L_{u}=\{f \dagger x \dagger y \mid \text { (a) and (b) and (c) }\} \text { with }
$$

(a) $f \in L_{C}$ (i.e. f is a C function mapping strings to strings),
(b) $x, y \in \Sigma_{\text {ASCII }}^{*}$,
(c) applying f to x terminates and returns y.

Examples

- char* $f($ char* $x)\{$ return $x ;\} \nmid a a a \dagger a a a \in L_{u}$
- char* $\mathrm{f}($ char* x$)\{$ return $\mathrm{x} ;\}+\mathrm{aa}+\mathrm{b}$ bb $\notin L_{u}$
- char* $f(c h a r * ~ x)\{r e t u r n ~ " " ;\}+a a a \dagger \in L_{u}$

Formal languages can be highly complex

Formal languages have a wide scope:

- Testing whether a word belongs to $L_{\mathbb{N}}$ is straightforward
- The same test for $L_{\mathbb{P}}$ is more complex
- The test for L_{C} requires a proper C parser
- Later we will see that there is no algorithm that will correctly perform

```
def inN(x):
    if x=="0":
        return True
    if x=="":
        return False
    if x[0]!="1":
        return False
    for c in x[1:]:
    if c!="0" and c!="1":
        return False
    return True
``` the membership test for \(L_{u}\)

\section*{Abandon all hope...}

\section*{Product}

\section*{Definition (Product of formal languages)}

Given an alphabet \(\Sigma\) and the formal languages \(L_{1}, L_{2} \subseteq \Sigma^{*}\), we define the product
\[
L_{1} \cdot L_{2}=\left\{w_{1} \cdot w_{2} \mid w_{1} \in L_{1}, w_{2} \in L_{2}\right\} .
\]

\section*{Product}

\section*{Definition (Product of formal languages)}

Given an alphabet \(\Sigma\) and the formal languages \(L_{1}, L_{2} \subseteq \Sigma^{*}\), we define the product
\[
L_{1} \cdot L_{2}=\left\{w_{1} \cdot w_{2} \mid w_{1} \in L_{1}, w_{2} \in L_{2}\right\} .
\]

\section*{Example}

Using the alphabet \(\Sigma_{\text {en }}\), we define the languages
\[
L_{1}=\{\mathrm{ab}, \mathrm{bc}\} \text { and } L_{2}=\{\mathrm{ac}, \mathrm{cb}\} .
\]

The product is
\[
L_{1} \cdot L_{2}=\{\mathrm{abac}, \mathrm{abcb}, \mathrm{bcac}, \mathrm{bccb}\} .
\]

\section*{Power}

\section*{Definition (Power of a language)}

Given an alphabet \(\Sigma\), a formal language \(L \subseteq \Sigma^{*}\), and an integer \(n \in \mathbb{N}\), we define the \(n\)-th power of \(L\) (recursively) as follows:
\[
\begin{aligned}
L^{0} & =\{\varepsilon\} \\
L^{n} & =L^{n-1} \cdot L
\end{aligned}
\]

\section*{Power}

\section*{Definition (Power of a language)}

Given an alphabet \(\Sigma\), a formal language \(L \subseteq \Sigma^{*}\), and an integer \(n \in \mathbb{N}\), we define the \(n\)-th power of \(L\) (recursively) as follows:
\[
\begin{aligned}
& L^{0}=\{\varepsilon\} \\
& L^{n}=L^{n-1} \cdot L
\end{aligned}
\]

\section*{Example}

Using the alphabet \(\Sigma_{\mathrm{en}}\), we define the language \(L=\{\mathrm{ab}, \mathrm{ba}\}\). Thus:
\[
\begin{array}{ll}
L^{0} & =\{\varepsilon\} \\
L^{1} & =\{\varepsilon\} \cdot\{\mathrm{ab}, \mathrm{ba}\} \\
L^{2} & =\{\mathrm{ab}, \mathrm{ba}\} \cdot\{\mathrm{ab}, \mathrm{ba}\}=\{\mathrm{ab}, \mathrm{ba}\} \\
=\{\mathrm{abab}, \mathrm{abba}, \mathrm{baab}, \mathrm{baba}\}
\end{array}
\]

\section*{The Kleene Star operator}

\section*{Definition (Kleene Star)}

Given an alphabet \(\Sigma\) and a formal language \(L \subseteq \Sigma^{*}\), we define the Kleene star operator as
\[
L^{*}=\bigcup_{n \in \mathbb{N}} L^{n}
\]

\section*{The Kleene Star operator}

\section*{Definition (Kleene Star)}

Given an alphabet \(\Sigma\) and a formal language \(L \subseteq \Sigma^{*}\), we define the Kleene star operator as
\[
L^{*}=\bigcup_{n \in \mathbb{N}} L^{n} .
\]

\section*{Example}

Using the alphabet \(\Sigma_{\mathrm{en}}\), we define the language \(L=\{\mathrm{a}\}\). Thus:
\[
L^{*}=\left\{\mathrm{a}^{n} \mid n \in \mathbb{N}\right\} .
\]

\section*{Exercise: formal languages}

Given
- the alphabet \(\Sigma_{\text {bin }}\),
- the function \(n(w)\) mapping binary words to numbers as defined on page 40, and
- the language \(L=\{1\}\),
formally describe the following:
a) the language \(M=L^{*} \backslash\{\varepsilon\}\)
b) the set \(N=\{n(w) \mid w \in M\}\)
c) the language \(M^{-}=\{w \mid n(w)-1 \in N\}\)
d) the language \(M^{+}=\{w \mid n(w)+1 \in N\}\)

Hint: \(N \neq \mathbb{N}\)

\section*{Outline}

\section*{Introduction}

Regular Languages and Finite Automata

Regular Expressions
Finite Automata
The Pumping Lemma
Properties of Regular Languages

\section*{Scanners and Flex}

Formal Grammars and Context-Free Languages
Parsers and Bison
Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Bonus Exercises
Selected Solutions

\section*{Outline}

\section*{Introduction}

Regular Languages and Finite Automata

Regular Expressions
Finite Automata
The Pumping Lemma
Properties of Regular Languages

\section*{Scanners and Flex}

Formal Grammars and Context-Free
Languages
Parsers and Bison
Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Bonus Exercises
Selected Solutions

\section*{Regular expressions}

Compact and convenient way to represent a set of strings

\section*{Regular expressions}

Compact and convenient way to represent a set of strings
- Characterize tokens for compilers
- Describe search terms for a database
- Filter through genomic data
- Extract URLs from web pages
- Extract email addresses from web pages

\section*{Regular expressions}

Compact and convenient way to represent a set of strings
- Characterize tokens for compilers
- Describe search terms for a database
- Filter through genomic data
- Extract URLs from web pages
- Extract email addresses from web pages

The set of all regular expressions (over an alphabet) is a formal language

Each single regular expression describes a formal language

\section*{Introductory Examples}

Consider \(\Sigma_{\text {bin }}=\{0,1\}\). With regular expressions we can conveniently and rigorously describe many languages:
- \(1(0+1)^{*}\)

\section*{Introductory Examples}

Consider \(\Sigma_{\mathrm{bin}}=\{0,1\}\). With regular expressions we can conveniently and rigorously describe many languages:
- \(1(0+1)^{*}\) - all words beginning with a 1 (also known as \(L_{\mathbb{N}} \backslash\{0\}\))
- \(11^{*}\)

\section*{Introductory Examples}

Consider \(\Sigma_{\mathrm{bin}}=\{0,1\}\). With regular expressions we can conveniently and rigorously describe many languages:
- \(1(0+1)^{*}\) - all words beginning with a 1 (also known as \(L_{\mathbb{N}} \backslash\{0\}\))
- \(11^{*}\) - all words consisting of one ore more letters 1 (\(M\) from the last exercise)
- \(0(10)^{*}+(10)^{*}+1(01)^{*}+(01)^{*}\)

\section*{Introductory Examples}

Consider \(\Sigma_{\mathrm{bin}}=\{0,1\}\). With regular expressions we can conveniently and rigorously describe many languages:
- \(1(0+1)^{*}\) - all words beginning with a 1 (also known as \(L_{\mathbb{N}} \backslash\{0\}\))
- \(11^{*}\) - all words consisting of one ore more letters 1 (\(M\) from the last exercise)
- \(0(10)^{*}+(10)^{*}+1(01)^{*}+(01)^{*}-\) the language of all words where no two subsequent characters are the same

\section*{Reminder: Power sets}

\section*{Definition (Power set of a set)}
- Assume a set \(S\). Then the power set of \(S\), written as \(2^{S}\), is the set of all subsets of \(S\).
- In particular, if \(\Sigma\) is an alphabet, \(2^{\Sigma^{*}}\) is the set of all subsets of \(\Sigma^{*}\) and hence the set of all possible formal languages over \(\Sigma\).

\section*{Reminder: Power sets}

\section*{Definition (Power set of a set)}
- Assume a set \(S\). Then the power set of \(S\), written as \(2^{S}\), is the set of all subsets of \(S\).
- In particular, if \(\Sigma\) is an alphabet, \(2^{\Sigma^{*}}\) is the set of all subsets of \(\Sigma^{*}\) and hence the set of all possible formal languages over \(\Sigma\).

Example
\[
2^{\Sigma_{\text {bin }}}=2^{\{0,1\}}=\{\{ \},\{0\},\{1\},\{0,1\}\},
\]

\section*{Reminder: Power sets}

\section*{Definition (Power set of a set)}
- Assume a set \(S\). Then the power set of \(S\), written as \(2^{S}\), is the set of all subsets of \(S\).
- In particular, if \(\Sigma\) is an alphabet, \(2^{\Sigma^{*}}\) is the set of all subsets of \(\Sigma^{*}\) and hence the set of all possible formal languages over \(\Sigma\).

\section*{Example}
\[
\begin{aligned}
& 2^{\Sigma_{\text {bin }}}=2^{\{0,1\}}=\{\{ \},\{0\},\{1\},\{0,1\}\}, \\
& 2^{\Sigma_{\text {bin }}^{*}}=2^{\{\varepsilon, 0,1,00,01, \ldots\}}
\end{aligned}
\]

\section*{Reminder: Power sets}

\section*{Definition (Power set of a set)}
- Assume a set \(S\). Then the power set of \(S\), written as \(2^{S}\), is the set of all subsets of \(S\).
- In particular, if \(\Sigma\) is an alphabet, \(2^{\Sigma^{*}}\) is the set of all subsets of \(\Sigma^{*}\) and hence the set of all possible formal languages over \(\Sigma\).

\section*{Example}
\[
\begin{aligned}
2^{\Sigma_{\text {bin }}}= & 2^{\{0,1\}}=\{\{ \},\{0\},\{1\},\{0,1\}\}, \\
2^{\Sigma_{\text {bin }}^{*}}= & 2^{\{\varepsilon, 0,1,00,01, \ldots\}} \\
= & \{\},\{\varepsilon\},\{0\},\{1\},\{00\},\{01\}, \ldots \\
& \cdots\{\varepsilon, 0\},\{\varepsilon, 1\},\{\varepsilon, 00\},\{\varepsilon, 01\}, \ldots \\
& \cdots\{010,1110,10101\}, \ldots\} .
\end{aligned}
\]

\section*{Regular expressions and formal languages}

A regular expression over \(\Sigma \ldots\)
- \(\ldots\) is a word over the extended alphabet \(\Sigma \cup\left\{\emptyset, \varepsilon,+, \cdot,{ }^{*},(),\right\}\)
\(\Rightarrow\) Note that we implicitly assume that \(\left\{\emptyset, \varepsilon,+, \cdot,{ }^{*},(),\right\} \cap \Sigma=\{ \}\)
\(\rightarrow \emptyset\) denotes a regular expression (syntax)
\(-\{ \}\) denotes the empty set (semantics)
- ... describes a formal language over \(\Sigma\)

\section*{Regular expressions and formal languages}

A regular expression over \(\Sigma \ldots\)
- \(\ldots\) is a word over the extended alphabet \(\Sigma \cup\left\{\emptyset, \varepsilon,+, \cdot,{ }^{*},(),\right\}\)
- Note that we implicitly assume that \(\left\{\emptyset, \varepsilon,+, \cdot,{ }^{*},(),\right\} \cap \Sigma=\{ \}\)
\(-\emptyset\) denotes a regular expression (syntax)
\(>\{ \}\) denotes the empty set (semantics)
- ... describes a formal language over \(\Sigma\)

\section*{Terminology}

The following terms are defined on the next slides:
- \(R_{\Sigma}\) is the set of all regular expressions over the alphabet \(\Sigma\).
- The function \(L: R_{\Sigma} \rightarrow 2^{\Sigma^{*}}\) assigns a formal language \(L(r) \subseteq \Sigma^{*}\) to each regular expression \(r\).

\section*{Regular expressions and their languages (1)}

\section*{Definition (Regular expressions)}

The set of regular expressions \(R_{\Sigma}\) over the alphabet \(\Sigma\) is defined as follows:

1 The regular expression \(\emptyset\) denotes the empty language.
\[
\emptyset \in R_{\Sigma} \quad \text { and } \quad L(\emptyset)=\{ \}
\]

2 The regular expression \(\varepsilon\) denotes the language containing only the empty word.
\[
\varepsilon \in R_{\Sigma} \quad \text { and } \quad L(\varepsilon)=\{\varepsilon\}
\]

3 Each symbol in the alphabet \(\Sigma\) is a regular expression.
\[
c \in \Sigma \Rightarrow c \in R_{\Sigma} \quad \text { and } \quad L(c)=\{c\}
\]

\section*{Regular expressions and their languages (2)}

\section*{Definition (Regular expressions (cont'))}

4 The operator + denotes the union of the languages of \(r_{1}\) and \(r_{2}\). \(r_{1} \in R_{\Sigma}, r_{2} \in R_{\Sigma} \Rightarrow r_{1}+r_{2} \in R_{\Sigma} \quad\) and \(\quad L\left(r_{1}+r_{2}\right)=L\left(r_{1}\right) \cup L\left(r_{2}\right)\)
5 The operator denotes the product of the languages of \(r_{1}\) and \(r_{2}\). \(r_{1} \in R_{\Sigma}, r_{2} \in R_{\Sigma} \Rightarrow r_{1} \cdot r_{2} \in R_{\Sigma} \quad\) and \(\quad L\left(r_{1} \cdot r_{2}\right)=L\left(r_{1}\right) \cdot L\left(r_{2}\right)\)
6 The Kleene star of a regular expression \(r\) denotes the Kleene star of the language of \(r\).
\[
r \in R_{\Sigma} \Rightarrow r^{*} \in R_{\Sigma} \quad \text { and } \quad L\left(r^{*}\right)=(L(r))^{*}
\]

7 Brackets can be used to group regular expressions without changing their language.
\[
r \in R_{\Sigma} \Rightarrow(r) \in R_{\Sigma} \quad \text { and } \quad L((r))=L(r)
\]

\section*{Equivalence of regular expressions}

\section*{Definition (Equivalence and precedence)}
- Two regular expressions \(r_{1}\) and \(r_{2}\) are equivalent if they denote the same language: \(r_{1} \doteq r_{2} \quad\) if and only if \(\quad L\left(r_{1}\right)=L\left(r_{2}\right)\)
- The operators have the following precedence:
(...) \(>*>+>+\)
- The product operator . can be omitted.

\section*{Equivalence of regular expressions}

\section*{Definition (Equivalence and precedence)}
- Two regular expressions \(r_{1}\) and \(r_{2}\) are equivalent if they denote the same language: \(r_{1} \doteq r_{2} \quad\) if and only if \(\quad L\left(r_{1}\right)=L\left(r_{2}\right)\)
- The operators have the following precedence:
\((\ldots)>*>+\)
- The product operator . can be omitted.

\section*{Example}
\[
\begin{aligned}
a+b \cdot c^{*} & \doteq a+\left(b \cdot\left(c^{*}\right)\right) \\
a c+b c^{*} & \doteq a \cdot c+b \cdot c^{*}
\end{aligned}
\]

\section*{Equivalence of regular expressions}

\section*{Definition (Equivalence and precedence)}
- Two regular expressions \(r_{1}\) and \(r_{2}\) are equivalent if they denote the same language: \(r_{1} \doteq r_{2} \quad\) if and only if \(\quad L\left(r_{1}\right)=L\left(r_{2}\right)\)
- The operators have the following precedence:
(...) \(>*>+>+\)
- The product operator • can be omitted.

\section*{Example}
\[
\begin{aligned}
a+b \cdot c^{*} & \doteq a+\left(b \cdot\left(c^{*}\right)\right) \\
a c+b c^{*} & \doteq a \cdot c+b \cdot c^{*}
\end{aligned}
\]

Note: Some authors (and tools) use | as the union operator.

\section*{Examples for regular expressions}

\section*{Example}

Let \(\Sigma_{\mathrm{abc}}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\).
- The regular expression \(r_{1}=(\mathrm{a}+\mathrm{b}+\mathrm{c})(\mathrm{a}+\mathrm{b}+\mathrm{c})\) describes all the words of exactly two symbols:
\[
L\left(r_{1}\right)=\left\{w \in \Sigma_{\mathrm{abc}}^{*}| | w \mid=2\right\}
\]
- The regular expression \(r_{2}=(\mathrm{a}+\mathrm{b}+\mathrm{c})(\mathrm{a}+\mathrm{b}+\mathrm{c})^{*}\) describes all the words of one or more symbols:
\[
L\left(r_{2}\right)=\left\{w \in \Sigma_{\mathrm{abc}}^{*}| | w \mid \geq 1\right\}
\]

\section*{Exercise: regular expressions}

1 Using the alphabet \(\Sigma_{\mathrm{abc}}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\), give a regular expression \(r_{1}\) for all the words \(w \in \Sigma_{\mathrm{abc}}^{*}\) containing exactly one a or exactly one b.
2 Formally describe \(L\left(r_{1}\right)\) as a set.
3 Using the alphabet \(\Sigma_{\mathrm{abc}}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\), give a regular expression \(r_{2}\) for all the words containing at least one a and at least one b.
4 Using the alphabet \(\Sigma_{\text {bin }}=\{0,1\}\), give a regular expression for all the words whose third last symbol is 1 .
5 Using the alphabet \(\Sigma_{\text {bin }}\), give a regular expression for all the words not containing the string 110.
6 Which language is described by the regular expression
\[
r_{6}=(1+\varepsilon)\left(00^{*} 1\right)^{*} 0^{*} ?
\]

\section*{Exercise: regular expressions}

1 Using the alphabet \(\Sigma_{\mathrm{abc}}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\), give a regular expression \(r_{1}\) for all the words \(w \in \Sigma_{\mathrm{abc}}^{*}\) containing exactly one a or exactly one b.
2 Formally describe \(L\left(r_{1}\right)\) as a set.
3 Using the alphabet \(\Sigma_{\mathrm{abc}}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\), give a regular expression \(r_{2}\) for all the words containing at least one a and at least one b.
4 Using the alphabet \(\Sigma_{\text {bin }}=\{0,1\}\), give a regular expression for all the words whose third last symbol is 1 .
5 Using the alphabet \(\Sigma_{\text {bin }}\), give a regular expression for all the words not containing the string 110.
6 Which language is described by the regular expression
\[
r_{6}=(1+\varepsilon)\left(00^{*} 1\right)^{*} 0^{*} ?
\]

\section*{Algebraic operations on regular expressions}
Theorem
\(1 r_{1}+r_{2} \doteq r_{2}+r_{1}\) (commutative law)
\(2\left(r_{1}+r_{2}\right)+r_{3} \doteq r_{1}+\left(r_{2}+r_{3}\right)\) (associative law)
\(3\left(r_{1} r_{2}\right) r_{3} \doteq r_{1}\left(r_{2} r_{3}\right)\) (associative law)
\(4 \emptyset r \doteq \emptyset\)
and \(r \emptyset \doteq \emptyset\)
\(5 \varepsilon r \doteq r\) and \(r \varepsilon \doteq r\)
\(6 \emptyset+r \doteq r\)
\(7\left(r_{1}+r_{2}\right) r_{3} \doteq r_{1} r_{3}+r_{2} r_{3}\) (distributive law)
\(8 r_{1}\left(r_{2}+r_{3}\right) \doteq r_{1} r_{2}+r_{1} r_{3}\) (distributive law)

\section*{Proof of some rules}

Proof of Rule \(1\left(r_{1}+r_{2} \doteq r_{2}+r_{1}\right)\).
\[
L\left(r_{1}+r_{2}\right)=L\left(r_{1}\right) \cup L\left(r_{2}\right)=L\left(r_{2}\right) \cup L\left(r_{1}\right)=L\left(r_{2}+r_{1}\right)
\]

\section*{Proof of some rules}

Proof of Rule \(1\left(r_{1}+r_{2} \doteq r_{2}+r_{1}\right)\).
\[
L\left(r_{1}+r_{2}\right)=L\left(r_{1}\right) \cup L\left(r_{2}\right)=L\left(r_{2}\right) \cup L\left(r_{1}\right)=L\left(r_{2}+r_{1}\right)
\]

Proof of Rule \(4(\emptyset r \doteq \emptyset)\).
\[
L(\emptyset r) \quad \text { Def. concat } \quad L(\emptyset) \cdot L(r)
\]

\section*{Proof of some rules}

Proof of Rule \(1\left(r_{1}+r_{2} \doteq r_{2}+r_{1}\right)\).
\[
L\left(r_{1}+r_{2}\right)=L\left(r_{1}\right) \cup L\left(r_{2}\right)=L\left(r_{2}\right) \cup L\left(r_{1}\right)=L\left(r_{2}+r_{1}\right)
\]

\section*{Proof of Rule \(4(\emptyset r \doteq \emptyset)\).}
\[
\begin{array}{ccl}
L(\emptyset r) & \text { Def. concat } & L(\emptyset) \cdot L(r) \\
& \text { Def. empty regexp } & \} \cdot L(r)
\end{array}
\]

\section*{Proof of some rules}

Proof of Rule \(1\left(r_{1}+r_{2} \doteq r_{2}+r_{1}\right)\).
\[
L\left(r_{1}+r_{2}\right)=L\left(r_{1}\right) \cup L\left(r_{2}\right)=L\left(r_{2}\right) \cup L\left(r_{1}\right)=L\left(r_{2}+r_{1}\right)
\]

\section*{Proof of Rule \(4(\emptyset r \doteq \emptyset)\).}
\[
\begin{array}{ccl}
L(\emptyset r) & \text { Def. concat } & L(\emptyset) \cdot L(r) \\
& \text { Def. empty regexp } \\
& \text { Def. product } & \} \cdot L(r) \\
& \left\{w_{1} w_{2} \mid w_{1} \in\{ \}, w_{2} \in L(r)\right\}
\end{array}
\]

\section*{Proof of some rules}

Proof of Rule \(1\left(r_{1}+r_{2} \doteq r_{2}+r_{1}\right)\).
\[
L\left(r_{1}+r_{2}\right)=L\left(r_{1}\right) \cup L\left(r_{2}\right)=L\left(r_{2}\right) \cup L\left(r_{1}\right)=L\left(r_{2}+r_{1}\right)
\]

\section*{Proof of Rule \(4(\emptyset r \doteq \emptyset)\).}
\[
\begin{array}{ccl}
L(\emptyset r) & \text { Def. concat } & L(\emptyset) \cdot L(r) \\
& \text { Def. empty regexp } \\
& \} \cdot L(r) \\
& \text { Def. product } & \left\{w_{1} w_{2} \mid w_{1} \in\{ \}, w_{2} \in L(r)\right\} \\
= & \}
\end{array}
\]

\section*{Proof of some rules}

Proof of Rule \(1\left(r_{1}+r_{2} \doteq r_{2}+r_{1}\right)\).
\[
L\left(r_{1}+r_{2}\right)=L\left(r_{1}\right) \cup L\left(r_{2}\right)=L\left(r_{2}\right) \cup L\left(r_{1}\right)=L\left(r_{2}+r_{1}\right)
\]

\section*{Proof of Rule \(4(\emptyset r \doteq \emptyset)\).}
\[
\begin{array}{ccl}
L(\emptyset r) & \text { Def. concat } & L(\emptyset) \cdot L(r) \\
& \text { Def. empty regexp } & \} \cdot L(r) \\
& \text { Def. product } \\
= & \left\{w_{1} w_{2} \mid w_{1} \in\{ \}, w_{2} \in L(r)\right\} \\
= & \} \\
& \text { Def. empty regexp } & L(\emptyset)
\end{array}
\]

\section*{Algebraic operations on regular expressions (cont.)}

\section*{Theorem}
\(9 r+r \doteq r\)
\(10\left(r^{*}\right)^{*} \doteq r^{*}\)
\(11 \emptyset^{*} \doteq \varepsilon\)
\(12 \varepsilon^{*} \doteq \varepsilon\)
\(13 r^{*} \doteq \varepsilon+r^{*} r\)
\(14 r^{*} \doteq(\varepsilon+r)^{*}\)
\(15 \varepsilon \notin L(s)\) and \(r \doteq r s+t \longrightarrow r \doteq t s^{*}\) (proof by Arto Salomaa)
\(16 r^{*} r \doteq r r^{*}\) (see Lemma: Kleene Star below)
\(17 \varepsilon \notin L(s)\) and \(r \doteq s r+t \longrightarrow r \doteq s^{*} t\) (Arden's Lemma)

\section*{Lemma: Kleene Star (1)}

Lemma (Kleene Star)
\[
u^{*} u \doteq u u^{*}
\]

\section*{Lemma: Kleene Star (1)}

Lemma (Kleene Star)
\[
u^{*} u \doteq u u^{*}
\]

Proof of Case 1: \(\varepsilon \notin L(u)\).
\[
u^{*} u \quad \doteq \quad\left(\varepsilon+u^{*} u\right) u \quad\left(\text { by 13. }(r)^{*} \doteq \varepsilon+(r)^{*} r\right)
\]

\section*{Lemma: Kleene Star (1)}

Lemma (Kleene Star)
\[
u^{*} u \doteq u u^{*}
\]

Proof of Case 1: \(\varepsilon \notin L(u)\).
\[
\begin{array}{rll}
u^{*} u & \doteq\left(\varepsilon+u^{*} u\right) u & \left(\text { by 13. }(r)^{*} \doteq \varepsilon+(r)^{*} r\right) \\
& \doteq\left(u^{*} u+\varepsilon\right) u & \left(\text { by 1. } r_{1}+r_{2} \doteq r_{2}+r_{1}\right)
\end{array}
\]

\section*{Lemma: Kleene Star (1)}

\section*{Lemma (Kleene Star)}
\[
u^{*} u \doteq u u^{*}
\]

Proof of Case 1: \(\varepsilon \notin L(u)\).
\[
\begin{aligned}
u^{*} u & \doteq\left(\varepsilon+u^{*} u\right) u & & \left(\text { by 13. }(r)^{*} \doteq \varepsilon+(r)^{*} r\right) \\
& \doteq\left(u^{*} u+\varepsilon\right) u & & \left(\text { by 1. } r_{1}+r_{2} \doteq r_{2}+r_{1}\right) \\
& \doteq u^{*} u u+u & & \left(\text { by 7. }\left(r_{1}+r_{2}\right) r_{3} \doteq r_{1} r_{3}+r_{2} r_{3}\right)
\end{aligned}
\]

\section*{Lemma: Kleene Star (1)}

\section*{Lemma (Kleene Star)}
\[
u^{*} u \doteq u u^{*}
\]

Proof of Case \(1: \varepsilon \notin L(u)\).
\[
\begin{aligned}
u^{*} u & \doteq\left(\varepsilon+u^{*} u\right) u & & \left(\text { by 13. }(r)^{*} \doteq \varepsilon+(r)^{*} r\right) \\
& \doteq\left(u^{*} u+\varepsilon\right) u & & \left(\text { by 1. } r_{1}+r_{2} \doteq r_{2}+r_{1}\right) \\
& \doteq u^{*} u u+u & & \left(\text { by 7. }\left(r_{1}+r_{2}\right) r_{3} \doteq r_{1} r_{3}+r_{2} r_{3}\right) \\
& \doteq u u^{*} & & \text { (by 15. } \left.r \doteq r s+t \text { with } r=u^{*} u, s=u, t=u\right)
\end{aligned}
\]

\section*{Lemma: Kleene Star (2)}

\section*{Proof of Case 2: \(\varepsilon \in L(u)\).}

We show \(L\left(u^{*} u\right)=L\left(u^{*}\right)=L\left(u u^{*}\right)\)

\section*{Lemma: Kleene Star (2)}

Proof of Case 2: \(\varepsilon \in L(u)\).
We show \(L\left(u^{*} u\right)=L\left(u^{*}\right)=L\left(u u^{*}\right)\)
a) Proof of \(L\left(u^{*} u\right) \subseteq L\left(u^{*}\right)\)
\(L\left(u^{*} u\right)=L\left(u^{*}\right) \cdot L(u)\)
\(=(L(u))^{*} \cdot L(u)\)
\(=\left(\bigcup_{i \geq 0} L(u)^{i}\right) \cdot L(u)\)
\(=\bigcup_{i \geq 0}\left(L(u)^{i} \cdot L(u)\right)\)
\(=\bigcup_{i \geq 1} L(u)^{i}\)
\(\subseteq L\left(u^{*}\right)\)

\section*{Lemma: Kleene Star (2)}

Proof of Case 2: \(\varepsilon \in L(u)\).
We show \(L\left(u^{*} u\right)=L\left(u^{*}\right)=L\left(u u^{*}\right)\)
a) Proof of \(L\left(u^{*} u\right) \subseteq L\left(u^{*}\right)\)
\(L\left(u^{*} u\right)=L\left(u^{*}\right) \cdot L(u)\)
\(=(L(u))^{*} \cdot L(u)\)
\(=\left(\bigcup_{i \geq 0} L(u)^{i}\right) \cdot L(u)\)
\(=\bigcup_{i \geq 0}\left(L(u)^{i} \cdot L(u)\right)\)
\(=\bigcup_{i \geq 1} L(u)^{i}\)
\(\subseteq L\left(u^{*}\right)\)
b) Proof of \(L\left(u^{*} u\right) \supseteq L\left(u^{*}\right)\)
\(L\left(u^{*} u\right)=\left\{t v \mid t \in L\left(u^{*}\right), v \in L(u)\right\}\)
\(\supseteq\left\{t v \mid t \in L\left(u^{*}\right), v=\varepsilon\right\}\)
\(=\left\{t \mid t \in L\left(u^{*}\right)\right\}\)
\(=L\left(u^{*}\right)\)

\section*{Lemma: Kleene Star (2)}

Proof of Case 2: \(\varepsilon \in L(u)\).
We show \(L\left(u^{*} u\right)=L\left(u^{*}\right)=L\left(u u^{*}\right)\)
a) Proof of \(L\left(u^{*} u\right) \subseteq L\left(u^{*}\right)\)
\(L\left(u^{*} u\right)=L\left(u^{*}\right) \cdot L(u)\)
\(=(L(u))^{*} \cdot L(u)\)
\(=\left(\bigcup_{i \geq 0} L(u)^{i}\right) \cdot L(u)\)
\(=\bigcup_{i \geq 0}\left(L(u)^{i} \cdot L(u)\right)\)
\(=\bigcup_{i \geq 1} L(u)^{i}\)
\(\subseteq L\left(u^{*}\right)\)
- a) and b) imply \(L\left(u^{*} u\right)=L\left(u^{*}\right)\)
- \(L\left(u u^{*}\right)=L\left(u^{*}\right)\) : strictly analoguous
b) Proof of \(L\left(u^{*} u\right) \supseteq L\left(u^{*}\right)\)
\(L\left(u^{*} u\right)=\left\{t v \mid t \in L\left(u^{*}\right), v \in L(u)\right\}\)
\(\supseteq\left\{t v \mid t \in L\left(u^{*}\right), v=\varepsilon\right\}\)
\(=\left\{t \mid t \in L\left(u^{*}\right)\right\}\)
\(=L\left(u^{*}\right)\)

\section*{A note on Arto/Arden}
- Arto: \(\varepsilon \notin L(s)\) and \(r \doteq r s+t \longrightarrow r \doteq t s^{*}\)
- Why do we need \(\varepsilon \notin L(s)\) ?
- This guarantees that only words of the form \(t s^{*}\) are in \(L(r)\)
- Example: \(r \doteq r s+t\) with \(s=b^{*}, t=a\).
- If we could apply Arto, the result would be \(r \doteq a\left(b^{*}\right)^{*} \doteq a b^{*}\)
- But \(L=\left\{a b^{*}\right\} \cup\left\{b^{*}\right\}\) also fulfills the equation, i.e. there is no single unique solution in this case
- Intuitively: \(\varepsilon \in L(s)\) is a second escape from the recursion that bypasses \(t\)
- The case for Arden's lemma (\(\varepsilon \notin L(s)\) and \(r \doteq s r+t \longrightarrow r \doteq s^{*} t\)) is analoguous

\section*{Exercise: Algebra on regular expressions}

1 Prove the equivalence using only algebraic operations:
\[
r^{*} \doteq \varepsilon+r^{*}
\]

2 Simplify the regular expression \(s\) using only algebraic operations:
\[
s=0(\varepsilon+0+1)^{*}+(\varepsilon+1)(1+0)^{*}+\varepsilon .
\]

3 Prove the equivalence using only algebraic equivalences:
\[
10(10)^{*} \doteq 1(01)^{*} 0
\]

\section*{Exercise: Algebra on regular expressions}

1 Prove the equivalence using only algebraic operations:
\[
r^{*} \doteq \varepsilon+r^{*}
\]

2 Simplify the regular expression \(s\) using only algebraic operations:
\[
s=0(\varepsilon+0+1)^{*}+(\varepsilon+1)(1+0)^{*}+\varepsilon .
\]

3 Prove the equivalence using only algebraic equivalences:
\[
10(10)^{*} \doteq 1(01)^{*} 0
\]

\section*{Exercise: Algebra on regular expressions}

1 Prove the equivalence using only algebraic operations:
\[
r^{*} \doteq \varepsilon+r^{*}
\]

2 Simplify the regular expression \(s\) using only algebraic operations:
\[
s=0(\varepsilon+0+1)^{*}+(\varepsilon+1)(1+0)^{*}+\varepsilon .
\]

3 Prove the equivalence using only algebraic equivalences:
\[
10(10)^{*} \doteq 1(01)^{*} 0
\]

\section*{Outline}

\section*{Introduction}

Regular Languages and Finite Automata

Regular Expressions
Finite Automata
The Pumping Lemma
Properties of Regular Languages

\section*{Scanners and Flex}

Formal Grammars and Context-Free
Languages
Parsers and Bison
Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Bonus Exercises
Selected Solutions

\section*{Finite Automata: Motivation}
- Simple model of computation
- Can recognize regular languages
- Equivalent to regular expressions
- We can automatically generate a FA from a RE
- We can automatically generate an RE from an FA
- Two variants:
- Deterministic (DFA, now)
- Non-deterministic (NFA, later)
- Easy to implement in actual programs

\section*{Deterministic Finite Automata: Idea}

\section*{Deterministic Finite Automata: Idea}

Deterministic finite automaton (DFA)

- is in one of finitely many states
- starts in the initial state
- processes input from left to right
- changes state depending on character read
- determined by transition function
- no rewinding!
- no writing!
- accepts input if
- after reading the entire input
- an accepting state is reached

\section*{DFA \(\mathcal{A}\) for \(a^{*} b a^{*}\)}

\section*{Example (Automaton \(\mathcal{A}\))}
\(\mathcal{A}\) is a simple DFA recognizing the regular language \(\mathrm{a}^{*} \mathrm{ba}\) *.

\section*{DFA \(\mathcal{A}\) for \(a^{*} b a^{*}\)}

\section*{Example (Automaton \(\mathcal{A}\))}
\(\mathcal{A}\) is a simple DFA recognizing the regular language \(\mathrm{a}^{*} \mathrm{ba*}\).

- \(\mathcal{A}\) has three states, 0,1 and 2 .
- It operates on the alphabet \(\{a, b\}\).
- The transition function is indicated by the arrows.
- 0 is the initial state (with an arrow pointing at it out of nowhere).
- 1 is an accepting state (represented as a double circle).
- 2 is also called a junk state (once it is reached, the word can never be accepted).

\section*{DFA: formal definition}

\section*{Definition (Deterministic Finite Automaton)}

A deterministic finite automaton (DFA) is a quintuple \(\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)\) with the following components
- \(Q\) is a finite set of states.
- \(\Sigma\) is the (finite) input alphabet.
\(-\delta: Q \times \Sigma \rightarrow Q\) is the transition function.
- \(q_{0} \in Q\) is the initial state.
- \(F \subseteq Q\) is the set of final (or accepting) states.

\section*{DFA: formal definition}

\section*{Definition (Deterministic Finite Automaton)}

A deterministic finite automaton (DFA) is a quintuple \(\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)\) with the following components
- \(Q\) is a finite set of states.
- \(\Sigma\) is the (finite) input alphabet.
- \(\delta: Q \times \Sigma \rightarrow Q\) is the transition function.
- \(q_{0} \in Q\) is the initial state.
- \(F \subseteq Q\) is the set of final (or accepting) states.

Notes:
- \(\delta\) is a total function - there has to be a transition from every state for every letter
- ...but automata with partial transition functions can be "repaired" into a proper DFA by adding a junk state

\section*{Formal definition of \(\mathcal{A}\)}

\section*{Example}

\section*{Formal definition of \(\mathcal{A}\)}

\section*{Example}

\(\mathcal{A}\) is expressed as \(\left(Q, \Sigma, \delta, q_{0}, F\right)\) with
- \(Q=\{0,1,2\}\)
- \(\Sigma=\{\mathrm{a}, \mathrm{b}\}\)
- \(\delta(0, \mathrm{a})=0 ; \delta(0, \mathrm{~b})=1, \delta(1, \mathrm{a})=1 ; \delta(1, \mathrm{~b})=\delta(2, \mathrm{a})=\delta(2, \mathrm{~b})=2\)
- \(q_{0}=0\)
- \(F=\{1\}\)

\section*{Language accepted by an DFA}

\section*{Definition (Language accepted by an automaton)}

The state transition function \(\delta\) is generalised to a function \(\delta^{\prime}\) whose second argument is a word as follows:
- \(\delta^{\prime}: Q \times \Sigma^{*} \rightarrow Q\)
- \(\delta^{\prime}(q, \varepsilon)=q\) for every \(q \in Q\)
- \(\delta^{\prime}(q, w c)=\delta\left(\delta^{\prime}(q, w), c\right)\) with \(\quad c \in \Sigma ; w \in \Sigma^{*}\)

\section*{Language accepted by an DFA}

\section*{Definition (Language accepted by an automaton)}

The state transition function \(\delta\) is generalised to a function \(\delta^{\prime}\) whose second argument is a word as follows:
- \(\delta^{\prime}: Q \times \Sigma^{*} \rightarrow Q\)
- \(\delta^{\prime}(q, \varepsilon)=q\) for every \(q \in Q\)
- \(\delta^{\prime}(q, w c)=\delta\left(\delta^{\prime}(q, w), c\right) \quad\) with \(\quad c \in \Sigma ; w \in \Sigma^{*}\)

The language accepted by a DFA \(\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)\) is defined as
\[
L(\mathcal{A})=\left\{w \in \Sigma^{*} \mid \delta^{\prime}\left(q_{0}, w\right) \in F\right\} .
\]

\section*{Language accepted by \(\mathcal{A}\)}

\section*{Example}

\section*{Language accepted by \(\mathcal{A}\)}

\section*{Example}

- \(\delta^{\prime}(0, a a)=\delta\left(\delta^{\prime}(0, a), a\right)=\delta\left(\delta\left(\delta^{\prime}(0, \varepsilon), a\right), a\right)=0\)
- \(\delta^{\prime}(1, a a a)=1\)
- \(\delta^{\prime}(0, b b)=\delta^{\prime}(1, b)=2\)
- \(L(\mathcal{A})=\left\{w \in\{a, b\}^{*} \mid w=a^{n} b a^{m}\right.\) and \(\left.n, m \in \mathbb{N}\right\}\)

\section*{Run of a DFA}

\section*{Definition (Configuration, Run)}

Let \(\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)\) be a DFA.
A configuration of \(\mathcal{A}\) is a pair \((q, w)\) with \(q \in Q\) and \(w \in \Sigma^{*}\).

\section*{Run of a DFA}

\section*{Definition (Configuration, Run)}

Let \(\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)\) be a DFA.
A configuration of \(\mathcal{A}\) is a pair \((q, w)\) with \(q \in Q\) and \(w \in \Sigma^{*}\).
A run of \(\mathcal{A}\) on a word \(w=c_{1} \cdot c_{2} \cdots c_{n}\) is a sequence of configurations:
\[
\left(\left(q_{0}, c_{1} \cdot c_{2} \cdots c_{n}\right),\left(q_{1}, c_{2} \cdots c_{n}\right), \ldots,\left(q_{n}, \varepsilon\right)\right)
\]

\section*{Run of a DFA}

\section*{Definition (Configuration, Run)}

Let \(\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)\) be a DFA.
A configuration of \(\mathcal{A}\) is a pair \((q, w)\) with \(q \in Q\) and \(w \in \Sigma^{*}\).
A run of \(\mathcal{A}\) on a word \(w=c_{1} \cdot c_{2} \cdots c_{n}\) is a sequence of configurations:
\[
\left(\left(q_{0}, c_{1} \cdot c_{2} \cdots c_{n}\right),\left(q_{1}, c_{2} \cdots c_{n}\right), \ldots,\left(q_{n}, \varepsilon\right)\right)
\]
where
- \(q_{i} \in Q\) holds for \(1 \leq i \leq n\) and
- \(\delta\left(q_{i-1}, c_{i}\right)=q_{i}\) holds for \(1 \leq i \leq n\).

\section*{Run of a DFA}

\section*{Definition (Configuration, Run)}

Let \(\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)\) be a DFA.
A configuration of \(\mathcal{A}\) is a pair \((q, w)\) with \(q \in Q\) and \(w \in \Sigma^{*}\).
A run of \(\mathcal{A}\) on a word \(w=c_{1} \cdot c_{2} \cdots c_{n}\) is a sequence of configurations:
\[
\left(\left(q_{0}, c_{1} \cdot c_{2} \cdots c_{n}\right),\left(q_{1}, c_{2} \cdots c_{n}\right), \ldots,\left(q_{n}, \varepsilon\right)\right)
\]
where
- \(q_{i} \in Q\) holds for \(1 \leq i \leq n\) and
- \(\delta\left(q_{i-1}, c_{i}\right)=q_{i}\) holds for \(1 \leq i \leq n\).

A run is accepting if \(q_{n} \in F\) holds.

\section*{Run of a DFA}

\section*{Definition (Configuration, Run)}

Let \(\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)\) be a DFA.
A configuration of \(\mathcal{A}\) is a pair \((q, w)\) with \(q \in Q\) and \(w \in \Sigma^{*}\).
A run of \(\mathcal{A}\) on a word \(w=c_{1} \cdot c_{2} \cdots c_{n}\) is a sequence of configurations:
\[
\left(\left(q_{0}, c_{1} \cdot c_{2} \cdots c_{n}\right),\left(q_{1}, c_{2} \cdots c_{n}\right), \ldots,\left(q_{n}, \varepsilon\right)\right)
\]
where
- \(q_{i} \in Q\) holds for \(1 \leq i \leq n\) and
- \(\delta\left(q_{i-1}, c_{i}\right)=q_{i}\) holds for \(1 \leq i \leq n\).

A run is accepting if \(q_{n} \in F\) holds.
The language accepted by \(\mathcal{A}\) can alternatively be defined as the set of all words for which there exists an accepting run of \(\mathcal{A}\).

\section*{Exercise: DFA}

1 Given this graphical representation of a DFA \(\mathcal{A}\) :

a) Give a regular expression describing \(L(\mathcal{A})\).
b) Give a formal definition of \(\mathcal{A}\).

\section*{Exercise: DFA}

2 Give
- a regular expression,
- a graphical representation of a DFA, and
- a formal definition
for the language \(L \subset\{a, b\}^{*}\) containing all those words featuring the substring ab
a) at the beginning,
b) at an arbitrary position,
c) at the end.

\section*{Another example}

\section*{Example}

Which language is recognized by the DFA?

\section*{Tabular representation of a DFA}

\(\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)\)
- \(Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}\)
- \(\Sigma=\{0,1\}\)
- Initial state: \(q_{0}\)
\begin{tabular}{r|cc}
\(\delta\) & 0 & 1 \\
\hline\(q_{0}\) & \(q_{1}\) & \(q_{4}\) \\
\(q_{1}\) & \(q_{2}\) & \(q_{4}\) \\
\(q_{2}\) & \(q_{4}\) & \(q_{3}\) \\
\(q_{3}\) & \(q_{3}\) & \(q_{3}\) \\
\(q_{4}\) & \(q_{4}\) & \(q_{4}\)
\end{tabular}

\section*{Tabular representation of a DFA}

\(\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)\)
- \(Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}\)
- \(\Sigma=\{0,1\}\)
- Initial state: \(q_{0}\)
\begin{tabular}{r|rr}
\(\delta\) & 0 & 1 \\
\hline\(q_{0}\) & \(q_{1}\) & \(q_{4}\) \\
\(q_{1}\) & \(q_{2}\) & \(q_{4}\) \\
\(q_{2}\) & \(q_{4}\) & \(q_{3}\) \\
\(q_{3}\) & \(q_{3}\) & \(q_{3}\) \\
\(q_{4}\) & \(q_{4}\) & \(q_{4}\)
\end{tabular}

\section*{Tabular representation of a DFA}

\(\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)\)
- \(Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}\)
- \(\Sigma=\{0,1\}\)
- Initial state: \(q_{0}\)
\begin{tabular}{r|rr}
\(\delta\) & 0 & 1 \\
\hline\(q_{0}\) & \(q_{1}\) & \(q_{4}\) \\
\(q_{1}\) & \(q_{2}\) & \(q_{4}\) \\
\(q_{2}\) & \(q_{4}\) & \(q_{3}\) \\
\(q_{3}\) & \(q_{3}\) & \(q_{3}\) \\
\(q_{4}\) & \(q_{4}\) & \(q_{4}\)
\end{tabular}

\section*{Tabular representation of a DFA}

\[
\begin{aligned}
\mathcal{A} & =\left(Q, \Sigma, \delta, q_{0}, F\right) \\
& Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\} \\
> & \Sigma=\{0,1\} \\
> & \text { Initial state: } q_{0} \\
> & F=\left\{q_{3}\right\}
\end{aligned}
\]
\begin{tabular}{cc|cc}
& \(\delta\) & 0 & 1 \\
\hline\(\rightarrow\) & \(q_{0}\) & \(q_{1}\) & \(q_{4}\) \\
& \(q_{1}\) & \(q_{2}\) & \(q_{4}\) \\
& \(q_{2}\) & \(q_{4}\) & \(q_{3}\) \\
\(*\) & \(q_{3}\) & \(q_{3}\) & \(q_{3}\) \\
& \(q_{4}\) & \(q_{4}\) & \(q_{4}\)
\end{tabular}

\section*{Tabular representation of a DFA}

\[
\begin{aligned}
\mathcal{A} & =\left(Q, \Sigma, \delta, q_{0}, F\right) \\
> & Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\} \\
& \Sigma=\{0,1\} \\
& \text { Initial state: } q_{0}
\end{aligned}
\]
\begin{tabular}{cc|cc}
& \(\delta\) & 0 & 1 \\
\hline\(\rightarrow\) & \(q_{0}\) & \(q_{1}\) & \(q_{4}\) \\
& \(q_{1}\) & \(q_{2}\) & \(q_{4}\) \\
& \(q_{2}\) & \(q_{4}\) & \(q_{3}\) \\
\(*\) & \(q_{3}\) & \(q_{3}\) & \(q_{3}\) \\
& \(q_{4}\) & \(q_{4}\) & \(q_{4}\)
\end{tabular}

\section*{Tabular representation of a DFA}

\[
\begin{aligned}
\mathcal{A} & =\left(Q, \Sigma, \delta, q_{0}, F\right) \\
> & Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\} \\
& \Sigma=\{0,1\} \\
& \text { Initial state: } q_{0}
\end{aligned}
\]
\begin{tabular}{cc|cc}
& \(\delta\) & 0 & 1 \\
\hline\(\rightarrow\) & \(q_{0}\) & \(q_{1}\) & \(q_{4}\) \\
& \(q_{1}\) & \(q_{2}\) & \(q_{4}\) \\
& \(q_{2}\) & \(q_{4}\) & \(q_{3}\) \\
\(*\) & \(q_{3}\) & \(q_{3}\) & \(q_{3}\) \\
& \(q_{4}\) & \(q_{4}\) & \(q_{4}\)
\end{tabular}

\section*{DFA: Tabular representation in practice}
\begin{tabular}{|c|c|}
\hline Delta & 01 \\
\hline -> q0 & | q1 q4 \\
\hline q1 & । q2 q4 \\
\hline q2 & | q4 q3 \\
\hline q3 & | q3 q3 \\
\hline q4 & | q4 q4 \\
\hline
\end{tabular}

\section*{DFA: Tabular representation in practice}
\begin{tabular}{|c|c|}
\hline Delta & 01 \\
\hline -> q0 & | q1 q4 \\
\hline q1 & | q2 q4 \\
\hline q2 & | q4 q3 \\
\hline q3 & | q3 q3 \\
\hline q4 & | \(\mathrm{q}^{4} \mathrm{q} 4\) \\
\hline
\end{tabular}
```

> easim.py fsa001.txt 10101
Processing: 10101
q0 :: 1 -> q4
q4 :: 0 -> q4
q4 :: 1 -> q4
q4 :: 0 -> q4
q4 :: 1 -> q4
Rejected

```

\section*{DFA: Tabular representation in practice}
\begin{tabular}{|c|c|}
\hline & 01 \\
\hline -> q0 & | q1 q4 \\
\hline q1 & | q2 q4 \\
\hline q2 & | q4 q3 \\
\hline q3 & | q3 q3 \\
\hline q4 & | q4 q4 \\
\hline
\end{tabular}
```

> easim.py fsa001.txt 10101
Processing: 10101
q0 :: 1 -> q4
q4 :: 0 -> q4
q4 :: 1 -> q4
q4 :: 0 -> q4
q4 :: 1 -> q4
Rejected
> easim.py fsa001.txt 101
Processing: 101
q0 :: 1 -> q4
q4 :: 0 -> q4
q4 :: 1 -> q4
Rejected

```

\section*{DFAs in tabular form: exercise}
- Give the following DFA ...
- as a formal 5-tuple
- as a diagram

- Characterize the language accepted by the DFA

\section*{DFA exercise}
- Assume
- \(\Sigma=\{a, b, c\}\)
- \(L_{1}=\left\{u b w \mid u \in \Sigma^{*}, w \in \Sigma\right\}\)
- \(L_{2}=\left\{u b w \mid u \in \Sigma, w \in \Sigma^{*}\right\}\)
- Group 1 (your family name starts with A-M): Find a DFA \(\mathcal{A}\) with \(L(\mathcal{A})=L_{1}\)
- Group 2 (your family name does not start with A-M): Find a DFA \(\mathcal{A}\) with \(L(\mathcal{A})=L_{2}\)

\section*{Outline}

\section*{Introduction}

Regular Languages and Finite
Automata

\section*{Regular Expressions}

> Finite Automata
> Non-Determinism
> Regular expressions and Finite Automata
> Minimisation
> Equivalence
> The Pumping Lemma
> Properties of Regular Languages

\section*{Scanners and Flex}

Formal Grammars and Context-Free
Languages
Parsers and Bison
Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Bonus Exercises
Selected Solutions

\section*{Drawbacks of deterministic automata}

Deterministic automata:
- Transition function \(\delta\)
- exactly one transition from every configuration
- can be complex even for simple languages

\section*{Drawbacks of deterministic automata}

Deterministic automata:
- Transition function \(\delta\)
- exactly one transition from every configuration
- can be complex even for simple languages

\section*{Example (DFA \(\mathcal{A}\) for \(\left.(a+b)^{*} b(a+b)(a+b)\right)\)}

\section*{Non-Determinism}
- FA can be simplified if one input can lead to
- one transition,
- multiple transitions, or
\(\Rightarrow\) no transition.
- Intuitively, such an FA selects its next state from a set of states depending on the current state and the input
- and always chooses the "right" one
- This is called a non-deterministic finite automaton (NFA)

\section*{Non-Determinism}
- FA can be simplified if one input can lead to
- one transition,
- multiple transitions, or
\(\Rightarrow\) no transition.
- Intuitively, such an FA selects its next state from a set of states depending on the current state and the input
b and always chooses the "right" one
- This is called a non-deterministic finite automaton (NFA)

\section*{Example (NFA B for \(\left.(\mathrm{a}+\mathrm{b})^{*} \mathrm{~b}(\mathrm{a}+\mathrm{b})(\mathrm{a}+\mathrm{b})\right)\)}

\section*{Non-Deterministic automata}

\section*{Example (Transitions in \(\mathcal{B}\))}

- In state \(q_{0}\) with input b, the FA has to "guess" the next state.
- The string abab can be read in three ways:
\(\begin{array}{llll}1 & q_{0} \stackrel{a}{\mapsto} q_{0} \stackrel{b}{\mapsto} q_{0} \stackrel{a}{\longrightarrow} q_{0} \stackrel{b}{\mapsto} q_{0} & \text { (failure) } \\ \mathbf{2} & q_{0} \stackrel{a}{\mapsto} q_{0} \stackrel{b}{\mapsto} q_{0} \stackrel{a}{\mapsto} q_{0} \stackrel{b}{\mapsto} q_{1} & \text { (failure) } \\ \text { 3 } & q_{0} \stackrel{a}{\mapsto} q_{0} \stackrel{b}{\mapsto} q_{1} \stackrel{a}{\mapsto} q_{2} \stackrel{b}{\mapsto} q_{3} & \text { (success) }\end{array}\)
- An NFA accepts an input \(w\) if there exists an accepting run on \(w\) !

\section*{NFA: non-deterministic transitions and \(\varepsilon\)-transitions}
- Non-deterministic transitions allow an NFA to go to more than one successor state
- Instead of a function \(\delta\), an NFA has a transition relation \(\Delta\)
- An NFA can additionally change its current state without reading an input symbol: \(q_{1} \stackrel{\varepsilon}{\mapsto} q_{2}\).
- This is called a spontaneous transition or \(\varepsilon\)-transition
- Thus, \(\Delta\) is a relation on \(Q \times(\Sigma \cup\{\varepsilon\}) \times Q\)

\section*{NFA: non-deterministic transitions and \(\varepsilon\)-transitions}
- Non-deterministic transitions allow an NFA to go to more than one successor state
- Instead of a function \(\delta\), an NFA has a transition relation \(\Delta\)
- An NFA can additionally change its current state without reading an input symbol: \(q_{1} \stackrel{\varepsilon}{\mapsto} q_{2}\).
- This is called a spontaneous transition or \(\varepsilon\)-transition
- Thus, \(\Delta\) is a relation on \(Q \times(\Sigma \cup\{\varepsilon\}) \times Q\)

\section*{Example (NFA with \(\varepsilon\)-transitions)}

\section*{NFA: Formal definition}

\section*{Definition (NFA)}

An NFA is a quintuple \(\mathcal{A}=\left(Q, \Sigma, \Delta, q_{0}, F\right)\) with the following components:
\(1 Q\) is the finite set of states.
\(2 \Sigma\) is the input alphabet.
\(3 \Delta\) is a relation over \(Q \times(\Sigma \cup\{\varepsilon\}) \times Q\).
\(4 q_{0} \in Q\) is the initial state.
\(5 F \subseteq Q\) is the set of final states.

\section*{Run of a nondeteterministic automaton}

\section*{Definition (Configuration, Run of an NFA)}

Let \(\mathcal{A}=\left(Q, \Sigma, \Delta, q_{0}, F\right)\) be an NFA.
A configuration of \(\mathcal{A}\) is a pair \((q, w)\) as for a DFA.

\section*{Run of a nondeteterministic automaton}

\section*{Definition (Configuration, Run of an NFA)}

Let \(\mathcal{A}=\left(Q, \Sigma, \Delta, q_{0}, F\right)\) be an NFA.
A configuration of \(\mathcal{A}\) is a pair \((q, w)\) as for a DFA.
A run of \(\mathcal{A}\) on a word \(w_{0}=c_{1} \cdot c_{2} \cdots c_{n}\) is a sequence of transitions
\[
r=\left(\left(q_{0}, w_{0}\right),\left(q_{1}, w_{1}\right), \ldots,\left(q_{m}, \varepsilon\right)\right)
\]
such that the following conditions are satisfied:
- \(q_{i} \in Q\) for all \(1 \leq i \leq m\),
- if \(r\) contains the configurations \(\left(q_{i}, w_{i}\right),\left(q_{i+1}, w_{i+1}\right)\), then
- there is a transition \(\left(q_{i}, c, q_{i+1}\right) \in \Delta\) with \(c \in \Sigma \cup\{\varepsilon\}\)
\(>w_{i}=c \cdot w_{i+1}\).

\section*{Run of a nondeteterministic automaton}

\section*{Definition (Configuration, Run of an NFA)}

Let \(\mathcal{A}=\left(Q, \Sigma, \Delta, q_{0}, F\right)\) be an NFA.
A configuration of \(\mathcal{A}\) is a pair \((q, w)\) as for a DFA.
A run of \(\mathcal{A}\) on a word \(w_{0}=c_{1} \cdot c_{2} \cdots c_{n}\) is a sequence of transitions
\[
r=\left(\left(q_{0}, w_{0}\right),\left(q_{1}, w_{1}\right), \ldots,\left(q_{m}, \varepsilon\right)\right)
\]
such that the following conditions are satisfied:
- \(q_{i} \in Q\) for all \(1 \leq i \leq m\),
- if \(r\) contains the configurations \(\left(q_{i}, w_{i}\right),\left(q_{i+1}, w_{i+1}\right)\), then
\(\nabla\) there is a transition \(\left(q_{i}, c, q_{i+1}\right) \in \Delta\) with \(c \in \Sigma \cup\{\varepsilon\}\)
\(\Rightarrow w_{i}=c \cdot w_{i+1}\).
The run \(r\) is accepting if \(q_{m}\) is a final state.

\section*{Run of a nondeteterministic automaton}

\section*{Definition (Configuration, Run of an NFA)}

Let \(\mathcal{A}=\left(Q, \Sigma, \Delta, q_{0}, F\right)\) be an NFA.
A configuration of \(\mathcal{A}\) is a pair \((q, w)\) as for a DFA.
A run of \(\mathcal{A}\) on a word \(w_{0}=c_{1} \cdot c_{2} \cdots c_{n}\) is a sequence of transitions
\[
r=\left(\left(q_{0}, w_{0}\right),\left(q_{1}, w_{1}\right), \ldots,\left(q_{m}, \varepsilon\right)\right)
\]
such that the following conditions are satisfied:
- \(q_{i} \in Q\) for all \(1 \leq i \leq m\),
- if \(r\) contains the configurations \(\left(q_{i}, w_{i}\right),\left(q_{i+1}, w_{i+1}\right)\), then
- there is a transition \(\left(q_{i}, c, q_{i+1}\right) \in \Delta\) with \(c \in \Sigma \cup\{\varepsilon\}\)
\(\Rightarrow w_{i}=c \cdot w_{i+1}\).
The run \(r\) is accepting if \(q_{m}\) is a final state.
The slightly more complex definition is necessary to handle \(\varepsilon\)-transitions.

\section*{Language recognized by an NFA}

\section*{Definition (Language recognized by an NFA)}

Let \(\mathcal{A}=\left(Q, \Sigma, \Delta, q_{0}, F\right)\) be an NFA. The language accepted by \(\mathcal{A}\) is
\[
L(\mathcal{A})=\{w \mid \text { there is an accepting run of } \mathcal{A} \text { on } w\}
\]

\section*{Language recognized by an NFA}

\section*{Definition (Language recognized by an NFA)}

Let \(\mathcal{A}=\left(Q, \Sigma, \Delta, q_{0}, F\right)\) be an NFA. The language accepted by \(\mathcal{A}\) is
\[
L(\mathcal{A})=\{w \mid \text { there is an accepting run of } \mathcal{A} \text { on } w\}
\]

Note:
- Only existence of one accepting run is required
- It does not matter if there are also non-accepting runs on \(w\)

\section*{Example: NFA definition}

\section*{Example (Formal definition of \(\mathcal{B}\))}

\(\mathcal{B}=\left(Q, \Sigma, \Delta, q_{0}, F\right)\) with
\(Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}\)
\(\Sigma=\{\mathrm{a}, \mathrm{b}\}\)
\(F=\left\{q_{3}\right\}\)

\section*{Example: NFA definition}

\section*{Example (Formal definition of \(\mathcal{B}\))}

\(\mathcal{B}=\left(Q, \Sigma, \Delta, q_{0}, F\right)\) with
\(Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}\)
\(\Sigma=\{\mathrm{a}, \mathrm{b}\}\)
\(F=\left\{q_{3}\right\}\)

\section*{Example: NFA definition}

\section*{Example (Formal definition of \(\mathcal{B}\))}

\(\mathcal{B}=\left(Q, \Sigma, \Delta, q_{0}, F\right)\) with
\(Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}\)
\(\Sigma=\{\mathrm{a}, \mathrm{b}\}\)
\(F=\left\{q_{3}\right\}\)

\section*{Example: NFA definition}

\section*{Example (Formal definition of \(\mathcal{B}\))}

\(\mathcal{B}=\left(Q, \Sigma, \Delta, q_{0}, F\right)\) with
\(Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}\)
\(\Sigma=\{\mathrm{a}, \mathrm{b}\}\)
\(F=\left\{q_{3}\right\}\)

\section*{Example: NFA definition}

\section*{Example (Formal definition of \(\mathcal{B}\))}

\(\mathcal{B}=\left(Q, \Sigma, \Delta, q_{0}, F\right)\) with
\(Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}\)
\(\Sigma=\{a, b\}\)
\(F=\left\{q_{3}\right\}\)
\[
\begin{aligned}
\Delta= & \left\{\left(q_{0}, \mathrm{a}, q_{0}\right),\left(q_{0}, \mathrm{~b}, q_{0}\right),\left(q_{0}, \mathrm{~b}, q_{1}\right),\right. \\
& \left(q_{1}, \mathrm{a}, q_{2}\right),\left(q_{1}, \mathrm{~b}, q_{2}\right), \\
& \left.\left(q_{2}, \mathrm{a}, q_{3}\right),\left(q_{2}, \mathrm{~b}, q_{3}\right)\right\}
\end{aligned}
\]

\section*{Example: NFA definition}

\section*{Example (Formal definition of \(\mathcal{B}\))}

\(\mathcal{B}=\left(Q, \Sigma, \Delta, q_{0}, F\right)\) with
\(Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}\)
\begin{tabular}{l|lll}
\(\Delta\) & a & b & \(\varepsilon\) \\
\hline\(q_{0}\) & \(\left\{q_{0}\right\}\) & \(\left\{q_{0}, q_{1}\right\}\) & \(\}\) \\
\(q_{1}\) & \(\left\{q_{2}\right\}\) & \(\left\{q_{2}\right\}\) & \(\}\) \\
\(q_{2}\) & \(\left\{q_{3}\right\}\) & \(\left\{q_{3}\right\}\) & \(\}\) \\
\(q_{3}\) & \(\}\) & \(\}\) & \(\}\)
\end{tabular}

\section*{Exercise: NFA}

Develop an NFA \(\mathcal{A}\) whose language \(L(\mathcal{A}) \subset\{\mathrm{a}, \mathrm{b}\}^{*}\) contains all those words featuring the substring aba. Give:
- a regular expression representing \(L(\mathcal{A})\),
- a graphical representation of \(\mathcal{A}\),
- a formal definition of \(\mathcal{A}\).

\section*{Equivalence of DFA and NFA}

Theorem (Equivalence of DFA and NFA)
NFAs and DFAs recognize the same class of languages.
- For every DFA \(\mathcal{A}\) there is an an NFA \(\mathcal{B}\) with \(L(\mathcal{A})=L(\mathcal{B})\).
- For every NFA \(\mathcal{B}\) there is an an DFA \(\mathcal{A}\) with \(L(\mathcal{B})=L(\mathcal{A})\).

\section*{Equivalence of DFA and NFA}

\section*{Theorem (Equivalence of DFA and NFA)}

NFAs and DFAs recognize the same class of languages.
- For every DFA \(\mathcal{A}\) there is an an NFA \(\mathcal{B}\) with \(L(\mathcal{A})=L(\mathcal{B})\).
- For every NFA \(\mathcal{B}\) there is an an DFA \(\mathcal{A}\) with \(L(\mathcal{B})=L(\mathcal{A})\).
- The direction DFA to NFA is trivial:
- Every DFA is (essentially) an NFA
- ...since every function is a relation
- What about the other direction?

\section*{Equivalence of DFA and NFA}

Equivalence of DFAs and NFAs can be shown by transforming
- an NFA \(\mathcal{A}\)
- into a DFA \(\operatorname{det}(\mathcal{A})\) accepting the same language.

\section*{Equivalence of DFA and NFA}

Equivalence of DFAs and NFAs can be shown by transforming
- an NFA \(\mathcal{A}\)
- into a DFA \(\operatorname{det}(\mathcal{A})\) accepting the same language.

Method:
- states of \(\operatorname{det}(\mathcal{A})\) represent sets of states of \(\mathcal{A}\)
- a transition from \(q_{1}\) to \(q_{2}\) with character \(c\) in \(\operatorname{det}(\mathcal{A})\) is possible if
- in \(\mathcal{A}\) there is a transition with \(c\)
- from one of the states that \(q_{1}\) represents
\(>\) to one of the states that \(q_{2}\) represents.
- a state in \(\operatorname{det}(\mathcal{A})\) is accepting if it contains an accepting state

\section*{Equivalence of DFA and NFA}

Equivalence of DFAs and NFAs can be shown by transforming
- an NFA \(\mathcal{A}\)
- into a DFA \(\operatorname{det}(\mathcal{A})\) accepting the same language.

Method:
- states of \(\operatorname{det}(\mathcal{A})\) represent sets of states of \(\mathcal{A}\)
- a transition from \(q_{1}\) to \(q_{2}\) with character \(c\) in \(\operatorname{det}(\mathcal{A})\) is possible if
\(>\) in \(\mathcal{A}\) there is a transition with \(c\)
- from one of the states that \(q_{1}\) represents
\(>\) to one of the states that \(q_{2}\) represents.
- a state in \(\operatorname{det}(\mathcal{A})\) is accepting if it contains an accepting state

To this end, we define three auxiliary functions.
- ec to compute the \(\varepsilon\) closure of a state
- \(\delta^{*}\) to compute possible successors of a state
- \(\hat{\delta}\), the new transition function for the generated DFA

\section*{Step 1: \(\varepsilon\) closure of an NFA}

The \(\varepsilon\) closure of a state \(q\) contains all states the NFA can change to by means of \(\varepsilon\) transitions starting from \(q\).

\section*{Step 1: \(\varepsilon\) closure of an NFA}

The \(\varepsilon\) closure of a state \(q\) contains all states the NFA can change to by means of \(\varepsilon\) transitions starting from \(q\).

\section*{Definition (\(\varepsilon\) closure)}

The function ec : \(Q \rightarrow 2^{Q}\) is the smallest function with the properties:
- \(q \in e c(q)\)
- \(p \in e c(q) \wedge(p, \varepsilon, r) \in \Delta \quad \Rightarrow \quad r \in e c(q)\)

\section*{Example: \(\varepsilon\) closure}

\section*{Example}

\section*{Example: \(\varepsilon\) closure}

\section*{Example}

- \(e c\left(q_{0}\right)=\)

\section*{Example: \(\varepsilon\) closure}

\section*{Example}

- \(e c\left(q_{0}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}\),
- \(e c\left(q_{1}\right)=\)

\section*{Example: \(\varepsilon\) closure}

\section*{Example}

- \(e c\left(q_{0}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}\),
- \(e c\left(q_{1}\right)=\left\{q_{1}\right\}\),
- \(e c\left(q_{2}\right)=\)

\section*{Example: \(\varepsilon\) closure}

\section*{Example}

- \(e c\left(q_{0}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}\),
- \(e c\left(q_{1}\right)=\left\{q_{1}\right\}\),
- ec \(\left(q_{2}\right)=\left\{q_{2}\right\}\),
\(-e c\left(q_{3}\right)=\)

\section*{Example: \(\varepsilon\) closure}

\section*{Example}

\[
\begin{aligned}
e c\left(q_{0}\right) & =\left\{q_{0}, q_{1}, q_{2}\right\} \\
e c\left(q_{1}\right) & =\left\{q_{1}\right\} \\
e c\left(q_{2}\right) & =\left\{q_{2}\right\} \\
e c\left(q_{3}\right) & =\left\{q_{3}\right\}
\end{aligned}
\]
\[
e c\left(q_{4}\right)=
\]

\section*{Example: \(\varepsilon\) closure}

\section*{Example}

\[
\begin{aligned}
& e c\left(q_{0}\right)=\left\{q_{0}, q_{1}, q_{2}\right\} \\
& e c\left(q_{1}\right)=\left\{q_{1}\right\} \\
& e c\left(q_{2}\right)=\left\{q_{2}\right\} \\
& e c\left(q_{3}\right)=\left\{q_{3}\right\},
\end{aligned}
\]
\[
e c\left(q_{4}\right)=\left\{q_{4}\right\}
\]
\[
\operatorname{pc}\left(q_{5}\right)=
\]

\section*{Example: \(\varepsilon\) closure}

\section*{Example}

\[
\begin{aligned}
& e c\left(q_{0}\right)=\left\{q_{0}, q_{1}, q_{2}\right\} \\
& e c\left(q_{1}\right)=\left\{q_{1}\right\} \\
& e c\left(q_{2}\right)=\left\{q_{2}\right\} \\
& e c\left(q_{3}\right)=\left\{q_{3}\right\},
\end{aligned}
\]
\[
e c\left(q_{4}\right)=\left\{q_{4}\right\}
\]
\[
e c\left(q_{5}\right)=\left\{q_{5}, q_{7}, q_{0}, q_{1}, q_{2}\right\}
\]
\[
e c\left(q_{6}\right)=
\]

\section*{Example: \(\varepsilon\) closure}

\section*{Example}

\[
\begin{aligned}
& e c\left(q_{0}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}, \\
& e c\left(q_{1}\right)=\left\{q_{1}\right\}, \\
& e c\left(q_{2}\right)=\left\{q_{2}\right\}, \\
& e c\left(q_{3}\right)=\left\{q_{3}\right\},
\end{aligned}
\]
- \(e c\left(q_{4}\right)=\left\{q_{4}\right\}\),
- \(e c\left(q_{5}\right)=\left\{q_{5}, q_{7}, q_{0}, q_{1}, q_{2}\right\}\),
- \(e c\left(q_{6}\right)=\left\{q_{6}, q_{7}, q_{0}, q_{1}, q_{2}\right\}\),
- \(e c\left(q_{7}\right)=\)

\section*{Example: \(\varepsilon\) closure}

\section*{Example}

\[
\begin{aligned}
e c\left(q_{0}\right) & =\left\{q_{0}, q_{1}, q_{2}\right\}, \\
e c\left(q_{1}\right) & =\left\{q_{1}\right\}, \\
e c\left(q_{2}\right) & =\left\{q_{2}\right\}, \\
e c\left(q_{3}\right) & =\left\{q_{3}\right\},
\end{aligned}
\]
- \(e c\left(q_{4}\right)=\left\{q_{4}\right\}\),
- \(e c\left(q_{5}\right)=\left\{q_{5}, q_{7}, q_{0}, q_{1}, q_{2}\right\}\),
- \(e c\left(q_{6}\right)=\left\{q_{6}, q_{7}, q_{0}, q_{1}, q_{2}\right\}\),
\(-e c\left(q_{7}\right)=\left\{q_{7}, q_{0}, q_{1}, q_{2}\right\}\).

\section*{Step 2: Successor state function for NFAs}

The function \(\delta^{*}\) maps
- a pair \((q, c)\) (state and character)
- to the set of all states the NFA can change to from \(q\) with \(c\)
- followed by any number of \(\varepsilon\) transitions.

\section*{Step 2: Successor state function for NFAs}

The function \(\delta^{*}\) maps
- a pair \((q, c)\) (state and character)
- to the set of all states the NFA can change to from \(q\) with \(c\)
- followed by any number of \(\varepsilon\) transitions.

\section*{Definition (Successor state function)}

The function \(\delta^{*}: Q \times \Sigma \rightarrow 2^{Q}\) is defined as follows:
\[
\delta^{*}(q, c)=\bigcup_{r \in Q:(q, c, r) \in \Delta} e c(r)
\]

\section*{Example: successor state function}

\section*{Example}

\section*{Example: successor state function}

\section*{Example}

- \(\delta^{*}\left(q_{0}, \mathrm{a}\right)=\)

\section*{Example: successor state function}

\section*{Example}

- \(\delta^{*}\left(q_{0}, \mathrm{a}\right)=\{ \}\),
- \(\delta^{*}\left(q_{1}, \mathrm{~b}\right)=\)

\section*{Example: successor state function}

\section*{Example}

- \(\delta^{*}\left(q_{0}, \mathrm{a}\right)=\{ \}\),
- \(\delta^{*}\left(q_{1}, \mathrm{~b}\right)=\left\{q_{3}\right\}\),
- \(\delta^{*}\left(q_{3}, a\right)=\)

\section*{Example: successor state function}

\section*{Example}

- \(\delta^{*}\left(q_{0}, a\right)=\{ \}\),
- \(\delta^{*}\left(q_{1}, \mathrm{~b}\right)=\left\{q_{3}\right\}\),
- \(\delta^{*}\left(q_{3}, a\right)=\left\{q_{5}, q_{7}, q_{0}, q_{1}, q_{2}\right\}\),
> ...

\section*{Step 3: extended transition function}

The function \(\hat{\delta}\) maps
- a pair \((M, c)\) consisting of a set of states \(M\) and a character \(c\)
- to the set \(N\) of states that are reachable from any state of \(M\) via
\(\Delta\) by reading the character \(c\)
- possibly followed by \(\varepsilon\) transitions.

\section*{Step 3: extended transition function}

The function \(\hat{\delta}\) maps
- a pair \((M, c)\) consisting of a set of states \(M\) and a character \(c\)
- to the set \(N\) of states that are reachable from any state of \(M\) via \(\Delta\) by reading the character \(c\)
- possibly followed by \(\varepsilon\) transitions.

\section*{Definition (Extended transition function)}

The function \(\hat{\delta}: 2^{Q} \times \Sigma \rightarrow 2^{Q}\) is defined as follows:
\[
\hat{\delta}(M, c)=\bigcup_{q \in M} \delta^{*}(q, c)
\]

\section*{Example: extended transition function}

\section*{Example}

- \(\delta^{*}\left(q_{0}, a\right)=\{ \}\)
- \(\delta^{*}\left(q_{1}, \mathrm{~b}\right)=\left\{q_{3}\right\}\)
- \(\delta^{*}\left(q_{3}, \mathrm{a}\right)=\left\{q_{5}, q_{7}, q_{0}, q_{1}, q_{2}\right\}\)

\section*{Example: extended transition function}

\section*{Example}

- \(\delta^{*}\left(q_{0}, a\right)=\{ \}\)
- \(\hat{\delta}\left(\left\{q_{0}, q_{1}, q_{2}\right\}, \mathrm{a}\right)=\)
- \(\delta^{*}\left(q_{1}, \mathrm{~b}\right)=\left\{q_{3}\right\}\)
- \(\delta^{*}\left(q_{3}, \mathrm{a}\right)=\left\{q_{5}, q_{7}, q_{0}, q_{1}, q_{2}\right\}\)

\section*{Example: extended transition function}

\section*{Example}

- \(\delta^{*}\left(q_{0}, \mathrm{a}\right)=\{ \}\)
- \(\hat{\delta}\left(\left\{q_{0}, q_{1}, q_{2}\right\}, \mathrm{a}\right)=\left\{q_{4}\right\}\)
- \(\delta^{*}\left(q_{1}, \mathrm{~b}\right)=\left\{q_{3}\right\}\)
- \(\hat{\delta}\left(\left\{q_{3}\right\}, a\right)=\)
- \(\delta^{*}\left(q_{3}, \mathrm{a}\right)=\left\{q_{5}, q_{7}, q_{0}, q_{1}, q_{2}\right\}\)

\section*{Example: extended transition function}

\section*{Example}

- \(\delta^{*}\left(q_{0}, \mathrm{a}\right)=\{ \}\)
- \(\hat{\delta}\left(\left\{q_{0}, q_{1}, q_{2}\right\}, \mathrm{a}\right)=\left\{q_{4}\right\}\)
- \(\delta^{*}\left(q_{1}, \mathrm{~b}\right)=\left\{q_{3}\right\}\)
- \(\hat{\delta}\left(\left\{q_{3}\right\}, \mathrm{a}\right)=\left\{q_{5}, q_{7}, q_{0}, q_{1}, q_{2}\right\}\)
- \(\delta^{*}\left(q_{3}, \mathrm{a}\right)=\left\{q_{5}, q_{7}, q_{0}, q_{1}, q_{2}\right\}\)
- \(\hat{\delta}\left(\left\{q_{3}\right\}, b\right)=\)

\section*{Example: extended transition function}

\section*{Example}

- \(\delta^{*}\left(q_{0}, \mathrm{a}\right)=\{ \}\)
- \(\hat{\delta}\left(\left\{q_{0}, q_{1}, q_{2}\right\}, \mathrm{a}\right)=\left\{q_{4}\right\}\)
- \(\delta^{*}\left(q_{1}, \mathrm{~b}\right)=\left\{q_{3}\right\}\)
- \(\hat{\delta}\left(\left\{q_{3}\right\}, \mathrm{a}\right)=\left\{q_{5}, q_{7}, q_{0}, q_{1}, q_{2}\right\}\)
- \(\delta^{*}\left(q_{3}, \mathrm{a}\right)=\left\{q_{5}, q_{7}, q_{0}, q_{1}, q_{2}\right\}\)
- \(\hat{\delta}\left(\left\{q_{3}\right\}, b\right)=\{ \}\)
- ...

\section*{Equivalence of DFA and NFA: formal definition}

Using the auxiliary functions \(e c, \hat{\delta}\), we can \(\operatorname{define} \operatorname{det}(\mathcal{A})\).

\section*{Equivalence of DFA and NFA: formal definition}

Using the auxiliary functions \(e c, \hat{\delta}\), we can \(\operatorname{define} \operatorname{det}(\mathcal{A})\).

\section*{Definition}

For an NFA \(\mathcal{A}=\left(Q, \Sigma, \Delta, q_{0}, F\right)\), the deterministic Automaton \(\operatorname{det}(\mathcal{A})\) is defined as
\[
\left(2^{Q}, \Sigma, \hat{\delta}, e c\left(q_{0}\right), \hat{F}\right)
\]
with \(\hat{F}=\left\{M \in 2^{Q} \mid M \cap F \neq\{ \}\right\}\).

\section*{Equivalence of DFA and NFA: formal definition}

Using the auxiliary functions \(e c, \hat{\delta}\), we can \(\operatorname{define} \operatorname{det}(\mathcal{A})\).

\section*{Definition}

For an NFA \(\mathcal{A}=\left(Q, \Sigma, \Delta, q_{0}, F\right)\), the deterministic Automaton \(\operatorname{det}(\mathcal{A})\) is defined as
\[
\left(2^{Q}, \Sigma, \hat{\delta}, e c\left(q_{0}\right), \hat{F}\right)
\]
with \(\hat{F}=\left\{M \in 2^{Q} \mid M \cap F \neq\{ \}\right\}\).
The set of final states \(\hat{F}\) is the set of all subsets of \(Q\) containing a final state.

\section*{Equivalence of DFA and NFA: formal definition}

Using the auxiliary functions \(e c, \hat{\delta}\), we can \(\operatorname{define} \operatorname{det}(\mathcal{A})\).

\section*{Definition}

For an NFA \(\mathcal{A}=\left(Q, \Sigma, \Delta, q_{0}, F\right)\), the deterministic Automaton \(\operatorname{det}(\mathcal{A})\) is defined as
\[
\left(2^{Q}, \Sigma, \hat{\delta}, e c\left(q_{0}\right), \hat{F}\right)
\]
with \(\hat{F}=\left\{M \in 2^{Q} \mid M \cap F \neq\{ \}\right\}\).
The set of final states \(\hat{F}\) is the set of all subsets of \(Q\) containing a final state.

\section*{Remark}

In practice, we use a more efficient stepwise construction that only builds the reachable states, not all of \(2^{Q}\) !

\section*{Example: transformation into DFA}

\section*{Example (NFA \(\mathcal{B}\) for \((\mathrm{a}+\mathrm{b})^{*} \mathrm{~b}(\mathrm{a}+\mathrm{b})(\mathrm{a}+\mathrm{b})\))}

- Initial state: \(S_{0}:=e c\left(q_{0}\right)=\left\{q_{0}\right\}\)

\section*{Example: transformation into DFA (cont')}

\section*{Example}

- \(\hat{\delta}\left(S_{0}, a\right)=\)

\section*{Example: transformation into DFA (cont')}

\section*{Example}

- \(\hat{\delta}\left(S_{0}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{0}, \mathrm{~b}\right)=\)

\section*{Example: transformation into DFA (cont')}

\section*{Example}

- \(\hat{\delta}\left(S_{0}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{0}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}\right\}=: S_{1}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{a}\right)=\)

\section*{Example: transformation into DFA (cont')}

\section*{Example}

- \(\hat{\delta}\left(S_{0}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{0}\right.\), b) \(=\left\{q_{0}, q_{1}\right\}=: S_{1}\)
- \(\hat{\delta}\left(S_{1}, a\right)=\left\{q_{0}, q_{2}\right\}=: S_{2}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{~b}\right)=\)

\section*{Example: transformation into DFA (cont')}

\section*{Example}

- \(\hat{\delta}\left(S_{0}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{0}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}\right\}=: S_{1}\)
- \(\hat{\delta}\left(S_{1}, a\right)=\left\{q_{0}, q_{2}\right\}=: S_{2}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}=: S_{4}\)
- \(\hat{\delta}\left(S_{2}, \mathrm{a}\right)=\)

\section*{Example: transformation into DFA (cont')}

\section*{Example}

- \(\hat{\delta}\left(S_{0}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{0}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}\right\}=: S_{1}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{a}\right)=\left\{q_{0}, q_{2}\right\}=: S_{2}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}=: S_{4}\)
- \(\hat{\delta}\left(S_{2}, a\right)=\left\{q_{0}, q_{3}\right\}=: S_{3}\)
- \(\hat{\delta}\left(S_{2}, \mathrm{~b}\right)=\)

\section*{Example: transformation into DFA (cont')}

\section*{Example}

- \(\hat{\delta}\left(S_{0}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{0}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}\right\}=: S_{1}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{a}\right)=\left\{q_{0}, q_{2}\right\}=: S_{2}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}=: S_{4}\)
- \(\hat{\delta}\left(S_{2}, \mathrm{a}\right)=\left\{q_{0}, q_{3}\right\}=: S_{3}\)
- \(\hat{\delta}\left(S_{2}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{3}\right\}=: S_{5}\)
- \(\hat{\delta}\left(S_{4}, \mathrm{a}\right)=\)

\section*{Example: transformation into DFA (cont')}

\section*{Example}

- \(\hat{\delta}\left(S_{0}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{0}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}\right\}=: S_{1}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{a}\right)=\left\{q_{0}, q_{2}\right\}=: S_{2}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}=: S_{4}\)
- \(\hat{\delta}\left(S_{2}, \mathrm{a}\right)=\left\{q_{0}, q_{3}\right\}=: S_{3}\)
- \(\hat{\delta}\left(S_{2}\right.\), b \()=\left\{q_{0}, q_{1}, q_{3}\right\}=: S_{5}\)
- \(\hat{\delta}\left(S_{4}, \mathrm{a}\right)=\left\{q_{0}, q_{2}, q_{3}\right\}=: S_{6}\)
- \(\hat{\delta}\left(S_{4}, b\right)=\)

\section*{Example: transformation into DFA (cont')}

\section*{Example}

- \(\hat{\delta}\left(S_{0}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{0}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}\right\}=: S_{1}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{a}\right)=\left\{q_{0}, q_{2}\right\}=: S_{2}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}=: S_{4}\)
- \(\hat{\delta}\left(S_{2}, \mathrm{a}\right)=\left\{q_{0}, q_{3}\right\}=: S_{3}\)
- \(\hat{\delta}\left(S_{2}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{3}\right\}=: S_{5}\)
- \(\hat{\delta}\left(S_{4}, \mathrm{a}\right)=\left\{q_{0}, q_{2}, q_{3}\right\}=: S_{6}\)
- \(\hat{\delta}\left(S_{4}\right.\), b \()=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}=: S_{7}\)

\section*{Example: transformation into DFA (cont')}

\section*{Example}

- \(\hat{\delta}\left(S_{0}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{3}, a\right)=\)
- \(\hat{\delta}\left(S_{0}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}\right\}=: S_{1}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{a}\right)=\left\{q_{0}, q_{2}\right\}=: S_{2}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}=: S_{4}\)
- \(\hat{\delta}\left(S_{2}, \mathrm{a}\right)=\left\{q_{0}, q_{3}\right\}=: S_{3}\)
- \(\hat{\delta}\left(S_{2}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{3}\right\}=: S_{5}\)
- \(\hat{\delta}\left(S_{4}, \mathrm{a}\right)=\left\{q_{0}, q_{2}, q_{3}\right\}=: S_{6}\)
- \(\hat{\delta}\left(S_{4}\right.\), b \()=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}=: S_{7}\)

\section*{Example: transformation into DFA (cont')}

\section*{Example}

- \(\hat{\delta}\left(S_{0}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{3}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{0}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}\right\}=: S_{1}\)
- \(\hat{\delta}\left(S_{3}, \mathrm{~b}\right)=\)
- \(\hat{\delta}\left(S_{1}, \mathrm{a}\right)=\left\{q_{0}, q_{2}\right\}=: S_{2}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}=: S_{4}\)
- \(\hat{\delta}\left(S_{2}, \mathrm{a}\right)=\left\{q_{0}, q_{3}\right\}=: S_{3}\)
- \(\hat{\delta}\left(S_{2}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{3}\right\}=: S_{5}\)
- \(\hat{\delta}\left(S_{4}, \mathrm{a}\right)=\left\{q_{0}, q_{2}, q_{3}\right\}=: S_{6}\)
- \(\hat{\delta}\left(S_{4}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}=: S_{7}\)

\section*{Example: transformation into DFA (cont')}

\section*{Example}

- \(\hat{\delta}\left(S_{0}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{0}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}\right\}=: S_{1}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{a}\right)=\left\{q_{0}, q_{2}\right\}=: S_{2}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}=: S_{4}\)
- \(\hat{\delta}\left(S_{2}, \mathrm{a}\right)=\left\{q_{0}, q_{3}\right\}=: S_{3}\)
- \(\hat{\delta}\left(S_{2}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{3}\right\}=: S_{5}\)
- \(\hat{\delta}\left(S_{4}, \mathrm{a}\right)=\left\{q_{0}, q_{2}, q_{3}\right\}=: S_{6}\)
- \(\hat{\delta}\left(S_{4}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}=: S_{7}\)
- \(\hat{\delta}\left(S_{3}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{3}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}\right\}=S_{1}\)
- \(\hat{\delta}\left(S_{5}, \mathrm{a}\right)=\)

\section*{Example: transformation into DFA (cont')}

\section*{Example}

- \(\hat{\delta}\left(S_{0}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{0}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}\right\}=: S_{1}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{a}\right)=\left\{q_{0}, q_{2}\right\}=: S_{2}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}=: S_{4}\)
- \(\hat{\delta}\left(S_{3}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{3}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}\right\}=S_{1}\)
- \(\hat{\delta}\left(S_{5}, \mathrm{a}\right)=\left\{q_{0}, q_{2}\right\}=S_{2}\)
- \(\hat{\delta}\left(S_{2}, \mathrm{a}\right)=\left\{q_{0}, q_{3}\right\}=: S_{3}\)
- \(\hat{\delta}\left(S_{2}\right.\), b \()=\left\{q_{0}, q_{1}, q_{3}\right\}=: S_{5}\)
- \(\hat{\delta}\left(S_{4}, \mathrm{a}\right)=\left\{q_{0}, q_{2}, q_{3}\right\}=: S_{6}\)
- \(\hat{\delta}\left(S_{4}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}=: S_{7}\)
- \(\hat{\delta}\left(S_{5}, b\right)=\)

\section*{Example: transformation into DFA (cont')}

\section*{Example}

- \(\hat{\delta}\left(S_{0}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{0}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}\right\}=: S_{1}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{a}\right)=\left\{q_{0}, q_{2}\right\}=: S_{2}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}=: S_{4}\)
- \(\hat{\delta}\left(S_{2}, \mathrm{a}\right)=\left\{q_{0}, q_{3}\right\}=: S_{3}\)
- \(\hat{\delta}\left(S_{2}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{3}\right\}=: S_{5}\)
- \(\hat{\delta}\left(S_{4}, \mathrm{a}\right)=\left\{q_{0}, q_{2}, q_{3}\right\}=: S_{6}\)
- \(\hat{\delta}\left(S_{4}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}=: S_{7}\)
- \(\hat{\delta}\left(S_{3}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{3}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}\right\}=S_{1}\)
- \(\hat{\delta}\left(S_{5}, \mathrm{a}\right)=\left\{q_{0}, q_{2}\right\}=S_{2}\)
- \(\hat{\delta}\left(S_{5}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}=S_{4}\)
- \(\hat{\delta}\left(S_{6}, \mathrm{a}\right)=\)

\section*{Example: transformation into DFA (cont')}

\section*{Example}

- \(\hat{\delta}\left(S_{0}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{0}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}\right\}=: S_{1}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{a}\right)=\left\{q_{0}, q_{2}\right\}=: S_{2}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}=: S_{4}\)
- \(\hat{\delta}\left(S_{2}, \mathrm{a}\right)=\left\{q_{0}, q_{3}\right\}=: S_{3}\)
- \(\hat{\delta}\left(S_{2}\right.\), b \()=\left\{q_{0}, q_{1}, q_{3}\right\}=: S_{5}\)
- \(\hat{\delta}\left(S_{4}, \mathrm{a}\right)=\left\{q_{0}, q_{2}, q_{3}\right\}=: S_{6}\)
- \(\hat{\delta}\left(S_{4}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}=: S_{7}\)
- \(\hat{\delta}\left(S_{3}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{3}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}\right\}=S_{1}\)
- \(\hat{\delta}\left(S_{5}, \mathrm{a}\right)=\left\{q_{0}, q_{2}\right\}=S_{2}\)
- \(\hat{\delta}\left(S_{5}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}=S_{4}\)
- \(\hat{\delta}\left(S_{6}, \mathrm{a}\right)=\left\{q_{0}, q_{3}\right\}=S_{3}\)
- \(\hat{\delta}\left(S_{6}, b\right)=\)

\section*{Example: transformation into DFA (cont')}

\section*{Example}

- \(\hat{\delta}\left(S_{0}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{0}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}\right\}=: S_{1}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{a}\right)=\left\{q_{0}, q_{2}\right\}=: S_{2}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}=: S_{4}\)
- \(\hat{\delta}\left(S_{2}, \mathrm{a}\right)=\left\{q_{0}, q_{3}\right\}=: S_{3}\)
- \(\hat{\delta}\left(S_{2}\right.\), b \()=\left\{q_{0}, q_{1}, q_{3}\right\}=: S_{5}\)
- \(\hat{\delta}\left(S_{4}, \mathrm{a}\right)=\left\{q_{0}, q_{2}, q_{3}\right\}=: S_{6}\)
- \(\hat{\delta}\left(S_{4}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}=: S_{7}\)
- \(\hat{\delta}\left(S_{3}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{3}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}\right\}=S_{1}\)
- \(\hat{\delta}\left(S_{5}, \mathrm{a}\right)=\left\{q_{0}, q_{2}\right\}=S_{2}\)
- \(\hat{\delta}\left(S_{5}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}=S_{4}\)
- \(\hat{\delta}\left(S_{6}, \mathrm{a}\right)=\left\{q_{0}, q_{3}\right\}=S_{3}\)
- \(\hat{\delta}\left(S_{6}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{3}\right\}=S_{5}\)
- \(\hat{\delta}\left(S_{7}, a\right)=\)

\section*{Example: transformation into DFA (cont')}

\section*{Example}

- \(\hat{\delta}\left(S_{0}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{0}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}\right\}=: S_{1}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{a}\right)=\left\{q_{0}, q_{2}\right\}=: S_{2}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}=: S_{4}\)
- \(\hat{\delta}\left(S_{2}, \mathrm{a}\right)=\left\{q_{0}, q_{3}\right\}=: S_{3}\)
- \(\hat{\delta}\left(S_{2}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{3}\right\}=: S_{5}\)
- \(\hat{\delta}\left(S_{4}, \mathrm{a}\right)=\left\{q_{0}, q_{2}, q_{3}\right\}=: S_{6}\)
- \(\hat{\delta}\left(S_{4}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}=: S_{7}\)
- \(\hat{\delta}\left(S_{3}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{3}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}\right\}=S_{1}\)
- \(\hat{\delta}\left(S_{5}, \mathrm{a}\right)=\left\{q_{0}, q_{2}\right\}=S_{2}\)
- \(\hat{\delta}\left(S_{5}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}=S_{4}\)
- \(\hat{\delta}\left(S_{6}, \mathrm{a}\right)=\left\{q_{0}, q_{3}\right\}=S_{3}\)
- \(\hat{\delta}\left(S_{6}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{3}\right\}=S_{5}\)
- \(\hat{\delta}\left(S_{7}, \mathrm{a}\right)=\left\{q_{0}, q_{2}, q_{3}\right\}=S_{6}\)
- \(\hat{\delta}\left(S_{7}, \mathrm{~b}\right)=\)

\section*{Example: transformation into DFA (cont')}

\section*{Example}

- \(\hat{\delta}\left(S_{0}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{0}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}\right\}=: S_{1}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{a}\right)=\left\{q_{0}, q_{2}\right\}=: S_{2}\)
- \(\hat{\delta}\left(S_{1}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}=: S_{4}\)
- \(\hat{\delta}\left(S_{2}, \mathrm{a}\right)=\left\{q_{0}, q_{3}\right\}=: S_{3}\)
- \(\hat{\delta}\left(S_{2}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{3}\right\}=: S_{5}\)
- \(\hat{\delta}\left(S_{4}, \mathrm{a}\right)=\left\{q_{0}, q_{2}, q_{3}\right\}=: S_{6}\)
- \(\hat{\delta}\left(S_{4}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}=: S_{7}\)
- \(\hat{\delta}\left(S_{3}, \mathrm{a}\right)=\left\{q_{0}\right\}=S_{0}\)
- \(\hat{\delta}\left(S_{3}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}\right\}=S_{1}\)
- \(\hat{\delta}\left(S_{5}, \mathrm{a}\right)=\left\{q_{0}, q_{2}\right\}=S_{2}\)
- \(\hat{\delta}\left(S_{5}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}=S_{4}\)
- \(\hat{\delta}\left(S_{6}, \mathrm{a}\right)=\left\{q_{0}, q_{3}\right\}=S_{3}\)
- \(\hat{\delta}\left(S_{6}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{3}\right\}=S_{5}\)
- \(\hat{\delta}\left(S_{7}, \mathrm{a}\right)=\left\{q_{0}, q_{2}, q_{3}\right\}=S_{6}\)
- \(\hat{\delta}\left(S_{7}, \mathrm{~b}\right)=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}=S_{7}\)

\section*{Example: transformation into DFA (cont')}

\section*{Example}

We can now define the \(\operatorname{DFA} \operatorname{det}(\mathcal{B})=\left(\hat{Q}, \Sigma, \hat{\delta}, S_{0}, \hat{F}\right)\) as follows:
- the set of states \(\hat{Q}=\left\{S_{0}, \cdots, S_{7}\right\}\),
- the state transition function \(\hat{\delta}\) is:
\begin{tabular}{|c||c|c|c|c|c|c|c|c|}
\hline\(\hat{\delta}\) & \(S_{0}\) & \(S_{1}\) & \(S_{2}\) & \(S_{3}\) & \(S_{4}\) & \(S_{5}\) & \(S_{6}\) & \(S_{7}\) \\
\hline \hline a & \(S_{0}\) & \(S_{2}\) & \(S_{3}\) & \(S_{0}\) & \(S_{6}\) & \(S_{2}\) & \(S_{3}\) & \(S_{6}\) \\
\hline b & \(S_{1}\) & \(S_{4}\) & \(S_{5}\) & \(S_{1}\) & \(S_{7}\) & \(S_{4}\) & \(S_{5}\) & \(S_{7}\) \\
\hline
\end{tabular}
- and the set of final states \(\hat{F}=\left\{S_{3}, S_{5}, S_{6}, S_{7}\right\}\).

\section*{Example: transformation into DFA (cont')}

\section*{Example: transformation into DFA (cont')}

\section*{Exercise: Transformation into DFA}

Given the following NFA \(\mathcal{A}\) :

a) Determine \(\operatorname{det}(\mathcal{A})\).
b) Draw \(\operatorname{det}(\mathcal{A})\) 's graphical representation
c) Give a regular expression representing the same language as \(\mathcal{A}\).

\section*{Exercise: Transformation into DFA}

Given the following NFA \(\mathcal{A}\) :

a) Determine \(\operatorname{det}(\mathcal{A})\).
b) \(\operatorname{Draw} \operatorname{det}(\mathcal{A})\) 's graphical representation
c) Give a regular expression representing the same language as \(\mathcal{A}\).

\section*{Exercise: Transformation into DFA}

Given the following NFA \(\mathcal{A}\) :

a) Determine \(\operatorname{det}(\mathcal{A})\).
b) Draw \(\operatorname{det}(\mathcal{A})\) 's graphical representation
c) Give a regular expression representing the same language as \(\mathcal{A}\).

\section*{Outline}

\section*{Introduction}

\section*{Regular Languages and Finite}

Automata

\section*{Regular Expressions}

> Finite Automata
> Non-Determinism
> Regular expressions and Finite Automata
> Minimisation
> Equivalence
> The Pumping Lemma
> Properties of Regular Languages

\section*{Scanners and Flex}

Formal Grammars and Context-Free Languages
Parsers and Bison
Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Bonus Exercises
Selected Solutions

\section*{Regular expressions and Finite Automata}
- Regular expressions describe regular languages
- For each regular language \(L\), there is an regular expression \(r\) with \(L(r)=L\)
- For every regular expression \(r, L(r)\) is a regular language
- Finite automata describe regular languages
- For each regular language \(L\), there is a FA \(\mathcal{A}\) with \(L(\mathcal{A})=L\)
- For every finite automaton \(\mathcal{A}, L(\mathcal{A})\) is a regular language
- Now: constructive proof of equivalence between REs and FAs
- We already know that DFAs and NFAs are equivalent
- Now: Equivalence of NFAs and REs

\section*{Transformation of regular expressions into NFAs}
- For a regular expression \(r\), derive NFA \(\mathcal{A}(r)\) with \(L(\mathcal{A}(r))=L(r)\).
- Idea:
- Construct NFAs for the elementary REs (\(\emptyset, \varepsilon, c \in \Sigma\))
\(>\) We combine NFAs for subexpressions to generate NFAs for composite REs
- All NFAs we construct have a number of special properties:
- There are no transitions to the initial state.
- There is only a single final state.
- There are no transitions from the final state.

\section*{Transformation of regular expressions into NFAs}
- For a regular expression \(r\), derive NFA \(\mathcal{A}(r)\) with \(L(\mathcal{A}(r))=L(r)\).
- Idea:
- Construct NFAs for the elementary REs (\(\emptyset, \varepsilon, c \in \Sigma\))
\(>\) We combine NFAs for subexpressions to generate NFAs for composite REs
- All NFAs we construct have a number of special properties:
- There are no transitions to the initial state.
- There is only a single final state.
- There are no transitions from the final state.

We can easily achieve this with \(\varepsilon\)-transitions!

\section*{Reminder: Regular Expression}

Let \(\Sigma\) be an alphabet.
- The elementary regular expressions over \(\Sigma\) are:
- \(\emptyset\) with \(L(\emptyset)=\{ \}\)
\(>\varepsilon\) with \(L(\varepsilon)=\{\varepsilon\}\)
- \(c \in \Sigma\) with \(L(c)=\{c\}\)
- Let \(r_{1}\) and \(r_{2}\) be regular expressions over \(\Sigma\). Then the following are also regular expressions over \(\Sigma\) :
\(-r_{1}+r_{2}\) with \(L\left(r_{1}+r_{2}\right)=L\left(r_{1}\right) \cup L\left(r_{2}\right)\)
- \(r_{1} \cdot r_{2}\) with \(L\left(r_{1} \cdot r_{2}\right)=L\left(r_{1}\right) \cdot L\left(r_{2}\right)\)
\(r_{1}^{*}\) with \(L\left(r_{1}^{*}\right)=\left(L\left(r_{1}\right)\right)^{*}\)

\section*{NFAs for elementary REs}

Let \(\Sigma\) be the alphabet which \(r\) is based on.
\(1 \mathcal{A}(\emptyset)=\left(\left\{q_{0}, q_{1}\right\}, \Sigma,\{ \}, q_{0},\left\{q_{1}\right\}\right)\)

\(2 \mathcal{A}(\varepsilon)=\left(\left\{q_{0}, q_{1}\right\}, \Sigma,\left\{\left(q_{0}, \varepsilon, q_{1}\right)\right\}, q_{0},\left\{q_{1}\right\}\right)\)

\(3 \mathcal{A}(c)=\left(\left\{q_{0}, q_{1}\right\}, \Sigma,\left\{\left(q_{0}, c, q_{1}\right)\right\}, q_{0},\left\{q_{1}\right\}\right)\) for all \(c \in \Sigma\)

\section*{NFAs for composite REs (general)}
- Assume in the following:
- \(\mathcal{A}\left(r_{1}\right)=\left(Q_{1}, \Sigma, \Delta_{1}, q_{1},\left\{q_{2}\right\}\right)\)
\(-\mathcal{A}\left(r_{2}\right)=\left(Q_{2}, \Sigma, \Delta_{2}, q_{3},\left\{q_{4}\right\}\right)\)
- \(Q_{1} \cap Q_{2}=\{ \}\)
\(-q_{0}, q_{5} \notin Q_{1} \cup Q_{2}\)
- \(\mathcal{A}\left(r_{1}\right)\) is visualised by a square box with two explicit states
- The initial state \(q_{1}\) is on the left
- The unique accepting state \(q_{2}\) on the right
- All other states and transitions are implicit
- We mark initial/accepting states only for the composite automaton

\section*{NFAs for composite REs (general)}
- Assume in the following:
\[
\begin{aligned}
& \mathcal{A}\left(r_{1}\right)=\left(Q_{1}, \Sigma, \Delta_{1}, q_{1},\left\{q_{2}\right\}\right) \\
> & \mathcal{A}\left(r_{2}\right)=\left(Q_{2}, \Sigma, \Delta_{2}, q_{3},\left\{q_{4}\right\}\right) \\
> & Q_{1} \cap Q_{2}=\{ \} \\
> & q_{0}, q_{5} \notin Q_{1} \cup Q_{2}
\end{aligned}
\]
- \(\mathcal{A}\left(r_{1}\right)\) is visualised by a square box with two explicit states
\(\Rightarrow\) The initial state \(q_{1}\) is on the left
- The unique accepting state \(q_{2}\) on the right
- All other states and transitions are implicit
- We mark initial/accepting states only for the composite automaton

\section*{NFAs for composite REs (concatenation)}
\(4 \mathcal{A}\left(r_{1} \cdot r_{2}\right)=\left(Q_{1} \cup Q_{2}, \Sigma, \Delta_{1} \cup \Delta_{2} \cup\left\{\left(q_{2}, \varepsilon, q_{3}\right)\right\}, q_{1},\left\{q_{4}\right\}\right)\)

Reminder:
- \(\mathcal{A}\left(r_{1}\right)=\left(Q_{1}, \Sigma, \Delta_{1}, q_{1},\left\{q_{2}\right\}\right)\)
- \(\mathcal{A}\left(r_{2}\right)=\left(Q_{2}, \Sigma, \Delta_{2}, q_{3},\left\{q_{4}\right\}\right)\)

\section*{NFAs for composite REs (alternatives)}
\(5 \mathcal{A}\left(r_{1}+r_{2}\right)=\left(\left\{q_{0}, q_{5}\right\} \cup Q_{1} \cup Q_{2}, \Sigma, \Delta, q_{0},\left\{q_{5}\right\}\right)\)
\[
\Delta=\Delta_{1} \cup \Delta_{2} \cup\left\{\left(q_{0}, \varepsilon, q_{1}\right),\left(q_{0}, \varepsilon, q_{3}\right),\left(q_{2}, \varepsilon, q_{5}\right),\left(q_{4}, \varepsilon, q_{5}\right)\right\}
\]

Reminder:
- \(\mathcal{A}\left(r_{1}\right)=\left(Q_{1}, \Sigma, \Delta_{1}, q_{1},\left\{q_{2}\right\}\right)\)
- \(\mathcal{A}\left(r_{2}\right)=\left(Q_{2}, \Sigma, \Delta_{2}, q_{3},\left\{q_{4}\right\}\right)\)

\section*{NFAs for composite REs (Kleene Star)}
\(6 \mathcal{A}\left(r_{1}^{*}\right)=\left(\left\{q_{0}, q_{5}\right\} \cup Q_{1}, \Sigma, \Delta, q_{0},\left\{q_{5}\right\}\right)\)
\[
\Delta=\Delta_{1} \cup\left\{\left(q_{0}, \varepsilon, q_{1}\right),\left(q_{2}, \varepsilon, q_{1}\right),\left(q_{0}, \varepsilon, q_{5}\right),\left(q_{2}, \varepsilon, q_{5}\right)\right\}
\]

Reminder:
- \(\mathcal{A}\left(r_{1}\right)=\left(Q_{1}, \Sigma, \Delta_{1}, q_{1},\left\{q_{2}\right\}\right)\)

\section*{Result: NFAs can simulate REs}

The previous construction produces for each regular expression \(r\) an NFA \(\mathcal{A}\) with \(L(\mathcal{A})=L(r)\).

\section*{Result: NFAs can simulate REs}

The previous construction produces for each regular expression \(r\) an NFA \(\mathcal{A}\) with \(L(\mathcal{A})=L(r)\).

\section*{Corollary}

Every language described by a regular expression can be accepted by a non-deterministic finite automaton.

\section*{Exercise: transformation of RE into NFA}
- Systematically construct an NFA accepting the same language as the regular expression
\[
(a+b) a^{*} b
\]
- Find arbitrary \(w_{1}, w_{2} \in L\left((\mathrm{a}+\mathrm{b}) \mathrm{a}^{*} \mathrm{~b}\right)\) with \(\left|w_{1}\right|,\left|w_{2}\right| \geq 5\) and find an accepting run for each

\section*{Exercise: transformation of RE into NFA}
- Systematically construct an NFA accepting the same language as the regular expression
\[
(a+b) a^{*} b
\]
- Find arbitrary \(w_{1}, w_{2} \in L\left((\mathrm{a}+\mathrm{b}) \mathrm{a}^{*} \mathrm{~b}\right)\) with \(\left|w_{1}\right|,\left|w_{2}\right| \geq 5\) and find an accepting run for each

\section*{Exercise: transformation of RE into NFA}
- Systematically construct an NFA accepting the same language as the regular expression
\[
(a+b) a^{*} b
\]
- Find arbitrary \(w_{1}, w_{2} \in L\left((\mathrm{a}+\mathrm{b}) \mathrm{a}^{*} \mathrm{~b}\right)\) with \(\left|w_{1}\right|,\left|w_{2}\right| \geq 5\) and find an accepting run for each

\section*{Overview and orientation}
- Claim: NFAs, DFAs and REs all describe the same language class

\section*{Overview and orientation}
- Claim: NFAs, DFAs and REs all describe the same language class
- Previous transformations:
- REs into equivalent NFAs
- NFAs into equivalent DFAs

\section*{Overview and orientation}
- Claim: NFAs, DFAs and REs all describe the same language class
- Previous transformations:
- REs into equivalent NFAs
- NFAs into equivalent DFAs
- (DFAs to equivalent NFAs)

\section*{Overview and orientation}
- Claim: NFAs, DFAs and REs all describe the same language class
- Previous transformations:
- REs into equivalent NFAs
- NFAs into equivalent DFAs
- (DFAs to equivalent NFAs)

Todo: convert DFA to equivalent RE

\section*{Overview and orientation}
- Claim: NFAs, DFAs and REs all describe the same language class
- Previous transformations:
- REs into equivalent NFAs
- NFAs into equivalent DFAs
- (DFAs to equivalent NFAs)

\section*{Todo: convert DFA to equivalent RE}
- Given a DFA \(\mathcal{A}\), derive a regular expression \(r(\mathcal{A})\) accepting the same language:

\[
L(r(\mathcal{A}))=L(\mathcal{A})
\]

\section*{Convert DFA into RE}
- Goal: transform DFA \(\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)\) into RE \(r(\mathcal{A})\) with \(L(r(\mathcal{A}))=L(\mathcal{A})\)
- Idea:
- For each state \(q\) generate an equation describing the language \(L_{q}\)
- that is accepted when starting from \(q\),
\(>\) depending on the languages accepted at neighbouring states.
- Method:

For each transition with \(c\) to \(q^{\prime}\) : generate alternative \(c \cdot L_{q^{\prime}}\)
- For final states: additionally \(\varepsilon\)
- Solve the resulting system for \(L_{q_{0}}\)
\(>\) Result: RE describing \(L_{q_{0}}=L(\mathcal{A})\)
- Convention:
- States are named \(\{0,1, \ldots, n\}\)
- Initial state is 0

\section*{Convert DFA to RE: Example}

- \(L_{0} \doteq\)

\section*{Convert DFA to RE: Example}

\section*{Convert DFA to RE: Example}

\(>L_{0} \doteq a L_{1}+b L_{2}\)
\(>L_{1} \doteq a L_{1}+b L_{2}\)
\(>L_{2} \doteq\)

\section*{Convert DFA to RE: Example}

\[
\begin{aligned}
& L_{0} \doteq a L_{1}+b L_{2} \\
& L_{1} \doteq a L_{1}+b L_{2} \\
& L_{2} \doteq a L_{3}+b L_{0}+\varepsilon \\
& L_{3} \doteq
\end{aligned}
\]

\section*{Convert DFA to RE: Example}

\[
\begin{aligned}
& L_{0} \doteq a L_{1}+b L_{2} \\
& L_{1} \doteq a L_{1}+b L_{2} \\
& L_{2} \doteq a L_{3}+b L_{0}+\varepsilon \\
& L_{3} \doteq(a+b) L_{3}
\end{aligned}
\]

\section*{Convert DFA to RE: Example}

\[
\begin{aligned}
& \text { } L_{0} \doteq a L_{1}+b L_{2} \\
& L_{1} \doteq a L_{1}+b L_{2} \\
& L_{2} \doteq a L_{3}+b L_{0}+\varepsilon \\
& L_{3} \doteq(a+b) L_{3}
\end{aligned}
\]

4 equations, 4 unknowns

\section*{What now?}

\section*{Insert: Arden’s Lemma}

Lemma:
\[
\varepsilon \notin L(s) \text { and } r \doteq s r+t \longrightarrow r \doteq s^{*} t
\]

\section*{Insert: Arden's Lemma}

Lemma:
\[
\varepsilon \notin L(s) \text { and } r \doteq s r+t \longrightarrow r \doteq s^{*} t
\]

Compare Arto Salomaa:
\[
\varepsilon \notin L(s) \text { and } r \doteq r s+t \longrightarrow r \doteq t s^{*}
\]

Arden, Dean N.:
Delayed-logic and finite-state machines,
Proceedings of the Second

\section*{Annual}

Symposium on
Switching
Circuit Theory and Logical Design, 1961, pp. 133-151, IEEE

\section*{Convert DFA to RE: Example}

- \(L_{0} \doteq a L_{1}+b L_{2}\)
- \(L_{1} \doteq a L_{1}+b L_{2}\)
- \(L_{2} \doteq a L_{3}+b L_{0}+\varepsilon\)
- \(L_{3} \doteq(a+b) L_{3}\)

\section*{Convert DFA to RE: Example}

\(L_{0} \doteq a L_{1}+b L_{2}\)
\(L_{1} \doteq a L_{1}+b L_{2}\)
\(L_{2} \doteq a L_{3}+b L_{0}+\varepsilon\)
\(L_{3} \doteq(a+b) L_{3}\)
\[
L_{3} \doteq(a+b) L_{3}+\emptyset \quad[\text { neutral el. }]
\]

\section*{Convert DFA to RE: Example}

- \(L_{0} \doteq a L_{1}+b L_{2}\)
- \(L_{1} \doteq a L_{1}+b L_{2}\)
- \(L_{2} \doteq a L_{3}+b L_{0}+\varepsilon\)
- \(L_{3} \doteq(a+b) L_{3}\)
\[
\begin{aligned}
L_{3} & \doteq(a+b) L_{3}+\emptyset & & \text { [neutral el. }] \\
& \doteq(a+b)^{*} \emptyset & & \text { [Arden }]
\end{aligned}
\]

\section*{Convert DFA to RE: Example}

- \(L_{0} \doteq a L_{1}+b L_{2}\)
- \(L_{1} \doteq a L_{1}+b L_{2}\)
- \(L_{2} \doteq a L_{3}+b L_{0}+\varepsilon\)
- \(L_{3} \doteq(a+b) L_{3}\)
\[
\begin{aligned}
L_{3} & \doteq(a+b) L_{3}+\emptyset & & {[\text { neutral el. }] } \\
& \doteq(a+b)^{*} \emptyset & & {[\text { Arden }] } \\
& \doteq \emptyset & & \text { [absorbing el. }]
\end{aligned}
\]

\section*{Convert DFA to RE: Example}

- \(L_{0} \doteq a L_{1}+b L_{2}\)
- \(L_{1} \doteq a L_{1}+b L_{2}\)
- \(L_{2} \doteq a L_{3}+b L_{0}+\varepsilon\)
- \(L_{3} \doteq(a+b) L_{3}\)
\[
\begin{aligned}
L_{3} & \doteq(a+b) L_{3}+\emptyset & & \text { [neutral el. }] \\
& \doteq(a+b)^{*} \emptyset & & {[\text { Arden }] } \\
& \doteq \emptyset & & \text { [absorbing el. }] \\
L_{2} & \doteq a \emptyset+b L_{0}+\varepsilon & & {\left[\text { replace } L_{3}\right] }
\end{aligned}
\]

\section*{Convert DFA to RE: Example}

- \(L_{0} \doteq a L_{1}+b L_{2}\)
- \(L_{1} \doteq a L_{1}+b L_{2}\)
- \(L_{2} \doteq a L_{3}+b L_{0}+\varepsilon\)
- \(L_{3} \doteq(a+b) L_{3}\)
\[
\begin{aligned}
L_{3} & \doteq(a+b) L_{3}+\emptyset & & \text { [neutral el. }] \\
& \doteq(a+b)^{*} \emptyset & & {[\text { Arden }] } \\
& \doteq \emptyset & & \text { [absorbing el. }] \\
L_{2} & \doteq a \emptyset+b L_{0}+\varepsilon & & {\left[\text { replace } L_{3}\right] } \\
& \doteq \emptyset+b L_{0}+\varepsilon & & {[\text { absorbing el. }] }
\end{aligned}
\]

\section*{Convert DFA to RE: Example}

- \(L_{0} \doteq a L_{1}+b L_{2}\)
- \(L_{1} \doteq a L_{1}+b L_{2}\)
- \(L_{2} \doteq a L_{3}+b L_{0}+\varepsilon\)
- \(L_{3} \doteq(a+b) L_{3}\)
\[
\begin{aligned}
L_{3} & \doteq(a+b) L_{3}+\emptyset & & \text { [neutral el.] } \\
& \doteq(a+b)^{*} \emptyset & & \text { [Arden] } \\
& \doteq \emptyset & & \text { [absorbing el.] } \\
L_{2} & \doteq a \emptyset+b L_{0}+\varepsilon & & \text { [replace } \left.L_{3}\right] \\
& \doteq \emptyset+b L_{0}+\varepsilon & & \text { [absorbing el.] } \\
& \doteq b L_{0}+\varepsilon & & \text { [neutral el.] }
\end{aligned}
\]

\section*{Convert DFA to RE: Example}

- \(L_{0} \doteq a L_{1}+b L_{2}\)
- \(L_{1} \doteq a L_{1}+b L_{2}\)
- \(L_{2} \doteq a L_{3}+b L_{0}+\varepsilon\)
- \(L_{3} \doteq(a+b) L_{3}\)
\[
\begin{aligned}
L_{3} & \doteq(a+b) L_{3}+\emptyset & & \text { [neutral el.] } \\
& \doteq(a+b)^{*} \emptyset & & {[\text { Arden] }} \\
& \doteq \emptyset & & \text { [absorbing el.] } \\
L_{2} & \doteq a \emptyset+b L_{0}+\varepsilon & & \text { [replace } \left.L_{3}\right] \\
& \doteq \emptyset+b L_{0}+\varepsilon & & \text { [absorbing el.] } \\
& \doteq b L_{0}+\varepsilon & & \text { [neutral el.] } \\
L_{1} & \doteq a L_{1}+b\left(b L_{0}+\varepsilon\right) & & \text { [replace } \left.L_{2}\right]
\end{aligned}
\]

\section*{Convert DFA to RE: Example}

- \(L_{0} \doteq a L_{1}+b L_{2}\)
- \(L_{1} \doteq a L_{1}+b L_{2}\)
- \(L_{2} \doteq a L_{3}+b L_{0}+\varepsilon\)
- \(L_{3} \doteq(a+b) L_{3}\)
\[
\begin{aligned}
L_{3} & \doteq(a+b) L_{3}+\emptyset & & \text { [neutral el.] } \\
& \doteq(a+b)^{*} \emptyset & & \text { [Arden] } \\
& \doteq \emptyset & & \text { [absorbing el.] } \\
L_{2} & \doteq a \emptyset+b L_{0}+\varepsilon & & \text { [replace } \left.L_{3}\right] \\
& \doteq \emptyset+b L_{0}+\varepsilon & & \text { [absorbing el.] } \\
& \doteq b L_{0}+\varepsilon & & \text { [neutral el.] } \\
L_{1} & \doteq a L_{1}+b\left(b L_{0}+\varepsilon\right) & & \text { [replace } \left.L_{2}\right] \\
& \doteq a^{*} b\left(b L_{0}+\varepsilon\right) & & \text { [Arden] }
\end{aligned}
\]

\section*{Convert DFA to RE: Example (continued)}

- \(L_{0} \doteq a L_{1}+b L_{2}\)
- \(L_{1} \doteq a^{*} b\left(b L_{0}+\varepsilon\right)\)
- \(L_{2} \doteq b L_{0}+\varepsilon\)
- \(L_{3} \doteq \emptyset\)

\section*{Convert DFA to RE: Example (continued)}

- \(L_{0} \doteq a L_{1}+b L_{2}\)
- \(L_{1} \doteq a^{*} b\left(b L_{0}+\varepsilon\right)\)
- \(L_{2} \doteq b L_{0}+\varepsilon\)
- \(L_{3} \doteq \emptyset\)
\(L_{0} \doteq a\left(a^{*} b\left(b L_{0}+\varepsilon\right)\right)+b\left(b L_{0}+\varepsilon\right) \quad\left[\right.\) replace \(\left.L_{1}, L_{2}\right]\)

\section*{Convert DFA to RE: Example (continued)}

- \(L_{0} \doteq a L_{1}+b L_{2}\)
- \(L_{1} \doteq a^{*} b\left(b L_{0}+\varepsilon\right)\)
- \(L_{2} \doteq b L_{0}+\varepsilon\)
- \(L_{3} \doteq \emptyset\)
\[
\begin{aligned}
L_{0} & \doteq a\left(a^{*} b\left(b L_{0}+\varepsilon\right)\right)+b\left(b L_{0}+\varepsilon\right) & & \text { [replace } \left.L_{1}, L_{2}\right] \\
& \doteq a a^{*} b b L_{0}+a a^{*} b+b b L_{0}+b & & \text { [dist.] }
\end{aligned}
\]

\section*{Convert DFA to RE: Example (continued)}

- \(L_{0} \doteq a L_{1}+b L_{2}\)
- \(L_{1} \doteq a^{*} b\left(b L_{0}+\varepsilon\right)\)
- \(L_{2} \doteq b L_{0}+\varepsilon\)
- \(L_{3} \doteq \emptyset\)
\[
\begin{aligned}
L_{0} & \doteq a\left(a^{*} b\left(b L_{0}+\varepsilon\right)\right)+b\left(b L_{0}+\varepsilon\right) & & \text { [replace } \left.L_{1}, L_{2}\right] \\
& \doteq a a^{*} b b L_{0}+a a^{*} b+b b L_{0}+b & & \text { [dist.] } \\
& \doteq\left(a a^{*} b b+b b\right) L_{0}+a a^{*} b+b & & \text { [comm.,dist.] }
\end{aligned}
\]

\section*{Convert DFA to RE: Example (continued)}

- \(L_{0} \doteq a L_{1}+b L_{2}\)
- \(L_{1} \doteq a^{*} b\left(b L_{0}+\varepsilon\right)\)
- \(L_{2} \doteq b L_{0}+\varepsilon\)
- \(L_{3} \doteq \emptyset\)
\[
\begin{aligned}
L_{0} & \doteq a\left(a^{*} b\left(b L_{0}+\varepsilon\right)\right)+b\left(b L_{0}+\varepsilon\right) & & \text { [replace } \left.L_{1}, L_{2}\right] \\
& \doteq a a^{*} b b L_{0}+a a^{*} b+b b L_{0}+b & & \text { [dist.] } \\
& \doteq\left(a a^{*} b b+b b\right) L_{0}+a a^{*} b+b & & \text { [comm.,dist.] } \\
& \doteq\left(a a^{*} b b+b b\right)^{*}\left(a a^{*} b+b\right) & & \text { [Arden] }
\end{aligned}
\]

\section*{Convert DFA to RE: Example (continued)}

\section*{Convert DFA to RE: Example (continued)}

- \(L_{0} \doteq a L_{1}+b L_{2}\)
- \(L_{1} \doteq a^{*} b\left(b L_{0}+\varepsilon\right)\)
- \(L_{2} \doteq b L_{0}+\varepsilon\)
- \(L_{3} \doteq \emptyset\)
\[
\begin{aligned}
L_{0} & \doteq a\left(a^{*} b\left(b L_{0}+\varepsilon\right)\right)+b\left(b L_{0}+\varepsilon\right) & & {\left[\text { replace } L_{1}, L_{2}\right] } \\
& \doteq a a^{*} b b L_{0}+a a^{*} b+b b L_{0}+b & & \text { [dist.] } \\
& \doteq\left(a a^{*} b b+b b\right) L_{0}+a a^{*} b+b & & \text { [comm.,dist.] } \\
& \doteq\left(a a^{*} b b+b b\right)^{*}\left(a a^{*} b+b\right) & & {[\text { Arden] }} \\
& \doteq\left(\left(a a^{*}+\varepsilon\right) b b\right)^{*}\left(\left(a a^{*}+\varepsilon\right) b\right) & & \text { [dist.] } \\
& \doteq\left(a^{*} b b\right)^{*}\left(a^{*} b\right) & & {\left[r r^{*}+\varepsilon \doteq r^{*}\right] }
\end{aligned}
\]

\section*{Convert DFA to RE: Example (continued)}

- \(L_{0} \doteq a L_{1}+b L_{2}\)
- \(L_{1} \doteq a^{*} b\left(b L_{0}+\varepsilon\right)\)
- \(L_{2} \doteq b L_{0}+\varepsilon\)
- \(L_{3} \doteq \emptyset\)
\[
\begin{aligned}
L_{0} & \doteq a\left(a^{*} b\left(b L_{0}+\varepsilon\right)\right)+b\left(b L_{0}+\varepsilon\right) & & {\left[\text { replace } L_{1}, L_{2}\right] } \\
& \doteq a a^{*} b b L_{0}+a a^{*} b+b b L_{0}+b & & \text { [dist.] } \\
& \doteq\left(a a^{*} b b+b b\right) L_{0}+a a^{*} b+b & & \text { [comm.,dist.] } \\
& \doteq\left(a a^{*} b b+b b\right)^{*}\left(a a^{*} b+b\right) & & {[\text { Arden] }} \\
& \doteq\left(\left(a a^{*}+\varepsilon\right) b b\right)^{*}\left(\left(a a^{*}+\varepsilon\right) b\right) & & \text { [dist.] } \\
& \doteq\left(a^{*} b b\right)^{*}\left(a^{*} b\right) & & {\left[r r^{*}+\varepsilon \doteq r^{*}\right] }
\end{aligned}
\]

Therefore: \(L(\mathcal{A})=L\left(\left(a^{*} b b\right)^{*}\left(a^{*} b\right)\right)\)

\section*{Exercise: conversion from DFA to RE}

Transform the following DFA into a regular expression accepting the same language:

\section*{Resume: Finite automata and regular expressions}
- We have learned how to convert
- REs to equivalent NFAs
- NFAs to equivalent DFAs
- (DFAs to equivalent NFAs)

\section*{Resume: Finite automata and regular expressions}
- We have learned how to convert
- REs to equivalent NFAs
- NFAs to equivalent DFAs
- (DFAs to equivalent NFAs)
- DFAs to equivalent REs

\section*{Resume: Finite automata and regular expressions}
- We have learned how to convert
- REs to equivalent NFAs
- NFAs to equivalent DFAs
- (DFAs to equivalent NFAs)
- DFAs to equivalent REs

REs, NFAs and DFAs describe the same class of languages regular languages!

End lecture 6

\section*{Outline}

\section*{Introduction}

Regular Languages and Finite
Automata

\section*{Regular Expressions}

> Finite Automata
> Non-Determinism
> Regular expressions and Finite Automata
> Minimisation
> Equivalence
> The Pumping Lemma
> Properties of Regular Languages

Selected Solutions

\section*{Reduced DFAs}

\section*{Definition (Reduced Deterministic Finite Automaton)}

A DFA \(A=\left(Q, \Sigma, \delta, q_{0}, F\right)\) is called reduced or in reduced form, if \(Q\) contains no superfluous states, i.e. if all states in \(Q\) are reached by some run (for some word) from \(q_{0}\).
From now on, we will assume that DFAs are reduced unless specified otherwise.

\section*{Reduced DFAs}

\section*{Definition (Reduced Deterministic Finite Automaton)}

A DFA \(A=\left(Q, \Sigma, \delta, q_{0}, F\right)\) is called reduced or in reduced form, if \(Q\) contains no superfluous states, i.e. if all states in \(Q\) are reached by some run (for some word) from \(q_{0}\).
From now on, we will assume that DFAs are reduced unless specified otherwise.

We can transform an arbitrary \(A=\left(Q, \Sigma, \delta, q_{0}, F\right)\) into reduced form as follows:
1) Set \(Q^{\prime}=\left\{q_{o}\right\}\).
2) \(Q^{\prime}=Q^{\prime} \cup\left\{q \mid \delta(p, c)=q, p \in Q^{\prime}, c \in \Sigma\right\}\)

3 Repeat step 2 until \(Q^{\prime}\) reaches a fixpoint (i.e. does not change anymore)
- Set \(F^{\prime}=Q^{\prime} \cap F\) and \(\delta^{\prime}=\left\{(p, c) \rightarrow q \mid(p, c) \rightarrow q \in \delta, p \in q^{\prime}\right\}\).
- Then \(A^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}, F^{\prime}\right)\) is the reduced form of \(A\).

\section*{Reduced DFA: Example}
\[
A=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\},\{a, b\}, \delta, q_{0},\left\{q_{0}, q_{4}\right\}\right)
\]

\section*{Reduced DFA: Example}

\section*{Efficient Automata: Minimisation of DFAs}

Given the DFA
\[
\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)
\]
we want to derive a DFA
\[
\mathcal{A}^{-}=\left(Q^{-}, \Sigma, \delta^{-}, q_{0}, F^{-}\right)
\]
accepting the same language:
\[
L(\mathcal{A})=L\left(\mathcal{A}^{-}\right)
\]
for which the number of states (elements of \(Q^{-}\)) is minimal, i.e. there is no DFA accepting \(L(\mathcal{A})\) with fewer states.

\section*{Minimisation of DFAs: example/exercise}

How small can we make it?

\section*{Minimisation of DFAs}

\section*{Basic idea:}
- Two states with both
- ...the same acceptance status (accepting/not accepting)
- ...exactly the same transitions
are equivalent and can be merged

\section*{Minimisation of DFAs}

\section*{Basic idea:}
- Two states with both
- ...the same acceptance status (accepting/not accepting)
- ...exactly the same transitions
are equivalent and can be merged
- This is also true if the transitions are not exactly the same, but are equivalent

\section*{Minimisation of DFAs}

\section*{Basic idea:}
- Two states with both
- ...the same acceptance status (accepting/not accepting)
- ...exactly the same transitions are equivalent and can be merged
- This is also true if the transitions are not exactly the same, but are equivalent

Realisation: For a DFA \(\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)\), identify pairs of necessarily distinct states
- Base case: Two states \(p, q\) are necessarily distinct if:
- one of them is accepting, the other is not accepting
- Inductive case: Two states \(p, q\) are necessarily distinct if
there is a \(c \in \Sigma\) such that \(\delta(p, c)=p^{\prime}, \delta(q, c)=q^{\prime}\)
- and \(p^{\prime}, q^{\prime}\) are already necessarily distinct

\section*{Identification of distinct/equivalent states}

\section*{Definition (Necessarily distinct states)}

For a DFA \(\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right), V\) is the smallest set of pairs with
- \(\{(p, q) \in(Q \times Q) \mid p \in F, q \notin F\} \subseteq V\)
- \(\{(p, q) \in(Q \times Q) \mid p \notin F, q \in F\} \subseteq V\)
- if \(\delta(p, c)=p^{\prime}, \delta(q, c)=q^{\prime},\left(p^{\prime}, q^{\prime}\right) \in V\) for some \(c \in \Sigma\), then \((p, q) \in V\).
- We identifify pairs of necessarily distinct states
- Pairs of states that are not necessarily distinct are equivalent and can be merged

\section*{Minimisation of DFAs}

1 Initialize \(V\) with all those pairs for which one member is a final state and the other is not:
\[
V=\{(p, q) \in Q \times Q \mid(p \in F \wedge q \notin F) \vee(p \notin F \wedge q \in F)\}
\]

\section*{Minimisation of DFAs}

1 Initialize \(V\) with all those pairs for which one member is a final state and the other is not:
\[
V=\{(p, q) \in Q \times Q \mid(p \in F \wedge q \notin F) \vee(p \notin F \wedge q \in F)\} .
\]

2 While there exists
- a new pair of states \((p, q)\) and a symbol \(c\)
- such that the states \(\delta(p, c)\) and \(\delta(q, c)\) are necessarily distinct,
\(>\) add this pair and its inverse to \(V\) :

\section*{Minimisation of DFAs}

1 Initialize \(V\) with all those pairs for which one member is a final state and the other is not:
\[
V=\{(p, q) \in Q \times Q \mid(p \in F \wedge q \notin F) \vee(p \notin F \wedge q \in F)\} .
\]

2 While there exists
- a new pair of states \((p, q)\) and a symbol \(c\)
- such that the states \(\delta(p, c)\) and \(\delta(q, c)\) are necessarily distinct,
- add this pair and its inverse to \(V\) :
```

while $(\exists(p, q) \in Q \times Q \exists c \in \Sigma \mid(\delta(p, c), \delta(q, c)) \in V \wedge(p, q) \notin V)$
\{
$V=V \cup\{(p, q),(q, p)\}$
\}

```

\section*{Minimisation of DFAs: merging States}
- If there is a pair of states \((p, q)\) such that for every word \(w \in \Sigma^{*}\)
- reading \(w\) results in equivalent successor states,
then \(p\) and \(q\) are equivalent.
\((p, q) \notin V \Rightarrow \forall w \in \Sigma^{*}: \delta(p, w)\) and \(\left.\delta(q, w)\right)\) are indistinguishable.
- Equivalent states \(p, q\) can be merged
- Replace all transitions to \(p\) by transitions to \(q\)
- Remove \(p\)
- This process can be iterated to identify and merge all pairs of equivalent states

\section*{Minimisation of DFAs: example}

We want to minimize this DFA with 5 states:

\section*{Minimisation of DFAs: example (cont.)}

This is the formal definition of the DFA:
\[
\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)
\]
with
\(1 Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}\)
\(2 \Sigma=\{\mathrm{a}, \mathrm{b}\}\)
\(3 \delta=\ldots\) (skipped to save space, see graph)
\(4 F=\left\{q_{3}, q_{4}\right\}\)

\section*{Minimisation of DFAs: example (cont.)}

This is the formal definition of the DFA:
\[
\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)
\]
with
\(1 Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}\)
\(2 \Sigma=\{\mathrm{a}, \mathrm{b}\}\)
\(3 \delta=\ldots\) (skipped to save space, see graph)
\(4 F=\left\{q_{3}, q_{4}\right\}\)
Represent the set \(V\) by means of a two-dimensional table with
- the elements of \(Q\) as columns and rows
- the elements of \(V\) are marked with \(\times\)
- pairs that are definitely not members of \(V\) are marked with \(=\)

\section*{Minimisation of DFAs: example (cont.)}

1 the initial state of \(V\) is obtained by using \(F=\left\{q_{3}, q_{4}\right\}\) and
\[
Q \backslash F=\left\{q_{0}, q_{1}, q_{2}\right\}:
\]
\begin{tabular}{|c||c|c|c|c|c|}
\hline & \(q_{0}\) & \(q_{1}\) & \(q_{2}\) & \(q_{3}\) & \(q_{4}\) \\
\hline \hline\(q_{0}\) & & & & \(\times\) & \(\times\) \\
\hline\(q_{1}\) & & & & \(\times\) & \(\times\) \\
\hline\(q_{2}\) & & & & \(\times\) & \(\times\) \\
\hline\(q_{3}\) & \(\times\) & \(\times\) & \(\times\) & & \\
\hline\(q_{4}\) & \(\times\) & \(\times\) & \(\times\) & & \\
\hline
\end{tabular}

\section*{Minimisation of DFAs: example (cont.)}

2 The elements of \(\left\{\left(q_{i}, q_{i}\right) \mid i \in\{0, \cdots, 4\}\right.\) are not contained in \(V\) since every state is equivalent to itself:
\begin{tabular}{|c||c|c|c|c|c|}
\hline & \(q_{0}\) & \(q_{1}\) & \(q_{2}\) & \(q_{3}\) & \(q_{4}\) \\
\hline \hline\(q_{0}\) & \(=\) & & & \(\times\) & \(\times\) \\
\hline\(q_{1}\) & & \(=\) & & \(\times\) & \(\times\) \\
\hline\(q_{2}\) & & & \(=\) & \(\times\) & \(\times\) \\
\hline\(q_{3}\) & \(\times\) & \(\times\) & \(\times\) & \(=\) & \\
\hline\(q_{4}\) & \(\times\) & \(\times\) & \(\times\) & & \(=\) \\
\hline
\end{tabular}

\section*{Minimisation of DFAs: example (cont.)}

2 The elements of \(\left\{\left(q_{i}, q_{i}\right) \mid i \in\{0, \cdots, 4\}\right.\) are not contained in \(V\) since every state is equivalent to itself:
\begin{tabular}{|c||c|c|c|c|c|}
\hline & \(q_{0}\) & \(q_{1}\) & \(q_{2}\) & \(q_{3}\) & \(q_{4}\) \\
\hline \hline\(q_{0}\) & \(=\) & & & \(\times\) & \(\times\) \\
\hline\(q_{1}\) & & \(=\) & & \(\times\) & \(\times\) \\
\hline\(q_{2}\) & & & \(=\) & \(\times\) & \(\times\) \\
\hline\(q_{3}\) & \(\times\) & \(\times\) & \(\times\) & \(=\) & \\
\hline\(q_{4}\) & \(\times\) & \(\times\) & \(\times\) & & \(=\) \\
\hline
\end{tabular}

There are eight remaining empty fields. Since the table is symmetric, four pairs of states have to be checked.

\section*{Minimisation of DFAs: example (cont.)}

\section*{Minimisation of DFAs: example (cont.)}

3 Check the transitions of every remaining state-pair for every letter.

\section*{Minimisation of DFAs: example (cont.)}

3 Check the transitions of every remaining state-pair for every letter.

\(1 \delta\left(q_{0}, \mathrm{a}\right)=q_{1} ; \delta\left(q_{1}, \mathrm{a}\right)=q_{3} ;\left(q_{1}, q_{3}\right) \in V \rightarrow\left(q_{0}, q_{1}\right),\left(q_{1}, q_{0}\right) \in V\)
\(2 \delta\left(q_{0}, \mathrm{a}\right)=q_{1} ; \delta\left(q_{2}, \mathrm{a}\right)=q_{4} ;\left(q_{1}, q_{4}\right) \in V \rightarrow\left(q_{0}, q_{2}\right),\left(q_{2}, q_{0}\right) \in V\)
\(3 \delta\left(q_{1}, \mathrm{a}\right)=q_{3} ; \delta\left(q_{2}, \mathrm{a}\right)=q_{4} ;\left(q_{3}, q_{4}\right) \notin V\) (as of yet)
\(\delta\left(q_{1}, \mathrm{~b}\right)=q_{3} ; \delta\left(q_{2}, \mathrm{~b}\right)=q_{4} ;\left(q_{3}, q_{4}\right) \notin V\) (as of yet)
\(4 \delta\left(q_{3}, \mathrm{a}\right)=q_{1} ; \delta\left(q_{4}, \mathrm{a}\right)=q_{2} ;\left(q_{1}, q_{2}\right) \notin V\) (as of yet)
\(\delta\left(q_{3}, \mathrm{~b}\right)=q_{1} ; \delta\left(q_{4}, \mathrm{~b}\right)=q_{2} ;\left(q_{1}, q_{2}\right) \notin V\) (as of yet)

\section*{Minimisation of DFAs: example (cont.)}

4 Mark the newly found distinct pairs with \(\times\) :
\begin{tabular}{|c||c|c|c|c|c|}
\hline & \(q_{0}\) & \(q_{1}\) & \(q_{2}\) & \(q_{3}\) & \(q_{4}\) \\
\hline \hline\(q_{0}\) & \(=\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline\(q_{1}\) & \(\times\) & \(=\) & & \(\times\) & \(\times\) \\
\hline\(q_{2}\) & \(\times\) & & \(=\) & \(\times\) & \(\times\) \\
\hline\(q_{3}\) & \(\times\) & \(\times\) & \(\times\) & \(=\) & \\
\hline\(q_{4}\) & \(\times\) & \(\times\) & \(\times\) & & \(=\) \\
\hline
\end{tabular}

\section*{Minimisation of DFAs: example (cont.)}

4 Mark the newly found distinct pairs with \(\times\) :
\begin{tabular}{|c||c|c|c|c|c|}
\hline & \(q_{0}\) & \(q_{1}\) & \(q_{2}\) & \(q_{3}\) & \(q_{4}\) \\
\hline \hline\(q_{0}\) & \(=\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline\(q_{1}\) & \(\times\) & \(=\) & & \(\times\) & \(\times\) \\
\hline\(q_{2}\) & \(\times\) & & \(=\) & \(\times\) & \(\times\) \\
\hline\(q_{3}\) & \(\times\) & \(\times\) & \(\times\) & \(=\) & \\
\hline\(q_{4}\) & \(\times\) & \(\times\) & \(\times\) & & \(=\) \\
\hline
\end{tabular}

Two pairs remain to be checked.

\section*{Minimisation of DFAs: example (cont.)}

5 Check the remaining pairs.
6 Since no additional necessarily distinct state pairs are found, fill empty cells with \(=\) :
\begin{tabular}{|c||c|c|c|c|c|}
\hline & \(q_{0}\) & \(q_{1}\) & \(q_{2}\) & \(q_{3}\) & \(q_{4}\) \\
\hline \hline\(q_{0}\) & \(=\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline\(q_{1}\) & \(\times\) & \(=\) & \(=\) & \(\times\) & \(\times\) \\
\hline\(q_{2}\) & \(\times\) & \(=\) & \(=\) & \(\times\) & \(\times\) \\
\hline\(q_{3}\) & \(\times\) & \(\times\) & \(\times\) & \(=\) & \(=\) \\
\hline\(q_{4}\) & \(\times\) & \(\times\) & \(\times\) & \(=\) & \(=\) \\
\hline
\end{tabular}

\section*{Minimisation of DFAs: example (cont.)}

5 Check the remaining pairs.
6 Since no additional necessarily distinct state pairs are found, fill empty cells with \(=\) :
\begin{tabular}{|c||c|c|c|c|c|}
\hline & \(q_{0}\) & \(q_{1}\) & \(q_{2}\) & \(q_{3}\) & \(q_{4}\) \\
\hline \hline\(q_{0}\) & \(=\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) \\
\hline\(q_{1}\) & \(\times\) & \(=\) & \(=\) & \(\times\) & \(\times\) \\
\hline\(q_{2}\) & \(\times\) & \(=\) & \(=\) & \(\times\) & \(\times\) \\
\hline\(q_{3}\) & \(\times\) & \(\times\) & \(\times\) & \(=\) & \(=\) \\
\hline\(q_{4}\) & \(\times\) & \(\times\) & \(\times\) & \(=\) & \(=\) \\
\hline
\end{tabular}

From the table, we can derive the following pairs of equivalent states (omitting trivial and symmetric ones):
- \(\left(q_{1}, q_{2}\right)\),
- \(\left(q_{3}, q_{4}\right)\).

\section*{Minimisation of DFAs: example (cont.)}
- This is the minimized DFA after merging equivalent states:

\section*{Minimisation of DFAs: exercise}

Derive a minimal DFA accepting the language
\[
L\left(\mathrm{a}(\mathrm{ba})^{*}\right)
\]

Solve the exercise in three steps:
1 Derive an NFA accepting \(L\).
2 Transform the NFA into a DFA.
3 Minimize the DFA.

\section*{Uniqueness of minimal DFA}

\section*{Theorem (The minimal DFA is unique)}

Assume an arbitrary regular language \(L\). Then there is a unique (up to the the renaming of states) minimal DFA \(\mathcal{A}\) with \(L(\mathcal{A})=L\).
- States can easily be systematically renamed to make equivalent minimal automata strictly equal
- The unique minimal DFA for \(L\) can be constructed by minimizing an arbitrary DFA that accepts \(L\)

\section*{Outline}

\section*{Introduction}

Regular Languages and Finite
Automata

\section*{Regular Expressions}

\author{
Finite Automata \\ Non-Determinism \\ Regular expressions and Finite Automata \\ Minimisation \\ Equivalence \\ The Pumping Lemma \\ Properties of Regular Languages
}

Selected Solutions

\section*{Equivalence of regular expressions}
- Different regular expressions can describe the same language
- Algebraic transformation rules can be used to prove equivalence
- requires human interaction
- can be very difficult
- non-equivalence cannot be shown
- Now: straight-forward algorithm proving equivalence of REs based on FA
- The algorithm is described in the textbook by John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman: Introduction to Automata Theory, Languages, and Computation (3rd edition), 2007 (and earlier editions)

\section*{Equivalence of regular expressions: algorithm}

1 Given the REs \(r_{1}\) and \(r_{2}\), derive NFAs \(\mathcal{A}_{1}\) and \(\mathcal{A}_{2}\) accepting their respective languages:
\[
L\left(r_{1}\right)=L\left(\mathcal{A}_{1}\right) \quad \text { and } \quad L\left(r_{2}\right)=L\left(\mathcal{A}_{2}\right)
\]

2 Transform the NFAs \(\mathcal{A}_{1}\) and \(\mathcal{A}_{2}\) into the DFAs \(\mathcal{D}_{1}\) and \(\mathcal{D}_{2}\).
3 Minimize the DFAs \(\mathcal{D}_{1}\) and \(\mathcal{D}_{2}\) yielding the DFAs \(\mathcal{M}_{1}\) and \(\mathcal{M}_{2}\).
\(4 r_{1} \doteq r_{2}\) holds iff \(\mathcal{M}_{1}\) and \(\mathcal{M}_{2}\) are identical (modulo renaming of states)

\section*{Equivalence of regular expressions: algorithm}

1 Given the REs \(r_{1}\) and \(r_{2}\), derive NFAs \(\mathcal{A}_{1}\) and \(\mathcal{A}_{2}\) accepting their respective languages:
\[
L\left(r_{1}\right)=L\left(\mathcal{A}_{1}\right) \quad \text { and } \quad L\left(r_{2}\right)=L\left(\mathcal{A}_{2}\right)
\]

2 Transform the NFAs \(\mathcal{A}_{1}\) and \(\mathcal{A}_{2}\) into the DFAs \(\mathcal{D}_{1}\) and \(\mathcal{D}_{2}\).
3 Minimize the DFAs \(\mathcal{D}_{1}\) and \(\mathcal{D}_{2}\) yielding the DFAs \(\mathcal{M}_{1}\) and \(\mathcal{M}_{2}\).
\(4 r_{1} \doteq r_{2}\) holds iff \(\mathcal{M}_{1}\) and \(\mathcal{M}_{2}\) are identical (modulo renaming of states)

Note: If equivalence can be shown in any intermediate stage of the algorithm, this is sufficient to prove \(r_{1} \doteq r_{2}\left(\mathrm{e} . \mathrm{g}\right.\). if \(\left.\mathcal{A}_{1}=\mathcal{A}_{2}\right)\).

\section*{Exercise: Equivalence of regular expressions}

Reusing an exercise from an earlier section, prove the following equivalence (by conversion to minimal DFAs):
\[
10(10)^{*} \doteq 1(01)^{*} 0
\]

\section*{Exercise: Equivalence of regular expressions}

Reusing an exercise from an earlier section, prove the following equivalence (by conversion to minimal DFAs):
\[
10(10)^{*} \doteq 1(01)^{*} 0
\]

\section*{Outline}
Formal Grammars and Context-FreeLanquages
Parsers and BisonTuring Machines and Languages ofType 1 and 0
Lecture-specific material
Bonus Exercises
Selected Solutions

\section*{Non-regular languages}

For some simple languages, there is no obvious FA:

\section*{Non-regular languages}

For some simple languages, there is no obvious FA:

\section*{Example (Naive automaton \(\mathcal{A}\) for \(L=\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}\))}
\(\mathcal{A}\) has an infinite number of states:

\section*{Non-regular languages}

For some simple languages, there is no obvious FA:

\section*{Example (Naive automaton \(\mathcal{A}\) for \(L=\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}\))}
\(\mathcal{A}\) has an infinite number of states:

- Is there a better solution?
- If no, how can this be shown?

\section*{Pumping Lemma: Idea}

1 Every regular language \(L\) is accepted by a finite Automaton \(\mathcal{A}_{L}\).
2 If \(L\) contains arbitrarily long words, then \(\mathcal{A}_{L}\) must contain a cycle.
- \(L\) contains arbitrarily long words iff \(L\) is infinite.

3 If \(\mathcal{A}_{L}\) contains a cycle, then the cycle can be traversed arbitrarily often (and the resulting word will be accepted).

\section*{Pumping Lemma: Idea}

1 Every regular language \(L\) is accepted by a finite Automaton \(\mathcal{A}_{L}\).
2 If \(L\) contains arbitrarily long words, then \(\mathcal{A}_{L}\) must contain a cycle.
- \(L\) contains arbitrarily long words iff \(L\) is infinite.

3 If \(\mathcal{A}_{L}\) contains a cycle, then the cycle can be traversed arbitrarily often (and the resulting word will be accepted).

\section*{Pumping Lemma: Idea}

1 Every regular language \(L\) is accepted by a finite Automaton \(\mathcal{A}_{L}\).
2 If \(L\) contains arbitrarily long words, then \(\mathcal{A}_{L}\) must contain a cycle.
- \(L\) contains arbitrarily long words iff \(L\) is infinite.

3 If \(\mathcal{A}_{L}\) contains a cycle, then the cycle can be traversed arbitrarily often (and the resulting word will be accepted).

\section*{Example (Cyclic Automaton \(\mathcal{C}\))}

\section*{Pumping Lemma: Idea}

1 Every regular language \(L\) is accepted by a finite Automaton \(\mathcal{A}_{L}\).
2 If \(L\) contains arbitrarily long words, then \(\mathcal{A}_{L}\) must contain a cycle.
- \(L\) contains arbitrarily long words iff \(L\) is infinite.

3 If \(\mathcal{A}_{L}\) contains a cycle, then the cycle can be traversed arbitrarily often (and the resulting word will be accepted).

\section*{Example (Cyclic Automaton C)}

- \(\mathcal{C}\) accepts uroma
- \(\mathcal{C}\) also accepts uroma

\section*{Pumping Lemma: Idea}

1 Every regular language \(L\) is accepted by a finite Automaton \(\mathcal{A}_{L}\).
2 If \(L\) contains arbitrarily long words, then \(\mathcal{A}_{L}\) must contain a cycle.
- \(L\) contains arbitrarily long words iff \(L\) is infinite.

3 If \(\mathcal{A}_{L}\) contains a cycle, then the cycle can be traversed arbitrarily often (and the resulting word will be accepted).

\section*{Example (Cyclic Automaton C)}

- \(\mathcal{C}\) accepts uroma
- \(\mathcal{C}\) also accepts uroma

\section*{Pumping Lemma: Idea}

1 Every regular language \(L\) is accepted by a finite Automaton \(\mathcal{A}_{L}\).
2 If \(L\) contains arbitrarily long words, then \(\mathcal{A}_{L}\) must contain a cycle.
- \(L\) contains arbitrarily long words iff \(L\) is infinite.

3 If \(\mathcal{A}_{L}\) contains a cycle, then the cycle can be traversed arbitrarily often (and the resulting word will be accepted).

\section*{Example (Cyclic Automaton C)}

- \(\mathcal{C}\) accepts uroma
- \(\mathcal{C}\) also accepts uroma

\section*{Pumping Lemma: Idea}

1 Every regular language \(L\) is accepted by a finite Automaton \(\mathcal{A}_{L}\).
2 If \(L\) contains arbitrarily long words, then \(\mathcal{A}_{L}\) must contain a cycle.
- \(L\) contains arbitrarily long words iff \(L\) is infinite.

3 If \(\mathcal{A}_{L}\) contains a cycle, then the cycle can be traversed arbitrarily often (and the resulting word will be accepted).

\section*{Example (Cyclic Automaton C)}

- \(\mathcal{C}\) accepts uroma
- \(\mathcal{C}\) also accepts uroma

\section*{Pumping Lemma: Idea}

1 Every regular language \(L\) is accepted by a finite Automaton \(\mathcal{A}_{L}\).
2 If \(L\) contains arbitrarily long words, then \(\mathcal{A}_{L}\) must contain a cycle.
- \(L\) contains arbitrarily long words iff \(L\) is infinite.

3 If \(\mathcal{A}_{L}\) contains a cycle, then the cycle can be traversed arbitrarily often (and the resulting word will be accepted).

\section*{Example (Cyclic Automaton C)}

- \(\mathcal{C}\) accepts uroma
- \(\mathcal{C}\) also accepts uroma

\section*{Pumping Lemma: Idea}

1 Every regular language \(L\) is accepted by a finite Automaton \(\mathcal{A}_{L}\).
2 If \(L\) contains arbitrarily long words, then \(\mathcal{A}_{L}\) must contain a cycle.
- \(L\) contains arbitrarily long words iff \(L\) is infinite.

3 If \(\mathcal{A}_{L}\) contains a cycle, then the cycle can be traversed arbitrarily often (and the resulting word will be accepted).

\section*{Example (Cyclic Automaton C)}

- \(\mathcal{C}\) accepts uroma
- \(\mathcal{C}\) also accepts ururoma

\section*{Pumping Lemma: Idea}

1 Every regular language \(L\) is accepted by a finite Automaton \(\mathcal{A}_{L}\).
2 If \(L\) contains arbitrarily long words, then \(\mathcal{A}_{L}\) must contain a cycle.
- \(L\) contains arbitrarily long words iff \(L\) is infinite.

3 If \(\mathcal{A}_{L}\) contains a cycle, then the cycle can be traversed arbitrarily often (and the resulting word will be accepted).

\section*{Example (Cyclic Automaton C)}

- \(\mathcal{C}\) accepts uroma
- \(\mathcal{C}\) also accepts urururoma

\section*{Pumping Lemma: Idea}

1 Every regular language \(L\) is accepted by a finite Automaton \(\mathcal{A}_{L}\).
2 If \(L\) contains arbitrarily long words, then \(\mathcal{A}_{L}\) must contain a cycle.
- \(L\) contains arbitrarily long words iff \(L\) is infinite.

3 If \(\mathcal{A}_{L}\) contains a cycle, then the cycle can be traversed arbitrarily often (and the resulting word will be accepted).

\section*{Example (Cyclic Automaton C)}

- \(\mathcal{C}\) accepts uroma
- \(\mathcal{C}\) also accepts ururur . . oma

\section*{The Pumping Lemma}

\section*{Lemma}

Let \(L\) be a regular language.
Then there exists a \(k \in \mathbb{N}\) such that for every word \(s \in L\) with \(|s| \geq k\) the following holds:

\section*{The Pumping Lemma}

\section*{Lemma}

Let \(L\) be a regular language.
Then there exists a \(k \in \mathbb{N}\) such that for every word \(s \in L\) with \(|s| \geq k\) the following holds:
\(1 \exists u, v, w \in \Sigma^{*}(s=u \cdot v \cdot w)\),
i.e. \(s\) consists of prolog \(u\), cycle \(v\) and epilog \(w\),
\(2 v \neq \varepsilon\),
i.e. the cycle has a length of at least 1,
\(3|u \cdot v| \leq k\),
i.e. prolog and cycle combined have a length of at most \(k\),
\(4 \forall h \in \mathbb{N}\left(u \cdot v^{h} \cdot w \in L\right)\),
i.e. an arbitrary number of cycle transitions results in a word of the language \(L\).

\section*{The Pumping Lemma visualised}

\section*{The Pumping Lemma visualised}

- \(\mathcal{C}\) has 5 states
- uroma has 5 letters
\(k=5\)
- There is a segmentation \(s=u \cdot v \cdot w\)
\[
\begin{array}{r}
u=\varepsilon \quad v=\text { ur } \quad \begin{array}{r}
w=\mathrm{oma} \\
v=\mathrm{ur}
\end{array} \\
|\varepsilon \cdot \mathrm{ur}|=2 \leq 5
\end{array}
\]
- and \(\forall h \in \mathbb{N}\left(u \cdot v^{h} \cdot w \in L(\mathcal{C})\right)\)

\section*{Using the Pumping Lemma}
- The Pumping Lemma describes a property of regular languages
- If \(L\) is regular, then some words can be pumped up.
- Goal: proof of irregularity of a language
- If \(L\) has property \(X\), then \(L\) is not regular.
- How can the Pumping Lemma help?

\section*{Using the Pumping Lemma}
- The Pumping Lemma describes a property of regular languages
- If \(L\) is regular, then some words can be pumped up.
- Goal: proof of irregularity of a language
- If \(L\) has property \(X\), then \(L\) is not regular.
- How can the Pumping Lemma help?

\section*{Theorem (Contraposition)}
\[
A \rightarrow B \quad \Leftrightarrow \quad \neg B \rightarrow \neg A
\]

\section*{Contraposition of the Pumping Lemma}

The Pumping Lemma in formal logic:
\[
\begin{aligned}
\operatorname{reg}(L) \rightarrow & \exists k \in \mathbb{N} \forall s \in L:(|s| \geq k \rightarrow \\
& \exists u, v, w:(s=u \cdot v \cdot w \wedge v \neq \varepsilon \wedge|u \cdot v| \leq k \wedge \\
& \left.\left.\forall h \in \mathbb{N}:\left(u \cdot v^{h} \cdot w \in L\right)\right)\right)
\end{aligned}
\]

\section*{Contraposition of the Pumping Lemma}

The Pumping Lemma in formal logic:
\[
\begin{aligned}
\operatorname{reg}(L) \rightarrow & \exists k \in \mathbb{N} \forall s \in L:(|s| \geq k \rightarrow \\
& \exists u, v, w:(s=u \cdot v \cdot w \wedge v \neq \varepsilon \wedge|u \cdot v| \leq k \wedge \\
& \left.\left.\forall h \in \mathbb{N}:\left(u \cdot v^{h} \cdot w \in L\right)\right)\right)
\end{aligned}
\]

Contraposition of the PL:
\[
\begin{aligned}
\neg(\exists k & \in \mathbb{N} \forall s \in L(|s| \geq k \rightarrow \\
\exists u, v, w(s=u \cdot v \cdot w & \wedge v \neq \varepsilon \wedge|u \cdot v| \leq k \wedge \\
\forall h & \left.\left.\left.\in \mathbb{N}\left(u \cdot v^{h} \cdot w \in L\right)\right)\right)\right) \quad \rightarrow \quad \neg \operatorname{reg}(L)
\end{aligned}
\]

\section*{Contraposition of the Pumping Lemma}

The Pumping Lemma in formal logic:
\[
\begin{aligned}
\operatorname{reg}(L) \rightarrow & \exists k \in \mathbb{N} \forall s \in L:(|s| \geq k \rightarrow \\
& \exists u, v, w:(s=u \cdot v \cdot w \wedge v \neq \varepsilon \wedge|u \cdot v| \leq k \wedge \\
& \left.\left.\forall h \in \mathbb{N}:\left(u \cdot v^{h} \cdot w \in L\right)\right)\right)
\end{aligned}
\]

Contraposition of the PL:
\[
\begin{aligned}
\neg(\exists k & \in \mathbb{N} \forall s \in L(|s| \geq k \rightarrow \\
\exists u, v, w(s=u \cdot v \cdot w & \wedge v \neq \varepsilon \wedge|u \cdot v| \leq k \wedge \\
\forall h & \left.\left.\left.\in \mathbb{N}\left(u \cdot v^{h} \cdot w \in L\right)\right)\right)\right) \quad \rightarrow \quad \neg \operatorname{reg}(L)
\end{aligned}
\]

After pushing negation inward and doing some propositional transformations:
\[
\begin{aligned}
& \forall k \in \mathbb{N} \exists s \in L(|s| \geq k \wedge \\
& \forall u, v, w(s=u \cdot v \cdot w \wedge v \neq \varepsilon \wedge|u \cdot v| \leq k \rightarrow \\
&\left.\left.\exists h \in \mathbb{N}\left(u \cdot v^{h} \cdot w \notin L\right)\right)\right)
\end{aligned} \rightarrow \quad \neg \operatorname{reg}(L)
\]

\section*{What does it mean?}
\[
\begin{aligned}
& \forall k \in \mathbb{N} \exists s \in L(|s| \geq k \wedge \\
& \forall u, v, w(s=u \cdot v \cdot w \wedge v \neq \varepsilon \wedge|u \cdot v| \leq k \rightarrow \\
&\left.\left.\exists h \in \mathbb{N}\left(u \cdot v^{h} \cdot w \notin L\right)\right)\right) \quad \rightarrow \quad \neg \operatorname{reg}(L)
\end{aligned}
\]

\section*{What does it mean?}
\[
\begin{aligned}
& \forall k \in \mathbb{N} \exists s \in L(|s| \geq k \wedge \\
& \forall u, v, w(s=u \cdot v \cdot w \wedge v \neq \varepsilon \wedge|u \cdot v| \leq k \rightarrow \\
&\left.\left.\exists h \in \mathbb{N}\left(u \cdot v^{h} \cdot w \notin L\right)\right)\right) \quad \rightarrow \quad \neg \operatorname{reg}(L)
\end{aligned}
\]

If for each natural number \(k\)

\section*{What does it mean?}
\[
\begin{aligned}
& \forall k \in \mathbb{N} \exists s \in L(|s| \geq k \wedge \\
& \forall u, v, w(s=u \cdot v \cdot w \wedge v \neq \varepsilon \wedge|u \cdot v| \leq k \rightarrow \\
&\left.\left.\exists h \in \mathbb{N}\left(u \cdot v^{h} \cdot w \notin L\right)\right)\right) \quad \rightarrow \quad \neg \operatorname{reg}(L)
\end{aligned}
\]

If for each natural number \(k\) there is a word \(s\)

\section*{What does it mean?}
\[
\begin{aligned}
& \forall k \in \mathbb{N} \exists s \in L(|s| \geq k \wedge \\
& \forall u, v, w(s=u \cdot v \cdot w \wedge v \neq \varepsilon \wedge|u \cdot v| \leq k \rightarrow \\
&\left.\left.\exists h \in \mathbb{N}\left(u \cdot v^{h} \cdot w \notin L\right)\right)\right) \quad \rightarrow \quad \neg \operatorname{reg}(L)
\end{aligned}
\]

If for each natural number \(k\) there is a word \(s\) with length at least \(k\)

\section*{What does it mean?}
\[
\begin{aligned}
\forall k \in \mathbb{N} \exists s \in L(|s| \geq k \wedge \\
\forall u, v, w(s=u \cdot v \cdot w \wedge v \neq \varepsilon \wedge|u \cdot v| \leq k \rightarrow \\
\left.\left.\exists h \in \mathbb{N}\left(u \cdot v^{h} \cdot w \notin L\right)\right)\right)
\end{aligned} \rightarrow \quad \neg \operatorname{reg}(L)
\]

If for each natural number \(k\) there is a word \(s\) with length at least \(k\) and for every segmentation \(u \cdot v \cdot w\) of \(s\)

\section*{What does it mean?}
\[
\begin{aligned}
\forall k \in \mathbb{N} \exists s \in L(|s| \geq k \wedge \\
\forall u, v, w(s=u \cdot v \cdot w \wedge v \neq \varepsilon \wedge|u \cdot v| \leq k \rightarrow \\
\left.\left.\exists h \in \mathbb{N}\left(u \cdot v^{h} \cdot w \notin L\right)\right)\right)
\end{aligned} \rightarrow \quad \neg \operatorname{reg}(L)
\]

If for each natural number \(k\) there is a word \(s\) with length at least \(k\) and for every segmentation \(u \cdot v \cdot w\) of \(s\) (with \(v \neq \varepsilon\) and \(|u \cdot v| \leq k\))

\section*{What does it mean?}
\[
\begin{aligned}
\forall k \in \mathbb{N} \exists s \in L(|s| \geq k \wedge \\
\forall u, v, w(s=u \cdot v \cdot w \wedge v \neq \varepsilon \wedge|u \cdot v| \leq k \rightarrow \\
\left.\left.\exists h \in \mathbb{N}\left(u \cdot v^{h} \cdot w \notin L\right)\right)\right)
\end{aligned} \rightarrow \quad \neg \operatorname{reg}(L)
\]

If for each natural number \(k\) there is a word \(s\) with length at least \(k\) and for every segmentation \(u \cdot v \cdot w\) of \(s\) (with \(v \neq \varepsilon\) and \(|u \cdot v| \leq k\)) there is a number \(h\)

\section*{What does it mean?}
\[
\begin{aligned}
\forall k \in \mathbb{N} \exists s \in L(|s| \geq k \wedge \\
\forall u, v, w(s=u \cdot v \cdot w \wedge v \neq \varepsilon \wedge|u \cdot v| \leq k \rightarrow \\
\left.\left.\exists h \in \mathbb{N}\left(u \cdot v^{h} \cdot w \notin L\right)\right)\right) \rightarrow \quad \neg \operatorname{reg}(L)
\end{aligned}
\]

If for each natural number \(k\) there is a word \(s\) with length at least \(k\) and for every segmentation \(u \cdot v \cdot w\) of \(s\) (with \(v \neq \varepsilon\) and \(|u \cdot v| \leq k\)) there is a number \(h\) such that \(u \cdot v^{h} \cdot w\) does not belong to \(L\),

\section*{What does it mean?}
\[
\begin{aligned}
& \forall k \in \mathbb{N} \exists s \in L(|s| \geq k \wedge \\
& \forall u, v, w(s=u \cdot v \cdot w \wedge v \neq \varepsilon \wedge|u \cdot v| \leq k \rightarrow \\
&\left.\left.\exists h \in \mathbb{N}\left(u \cdot v^{h} \cdot w \notin L\right)\right)\right) \quad \rightarrow \quad \neg \operatorname{reg}(L)
\end{aligned}
\]

If for each natural number \(k\) there is a word \(s\) with length at least \(k\) and for every segmentation \(u \cdot v \cdot w\) of \(s\) (with \(v \neq \varepsilon\) and \(|u \cdot v| \leq k\)) there is a number \(h\) such that \(u \cdot v^{h} \cdot w\) does not belong to \(L\), then \(L\) is not regular.

\section*{Proving Irregularity for a Language}

We have to show:
- For every natural number \(k\)

\section*{Proving Irregularity for a Language}

We have to show:
- For every natural number \(k\)
- For an unspecified
arbitrary natural number \(k\)

\section*{Proving Irregularity for a Language}

We have to show:
- For every natural number \(k\)
- For an unspecified arbitrary natural number \(k\)
- there is a word \(s \in L\) that is longer than \(k\)
- such that
every segmentation
\(u \cdot v \cdot w=s\)
with \(|u \cdot v| \leq k\) and \(v \neq \varepsilon\)
- can be pumped up into a word \(u \cdot v^{h} \cdot w \notin L\).

\section*{Proving Irregularity for a Language}

We have to show:
- For every natural number \(k\)
- For an unspecified arbitrary natural number \(k\)
- there is a word \(s \in L\) that is longer than \(k\)
- such that
every segmentation
\(u \cdot v \cdot w=s\)
with \(|u \cdot v| \leq k\) and \(v \neq \varepsilon\)
- can be pumped up into a word \(u \cdot v^{h} \cdot w \notin L\).

\section*{Example (\(L=a^{n} b^{n}\))}
- Choose \(s=a^{k} b^{k}\). It follows:
\[
s=\underbrace{a^{i}}_{u} \cdot \underbrace{a^{j}}_{v} \cdot \underbrace{a^{\ell} \cdot b^{k}}_{w}
\]
- \(i+j+\ell=k\)
since \(|u \cdot v| \leq k\) holds, \(u\) and \(v\) consist only of \(a\) s
- \(v \neq \varepsilon\) implies \(j \geq 1\)
- Choose \(h=0\). It follows:
\(>u \cdot v^{h} \cdot w=u \cdot w=a^{i+\ell} b^{k}\)
\(\triangleright j \geq 1\) implies \(i+\ell<k\)
\(-a^{i+\ell} b^{k} \notin L\)

\section*{Regarding quantifiers}

Four quantifiers:
- In the lemma:
\[
\exists k \forall s \exists u, v, w \forall h\left(u \cdot v^{h} \cdot w \in L\right)
\]
- To show irregularity:
\[
\forall k \exists s \forall u, v, w \exists h\left(u \cdot v^{h} \cdot w \notin L\right)
\]

\section*{Regarding quantifiers}

Four quantifiers:
- In the lemma:
\[
\exists k \forall s \exists u, v, w \forall h\left(u \cdot v^{h} \cdot w \in L\right)
\]
- To show irregularity:
\[
\forall k \exists s \forall u, v, w \exists h\left(u \cdot v^{h} \cdot w \notin L\right)
\]

To do:
1 Find a word \(s\) depending on the length \(k\).
2 Find an \(h\) depending on the segmentation \(u \cdot v \cdot w\).
3 Prove that \(u \cdot v^{h} \cdot w \notin L\) holds.

\section*{Exercise: The Pumping Game}

Play the pumping game at http://weitz.de/pump/.
Remark: Weitz uses a slightly stronger variant of the pumping lemma, where the string uv can be anywhere in the word, not just at the beginning.

\section*{Exercise: \(a^{n} b^{m}\) with \(n<m\)}

Use the pumping lemma to show that
\[
L=\left\{a^{n} b^{m} \mid n<m\right\}
\]
is not regular.

\section*{Exercise: \(a^{n} b^{m}\) with \(n<m\)}

Use the pumping lemma to show that
\[
L=\left\{a^{n} b^{m} \mid n<m\right\}
\]
is not regular.
Reminder:
1 Find a word \(s\) depending on the length \(k\).
2 Find an \(h\) depending on the segmentation \(u \cdot v \cdot w\).
3 Prove that \(u \cdot v^{h} \cdot w \notin L\) holds.

\section*{Exercise: \(a^{n} b^{m}\) with \(n<m\)}

Use the pumping lemma to show that
\[
L=\left\{a^{n} b^{m} \mid n<m\right\}
\]
is not regular.
Reminder:
1 Find a word \(s\) depending on the length \(k\).
2 Find an \(h\) depending on the segmentation \(u \cdot v \cdot w\).
3 Prove that \(u \cdot v^{h} \cdot w \notin L\) holds.

\section*{Challenging exercise / homework}

Let \(L\) be the number containing all words of the form \(a^{p}\) where \(p\) is a prime number:
\[
L=\left\{a^{p} \mid p \in \mathbb{P}\right\}
\]

Prove that \(L\) is not a regular language.
Hint: let \(h=p+1\)

\section*{Challenging exercise / homework}

Let \(L\) be the number containing all words of the form \(a^{p}\) where \(p\) is a prime number:
\[
L=\left\{a^{p} \mid p \in \mathbb{P}\right\}
\]

Prove that \(L\) is not a regular language.
Hint: let \(h=p+1\)

\section*{Practical relevance of irregularity}

Finite automata cannot count arbitrarily high.

\section*{Practical relevance of irregularity}

Finite automata cannot count arbitrarily high.

\section*{Examples (Nested dependencies)}

C for every \(\{\) there is a \}
XML for every <token> there is a </token>
LATEX for every \begin } \{ e n v \} \text { there is a } \backslash e n d \{ e n v \}
German for every subject there is a predicate

\section*{Practical relevance of irregularity}

Finite automata cannot count arbitrarily high.

\section*{Examples (Nested dependencies)}

C for every \(\{\) there is a \}
XML for every <token> there is a </token>
AATEX for every \(\backslash\) begin \(\{e n v\}\) there is a \(\backslash e n d\{e n v\}\)
German for every subject there is a predicate
```

Erinnern Sie sich,
wie der Krieger,
der die Botschaft,
die den Sieg,
den die Griechen bei Marathon
errungen hatten,
verkündete,
brachte,
starb!

```

\section*{Pumping Lemma: Summary}
- Every regular language is accepted by a DFA \(\mathcal{A}\) (with \(k\) states).
- Pumping lemma: words with at least \(k\) letters can be pumped up.
- If it is possible to pump up a word \(w \in L\) and obtain a word \(w^{\prime} \notin L\), then \(L\) is not regular.
- Make sure to handle quantifiers correctly!
- Practical relevance
- FAs cannot count arbitrarily high.
- Nested structures are not regular.
- programming languages
- natural languages
- More powerful tools are needed to handle these languages.

\section*{Outline}

\section*{Introduction}

Regular Languages and Finite Automata

Regular Expressions
Finite Automata
The Pumping Lemma
Properties of Regular Languages

Formal Grammars and Context-Free Languages

Parsers and Bison
Turing Machines and Languages of Type 1 and 0

Lecture-specific material
Bonus Exercises

\section*{Scanners and Flex}

\section*{Regular languages: Closure properties}

Reminder:
- Formal languages are sets of words (over a finite alphabet)
- A formal language \(L\) is a regular language if any of the following holds:
- There exists an NFA \(\mathcal{A}\) with \(L(\mathcal{A})=L\)
- There exists a DFA \(\mathcal{A}\) with \(L(\mathcal{A})=L\)
- There exists a regular expression \(r\) with \(L(r)=L\)
- Pumping lemma: not all languages are regular

\section*{Regular languages: Closure properties}

Reminder:
- Formal languages are sets of words (over a finite alphabet)
- A formal language \(L\) is a regular language if any of the following holds:
- There exists an NFA \(\mathcal{A}\) with \(L(\mathcal{A})=L\)
- There exists a DFA \(\mathcal{A}\) with \(L(\mathcal{A})=L\)
- There exists a regular expression \(r\) with \(L(r)=L\)
- Pumping lemma: not all languages are regular

\section*{Question}

What can we do to regular languages and be sure the result is still regular?

\section*{Closure properties (Question)}

Question: If \(L_{1}\) and \(L_{2}\) are regular languages, does the same hold for \(L_{1} \cup L_{2}\) ? (closure under union)

\section*{Closure properties (Question)}

Question: If \(L_{1}\) and \(L_{2}\) are regular languages, does the same hold for

\author{
\(L_{1} \cup L_{2}\) ? \\ \(L_{1} \cap L_{2}\) ?
}
(closure under union)
(closure under intersection)

\section*{Closure properties (Question)}

Question: If \(L_{1}\) and \(L_{2}\) are regular languages, does the same hold for
\begin{tabular}{ll}
\(L_{1} \cup L_{2} ?\) & (closure under union) \\
\(L_{1} \cap L_{2} ?\) & (closure under intersection) \\
\(L_{1} \cdot L_{2} ?\) & (closure under concatenation)
\end{tabular}

\section*{Closure properties (Question)}

Question: If \(L_{1}\) and \(L_{2}\) are regular languages, does the same hold for
\begin{tabular}{ll}
\(L_{1} \cup L_{2} ?\) & (closure under union) \\
\(L_{1} \cap L_{2} ?\) & (closure under intersection) \\
\(L_{1} \cdot L_{2} ?\) & (closure under concatenation) \\
\(\overline{L_{1}}\), i.e. \(\Sigma^{*} \backslash L_{1} ?\) & (closure under complement)
\end{tabular}

\section*{Closure properties (Question)}

Question: If \(L_{1}\) and \(L_{2}\) are regular languages, does the same hold for
\begin{tabular}{ll}
\(L_{1} \cup L_{2} ?\) & (closure under union) \\
\(L_{1} \cap L_{2} ?\) & (closure under intersection) \\
\(L_{1} \cdot L_{2} ?\) & (closure under concatenation) \\
\(\overline{L_{1}}\), i.e. \(\Sigma^{*} \backslash L_{1} ?\) & (closure under complement) \\
\(L_{1}^{*}\) ? & (closure under Kleene-star)
\end{tabular}

\section*{Closure properties (Question)}

Question: If \(L_{1}\) and \(L_{2}\) are regular languages, does the same hold for
\begin{tabular}{ll}
\(L_{1} \cup L_{2} ?\) & (closure under union) \\
\(L_{1} \cap L_{2} ?\) & (closure under intersection) \\
\(L_{1} \cdot L_{2} ?\) & (closure under concatenation) \\
\(\overline{L_{1}}\), i.e. \(\Sigma^{*} \backslash L_{1} ?\) & (closure under complement) \\
\(L_{1}^{*}\) ? & (closure under Kleene-star)
\end{tabular}

\section*{Closure properties (Question)}

Question: If \(L_{1}\) and \(L_{2}\) are regular languages, does the same hold for
\begin{tabular}{ll}
\(L_{1} \cup L_{2} ?\) & (closure under union) \\
\(L_{1} \cap L_{2} ?\) & (closure under intersection) \\
\(L_{1} \cdot L_{2} ?\) & (closure under concatenation) \\
\(\overline{L_{1}}\), i.e. \(\Sigma^{*} \backslash L_{1} ?\) & (closure under complement) \\
\(L_{1}^{*}\) ? & (closure under Kleene-star)
\end{tabular}

Meta-Question: How do we answer these questions?

\section*{Closure properties (Theorem)}

\section*{Theorem (Closure properties of regular languages)}

Let \(L_{1}\) and \(L_{2}\) be regular languages. Then the following langages are also regular:
- \(L_{1} \cup L_{2}\)
- \(L_{1} \cap L_{2}\)
- \(L_{1} \cdot L_{2}\)
- \(\overline{L_{1}}\), i.e. \(\Sigma^{*} \backslash L_{1}\)
- \(L_{1}^{*}\)

\section*{Closure properties (Theorem)}

\section*{Theorem (Closure properties of regular languages)}

Let \(L_{1}\) and \(L_{2}\) be regular languages. Then the following langages are also regular:
- \(L_{1} \cup L_{2}\)
- \(L_{1} \cap L_{2}\)
- \(L_{1} \cdot L_{2}\)
- \(\overline{L_{1}}\), i.e. \(\Sigma^{*} \backslash L_{1}\)
- \(L_{1}^{*}\)

\section*{Proof.}

Idea: using (disjoint) finite automata for \(L_{1}\) and \(L_{2}\), construct an automaton for the different languages above.

\section*{Closure under union, concatenation, and Kleene-star}

We use the same construction that was used to generate NFAs for regular expressions:
Let \(\mathcal{A}_{L_{1}}\) and \(\mathcal{A}_{L_{2}}\) be automata for \(L_{1}\) and \(L_{2}\).
\(L_{1} \cup L_{2}\) new initial and final states, \(\varepsilon\)-transitions to initial/final states of \(\mathcal{A}_{L_{1}}\) and \(\mathcal{A}_{L_{2}}\)
\(L_{1} \cdot L_{2} \varepsilon\)-transition from final state of \(\mathcal{A}_{L_{1}}\) to initial state of \(\mathcal{A}_{L_{2}}\)
\(\left(L_{1}\right)^{*}\) new initial and final states (with \(\varepsilon\)-transitions),
- \(\varepsilon\)-transitions from the original final states to the original initial state,
- \(\varepsilon\)-transition from the new initial to the new final state.

\section*{Visual refresher}
\[
L_{1} \circ L_{2}
\]

\(L_{1} \cup L_{2}\)

\section*{Closure under intersection}

Let \(\mathcal{A}_{L_{1}}=\left(Q_{1}, \Sigma, \delta_{1}, q_{0_{1}}, F_{1}\right)\) and \(\mathcal{A}_{L_{2}}=\left(Q_{2}, \Sigma, \delta_{2}, q_{0_{2}}, F_{2}\right)\) be DFAs for \(L_{1}\) and \(L_{2}\).
An automaton \(L=\left(Q, \Sigma, \delta, q_{0}, F\right)\) for \(\mathcal{A}_{L_{1}} \cap \mathcal{A}_{L_{2}}\) can be generated as follows:
- \(Q=Q_{1} \times Q_{2}\)
- \(\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)\) for all \(q_{1} \in Q_{1}, q_{2} \in Q_{2}, a \in \Sigma\)
- \(q_{0}=\left(q_{0_{1}}, q_{0_{2}}\right)\)
- \(F=F_{1} \times F_{2}\)

\section*{Closure under intersection}

Let \(\mathcal{A}_{L_{1}}=\left(Q_{1}, \Sigma, \delta_{1}, q_{0_{1}}, F_{1}\right)\) and \(\mathcal{A}_{L_{2}}=\left(Q_{2}, \Sigma, \delta_{2}, q_{0_{2}}, F_{2}\right)\) be DFAs for \(L_{1}\) and \(L_{2}\).

An automaton \(L=\left(Q, \Sigma, \delta, q_{0}, F\right)\) for \(\mathcal{A}_{L_{1}} \cap \mathcal{A}_{L_{2}}\) can be generated as follows:
- \(Q=Q_{1} \times Q_{2}\)
- \(\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)\) for all \(q_{1} \in Q_{1}, q_{2} \in Q_{2}, a \in \Sigma\)
- \(q_{0}=\left(q_{0_{1}}, q_{0_{2}}\right)\)
- \(F=F_{1} \times F_{2}\)

This product automaton
- starts in state that corresponds to initial states of \(\mathcal{A}_{L_{1}}\) and \(\mathcal{A}_{L_{2}}\),
- simulates simultaneous processing in both automata
- accepts if both \(\mathcal{A}_{L_{1}}\) and \(\mathcal{A}_{L_{2}}\) accept.

\section*{Exercise: Product automaton}

Generate automata for
- \(L_{1}=\left\{\left.w \in\{0,1\}^{*}| | w\right|_{1}\right.\) is divisible by 2\(\}\)
- \(L_{2}=\left\{\left.w \in\{0,1\}^{*}| | w\right|_{1}\right.\) is divisible by 3\(\}\)

Then generate an automaton for \(L_{1} \cap L_{2}\).

\section*{Exercise: Product automaton}

Generate automata for
- \(L_{1}=\left\{\left.w \in\{0,1\}^{*}| | w\right|_{1}\right.\) is divisible by 2\(\}\)
- \(L_{2}=\left\{\left.w \in\{0,1\}^{*}| | w\right|_{1}\right.\) is divisible by 3\(\}\)

Then generate an automaton for \(L_{1} \cap L_{2}\).

\section*{Exercise: Product automaton}

Generate automata for
- \(L_{1}=\left\{\left.w \in\{0,1\}^{*}| | w\right|_{1}\right.\) is divisible by 2\(\}\)
- \(L_{2}=\left\{\left.w \in\{0,1\}^{*}| | w\right|_{1}\right.\) is divisible by 3\(\}\)

Then generate an automaton for \(L_{1} \cap L_{2}\).

\section*{Closure under complement}

\section*{Theorem (Closure under complement)}

Let \(L\) be a regular language over \(\Sigma\). Then \(\bar{L}=\Sigma^{*} \backslash L\) is regular.
Let \(\mathcal{A}_{L}=\left(Q, \Sigma, q_{0}, \delta, F\right)\) be a DFA for the language \(L\).
Then \(\overline{\mathcal{A}_{L}}=\left(Q, \Sigma, q_{0}, \delta, Q \backslash F\right)\) is an automaton accepting \(\bar{L}\) :

\section*{Closure under complement}

\section*{Theorem (Closure under complement)}

Let \(L\) be a regular language over \(\Sigma\). Then \(\bar{L}=\Sigma^{*} \backslash L\) is regular.
Let \(\mathcal{A}_{L}=\left(Q, \Sigma, q_{0}, \delta, F\right)\) be a DFA for the language \(L\).
Then \(\overline{\mathcal{A}_{L}}=\left(Q, \Sigma, q_{0}, \delta, Q \backslash F\right)\) is an automaton accepting \(\bar{L}\) :
- if \(w \in L(\mathcal{A})\) then \(\delta^{\prime}\left(q_{0}, w\right) \in F\), i.e.
\(\delta^{\prime}\left(q_{0}, w\right) \notin Q \backslash F\), which implies \(w \notin L\left(\overline{\mathcal{A}_{L}}\right)\).
- if \(w \notin L(\mathcal{A})\) then \(\delta^{\prime}\left(q_{0}, w\right) \notin F\), i.e.
\(\delta^{\prime}\left(q_{0}, w\right) \in Q \backslash F\), which implies \(w \in L\left(\overline{\mathcal{A}_{L}}\right)\).

\section*{Closure under complement}

\section*{Theorem (Closure under complement)}

Let \(L\) be a regular language over \(\Sigma\). Then \(\bar{L}=\Sigma^{*} \backslash L\) is regular.

Let \(\mathcal{A}_{L}=\left(Q, \Sigma, q_{0}, \delta, F\right)\) be a DFA for the language \(L\).
Then \(\overline{\mathcal{A}_{L}}=\left(Q, \Sigma, q_{0}, \delta, Q \backslash F\right)\) is an automaton accepting \(\bar{L}\) :
- if \(w \in L(\mathcal{A})\) then \(\delta^{\prime}\left(q_{0}, w\right) \in F\), i.e. \(\delta^{\prime}\left(q_{0}, w\right) \notin Q \backslash F\), which implies \(w \notin L\left(\overline{\mathcal{A}_{L}}\right)\).
- if \(w \notin L(\mathcal{A})\) then \(\delta^{\prime}\left(q_{0}, w\right) \notin F\), i.e.
\(\delta^{\prime}\left(q_{0}, w\right) \in Q \backslash F\), which implies \(w \in L\left(\overline{\mathcal{A}_{L}}\right)\).

\section*{Reminder:}
\(\delta^{\prime}: Q \times \Sigma^{*} \rightarrow Q\)
\(\delta^{\prime}\left(q_{0}, w\right)\) is the final state of the automaton after processing \(w\)

\section*{Closure under complement}

\section*{Theorem (Closure under complement)}

Let \(L\) be a regular language over \(\Sigma\). Then \(\bar{L}=\Sigma^{*} \backslash L\) is regular.

Let \(\mathcal{A}_{L}=\left(Q, \Sigma, q_{0}, \delta, F\right)\) be a DFA for the language \(L\).
Then \(\overline{\mathcal{A}_{L}}=\left(Q, \Sigma, q_{0}, \delta, Q \backslash F\right)\) is an automaton accepting \(\bar{L}\) :
- if \(w \in L(\mathcal{A})\) then \(\delta^{\prime}\left(q_{0}, w\right) \in F\), i.e.
\(\delta^{\prime}\left(q_{0}, w\right) \notin Q \backslash F\), which implies \(w \notin L\left(\overline{\mathcal{A}_{L}}\right)\).
- if \(w \notin L(\mathcal{A})\) then \(\delta^{\prime}\left(q_{0}, w\right) \notin F\), i.e.
\(\delta^{\prime}\left(q_{0}, w\right) \in Q \backslash F\), which implies \(w \in L\left(\overline{\mathcal{A}_{L}}\right)\).

\section*{Reminder:}
\(\delta^{\prime}: Q \times \Sigma^{*} \rightarrow Q\)
\(\delta^{\prime}\left(q_{0}, w\right)\) is the final state of the automaton after processing \(w\)

All we have to do is exchange accepting and non-accepting states.

\section*{Closure properties: exercise}

Show that \(L=\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a}=|w|_{b}\right\}\) is not regular.
Hint: Use the following:
\(-a^{n} b^{n}\) is not regular. (Pumping lemma)
- \(a^{*} b^{*}\) is regular. (Regular expression)
- (one of) the closure properties shown before.

\section*{Finite languages and automata}

\section*{Theorem (Regularity of finite languages)}

Every finite language, i.e. every language containing only a finite number of words, is regular.

\section*{Finite languages and automata}

\section*{Theorem (Regularity of finite languages)}

Every finite language, i.e. every language containing only a finite number of words, is regular.

\section*{Proof.}

Let \(L=\left\{w_{1}, \ldots, w_{n}\right\}\).
- For each \(w_{i}\), generate an automaton \(\mathcal{A}_{i}\) with initial state \(q_{0_{i}}\) and final state \(q_{f_{i}}\).
- Let \(q_{0}\) be a new state, from which there is an \(\varepsilon\)-transition to each \(q_{0}\).

\section*{Finite languages and automata}

\section*{Theorem (Regularity of finite languages)}

Every finite language, i.e. every language containing only a finite number of words, is regular.

\section*{Proof.}

Let \(L=\left\{w_{1}, \ldots, w_{n}\right\}\).
- For each \(w_{i}\), generate an automaton \(\mathcal{A}_{i}\) with initial state \(q_{0_{i}}\) and final state \(q_{f_{i}}\).
- Let \(q_{0}\) be a new state, from which there is an \(\varepsilon\)-transition to each \(q_{0}\).
Then the resulting automaton, with \(q_{0}\) as initial state and all \(q_{f_{i}}\) as final states, accepts \(L\).

\section*{Example: finite language}

Example (\(L=\{\) if, then, else, while, goto, for \(\}\) over \(\Sigma_{\text {ASCII }}\))

\section*{Finite languages and regular expressions}

\section*{Theorem (Regularity of finite languages)}

Every finite language is regular.

\section*{Alternate proof.}

Let \(L=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}\).
Write \(L\) as the regular expression \(w_{1}+w_{2}+\ldots+w_{n}\).

\section*{Finite languages and regular expressions}

\section*{Theorem (Regularity of finite languages)}

Every finite language is regular.

\section*{Alternate proof.}

Let \(L=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}\).
Write \(L\) as the regular expression \(w_{1}+w_{2}+\ldots+w_{n}\).

\section*{Corollary}

The class of finite languages is characterised by
- acyclic NFAs (or DFAs that have no cycles on any path from the initial state to an accepting state)
- regular expressions without Kleene star.

\section*{Decision problems}

For regular languages \(L_{1}\) and \(L_{2}\) and a word \(w\), answer the following questions:

Is there a word in \(L_{1}\) ? emptiness problem

\section*{Decision problems}

For regular languages \(L_{1}\) and \(L_{2}\) and a word \(w\), answer the following questions:

Is there a word in \(L_{1}\) ? emptiness problem
Is \(w\) an element of \(L_{1}\) ? word problem

\section*{Decision problems}

For regular languages \(L_{1}\) and \(L_{2}\) and a word \(w\), answer the following questions:

Is there a word in \(L_{1}\) ? emptiness problem
Is \(w\) an element of \(L_{1}\) ? word problem
Is \(L_{1}\) equal to \(L_{2}\) ? equivalence problem

\section*{Decision problems}

For regular languages \(L_{1}\) and \(L_{2}\) and a word \(w\), answer the following questions:

Is there a word in \(L_{1}\) ? emptiness problem
Is \(w\) an element of \(L_{1}\) ? word problem
Is \(L_{1}\) equal to \(L_{2}\) ?
Is \(L_{1}\) finite?
equivalence problem
finiteness problem

\section*{Emptiness problem}

\section*{Theorem (Emptiness problem for regular languages)}

The emptiness problem for regular languages is decidable.

\section*{Emptiness problem}

\section*{Theorem (Emptiness problem for regular languages)}

The emptiness problem for regular languages is decidable.

\section*{Proof.}

Algorithm: Let \(\mathcal{A}\) be an automaton accepting the language \(L\).
- Starting with the initial state \(q_{0}\), mark all states to which there is a transition from \(q_{0}\) as reachable.
- Continue with transitions from states which are already marked as reachable until either a final state is reached or no further states are reachable.
- If a final (accepting) state is reachable, then \(L \neq\{ \}\) holds.

\section*{Group exercise: Emptiness problem}
- Find an alternative algorithm for checking emptiness, using the results from the chapter on equivalence.

\section*{Word problem}

\section*{Theorem (Word problem for regular languages)}

The word problem for regular languages is decidable.

\section*{Word problem}

\section*{Theorem (Word problem for regular languages)}

The word problem for regular languages is decidable.

\section*{Proof.}

Let \(\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)\) be a DFA accepting \(L\) and \(w=c_{1} c_{2} \ldots c_{n}\). Algorithm:
- \(q_{1}:=\delta\left(q_{0}, c_{1}\right)\)
- \(q_{2}:=\delta\left(q_{1}, c_{2}\right)\)
- If \(q_{n} \in F\) holds, then \(\mathcal{A}\) accepts \(w\).

\section*{Word problem}

\section*{Theorem (Word problem for regular languages)}

The word problem for regular languages is decidable.

\section*{Proof.}

Let \(\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)\) be a DFA accepting \(L\) and \(w=c_{1} c_{2} \ldots c_{n}\). Algorithm:
- \(q_{1}:=\delta\left(q_{0}, c_{1}\right)\)
- \(q_{2}:=\delta\left(q_{1}, c_{2}\right)\)
- If \(q_{n} \in F\) holds, then \(\mathcal{A}\) accepts \(w\).

All we have to do is simulate the run of \(\mathcal{A}\) on \(w\).

\section*{Equivalence problem}

\section*{Theorem (Equivalence problem for regular languages)}

The equivalence problem for regular languages is decidable.

\section*{Equivalence problem}

\section*{Theorem (Equivalence problem for regular languages)}

The equivalence problem for regular languages is decidable.
We have already shown how to prove this using minimised DFAs for \(L_{1}\) and \(L_{2}\).

\section*{Equivalence problem}

\section*{Theorem (Equivalence problem for regular languages)}

The equivalence problem for regular languages is decidable.
We have already shown how to prove this using minimised DFAs for \(L_{1}\) and \(L_{2}\).

\section*{Alternative proof.}

One can also use closure properties and decidability of the emptiness problem:
\[
L_{1}=L_{2} \mathrm{iff}
\]

words that are in \(L_{1}\), but not in \(L_{2}\)
\(\cup\)
 words that are not in \(L_{1}\), but in \(L_{2}\)
\(=\{ \}\)

\section*{Finiteness problem}

\section*{Theorem (Finiteness problem for regular languages)}

The finiteness problem for regular languages is decidable.

\section*{Finiteness problem}

\section*{Theorem (Finiteness problem for regular languages)}

The finiteness problem for regular languages is decidable.

\section*{Proof.}

Idea: if there is a loop in an accepting run, words of arbitrary length are accepted.

\section*{Finiteness problem}

\section*{Theorem (Finiteness problem for regular languages)}

The finiteness problem for regular languages is decidable.

\section*{Proof.}

Idea: if there is a loop in an accepting run, words of arbitrary length are accepted.

Let \(\mathcal{A}\) be a DFA accepting \(L\).
- Reduce \(\mathcal{A}\) (by eliminating all states that are not reachable from the initial state), obtaining \(\mathcal{A}_{r}\).
- Eliminate from \(\mathcal{A}_{r}\) all states from which no final state is reachable, obtaining \(\mathcal{A}_{f}\).
- \(L\) is infinite iff \(\mathcal{A}_{f}\) contains a loop.

\section*{Finiteness problem}

Theorem (Finiteness problem for regular languages)
The finiteness problem for regular languages is decidable.

\section*{Proof.}

Idea: if there is a loop in an accepting run, words of arbitrary length are accepted.

Let \(\mathcal{A}\) be a DFA accepting \(L\).
- Reduce \(\mathcal{A}\) (by eliminating all states that are not reachable from the initial state), obtaining \(\mathcal{A}_{r}\).
- Eliminate from \(\mathcal{A}_{r}\) all states from which no final state is reachable, obtaining \(\mathcal{A}_{f}\).
- \(L\) is infinite iff \(\mathcal{A}_{f}\) contains a loop.

\section*{Exercise: Finiteness}

Consider the following DFA \(\mathcal{A}\). Use to previous algorithm to decide if \(L(\mathcal{A})\) is finite. Describe \(L(\mathcal{A})\).

\section*{Extensions: look-ahead and back-references}
- Look-ahead: Only match a RE if another match follows
- \(r_{1} / r_{2}\) ("positive look-ahead")
- Back-references: Match a previously matched string again
- \(\left(a^{*}\right)_{1} b \backslash 1\) matches \(a^{n} b a^{n}\) (!)
\(>\left((a+b)^{*}\right)_{1} \backslash 1\) matches \(w w\left(w \in\{a, b\}^{*}\right)(!)\)
- Results:
- Look-aheads don't increase power of REs
- Back-references do increase the power of REs
- In the presence of back-references, look-aheads increase the power further (FSCD 2022, [1])

\section*{Extensions: look-ahead and back-references}
- Look-ahead: Only match a RE if another match follows
- \(r_{1} / r_{2}\) ("positive look-ahead")
- Back-references: Match a previously matched string again
\(>\left(a^{*}\right)_{1} b \backslash 1\) matches \(a^{n} b a^{n}\) (!)
\(>\left((a+b)^{*}\right)_{1} \backslash 1\) matches \(w w\left(w \in\{a, b\}^{*}\right)(!)\)
- Results:
- Look-aheads don't increase power of REs
- Back-references do increase the power of REs
- In the presence of back-references, look-aheads increase the power further (FSCD 2022, [1])
\[
R E=R E_{L A} \subset R E_{B R} \subset R E_{B R L A}
\]

\section*{Regular languages: summary}

Regular languages
- are characterised by
- NFAs / DFAs
- regular expressions
- regular grammars
- can be transferred from one formalism to another one
- are closed under all operators (considered here)
- all decision problems (considered here) are decidable
- do not contain several interesting languages (\(a^{n} b^{n}\), counting)
- see chapter on grammars
- can express important features of programming languages
- keywords
- legal identifiers
- numbers
- in compilers, these features are used by scanners (next chapter)

\section*{Regular languages: summary}

Regular languages
- are characterised by
- NFAs / DFAs
- regular expressions
- regular grammars
- can be transferred from one formalism to another one
- are closed under all operators (considered here)
- all decision problems (considered here) are decidable
- do not contain several interesting languages (\(a^{n} b^{n}\), counting)
- see chapter on grammars
- can express important features of programming languages
- keywords
- legal identifiers
- numbers
- in compilers, these features are used by scanners (next chapter)

\section*{Outline}

\section*{Introduction}

\title{
Reqular Lanauages and Finite Automata
}

\author{
Scanners and Flex
}

Formal Grammars and Context-Free Languages

\section*{Parsers and Bison}

Turing Machines and Languages of Type 1 and 0

Lecture-specific material
Bonus Exercises
Selected Solutions

\section*{Computing Environment}
- For practical exercises, you will need a complete Linux/UNIX environment. If you do not run one natively, there are several options:
- You can install VirtualBox (https://www.virtualbox.org) and then install e.g. Ubuntu (http://www.ubuntu.com/) on a virtual machine. Make sure to install the Guest Additions
- For Windows, you can install the complete UNIX emulation package Cygwin from http://cygwin.com
- For MacOS, you can install fink (http://fink.sourceforge.net/) or MacPorts (https://www.macports.org/) and the necessary tools
- You will need at least flex, bison, gcc, make, and a good text editor

\section*{Syntactic Structure of Programming Languages}

Most computer languages are mostly context-free

\section*{Syntactic Structure of Programming Languages}

Most computer languages are mostly context-free
- Regular: vocabulary
- Keywords, operators, identifiers
- Described by regular expressions or regular grammar
- Handled by (generated or hand-written) scanner/tokenizer/lexer

\section*{Syntactic Structure of Programming Languages}

Most computer languages are mostly context-free
- Regular: vocabulary
- Keywords, operators, identifiers
- Described by regular expressions or regular grammar
- Handled by (generated or hand-written) scanner/tokenizer/lexer
- Context-free: program structure
- Matching parenthesis, block structure, algebraic expressions, ...
- Described by context-free grammar
- Handled by (generated or hand-written) parser

\section*{Syntactic Structure of Programming Languages}

Most computer languages are mostly context-free
- Regular: vocabulary
- Keywords, operators, identifiers
- Described by regular expressions or regular grammar
- Handled by (generated or hand-written) scanner/tokenizer/lexer
- Context-free: program structure
- Matching parenthesis, block structure, algebraic expressions, ...
- Described by context-free grammar
- Handled by (generated or hand-written) parser
- Context-sensitive: e.g. declarations
- Described by human-readable constraints
- Handled in an ad-hoc fashion (e.g. symbol table)

\section*{Syntactic Structure of Programming Languages}

Most computer languages are mostly context-free
- Regular: vocabulary
- Keywords, operators, identifiers
- Described by regular expressions or regular grammar
- Handled by (generated or hand-written) scanner/tokenizer/lexer
- Context-free: program structure
- Matching parenthesis, block structure, algebraic expressions, ...
- Described by context-free grammar
- Handled by (generated or hand-written) parser
- Context-sensitive: e.g. declarations
- Described by human-readable constraints
- Handled in an ad-hoc fashion (e.g. symbol table)

\section*{High-Level Architecture of a Compiler}

\section*{Source Handler}
- Handles input files
- Provides character-by-character access
- May maintain file/line/column (for error messages)
- May provide look-ahead

\section*{Source Handler}
- Handles input files
- Provides character-by-character access
- May maintain file/line/column (for error messages)
- May provide look-ahead

Result: Sequence of characters (with positions)

\section*{Lexical Analysis/Scanning}
- Breaks program into tokens
- Typical tokens:
- Reserved word (if, while)
- Identifier (i, database)
\(>\) Symbols (\{, \}, (,), +, -, ...)

\section*{Lexical Analysis/Scanning}
- Breaks program into tokens
- Typical tokens:
- Reserved word (if, while)
- Identifier (i, database)
- Symbols (\{, \}, (,), +, -, ...)

Result: Sequence of tokens

\section*{Automatisation with Flex}

\section*{Flex Overview}
- Flex is a scanner generator
- Input: Specification of a regular language and what to do with it
- Definitions - named regular expressions
- Rules - patterns+actions
- (miscellaneous support code)
- Output: Source code of scanner
- Scans input for patterns
- Executes associated actions
- Default action: Copy input to output
- Interface for higher-level processing: yylex () function

\section*{Flex Overview}

\section*{Flex Overview}

Development time

\section*{Execution time}

\section*{Flex Example Task}
- Goal: Sum up all numbers in a file, separately for ints and floats
- Given: A file with numbers and commands
- Ints: Non-empty sequences of digits
- Floats: Non-empty sequences of digits, followed by decimal dot, followed by (potentially empty) sequence of digits
- Command print: Print current sums
- Command reset: Reset sums to 0 .
- At end of file, print sums

\section*{Flex Example Output}

\section*{Input}
123.1415
0.33333
print reset
211
1.52 .5 print 1
print 1.0

\section*{Output}
```

int: 12 ("12")
float: 3.141500 ("3.1415")
float: 0.333330 ("0.33333")
Current: 12 : 3.474830
Reset
int: 2 ("2")
int: 11 ("11")
float: 1.500000 ("1.5")
float: 2.500000 ("2.5")
Current: 13 : 4.000000
int: 1 ("1")
Current: 14 : 4.000000
float: 1.000000 ("1.0")
Final 14 : 5.000000

```

\section*{Basic Structure of Flex Files}
- Flex files have 3 sections
- Definitions
- Rules
- User Code
- Sections are separated by \(\% \%\)
- Flex files traditionally use the suffix .l

\section*{Example Code (definition section)}
```

%option noyywrap
DIGIT [0-9]
% {
int intval = 0;
double floatval = 0.0;
% }
%%

```

\section*{Example Code (rule section)}
```

{DIGIT}+ {
printf( "int: %d (\"%s\")\n", atoi(yytext), yytext );
intval += atoi(yytext);
}
{DIGIT}+"."{DIGIT}* {
printf( "float: %f (\"%s\")\n", atof(yytext),yytext );
floatval += atof(yytext);
}
reset {
intval = 0;
floatval = 0;
printf("Reset\n");
}
print {
printf("Current: %d : %f\n", intval, floatval);
}
\n|. {
/* Skip */
}

```

\section*{Example Code (user code section)}
```

%%
int main( int argc, char **argv )
{
++argv, --argc; /* skip over program name */
if ( argc > 0 )
yyin = fopen( argv[0], "r" );
else
yyin = stdin;
yylex();
printf("Final %d : %f\n", intval, floatval);
}

```

\section*{Generating a scanner}
```

> flex -t numbers.l > numbers.c
> gcc -c -o numbers.o numbers.c
> gcc numbers.o -o scan_numbers
> ./scan_numbers Numbers.txt
int: 12 ("12")
float: 3.141500 ("3.1415")
float: 0.333330 ("0.33333")
Current: 12 : 3.474830
Reset
int: 2 ("2")
int: 11 ("11")
float: 1.500000 ("1.5")
float: 2.500000 ("2.5")

```

\section*{Flexing in detail}
```

> flex -tv numbers.l > numbers.c
scanner options: -tvI8 -Cem
37/2000 NFA states
18/1000 DFA states (50 words)
5 \mp@code { r u l e s }
Compressed tables always back-up
1/40 start conditions
2 0 ~ e p s i l o n ~ s t a t e s , ~ 1 1 ~ d o u b l e ~ e p s i l o n ~ s t a t e s
6/100 character classes needed 31/500 words
of storage, O reused
3 6 state/nextstate pairs created
24/12 unique/duplicate transitions

```
381 total table entries needed

\section*{Exercise: Building a Scanner}
- Download the flex example and input from http://wwwlehre.dhbw-stuttgart.de/~sschulz/ fla2023.html
- Build and execute the program:
- Generate the scanner with flex
- Compile/link the C code with gcc
- Execute the resulting program on the input file
- Add a command total that adds the integer sum to the floating point sum and sets the integer back to 0
- Test the modified program

\section*{Definition Section}
- Can contain flex options
- Can contain (C) initialization code
- Typically \#include () directives
- Global variable definitions
- Macros and type definitions
- Initialization code is embedded in \(\%\{\) and \(\%\}\)
- Can contain definitions of regular expressions
- Format: NAME RE
- Defined NAMES can be referenced later

\section*{Regular Expressions in Practice (1)}
- The minimal syntax of REs as discussed before suffices to show their equivalence to finite state machines
- Practical implementations of REs (e.g. in Flex) use a richer and more powerful syntax
- Regular expressions in Flex are based on the ASCII alphabet
- We distinguish between the set of operator symbols
\[
O=\{., \star,+, ?,-, \sim, \mid,(,),[,],\{,\},<,>, /, \backslash, \wedge, \$, "\}
\]
and the set of regular expressions
1. \(c \in \Sigma_{\mathrm{ASCII}} \backslash O \longrightarrow c \in R\)
2. "." \(\in R\)
any character but newline (\(\backslash \mathrm{n}\))

\section*{Regular Expressions in Practice (2)}
3. \(x \in\{\mathrm{a}, \mathrm{b}, \mathrm{f}, \mathrm{n}, \mathrm{r}, \mathrm{t}, \mathrm{v}\} \longrightarrow \backslash x \in R\) defines the following control characters
\a (alert)
\b (backspace)
\(\backslash\) f (form feed)
\(\backslash \mathrm{n}\) (newline)
\r (carriage return)
\t (tabulator)
Iv (vertical tabulator)
4. \(a, b, c \in\{0, \cdots, 7\} \longrightarrow \backslash a b c \in R\) octal representation of a character's ASCII code (e.g. \(\backslash 040\) represents the empty space " ")

\section*{Regular Expressions in Practice (3)}
5. \(c \in O \longrightarrow \backslash c \in R\) escaping operator symbols
6. \(r_{1}, r_{2} \in R \longrightarrow r_{1} r_{2} \in R\)
concatenation
7. \(r_{1}, r_{2} \in R \longrightarrow r_{1} \mid r_{2} \in R\) infix operation using " \(\mid\) " rather than " + "
8. \(r \in R \longrightarrow r \star \in R\)

Kleene star
9. \(r \in R \longrightarrow r+\in R\) (one or more or \(r\))
10. \(r \in R \longrightarrow r ? \in R\) optional presence (zero or one \(r\))

\section*{Regular Expressions in Practice (4)}
11. \(r \in R, n \in \mathbb{N} \longrightarrow r\{n\} \in R\)
concatenation of \(n\) times \(r\)
12. \(r \in R ; m, n \in \mathbb{N} ; m \leq n \longrightarrow r\{m, n\} \in R\) concatenation of between \(m\) and \(n\) times \(r\)
13. \(r \in R \longrightarrow{ }^{\wedge} r \in R\)
\(r\) has to be at the beginning of line
14. \(r \in R \longrightarrow r \$ \in R\)
\(r\) has to be at the end of line
15. \(r_{1}, r_{2} \in R \longrightarrow r_{1} / r_{2} \in R\)

The same as \(r_{1} r_{2}\), however, only the contents of \(r_{1}\) is consumed.
The trailing context \(r_{2}\) can be processed by the next rule.
16. \(r \in R \longrightarrow(r) \in R\)

Grouping regular expressions with brackets.

\section*{Regular Expressions in Practice (5)}
17. Ranges
- [aeiou] \(\doteq a|e| i|o| u\)
\(-[a-z] \doteq a|b| c|\cdots| z\)
- [a-zA-z0-9]: alphanumeric characters
- [^0-9]: all ASCII characters w/o digits
18. [] \(\in R\)
empty space
19. \(w \in\left\{\Sigma_{\text {ASCII }} \backslash\{\backslash, "\}\right\}^{*} \longrightarrow " w " \in R\) verbatim text (no escape sequences)

\section*{Regular Expressions in Practice (6)}
21. \(r \in R \longrightarrow \sim r \in R\)

The upto operator matches the shortest string ending with \(r\). 22. predefined character classes
```

> [:alnum:] [:alpha:] [:blank:]
> [:cntrl:] [:digit:] [:graph:]
> [:lower:] [:print:] [:punct:]
> [:space:] [:upper:] [:xdigit:]

```

\title{
Regular Expressions in Practice (precedences)
}

\author{
I. " (", ") " (strongest) \\ II. " "", "+", "?" \\ III. concatenation \\ IV. "।" (weakest)
}

\section*{Regular Expressions in Practice (precedences)}

\author{
I. " (", ") " (strongest) \\ II. "*", "+", "?" \\ III. concatenation \\ IV. "।" (weakest)
}

\section*{Example}
\[
a * b|c+d e \doteq((a *) b)|(((c+) d) e)
\]

\section*{Regular Expressions in Practice (precedences)}
I. " (", ") " (strongest)
II. " "", "+", "?"
III. concatenation
IV. "।" (weakest)

\section*{Example}
\[
a * b|c+d e \doteq((a *) b)|(((c+) d) e)
\]

Rule of thumb: *, +, ? bind the smallest possible RE. Use () if in doubt!

\section*{Regular Expressions in Practice (definitions)}
- Assume definiton NAME DEF
- In later REs. \{NAME\} is expanded to (DEF)
- Example:
```

DIGIT [0-9]
INTEGER {DIGIT}+
PAIR ${INTEGER},{INTEGER}$

```

\section*{Exercise: extended regular expressions}

Given the alphabet \(\Sigma_{a s c i i}\), how would you express the following practical REs using only the simple REs we have used so far?
1 [a-z]
2 [^0-9]
3 (r) +
4 (r) \(\{3\}\)
5 (r) \(\{3,7\}\)
6 (r) ?

\section*{Example Code (definition section) (revisited)}
```

%option noyywrap
DIGIT [0-9]
% {
int intval = 0;
double floatval = 0.0;
% }

```
\(\%\)

\section*{Rule Section}
- This is the core of the scanner!
- Rules have the form PATTERN ACTION
- Patterns are regular expressions
- Typically use previous definitions
- There has to be white space between pattern and action
- Actions are C code
- Can be embedded in \(\{\) and \(\}\)
- Can be simple C statements
- For a token-by-token scanner, must include return statement
- Inside the action, the variable yytext contains the text matched by the pattern
- Otherwise: Full input file is processed

\section*{Example Code (rule section) (revisited)}
```

{DIGIT}+ {
printf( "int: %d (\"%s\")\n", atoi(yytext), yytext );
intval += atoi(yytext);
}
{DIGIT}+"."{DIGIT}* {
printf( "float: %f (\"%s\")\n", atof(yytext),yytext );
floatval += atof(yytext);
}
reset {
intval = 0;
floatval = 0;
printf("Reset\n");
}
print {
printf("Current: %d : %f\n", intval, floatval);
}
\n|. {
/* Skip */
}

```

\section*{User code section}
- Can contain all kinds of code
- For stand-alone scanner: must include main ()
- In main(), the function yylex() will invoke the scanner
- yylex () will read data from the file pointer yyin (so main () must set it up reasonably)

\section*{Example Code (user code section) (revisited)}
```

%%
int main( int argc, char **argv )
{
++argv, --argc; /* skip over program name */
if (argc > 0 )
yyin = fopen( argv[0], "r" );
else
yyin = stdin;
yylex();
printf("Final %d : %f\n", intval, floatval);

```

\section*{A comment on comments}
- Comments in Flex are complicated
- ... because nearly everything can be a pattern
- Simple rules:
- Use old-style C comments /* This is a comment */
- Never start them in the first column
- Comments are copied into the generated code
- Read the manual if you want the dirty details

\section*{Flex Miscellaneous}
- Flex online:
- https://github.com/westes/flex
- Manual: https://westes.github.io/flex/manual/
- REs: https:
//westes.github.io/flex/manual/Patterns.html

\section*{Flex Miscellaneous}
- Flex online:
- https://github.com/westes/flex
- Manual: https://westes.github.io/flex/manual/
- REs: https:
```

//westes.github.io/flex/manual/Patterns.html

```
- make knows flex
- Make will automatically generate file.o from file.l
- Be sure to set LEX=flex to enable flex extensions
- Makefile example:

LEX=flex
all: scan_numbers
numbers.o: numbers.l
scan_numbers: numbers.o gcc numbers.○ -o scan_numbers

\section*{Flexercise (1)}

A security audit firm needs a tool that scans documents for the following:
- Email addresses
- Fomat: String over [A-Za-z0-9_. ~-], followed by @, followed by a domain name according to RFC-1034, https://tools.ietf.org/html/rfc1034, Section 3.5 (we only consider the case that the domain name is not empty)
- (simplified) Web addresses
- http: / / followed by an RFC-1034 domain name, optionally followed by : <port> (where <port> is a non-empty sequence of digits), optionally followed by one or several parts of the form /<str>, where <str> is a non-empty sequence over [A-Za-z0-9_.~-]

\section*{Flexercise (2)}
- Bank account numbers
- Old-style bank account numbers start with an identifying string, optionally followed by ., optionally followed by : , optionally followed by spaces, followed by a non-empty sequence of up to 10 digits. Identifying strings are Konto, Kto, KNr, Ktonr, Kontonummer
- (German) IBANs are strings starting with DE, followed by exactly 20 digits. Human-readable IBANs have spaces after every 4 characters (the last group has only 2 characters)
- Examples:
- Rosenda@gidwd-39.at.z8o3rw2.zhv
- http://jzl.j51g.m-x95.vi5/oj1g_i1/72zz_gt68f
- http://iefbottw99.v4gy.zslu9q.zrc2es01nr.dy:8004
- Ktonr. 241524
- DE26959558703965641174
- DE27 019282224741469455

\section*{Flexercise (3)}
- Create a programm scanning for the data described above and printing the found items.
- Example input/output data can be found under http://wwwlehre.dhbw-stuttgart.de/~sschulz/ fla2023.html

\section*{Flexercise (3)}
- Create a programm scanning for the data described above and printing the found items.
- Example input/output data can be found under http://wwwlehre.dhbw-stuttgart.de/~sschulz/ fla2023.html

\section*{Outline}

Introduction
Regular Languages and Finite Automata

\section*{Scanners and Flex}

Formal Grammars and Context-Free Languages

Formal Grammars
The Chomsky Hierarchy
Right-linear Grammars
Context-free Grammars

Push-Down Automata
Properties of Context-free
Languages
Parsers and Bison
Turing Machines and Languages of Type 1 and 0

Lecture-specific material
Bonus Exercises
Selected Solutions

\section*{Outline}

Introduction
Regular Languages and Finite Automata

\section*{Scanners and Flex}

Formal Grammars and Context-Free Languages

Formal Grammars
The Chomsky Hierarchy
Right-linear Grammars
Context-free Grammars

Push-Down Automata
Properties of Context-free
Languages
Parsers and Bison
Turing Machines and Languages of Type 1 and 0

Lecture-specific material
Bonus Exercises
Selected Solutions

\section*{Formal Grammars: Motivation}

So far, we have seen
- regular expressions: compact description of regular languages
- finite automata: recognise words of a regular language

\section*{Formal Grammars: Motivation}

So far, we have seen
- regular expressions: compact description of regular languages
- finite automata: recognise words of a regular language

Another, more powerful formalism: formal grammars
- generate words of a language
- contain a set of rules allowing to replace symbols with different symbols

\section*{Grammars: examples}

\section*{Example (Formal grammars) \\ \(S \rightarrow a A, \quad A \rightarrow b B, \quad B \rightarrow \varepsilon\)}

\section*{Grammars: examples}

> Example (Formal grammars)
> \(S \rightarrow a A, \quad A \rightarrow b B, \quad B \rightarrow \varepsilon\)
> generates \(a b\) (starting from \(S\)): \(S \rightarrow a A \rightarrow a b B \rightarrow a b\)

\section*{Grammars: examples}
\[
\begin{aligned}
& \text { Example (Formal grammars) } \\
& S \rightarrow a A, \quad A \rightarrow b B, \quad B \rightarrow \varepsilon \\
& \text { generates } a b \text { (starting from } S \text {): } S \rightarrow a A \rightarrow a b B \rightarrow a b \\
& S \rightarrow \varepsilon, \quad S \rightarrow a S b
\end{aligned}
\]

\section*{Grammars: examples}
\[
\begin{aligned}
& \text { Example (Formal grammars) } \\
& S \rightarrow a A, \quad A \rightarrow b B, \quad B \rightarrow \varepsilon \\
& \text { generates } a b \text { (starting from } S \text {): } S \rightarrow a A \rightarrow a b B \rightarrow a b \\
& S \rightarrow \varepsilon, \quad S \rightarrow a S b \\
& \text { generates } a^{n} b^{n}
\end{aligned}
\]

\section*{Grammars: definition}

\section*{Definition (Grammar according to Chomsky)}

A (formal) grammar is a quadruple
\[
G=(N, \Sigma, P, S)
\]
with
1 the set of non-terminal symbols \(N\),
2 the set of terminal symbols \(\Sigma\),
3 the set of production rules \(P\) of the form
\[
\begin{gathered}
\alpha \rightarrow \beta \\
\text { with } \alpha \in V^{*} N V^{*}, \beta \in V^{*}, V=N \cup \Sigma
\end{gathered}
\]

4 the distinguished start symbol \(S \in N\).

\section*{Noam Chomsky (*1928)}
- Linguist, philosopher, logician, ...
- BA, MA, PhD (1955) at the University of Pennsylvania
- Mainly teaching at MIT (since 1955)
- Also Harvard, Columbia University, Institute of Advanced Studies (Princeton), UC Berkely, ...
- Currently Laureate Professor of Linguistics at University of Arizona, Institute Professor Emeritus at MIT

- Opposition to Vietnam War, Essay The Responsibility of Intellectuals
- Most cited academic (1980-1992)
- "World's top public intellectual" (2005)
- More than 40 honorary degrees

\section*{Grammar for C identifiers}

\section*{Example (C identifiers)}
\(G=(N, \Sigma, P, S)\) describes C identifiers:
- alpha-numeric words
- which must not start with a digit
- and may contain an underscore (_)

\section*{Grammar for C identifiers}

\section*{Example (C identifiers)}
\(G=(N, \Sigma, P, S)\) describes C identifiers:
- alpha-numeric words
- which must not start with a digit
- and may contain an underscore (_)
\[
\begin{aligned}
& N=\{S, R, L, D\} \text { (start, rest, letter, digit), } \\
& \Sigma=\left\{\mathrm{a}, \ldots, \mathrm{z}, \mathrm{~A}, \ldots, \mathrm{Z}, 0, \ldots, 9, _\right\}, \\
& P=\{ \\
& S\left.\rightarrow L R\right|_{_} R \\
& R \rightarrow L R|D R|_{_} R \mid \varepsilon \\
& L \rightarrow \mathrm{a}|\ldots| \mathrm{z}|\mathrm{~A}| \ldots \mid \mathrm{z} \\
& D\rightarrow 0|\ldots| 9\}
\end{aligned}
\]

\section*{Grammar for C identifiers}

\section*{Example (C identifiers)}
\(G=(N, \Sigma, P, S)\) describes C identifiers:
- alpha-numeric words
- which must not start with a digit
- and may contain an underscore (_)
\[
\begin{aligned}
N & =\{S, R, L, D\} \text { (start, rest, letter, digit), } \\
\Sigma & =\left\{\mathrm{a}, \ldots, \mathrm{z}, \mathrm{~A}, \ldots, \mathrm{z}, 0, \ldots, 9, _\right\} \\
P & =\left\{\begin{aligned}
S & \left.\rightarrow L R\right|_{_} R \\
R & \rightarrow L R|D R|_{_} R \mid \varepsilon \\
L & \rightarrow \mathrm{a}|\ldots| \mathrm{z}|\mathrm{~A}| \ldots \mid \mathrm{z} \\
D & \rightarrow 0|\ldots| 9\}
\end{aligned}\right.
\end{aligned}
\]
\(\alpha \rightarrow \beta_{1}|\ldots| \beta_{n}\) is an abbreviation for \(\alpha \rightarrow \beta_{1}, \ldots, \alpha \rightarrow \beta_{n}\).

\section*{Formal grammars: derivation, language}

\section*{Definition (Derivation, Language of a Grammar)}

For a grammar \(G=(N, \Sigma, P, S)\) with \(V=(\Sigma \cup N)\) and words \(x, y \in V^{*}\), we say that
\(G\) derives \(y\) from \(x\) in one step \(\quad\left(x \Rightarrow_{G} y\right)\) iff
\[
\exists u, v, p, q \in V^{*}:(x=u p v) \wedge(p \rightarrow q \in P) \wedge(y=u q v)
\]

\section*{Formal grammars: derivation, language}

\section*{Definition (Derivation, Language of a Grammar)}

For a grammar \(G=(N, \Sigma, P, S)\) with \(V=(\Sigma \cup N)\) and words \(x, y \in V^{*}\), we say that
\(G\) derives \(y\) from \(x\) in one step \(\quad\left(x \Rightarrow_{G} y\right)\) iff
\[
\exists u, v, p, q \in V^{*}:(x=u p v) \wedge(p \rightarrow q \in P) \wedge(y=u q v)
\]

Moreover, we say that
\(G\) derives \(y\) from \(x \quad\left(x \Rightarrow_{G}^{*} y\right)\) iff
\[
\exists w_{0}, \ldots, w_{n}
\]
with \(w_{0}=x, w_{n}=y, w_{i-1} \Rightarrow_{G} w_{i}\) for \(i \in\{1, \cdots, n\}\)

\section*{Formal grammars: derivation, language}

\section*{Definition (Derivation, Language of a Grammar)}

For a grammar \(G=(N, \Sigma, P, S)\) with \(V=(\Sigma \cup N)\) and words \(x, y \in V^{*}\), we say that
\(G\) derives \(y\) from \(x\) in one step \(\quad\left(x \Rightarrow_{G} y\right)\) iff
\[
\exists u, v, p, q \in V^{*}:(x=u p v) \wedge(p \rightarrow q \in P) \wedge(y=u q v)
\]

Moreover, we say that
\(G\) derives \(y\) from \(x \quad\left(x \Rightarrow_{G}^{*} y\right)\) iff
\[
\exists w_{0}, \ldots, w_{n}
\]
with \(w_{0}=x, w_{n}=y, w_{i-1} \Rightarrow_{G} w_{i}\) for \(i \in\{1, \cdots, n\}\)
The language of \(G\) is \(L(G)=\left\{w \in \Sigma^{*} \mid S \Rightarrow_{G}^{*} w\right\}\)

\section*{Grammars and derivations}

\section*{Example (\(G_{3}\))}

Let \(G_{3}=(N, \Sigma, P, S)\) with
- \(N=\{S\}\),
- \(\Sigma=\{\mathrm{a}\}\),
- \(P=\{S \rightarrow a S, \quad S \rightarrow \varepsilon\}\).

\section*{Grammars and derivations}

\section*{Example (\(G_{3}\))}

Let \(G_{3}=(N, \Sigma, P, S)\) with
- \(N=\{S\}\),
- \(\Sigma=\{a\}\),
- \(P=\{S \rightarrow \mathrm{a} S, \quad S \rightarrow \varepsilon\}\).

Derivations of \(G_{3}\) have the general form
\[
S \Rightarrow \mathrm{a} S \Rightarrow \mathrm{aa} S \Rightarrow \cdots \Rightarrow \mathrm{a}^{n} S \Rightarrow \mathrm{a}^{n}
\]

\section*{Grammars and derivations}

\section*{Example (\(G_{3}\))}

Let \(G_{3}=(N, \Sigma, P, S)\) with
- \(N=\{S\}\),
- \(\Sigma=\{a\}\),
- \(P=\{S \rightarrow \mathrm{a} S, \quad S \rightarrow \varepsilon\}\).

Derivations of \(G_{3}\) have the general form
\[
S \Rightarrow \mathrm{a} S \Rightarrow \mathrm{aa} S \Rightarrow \cdots \Rightarrow \mathrm{a}^{n} S \Rightarrow \mathrm{a}^{n}
\]

The language produced by \(G_{3}\) is
\[
L\left(G_{3}\right)=\left\{\mathrm{a}^{n} \mid n \in \mathbb{N}\right\} .
\]

\section*{Grammars and derivations (cont')}

\section*{Example (\(G_{2}\))}

Let \(G_{2}=(N, \Sigma, P, S)\) with
- \(N=\{S\}\),
- \(\Sigma=\{\mathrm{a}, \mathrm{b}\}\),
- \(P=\{S \rightarrow \mathrm{aSb}, \quad S \rightarrow \varepsilon\}\)

\section*{Grammars and derivations (cont')}

\section*{Example (\(G_{2}\))}

Let \(G_{2}=(N, \Sigma, P, S)\) with
- \(N=\{S\}\),
- \(\Sigma=\{\mathrm{a}, \mathrm{b}\}\),
- \(P=\{S \rightarrow \mathrm{aSb}, \quad S \rightarrow \varepsilon\}\)

Derivations of \(G_{2}\) :
\[
S \Rightarrow \mathrm{aSb} \Rightarrow \mathrm{aaSbb} \Rightarrow \cdots \Rightarrow \mathrm{a}^{n} \mathrm{Sb}^{n} \Rightarrow \mathrm{a}^{n} \mathrm{~b}^{n} .
\]

\section*{Grammars and derivations (cont')}

\section*{Example (\(G_{2}\))}

Let \(G_{2}=(N, \Sigma, P, S)\) with
- \(N=\{S\}\),
- \(\Sigma=\{\mathrm{a}, \mathrm{b}\}\),
- \(P=\{S \rightarrow \mathrm{aSb}, \quad S \rightarrow \varepsilon\}\)

Derivations of \(G_{2}\) :
\[
\begin{gathered}
S \Rightarrow \mathrm{aSb} \Rightarrow \mathrm{aaSbb} \Rightarrow \cdots \Rightarrow \mathrm{a}^{n} S \mathrm{~b}^{n} \Rightarrow \mathrm{a}^{n} \mathrm{~b}^{n} . \\
L\left(G_{2}\right)=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \in \mathbb{N}\right\} .
\end{gathered}
\]

\section*{Grammars and derivations (cont')}

\section*{Example (\(G_{2}\))}

Let \(G_{2}=(N, \Sigma, P, S)\) with
- \(N=\{S\}\),
- \(\Sigma=\{\mathrm{a}, \mathrm{b}\}\),
- \(P=\{S \rightarrow \mathrm{aSb}, \quad S \rightarrow \varepsilon\}\)

Derivations of \(G_{2}\) :
\[
\begin{gathered}
S \Rightarrow \mathrm{aSb} \Rightarrow \mathrm{aaSbb} \Rightarrow \cdots \Rightarrow \mathrm{a}^{n} S \mathrm{~b}^{n} \Rightarrow \mathrm{a}^{n} \mathrm{~b}^{n} . \\
L\left(G_{2}\right)=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \in \mathbb{N}\right\} .
\end{gathered}
\]

Reminder: \(L\left(G_{2}\right)\) is not regular!

\section*{Grammars and derivations (cont')}

\section*{Example \(\left(G_{1}\right)\) \\ Let \(G_{1}=(N, \Sigma, P, S)\) with \\ - \(N=\{S, B, C\}\), \\ - \(\Sigma=\{a, b, c\}\), \\ - \(P\) :}
\[
\begin{array}{cl}
S \rightarrow \mathrm{aSBC} & 1 \\
S \rightarrow \mathrm{a} B C & 2 \\
C B \rightarrow B C & 3 \\
\mathrm{a} B \rightarrow \mathrm{ab} & 4 \\
\mathrm{~b} B \rightarrow \mathrm{bb} & 5 \\
\mathrm{~b} C \rightarrow \mathrm{bc} & 6 \\
\mathrm{c} C \rightarrow \mathrm{cc} & 7
\end{array}
\]

\section*{Exercise: Derivations in \(G_{1}\)}

\section*{Example (\(G_{1}\))}

Let \(G_{1}=(N, \Sigma, P, S)\) with
- \(N=\{S, B, C\}\),
- \(\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\),
- \(P\) :
\[
\begin{array}{cl}
S \rightarrow \mathrm{a} S B C & 1 \\
S \rightarrow \mathrm{a} B C & 2 \\
C B \rightarrow B C & 3 \\
\mathrm{a} B \rightarrow \mathrm{ab} & 4 \\
\mathrm{~b} B \rightarrow \mathrm{bb} & 5 \\
\mathrm{~b} C \rightarrow \mathrm{bc} & 6 \\
\mathrm{c} C \rightarrow \mathrm{cc} & 7
\end{array}
\]
- Give derivations for 3 different words in \(L\left(G_{1}\right)\)
- Can you characterize \(L\left(G_{1}\right)\) ?

\section*{Grammars and derivations (cont.)}

Derivations of \(G_{1}\) :
\[
\begin{aligned}
S \Rightarrow_{1} \mathrm{a} S B C & \Rightarrow{ }_{1} \text { aaSBCBC } \Rightarrow_{1} \cdots \Rightarrow_{1} \mathrm{a}^{n-1} S(B C)^{n-1} \Rightarrow_{2} \mathrm{a}^{n}(B C)^{n} \\
& \Rightarrow{ }_{3}^{*} \mathrm{a}^{n} B^{n} C^{n} \Rightarrow_{4,5}^{*} \mathrm{a}^{n} \mathrm{~b}^{n} C^{n} \Rightarrow_{6,7}^{*} \mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n}
\end{aligned}
\]

\section*{Grammars and derivations (cont.)}

Derivations of \(G_{1}\) :
\[
\begin{gathered}
S \Rightarrow_{1} \mathrm{a} S B C \Rightarrow_{1} \text { aaSBCBC } \Rightarrow_{1} \cdots \Rightarrow_{1} \mathrm{a}^{n-1} S(B C)^{n-1} \Rightarrow_{2} \mathrm{a}^{n}(B C)^{n} \\
\Rightarrow_{3}^{*} \mathrm{a}^{n} B^{n} C^{n} \Rightarrow_{4,5}^{*} \mathrm{a}^{n} \mathrm{~b}^{n} C^{n} \Rightarrow_{6,7}^{*} \mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \\
L\left(G_{1}\right)=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \in \mathbb{N} ; n>0\right\} .
\end{gathered}
\]

\section*{Grammars and derivations (cont.)}

Derivations of \(G_{1}\) :
\[
\begin{gathered}
S \Rightarrow_{1} \mathrm{a} S B C \Rightarrow_{1} \mathrm{aa} S B C B C \Rightarrow_{1} \cdots \Rightarrow_{1} \mathrm{a}^{n-1} S(B C)^{n-1} \Rightarrow_{2} \mathrm{a}^{n}(B C)^{n} \\
\Rightarrow_{3}^{*} \mathrm{a}^{n} B^{n} C^{n} \Rightarrow_{4,5}^{*} \mathrm{a}^{n} \mathrm{~b}^{n} C^{n} \Rightarrow_{6,7}^{*} \mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \\
L\left(G_{1}\right)=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \in \mathbb{N} ; n>0\right\} .
\end{gathered}
\]
- These three derivation examples represent different classes of grammars or languages characterized by different properties.
- A widely used classification scheme of formal grammars and languages is the Chomsky hierarchy (1956).

\section*{Outline}

Introduction
Regular Languages and Finite Automata

\section*{Scanners and Flex}

Formal Grammars and Context-Free Languages

Formal Grammars
The Chomsky Hierarchy
Right-linear Grammars
Context-free Grammars

Push-Down Automata
Properties of Context-free
Languages
Parsers and Bison
Turing Machines and Languages of Type 1 and 0

Lecture-specific material
Bonus Exercises
Selected Solutions

\section*{The Chomsky hierarchy (0)}

\section*{Definition (Grammar of type 0)}

Every Chomsky grammar \(G=(N, \Sigma, P, S)\) is of Type 0 or unrestricted.

\section*{The Chomsky hierarchy (1)}

\section*{Definition (context-sensitive grammar)}

A Chomsky grammar \(G=(N, \Sigma, P, S)\) is of is Type 1 (context-sensitive) if all productions are of the form
\[
\alpha \rightarrow \beta \quad \text { with } \quad|\alpha| \leq|\beta|
\]

Exception: the rule \(S \rightarrow \varepsilon\) is allowed if \(S\) does not appear on the right-hand side of any rule

\section*{The Chomsky hierarchy (1)}

\section*{Definition (context-sensitive grammar)}

A Chomsky grammar \(G=(N, \Sigma, P, S)\) is of is Type 1 (context-sensitive) if all productions are of the form
\[
\alpha \rightarrow \beta \quad \text { with } \quad|\alpha| \leq|\beta|
\]

Exception: the rule \(S \rightarrow \varepsilon\) is allowed if \(S\) does not appear on the right-hand side of any rule
- Rules never derive shorter words
- except possibly for the empty word in the first step

\section*{Context-sensitive?}
- What is context-sensitive about grammars as defined on the previous slides?

\section*{Context-sensitive?}
- What is context-sensitive about grammars as defined on the previous slides?
- Grammars of the type defined on the last slide were originally called monotonic or non-contracting by Chomsky

\section*{Context-sensitive?}
- What is context-sensitive about grammars as defined on the previous slides?
- Grammars of the type defined on the last slide were originally called monotonic or non-contracting by Chomsky
- Context-sensitive grammars additionally had to satisfy the property that all rules are of the form
\[
\alpha_{1} A \alpha_{2} \rightarrow \alpha_{1} \beta \alpha_{2} \text { with } A \in N ; \alpha_{1}, \alpha_{2} \in V^{*}, \beta \in V V^{*}
\]
- rule application can depend on a context \(\alpha_{1}, \alpha_{2}\)
- context cannot be modified (or moved)
- only one NTS can be modified

\section*{Context-sensitive vs. monotonic grammars}
- Every monotonic grammar can be rewritten as context-sensitive
- \(A B \rightarrow B A\) is not context-sensitive, but can be replaced by \(A B \rightarrow A Y, A Y \rightarrow X Y, X Y \rightarrow X A, X A \rightarrow B A\), which is
- if terminal symbols are involved: replace \(S \rightarrow a B \rightarrow b a\) with \(S \rightarrow N_{a} B \rightarrow \ldots N_{b} N_{a} \rightarrow b N_{a} \rightarrow b a\)
- Since context preservation is irrelevant for the language class, we drop the context requirement for this lecture
- Since the term "context-sensitive" is generally used in the literature, we stick with this term (for both grammars and languages), even if we only require monotonicity

\section*{The Chomsky hierarchy (2)}

\section*{Definition (context-free grammar)}

A Chomsky grammar \(G=(N, \Sigma, P, S)\) is of is Type 2 (context-free) if all productions are of the form
\[
A \rightarrow \beta \text { with } A \in N ; \beta \in V^{*}
\]

\section*{The Chomsky hierarchy (2)}

\section*{Definition (context-free grammar)}

A Chomsky grammar \(G=(N, \Sigma, P, S)\) is of is Type 2 (context-free) if all productions are of the form
\[
A \rightarrow \beta \text { with } A \in N ; \beta \in V^{*}
\]
- Only single non-terminals are replaced
- independent of their context
- Contracting rules are allowed!
- context-free grammars are not a subset of context-sensitive grammars
- but: context-free languages are a subset of context-sensitive languages
- reason: contracting rules can be removed from context-free grammars, but not from context-sensitive ones

\section*{The Chomsky hierarchy (3)}

\section*{Definition (right-linear grammar)}

A Chomsky grammar \(G=(N, \Sigma, P, S)\) is of Type 3 (right-linear or regular) if all productions are of the form
\[
A \rightarrow a B
\]
with \(A \in N ; B \in N \cup\{\varepsilon\} ; a \in \Sigma \cup\{\varepsilon\}\)

\section*{The Chomsky hierarchy (3)}

\section*{Definition (right-linear grammar)}

A Chomsky grammar \(G=(N, \Sigma, P, S)\) is of Type 3 (right-linear or regular) if all productions are of the form
\[
\begin{gathered}
A \rightarrow a B \\
\text { with } A \in N ; B \in N \cup\{\varepsilon\} ; a \in \Sigma \cup\{\varepsilon\}
\end{gathered}
\]
- only one NTS on the left
- on the right: one TS, one NTS, both, or neither
- analogy with automata is obvious

\section*{Formal grammars and formal languages}

Definition (language classes)
A language is called
recursively enumerable, context-sensitive, context-free, or regular,
if it can be generated by a
unrestricted, context-sensitive, context-free, or regular
grammar, respectively.

\section*{Formal grammars vs. formal languages vs. machines}

For each grammar/language type, there is a corresponding type of machine model:
\begin{tabular}{|l|l|l|}
\hline grammar & language & machine \\
\hline \begin{tabular}{l}
Type 0 \\
unrestricted
\end{tabular} & \begin{tabular}{l}
recursively \\
enumerable
\end{tabular} & Turing machine \\
\hline Type 1 & context-sensitive & \begin{tabular}{l}
linear-bounded non-deterministic \\
Turing machine
\end{tabular} \\
\hline Type 2 & context-free & \begin{tabular}{l}
non-deterministic \\
pushdown automaton
\end{tabular} \\
\hline \begin{tabular}{l}
Type 3 \\
right linear
\end{tabular} & regular & finite automaton \\
\hline
\end{tabular}

\section*{The Chomsky Hierarchy for Languages}
(all languages)

\section*{The Chomsky Hierarchy for Grammars}

\section*{The Chomsky hierarchy: examples}

Example (c identifiers revisited)
\[
\begin{aligned}
S & \left.\rightarrow L R\right|_{-} R \\
R & \rightarrow L R|D R|_{_} R \mid \varepsilon \\
L & \rightarrow \text { a }|\ldots| z|A| \ldots \mid \mathrm{z} \\
D & \rightarrow 0|\ldots| 9
\end{aligned}
\]

\section*{The Chomsky hierarchy: examples}

\section*{Example (c identifiers revisited)}
\[
\begin{aligned}
S & \left.\rightarrow L R\right|_{_} R \\
R & \rightarrow L R|D R|_{_} R \mid \varepsilon \\
L & \rightarrow \text { a }|\ldots| z|\mathrm{~A}| \ldots \mid \mathrm{z} \\
D & \rightarrow 0|\ldots| 9
\end{aligned}
\]

This grammar is context-free but not regular.

\section*{The Chomsky hierarchy: examples}

\section*{Example (c identifiers revisited)}
\[
\begin{aligned}
S & \left.\rightarrow L R\right|_{-} R \\
R & \rightarrow L R|D R|_{_} R \mid \varepsilon \\
L & \rightarrow \text { a }|\ldots| \mathrm{z}|\mathrm{~A}| \ldots \mid \mathrm{z} \\
D & \rightarrow 0|\ldots| 9
\end{aligned}
\]

This grammar is context-free but not regular. An equivalent regular grammar:
\[
\begin{aligned}
S & \rightarrow \mathrm{~A} R|\cdots| \mathrm{Z} R|\mathrm{a} R| \cdots|\mathrm{z} R|_{_} R \\
R & \left.\rightarrow \mathrm{~A} R|\cdots| \mathrm{Z} R|\mathrm{a} R| \cdots|\mathrm{z} R| 0 R|\cdots| 9 R\right|_{_} R \mid \varepsilon
\end{aligned}
\]

\section*{The Chomsky hierarchy: examples revisited}

Returning to the three derivation examples:
- \(G_{3}\) with \(P=\{S \rightarrow a S, S \rightarrow \varepsilon\}\)
\(\Rightarrow G_{3}\) is regular.
- So is the produced language \(L_{3}=\left\{a^{n} \mid n \in \mathbb{N}\right\}\).
- \(G_{2}\) with \(P=\{S \rightarrow \mathrm{aSb}, S \rightarrow \varepsilon\}\)
\(\triangleright G_{2}\) is context-free.
\(\nabla\) So is the produced language \(L_{2}=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \in \mathbb{N}\right\}\).
- \(G_{1}\) with \(P=\{S \rightarrow \mathrm{a} S B C, S \rightarrow \mathrm{aBC}, C B \rightarrow B C, \ldots\}\)
\(\triangleright G_{1}\) is context-sensitive.
- So is the produced language \(L_{1}=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \in \mathbb{N} ; n>0\right\}\).

\section*{The Chomsky hierarchy: exercises}

1 Let \(G=(N, \Sigma, P, S)\) with
- \(N=\{S, A, B\}\),
- \(\Sigma=\{\mathrm{a}\}\),
- \(P\) :
\[
\begin{array}{cr}
S \rightarrow \varepsilon & 1 \\
S \rightarrow A B A & 2 \\
A B \rightarrow \text { aa } & 3 \\
a A \rightarrow \text { aaa } A & 4 \\
A \rightarrow \text { a } & 5
\end{array}
\]
a) What is G's highest type?
b) Show how \(G\) derives the word aaaaa.
c) Formally describe the language \(L(G)\).
d) Define a regular grammar \(G^{\prime}\) equivalent to \(G\).

\section*{The Chomsky hierarchy: exercises (cont.)}

2 An octal constant is a finite sequence of digits starting with 0 followed by at least one digit ranging from 0 to 7. Define a regular grammar encoding exactly the set of possible octal constants.

\section*{The Chomsky hierarchy: exercises (cont.)}

3 Let \(G=(N, \Sigma, P, S)\) with
> \(N=\{S, A, B\}\),
- \(\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{t}\}\),
- \(P: S \rightarrow a A S \quad 1\)
\(S \rightarrow \mathrm{~b} B S \quad 2\)
\(S \rightarrow\) t \(\quad 3\)
At \(\rightarrow\) ta 4
\(B \mathrm{t} \rightarrow \mathrm{tb} \quad 5\)
\[
\begin{array}{ll}
A \mathrm{a} \rightarrow \mathrm{a} A & 6 \\
A \mathrm{~b} \rightarrow \mathrm{~b} A & 7 \\
B \mathrm{a} \rightarrow \mathrm{a} B & 8 \\
B \mathrm{~b} \rightarrow \mathrm{~b} B & 9
\end{array}
\]
a) What is G's highest type?
b) Formally describe the language \(L(G)\).

\section*{The Chomsky hierarchy: exercises (cont.)}

3 Let \(G=(N, \Sigma, P, S)\) with
> \(N=\{S, A, B\}\),
- \(\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{t}\}\),
- \(P: S \rightarrow a A S \quad 1\)
\(S \rightarrow \mathrm{~b} B S \quad 2\)
\(S \rightarrow\) t \(\quad 3\)
At \(\rightarrow\) ta 4
\(B \mathrm{t} \rightarrow \mathrm{tb} \quad 5\)
\[
\begin{array}{ll}
A \mathrm{a} \rightarrow \mathrm{a} A & 6 \\
A \mathrm{~b} \rightarrow \mathrm{~b} A & 7 \\
B \mathrm{a} \rightarrow \mathrm{a} B & 8 \\
B \mathrm{~b} \rightarrow \mathrm{~b} B & 9
\end{array}
\]
a) What is G's highest type?
b) Formally describe the language \(L(G)\).

\section*{Outline}

Introduction
Regular Languages and Finite
Automata

\section*{Scanners and Flex}

Formal Grammars and Context-Free Languages

Formal Grammars
The Chomsky Hierarchy
Right-linear Grammars
Context-free Grammars

Push-Down Automata
Properties of Context-free
Languages
Parsers and Bison
Turing Machines and Languages of Type 1 and 0

Lecture-specific material
Bonus Exercises
Selected Solutions

\section*{Right-linear grammars and regular languages}

- We know:
- Regular expression can be converted to NFAs
- NFAs can be converted to DFAs
- DFAs can be described by regular expressions
- Hence NFA, DFA, RE are equivalent and all describe the class of regular languages

\section*{Right-linear grammars and regular languages}

- We know:
- Regular expression can be converted to NFAs
- NFAs can be converted to DFAs
- DFAs can be described by regular expressions
- Hence NFA, DFA, RE are equivalent and all describe the class of regular languages
- Now: Right-linear grammars

\section*{Right-linear grammars and regular languages}
- We know:
- Regular expression can be converted to NFAs
- NFAs can be converted to DFAs
- DFAs can be described by regular expressions
- Hence NFA, DFA, RE are equivalent and all describe the class of regular languages
- Now: Right-linear grammars
- We show:
- DFAs can be converted into right-linear grammars
- Right-linear grammars can be converted into NFAs

\section*{Regular languages and right-linear grammars}

Theorem (right-linear grammars and regular languages)
The class of regular languages (generated by regular expressions, accepted by finite automata) is exactly the class of languages generated by right-linear grammars.

\section*{Regular languages and right-linear grammars}

\section*{Theorem (right-linear grammars and regular languages)}

The class of regular languages (generated by regular expressions, accepted by finite automata) is exactly the class of languages generated by right-linear grammars.

\section*{Proof.}

We constructively prove the theorem by providing algorithms to...
- Convert a DFA to a right-linear grammar
- Convert a right-linear grammar to an NFA
...such that the languages of grammar and automaton are the same.

\section*{DFA \(\leadsto\) right-linear grammar}

Algorithm for transforming a DFA
\[
\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)
\]
into a grammar
\[
G=(N, \Sigma, P, S)
\]
- \(N=Q\)
- \(S=q_{0}\)
- \(P=\{p \rightarrow a q \mid((p, a), q) \in \delta\} \quad \cup \quad\{p \rightarrow \varepsilon \mid p \in F\}\)
- (\(\Sigma\) remains the same)

\section*{Exercise: DFA to right-linear grammar}

Consider the following DFA \(\mathcal{A}\) :

a) Give a formal definition of \(\mathcal{A}\)
b) Generate a right-linear grammar \(G\) with \(L(G)=L(\mathcal{A})\)
c) Find a \(w \in L(\mathcal{A})\) with \(|w| \geq 3\) and give a run (of \(\mathcal{A}\)) and a derivation (with \(G\)) for \(w\)

\section*{Right-linear grammar \(\sim\) NFA}

Algorithm for transforming a grammar
\[
G=(N, \Sigma, P, S)
\]
into an NFA
\[
\mathcal{A}=\left(Q, \Sigma, \Delta, q_{0}, F\right)
\]
- \(Q=N \cup\left\{q_{f}\right\} \quad\left(q_{f} \notin N\right)\)
- \(q_{0}=S\)
- \(F=\left\{q_{f}\right\}\)
- \(\Delta=\{(A, c, B) \mid A \rightarrow c B \in P\} \quad \cup\)
\(\left\{\left(A, c, q_{f}\right) \mid A \rightarrow c \in P\right\} \quad \cup\)
\(\{(A, \varepsilon, B) \mid A \rightarrow B \in P\} \quad \cup\)
\(\left\{\left(A, \varepsilon, q_{f}\right) \mid A \rightarrow \varepsilon \in P\right\}\)

\section*{Exercise: right-linear grammar to NFA}

Transform the grammar \(G=(\{S, A, B\},\{a, b\}, P, S)\) into an NFA.
\[
\begin{aligned}
& P: S \rightarrow a B \mid \varepsilon \\
& A \rightarrow a B \mid b \\
& B \rightarrow A
\end{aligned}
\]

Which language is generated by \(G\) ?

\section*{Right-linear grammars and regular languages}
- We now know:
- Regular expression can be converted to NFAs
- NFAs can be converted to DFAs
- DFAs can be described by regular expressions
- Hence NFA, DFA, RE are equivalent and all describe the class of regular languages

\section*{Right-linear grammars and regular languages}
- We now know:
- Regular expression can be converted to NFAs
- NFAs can be converted to DFAs
- DFAs can be described by regular expressions
- Hence NFA, DFA, RE are equivalent and all describe the class of regular languages
- DFAs can be converted into right-linear grammars
- Right-linear grammars can be converted into NFAs

\section*{Right-linear grammars and regular languages}
- We now know:
- Regular expression can be converted to NFAs
- NFAs can be converted to DFAs
- DFAs can be described by regular expressions
- Hence NFA, DFA, RE are equivalent and all describe the class of regular languages
- DFAs can be converted into right-linear grammars
- Right-linear grammars can be converted into NFAs

REs, DFAs, NFAs, Right-linear grammars are all equivalent formalisms to describe the class of regular languages!

\section*{Outline}

Introduction
Regular Languages and Finite
Automata

\section*{Scanners and Flex}

Formal Grammars and Context-Free Languages

Formal Grammars
The Chomsky Hierarchy
Right-linear Grammars
Context-free Grammars

Push-Down Automata
Properties of Context-free
Languages
Parsers and Bison
Turing Machines and Languages of Type 1 and 0

Lecture-specific material
Bonus Exercises
Selected Solutions

\section*{Context-free grammars}
- Reminder: \(G=(N, \Sigma, P, S)\) is context-free if all rules in \(P\) are of the form \(A \rightarrow \beta\) with
- \(A \in N\) and
- \(\beta \in(\Sigma \cup N)^{*}\)
- Context-free languages/grammars are highly relevant for practical applications
- Core of most programming languages
- XML
- Algebraic expressions
- Many aspects of human language

\section*{Grammars: equivalence and normal forms}

\section*{Definition (equivalence)}

Two grammars are called equivalent if they generate the same language.

\section*{Grammars: equivalence and normal forms}

\section*{Definition (equivalence)}

Two grammars are called equivalent if they generate the same language.

We will now compute grammars that are equivalent to some given context-free grammar \(G\) but have "nicer" properties
- Reduced grammars contain no unproductive symbols
- Grammars in Chomsky normal form support efficient decision of the word problem

\section*{Grammars: equivalence and normal forms}

\section*{Definition (equivalence)}

Two grammars are called equivalent if they generate the same language.

We will now compute grammars that are equivalent to some given context-free grammar \(G\) but have "nicer" properties
- Reduced grammars contain no unproductive symbols
- Grammars in Chomsky normal form support efficient decision of the word problem
l.e. grammars in CNF allow efficient parsing of arbitrary context-free languages!

\section*{Reduced grammars}

\section*{Definition (reduced)}

Let \(G=(N, \Sigma, P, S)\) be a context-free grammar.
- \(A \in N\) is called terminating if \(A \Rightarrow_{G}^{*} w\) for some \(w \in \Sigma^{*}\).
- \(A \in N\) is called reachable if \(S \Rightarrow_{G}^{*} u A v\) for some \(u, v \in V^{*}\).
- \(G\) is called reduced if \(N\) contains only reachable and terminating symbols.

\section*{Terminating and reachable symbols}

The terminating symbols can be computed as follows:
\(1 T:=\left\{A \in N \mid \exists w \in \Sigma^{*}: A \rightarrow w \in P\right\}\)
2 add all symbols \(M\) to \(T\) with a rule \(M \rightarrow D\) with \(D \in(\Sigma \cup T)^{*}\)
3 repeat step 2 until no further symbols can be added
Now \(T\) contains exactly the terminating symbols.

\section*{Terminating and reachable symbols}

The terminating symbols can be computed as follows:
\(1 T:=\left\{A \in N \mid \exists w \in \Sigma^{*}: A \rightarrow w \in P\right\}\)
2 add all symbols \(M\) to \(T\) with a rule \(M \rightarrow D\) with \(D \in(\Sigma \cup T)^{*}\)
3 repeat step 2 until no further symbols can be added
Now \(T\) contains exactly the terminating symbols.
The reachable symbols can be computed as follows:
\(1 R:=\{S\}\)
2 for every \(A \in R\), add all symbols \(M\) with a rule \(A \rightarrow V^{*} M V^{*}\)
3 repeat step 2 until no further symbols can be added
Now \(R\) contains exactly the reachable symbols.

\section*{Reducing context-free grammars}

Theorem (reduction of context-free grammars)
Every context-free grammar \(G\) can be transformed into an equivalent reduced context-free grammar \(G_{r}\).

\section*{Reducing context-free grammars}

\section*{Theorem (reduction of context-free grammars)}

Every context-free grammar \(G\) can be transformed into an equivalent reduced context-free grammar \(G_{r}\).

Proof.
1 generate the grammar \(G_{T}\) by removing all non-terminating symbols (and rules containing them) from \(G\)
2 generate the grammar \(G_{r}\) by removing all unreachable symbols (and rules containing them) from \(G_{T}\)

\section*{Reducing context-free grammars}

\section*{Theorem (reduction of context-free grammars)}

Every context-free grammar \(G\) can be transformed into an equivalent reduced context-free grammar \(G_{r}\).

\section*{Proof.}

1 generate the grammar \(G_{T}\) by removing all non-terminating symbols (and rules containing them) from \(G\)
2 generate the grammar \(G_{r}\) by removing all unreachable symbols (and rules containing them) from \(G_{T}\)

Sequence is important: symbols become unreachable if they only appear together with non-terminating symbols.

\section*{Reachable and terminating symbols}
\[
\begin{aligned}
& \text { Example } \\
& \text { Let } G=(N, \Sigma, P, S) \text { with } \\
& \text { - } N=\{S, A, B, C, T\} \text {, } \\
& \text { - } \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} \text {, } \\
& \text { - } P \text { : } \\
& S \rightarrow T|B| C \\
& T \rightarrow A B \\
& A \rightarrow a \\
& B \rightarrow b B \\
& C \rightarrow c
\end{aligned}
\]

\section*{Reachable and terminating symbols}

\section*{Example}

Let \(G=(N, \Sigma, P, S)\) with
- \(N=\{S, A, B, C, T\}\),
- \(\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\),
- \(P\) :
\[
\begin{aligned}
S & \rightarrow T|B| C \\
T & \rightarrow A B \\
A & \rightarrow a \\
B & \rightarrow b B \\
C & \rightarrow c
\end{aligned}
\]
- terminating symbols in \(G: C, A, S \leadsto G_{T}\)
- reachable symbols in \(G_{T}: S, C \leadsto G_{r}\)
- note: \(A\) is still reachable in \(G\) !

\section*{Exercise: reducing grammars}

Compute the reduced grammar \(G=(N, \Sigma, P, S)\) for the following grammar \(G^{\prime}=\left(N^{\prime}, \Sigma, P^{\prime}, S\right)\) :
\(1 N^{\prime}=\{S, A, B, C, D\}\),
\(2 \Sigma=\{a, b\}\),
\(3 P^{\prime}\) :
\[
\begin{array}{lll}
S & \rightarrow A|a S| B & B \\
A \rightarrow a & \rightarrow B a \\
A \rightarrow A S & C D a \\
A \rightarrow B a & D \rightarrow C b \\
D & D a
\end{array}
\]

\section*{Chomsky normal form}

Reduced grammars can be further modified to allow for an efficient decision procedure for the word problem.

\section*{Chomsky normal form}

Reduced grammars can be further modified to allow for an efficient decision procedure for the word problem.

\section*{Definition (CNF)}

A context-free grammar \((N, \Sigma, P, S)\) is in Chomsky normal form if all rules are of the kind
- \(N \rightarrow a\) with \(a \in \Sigma\)
- \(N \rightarrow A B\) with \(A, B \in N\)
- \(S \rightarrow \varepsilon\), if \(S\) does not appear on the right-hand side of any rule

\section*{Chomsky normal form}

Reduced grammars can be further modified to allow for an efficient decision procedure for the word problem.

\section*{Definition (CNF)}

A context-free grammar \((N, \Sigma, P, S)\) is in Chomsky normal form if all rules are of the kind
- \(N \rightarrow a\) with \(a \in \Sigma\)
- \(N \rightarrow A B\) with \(A, B \in N\)
- \(S \rightarrow \varepsilon\), if \(S\) does not appear on the right-hand side of any rule

Transformation of a reduced grammar into CNF:
1 remove \(\varepsilon\)-productions
2 remove chain rules \((A \rightarrow B)\)
3 introduce auxiliary symbols

\section*{Removal of \(\varepsilon\)-productions}

\section*{Theorem (\(\varepsilon\)-free grammar)}

Every context-free grammar can be transformed into an equivalent cf. grammar that does not contain rules of the kind \(A \rightarrow \varepsilon\) (except \(S \rightarrow \varepsilon\) if \(S\) does not appear on the rhs).

\section*{Removal of \(\varepsilon\)-productions}

\section*{Theorem (\(\varepsilon\)-free grammar)}

Every context-free grammar can be transformed into an equivalent cf. grammar that does not contain rules of the kind \(A \rightarrow \varepsilon\) (except \(S \rightarrow \varepsilon\) if \(S\) does not appear on the rhs).

Procedure:
1 let \(E=\{A \in N \mid A \rightarrow \varepsilon \in P\}\)
2 add all symbols \(B\) to \(E\) for which there is a rule \(B \rightarrow \beta\) with \(\beta \in E^{*}\)
3 repeat step 2 until no further symbols can be added
4 for every rule \(C \rightarrow \beta_{1} B \beta_{2}\) with \(B \in E\)
\(\triangleright\) add rule \(C \rightarrow \beta_{1} \beta_{2}\) to \(P\)
- repeat this process until no new rules are added

5 remove all rules \(A \rightarrow \varepsilon\) from \(P\)
6 if \(S \in E\)
- use a new start symbol \(S_{0}\)
\(\Rightarrow\) add rules \(S_{0} \rightarrow \varepsilon \mid S\)

\section*{Corollary (Monotonic context-free grammars)}

For every context-free language \(L\), there exists a grammar \(G\) with \(L(G)=L\) that is both context-free and monotonic.
- A context-free grammar for \(L\) exists by definition
- That grammar can be made \(\varepsilon\)-free (and hence monotonic) with the previous algorithm

\section*{Corollary (Monotonic context-free grammars)}

For every context-free language \(L\), there exists a grammar \(G\) with \(L(G)=L\) that is both context-free and monotonic.
- A context-free grammar for \(L\) exists by definition
- That grammar can be made \(\varepsilon\)-free (and hence monotonic) with the previous algorithm

\section*{Corollary (Monotonic right-linear grammars)}

For every regular language \(L\), there exists a grammar \(G\) with \(L(G)=L\) that is both right-linear and monotonic.
- Every right-linear grammar is also context-free, i.e. we can apply the same algorithm and argument as for context-free languages
- Note that the algorithm does not create non-linear rules

\section*{Interlude: Chomsky-Hierarchy for Grammars (again)}
(all languages)

- For languages, Type-0, Type-1, Type-2, Type-3 form a real inclusion hierarchy

\section*{Interlude: Chomsky-Hierarchy for Grammars (again)}
- For languages, Type-0, Type-1, Type-2, Type-3 form a real inclusion hierarchy
- Not quite true for grammars:

\section*{Interlude: Chomsky-Hierarchy for Grammars (again)}
- For languages, Type-0, Type-1, Type-2, Type-3 form a real inclusion hierarchy
- Not quite true for grammars:
- \(A \rightarrow \varepsilon\) allowed in context-free/regular grammars, not in context-sensitive grammars

\section*{Interlude: Chomsky-Hierarchy for Grammars (again)}
- For languages, Type-0, Type-1, Type-2, Type-3 form a real inclusion hierarchy
- Not quite true for grammars:
- \(A \rightarrow \varepsilon\) allowed in context-free/regular grammars, not in context-sensitive grammars
- Eliminating \(\varepsilon\)-productions removes this discrepancy!

\section*{Removal of chain rules}

\section*{Theorem (chain rules)}

Every \(\varepsilon\)-free context-free grammar can be transformed into an equivalent cf. grammar that does not contain rules of the kind \(A \rightarrow B\).

\section*{Removal of chain rules}

\section*{Theorem (chain rules)}

Every \(\varepsilon\)-free context-free grammar can be transformed into an equivalent cf. grammar that does not contain rules of the kind \(A \rightarrow B\).

\section*{Procedure:}

1 for every \(A \in N\), compute the set \(N(A)=\left\{B \in N \mid A \Rightarrow_{G}^{*} B\right\}\) (this can be done iteratively, as shown previously)
2 remove \(A \rightarrow C\) for any \(C \in N\) from \(P\)
3 add the following production rules to \(P\) \(\{A \rightarrow w \mid w \notin N\) and \(B \rightarrow w \in P\) and \(B \in N(A)\}\)

\section*{Removal of chain rules}

\section*{Theorem (chain rules)}

Every \(\varepsilon\)-free context-free grammar can be transformed into an equivalent cf. grammar that does not contain rules of the kind \(A \rightarrow B\).

\section*{Procedure:}

1 for every \(A \in N\), compute the set \(N(A)=\left\{B \in N \mid A \Rightarrow_{G}^{*} B\right\}\) (this can be done iteratively, as shown previously)
2 remove \(A \rightarrow C\) for any \(C \in N\) from \(P\)
3 add the following production rules to \(P\)
\[
\{A \rightarrow w \mid w \notin N \text { and } B \rightarrow w \in P \text { and } B \in N(A)\}
\]

\section*{Example}
\(A \rightarrow a|B ; \quad B \rightarrow b b| C ; \quad C \rightarrow c c c\)
is equivalent to
\(A \rightarrow a|b b| c c c ; B \rightarrow b b \mid c c c ; C \rightarrow c c c\)

\section*{Chomsky normal form}

Reminder: Chomsky normal form
A context-free grammar \((N, \Sigma, P, S)\) is in CNF if all rules are of the kind
- \(N \rightarrow a\) with \(a \in \Sigma\)
- \(N \rightarrow A B\) with \(A, B \in N\)
- \(S \rightarrow \varepsilon\), if \(S\) does not appear on the right-hand side of any rule

\section*{Chomsky normal form}

Reminder: Chomsky normal form
A context-free grammar \((N, \Sigma, P, S)\) is in CNF if all rules are of the kind
- \(N \rightarrow a\) with \(a \in \Sigma\)
- \(N \rightarrow A B\) with \(A, B \in N\)
- \(S \rightarrow \varepsilon\), if \(S\) does not appear on the right-hand side of any rule

\section*{Theorem (transformation into Chomsky normal form)}

Every context free grammar can be transformed into an equivalent cf. grammar in Chomsky normal form.

\section*{Algorithm for computing Chomsky normal form}

1 remove \(\varepsilon\) rules
2 remove chain rules
3 compute reduced grammar
1 remove non-terminating symbols
2 remove unreachable symbols
4 for all rules \(A \rightarrow w\) with \(w \notin \Sigma\) :
- for all \(a \in \Sigma\) replace all occurrences of \(a\) in \(w\) by a new non-terminal symbol \(X_{a}\)
- add rules \(X_{a} \rightarrow a\)

5 replace rules of the form \(A \rightarrow B_{1} B_{2} \ldots B_{n}\) with \(n>2\) with rules
\[
\begin{array}{rll}
A & \rightarrow B_{1} C_{1} \\
C_{1} & \rightarrow B_{2} C_{2} \\
& \vdots & \\
C_{n-2} & \rightarrow B_{n-1} B_{n}
\end{array}
\]
where the \(C_{i}\) are new non-terminals

\section*{Exercise: transformation into CNF}

Compute the Chomsky normal form of the following grammar:
\[
G=(N, \Sigma, P, S)
\]
- \(N=\{S, A, B, C, D, E\}\)
- \(\Sigma=\{\mathrm{a}, \mathrm{b}\}\)
- \(P\) :
\[
\begin{aligned}
& S \rightarrow A B|S B| B D E \\
& C \rightarrow S B \\
& A \rightarrow A a \\
& D \rightarrow E \\
& B \rightarrow b B|B a B| a b \\
& E \rightarrow \varepsilon
\end{aligned}
\]

\section*{Exercise: transformation into CNF}

Compute the Chomsky normal form of the following grammar:
\[
G=(N, \Sigma, P, S)
\]
- \(N=\{S, A, B, C, D, E\}\)
- \(\Sigma=\{\mathrm{a}, \mathrm{b}\}\)
- \(P\) :
\[
\begin{aligned}
& S \rightarrow A B|S B| B D E \\
& C \rightarrow S B \\
& A \rightarrow A a \\
& D \rightarrow E \\
& B \rightarrow b B|B a B| a b \\
& E \rightarrow \varepsilon
\end{aligned}
\]

\section*{Chomsky NF: purpose}

Why transform \(G\) into Chomsky NF?
- in a context-free grammar, derivations can have arbitrary length
- if there are contracting rules, a derivation of \(w\) can contain words longer than \(w\)
- if there are chain rules \((C \rightarrow B ; B \rightarrow C)\), a derivation of \(w\) can contain arbitrarily many steps
- word problem is difficult to decide
- if \(G\) is in CNF, for a word of length \(n\), a derivation has \(2 n-1\) steps:
- \(n-1\) rule applications \(A \rightarrow B C\)
\(-n\) rule applications \(A \rightarrow a\)
- word problem can be decided by checking all derivations of length \(2 n-1\)

\section*{Chomsky NF: purpose}

Why transform \(G\) into Chomsky NF?
- in a context-free grammar, derivations can have arbitrary length
- if there are contracting rules, a derivation of \(w\) can contain words longer than \(w\)
- if there are chain rules \((C \rightarrow B ; B \rightarrow C)\), a derivation of \(w\) can contain arbitrarily many steps
- word problem is difficult to decide
- if \(G\) is in CNF, for a word of length \(n\), a derivation has \(2 n-1\) steps:
- \(n-1\) rule applications \(A \rightarrow B C\)
- \(n\) rule applications \(A \rightarrow a\)
- word problem can be decided by checking all derivations of length \(2 n-1\)
- That's still plenty of derivations!

\section*{Chomsky NF: purpose}

Why transform \(G\) into Chomsky NF?
- in a context-free grammar, derivations can have arbitrary length
- if there are contracting rules, a derivation of \(w\) can contain words longer than \(w\)
- if there are chain rules \((C \rightarrow B ; B \rightarrow C)\), a derivation of \(w\) can contain arbitrarily many steps
- word problem is difficult to decide
- if \(G\) is in CNF, for a word of length \(n\), a derivation has \(2 n-1\) steps:
- \(n-1\) rule applications \(A \rightarrow B C\)
- \(n\) rule applications \(A \rightarrow a\)
- word problem can be decided by checking all derivations of length \(2 n-1\)
- That's still plenty of derivations!

More efficient algorithm: Cocke-Younger-Kasami (CYK)

\section*{Cocke-Younger-Kasami algorithm}
- Eficient algorithm to decide the word problem for context-free grammars
- Core ideas independently developed by
- John Cocke (1925-2002): Programming languages and their compilers: Preliminary notes, 1970 (with Jacob T. Schwartz)
- Daniel H. Younger (??-): Recognition and parsing of context-free languages in time \(n^{3}, 1967\)
- Tadao Kasami (1930-2007) An efficient recognition and syntax-analysis algorithm for context-free languages, 1965
- Complexity: \(O\left(|w|^{3} \cdot|G|\right)\)
- Can provide all ways to parse/generate a word
- Extends to probabilistic parsing

\section*{CYK algorithm: idea}

Decide the word problem for a context-free grammar \(G\) in Chomsky NF and a word \(w\).
- find out which NTS are needed in the end to produce the TS for \(w\) (using production rules \(A \rightarrow a\)).
- iteratively find all NTS that can generate the required sequence of NTS (using production rules \(A \rightarrow B C\)).
- if \(S\) can produce the required sequence, \(w \in L(G)\) holds.

\section*{CYK algorithm: idea}

Decide the word problem for a context-free grammar \(G\) in Chomsky NF and a word \(w\).
- find out which NTS are needed in the end to produce the TS for \(w\) (using production rules \(A \rightarrow a\)).
- iteratively find all NTS that can generate the required sequence of NTS (using production rules \(A \rightarrow B C\)).
- if \(S\) can produce the required sequence, \(w \in L(G)\) holds.

Mechanism:
- operates on a table.
- field in row \(i\) and column \(j\) contains all NTS that can generate the target word from character \(i\) through \(j\).

\section*{CYK algorithm: idea}

Decide the word problem for a context-free grammar \(G\) in Chomsky NF and a word \(w\).
- find out which NTS are needed in the end to produce the TS for \(w\) (using production rules \(A \rightarrow a\)).
- iteratively find all NTS that can generate the required sequence of NTS (using production rules \(A \rightarrow B C\)).
- if \(S\) can produce the required sequence, \(w \in L(G)\) holds.

Mechanism:
- operates on a table.
- field in row \(i\) and column \(j\) contains all NTS that can generate the target word from character \(i\) through \(j\).

\section*{Example of dynamic programming!}

\section*{CYK algorithm: example}
\(S \rightarrow a\)
\(B \rightarrow b\)
\(B \rightarrow C\)
\(S \rightarrow B A\)
\(A \rightarrow B S\)
\(B \rightarrow B B\)
\(B \rightarrow B S\)
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline\(i \backslash j\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & & & & & & \\
\hline 2 & & & & & & \\
\hline 3 & & & & & & \\
\hline 4 & & & & & & \\
\hline 5 & & & & & & \\
\hline 6 & & & & & & \\
\hline \hline\(w=\) & \(a\) & \(b\) & \(a\) & \(c\) & \(b\) & \(a\) \\
\hline
\end{tabular}
\(w=a b a c b a\)

\section*{CYK algorithm: example}
\(S \rightarrow a\)
\(B \rightarrow b\)
\(B \rightarrow C\)
\(S \rightarrow S A\)
\(A \rightarrow B S\)
\(B \rightarrow B B\)
\(B \rightarrow B S\)
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline\(i \backslash j\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & \(S\) & & & & & \\
\hline 2 & & & & & & \\
\hline 3 & & & & & & \\
\hline 4 & & & & & & \\
\hline 5 & & & & & & \\
\hline 6 & & & & & & \\
\hline \hline\(w=\) & \(a\) & \(b\) & \(a\) & \(c\) & \(b\) & \(a\) \\
\hline
\end{tabular}
\(w=a b a c b a\)

\section*{CYK algorithm: example}
\(S \rightarrow a\)
\(B \rightarrow b\)
\(B \rightarrow C\)
\(S \rightarrow S A\)
\(A \rightarrow B S\)
\(B \rightarrow B B\)
\(B \rightarrow B S\)
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline\(i \backslash j\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & \(S\) & & & & & \\
\hline 2 & & \(B\) & & & & \\
\hline 3 & & & & & & \\
\hline 4 & & & & & & \\
\hline 5 & & & & & & \\
\hline 6 & & & & & & \\
\hline \hline\(w=\) & \(a\) & \(b\) & \(a\) & \(c\) & \(b\) & \(a\) \\
\hline
\end{tabular}
\(w=a b a c b a\)

\section*{CYK algorithm: example}
\(S \rightarrow a\)
\(B \rightarrow b\)
\(B \rightarrow C\)
\(S \rightarrow S A\)
\(A \rightarrow B S\)
\(B \rightarrow B B\)
\(B \rightarrow B S\)
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline\(i \backslash j\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & \(S\) & & & & & \\
\hline 2 & & \(B\) & & & & \\
\hline 3 & & & \(S\) & & & \\
\hline 4 & & & & & & \\
\hline 5 & & & & & & \\
\hline 6 & & & & & & \\
\hline \hline\(w=\) & \(a\) & \(b\) & \(a\) & \(c\) & \(b\) & \(a\) \\
\hline
\end{tabular}
\(w=a b a c b a\)

\section*{CYK algorithm: example}
\(S \rightarrow a\)
\(B \rightarrow b\)
\(B \rightarrow C\)
\(S \rightarrow S A\)
\(A \rightarrow B S\)
\(B \rightarrow B B\)
\(B \rightarrow B S\)
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline\(i \backslash j\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & \(S\) & & & & & \\
\hline 2 & & \(B\) & & & & \\
\hline 3 & & & \(S\) & & & \\
\hline 4 & & & & \(B\) & & \\
\hline 5 & & & & & & \\
\hline 6 & & & & & & \\
\hline \hline\(w=\) & \(a\) & \(b\) & \(a\) & \(c\) & \(b\) & \(a\) \\
\hline
\end{tabular}
\(w=a b a c b a\)

\section*{CYK algorithm: example}
\(S \rightarrow a\)
\(B \rightarrow b\)
\(B \rightarrow C\)
\(S \rightarrow S A\)
\(A \rightarrow B S\)
\(B \rightarrow B B\)
\(B \rightarrow B S\)
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline\(i \backslash j\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & \(S\) & & & & & \\
\hline 2 & & \(B\) & & & & \\
\hline 3 & & & \(S\) & & & \\
\hline 4 & & & & \(B\) & & \\
\hline 5 & & & & & \(B\) & \\
\hline 6 & & & & & & \\
\hline \hline\(w=\) & \(a\) & \(b\) & \(a\) & \(c\) & \(b\) & \(a\) \\
\hline
\end{tabular}
\(w=a b a c b a\)

\section*{CYK algorithm: example}
\(S \rightarrow a\)
\(B \rightarrow b\)
\(B \rightarrow C\)
\(S \rightarrow B A\)
\(A \rightarrow B S\)
\(B \rightarrow B B\)
\(B \rightarrow B S\)
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline\(i \backslash j\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & \(S\) & & & & & \\
\hline 2 & & \(B\) & & & & \\
\hline 3 & & & \(S\) & & & \\
\hline 4 & & & & \(B\) & & \\
\hline 5 & & & & & \(B\) & \\
\hline 6 & & & & & & \(S\) \\
\hline \hline\(w=\) & \(a\) & \(b\) & \(a\) & \(c\) & \(b\) & \(a\) \\
\hline
\end{tabular}
\(w=a b a c b a\)

\section*{CYK algorithm: example}
\(S \rightarrow a\)
\(B \rightarrow b\)
\(B \rightarrow C\)
\(S \rightarrow B A\)
\(A \rightarrow B S\)
\(B \rightarrow B B\)
\(B \rightarrow B S\)
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline\(i \backslash j\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & \(S\) & \(\}\) & & & & \\
\hline 2 & & \(B\) & & & & \\
\hline 3 & & & \(S\) & & & \\
\hline 4 & & & & \(B\) & & \\
\hline 5 & & & & & \(B\) & \\
\hline 6 & & & & & & \(S\) \\
\hline \hline\(w=\) & \(a\) & \(b\) & \(a\) & \(c\) & \(b\) & \(a\) \\
\hline
\end{tabular}
\(w=a b a c b a\)

\section*{CYK algorithm: example}
\(S \rightarrow a\)
\(B \rightarrow b\)
\(B \rightarrow C\)
\(S \rightarrow B A\)
\(A \rightarrow B S\)
\(B \rightarrow B B\)
\(B \rightarrow B S\)
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline\(i \backslash j\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & \(S\) & \(\}\) & & & & \\
\hline 2 & & \(B\) & \(A, B\) & & & \\
\hline 3 & & & \(S\) & & & \\
\hline 4 & & & & \(B\) & & \\
\hline 5 & & & & & \(B\) & \\
\hline 6 & & & & & & \(S\) \\
\hline \hline\(w=\) & \(a\) & \(b\) & \(a\) & \(c\) & \(b\) & \(a\) \\
\hline
\end{tabular}
\(w=a b a c b a\)

\section*{CYK algorithm: example}
\(S \rightarrow a\)
\(B \rightarrow b\)
\(B \rightarrow C\)
\(S \rightarrow B A\)
\(A \rightarrow B S\)
\(B \rightarrow B B\)
\(B \rightarrow B S\)
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline\(i \backslash j\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & \(S\) & \(\}\) & & & & \\
\hline 2 & & \(B\) & \(A, B\) & & & \\
\hline 3 & & & \(S\) & \(\}\) & & \\
\hline 4 & & & & \(B\) & & \\
\hline 5 & & & & & \(B\) & \\
\hline 6 & & & & & & \(S\) \\
\hline \hline\(w=\) & \(a\) & \(b\) & \(a\) & \(c\) & \(b\) & \(a\) \\
\hline
\end{tabular}
\(w=a b a c b a\)

\section*{CYK algorithm: example}
\(S \rightarrow a\)
\(B \rightarrow b\)
\(B \rightarrow C\)
\(S \rightarrow B A\)
\(A \rightarrow B S\)
\(B \rightarrow B B\)
\(B \rightarrow B S\)
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline\(i \backslash j\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & \(S\) & \(\}\) & & & & \\
\hline 2 & & \(B\) & \(A, B\) & & & \\
\hline 3 & & & \(S\) & \(\}\) & & \\
\hline 4 & & & & \(B\) & \(B\) & \\
\hline 5 & & & & & \(B\) & \\
\hline 6 & & & & & & \(S\) \\
\hline \hline\(w=\) & \(a\) & \(b\) & \(a\) & \(c\) & \(b\) & \(a\) \\
\hline
\end{tabular}
\(w=a b a c b a\)

\section*{CYK algorithm: example}
\(S \rightarrow a\)
\(B \rightarrow b\)
\(B \rightarrow C\)
\(S \rightarrow B A\)
\(A \rightarrow B S\)
\(B \rightarrow B B\)
\(B \rightarrow B S\)
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline\(i \backslash j\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & \(S\) & \(\}\) & & & & \\
\hline 2 & & \(B\) & \(A, B\) & & & \\
\hline 3 & & & \(S\) & \(\}\) & & \\
\hline 4 & & & & \(B\) & \(B\) & \\
\hline 5 & & & & & \(B\) & \(A, B\) \\
\hline 6 & & & & & & \(S\) \\
\hline \hline\(w=\) & \(a\) & \(b\) & \(a\) & \(c\) & \(b\) & \(a\) \\
\hline
\end{tabular}
\(w=a b a c b a\)

\section*{CYK algorithm: example}
\(S \rightarrow a\)
\(B \rightarrow b\)
\(B \rightarrow C\)
\(S \rightarrow B A\)
\(A \rightarrow B S\)
\(B \rightarrow B B\)
\(B \rightarrow B S\)
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline\(i \backslash j\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & \(S\) & \(\}\) & \(S\) & & & \\
\hline 2 & & \(B\) & \(A, B\) & & & \\
\hline 3 & & & \(S\) & \(\}\) & & \\
\hline 4 & & & & \(B\) & \(B\) & \\
\hline 5 & & & & & \(B\) & \(A, B\) \\
\hline 6 & & & & & & \(S\) \\
\hline \hline\(w=\) & \(a\) & \(b\) & \(a\) & \(c\) & \(b\) & \(a\) \\
\hline
\end{tabular}
\(w=a b a c b a\)

\section*{CYK algorithm: example}
\(S \rightarrow a\)
\(B \rightarrow b\)
\(B \rightarrow C\)
\(S \rightarrow B A\)
\(A \rightarrow B S\)
\(B \rightarrow B B\)
\(B \rightarrow B S\)
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline\(i \backslash j\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & \(S\) & \(\}\) & \(S\) & & & \\
\hline 2 & & \(B\) & \(A, B\) & \(B\) & & \\
\hline 3 & & & \(S\) & \(\}\) & & \\
\hline 4 & & & & \(B\) & \(B\) & \\
\hline 5 & & & & & \(B\) & \(A, B\) \\
\hline 6 & & & & & & \(S\) \\
\hline \hline\(w=\) & \(a\) & \(b\) & \(a\) & \(c\) & \(b\) & \(a\) \\
\hline
\end{tabular}
\(w=a b a c b a\)

\section*{CYK algorithm: example}
\(S \rightarrow a\)
\(B \rightarrow b\)
\(B \rightarrow C\)
\(S \rightarrow B A\)
\(A \rightarrow B S\)
\(B \rightarrow B B\)
\(B \rightarrow B S\)
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline\(i \backslash j\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & \(S\) & \(\}\) & \(S\) & & & \\
\hline 2 & & \(B\) & \(A, B\) & \(B\) & & \\
\hline 3 & & & \(S\) & \(\}\) & \(\}\) & \\
\hline 4 & & & & \(B\) & \(B\) & \\
\hline 5 & & & & & \(B\) & \(A, B\) \\
\hline 6 & & & & & & \(S\) \\
\hline \hline\(w=\) & \(a\) & \(b\) & \(a\) & \(c\) & \(b\) & \(a\) \\
\hline
\end{tabular}
\(w=a b a c b a\)

\section*{CYK algorithm: example}
\(S \rightarrow a\)
\(B \rightarrow b\)
\(B \rightarrow C\)
\(S \rightarrow B A\)
\(A \rightarrow B S\)
\(B \rightarrow B B\)
\(B \rightarrow B S\)
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline\(i \backslash j\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & \(S\) & \(\}\) & \(S\) & & & \\
\hline 2 & & \(B\) & \(A, B\) & \(B\) & & \\
\hline 3 & & & \(S\) & \(\}\) & \(\}\) & \\
\hline 4 & & & & \(B\) & \(B\) & \(A, B\) \\
\hline 5 & & & & & \(B\) & \(A, B\) \\
\hline 6 & & & & & & \(S\) \\
\hline \hline\(w=\) & \(a\) & \(b\) & \(a\) & \(c\) & \(b\) & \(a\) \\
\hline
\end{tabular}
\(w=a b a c b a\)

\section*{CYK algorithm: example}
\(S \rightarrow a\)
\(B \rightarrow b\)
\(B \rightarrow C\)
\(S \rightarrow B A\)
\(A \rightarrow B S\)
\(B \rightarrow B B\)
\(B \rightarrow B S\)
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline\(i \backslash j\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & \(S\) & \(\}\) & \(S\) & \(\}\) & & \\
\hline 2 & & \(B\) & \(A, B\) & \(B\) & & \\
\hline 3 & & & \(S\) & \(\}\) & \(\}\) & \\
\hline 4 & & & & \(B\) & \(B\) & \(A, B\) \\
\hline 5 & & & & & \(B\) & \(A, B\) \\
\hline 6 & & & & & & \(S\) \\
\hline \hline\(w=\) & \(a\) & \(b\) & \(a\) & \(c\) & \(b\) & \(a\) \\
\hline
\end{tabular}
\(w=a b a c b a\)

\section*{CYK algorithm: example}
\(S \rightarrow a\)
\(B \rightarrow b\)
\(B \rightarrow C\)
\(S \rightarrow B A\)
\(A \rightarrow B S\)
\(B \rightarrow B B\)
\(B \rightarrow B S\)
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline\(i \backslash j\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & \(S\) & \(\}\) & \(S\) & \(\}\) & & \\
\hline 2 & & \(B\) & \(A, B\) & \(B\) & \(B\) & \\
\hline 3 & & & \(S\) & \(\}\) & \(\}\) & \\
\hline 4 & & & & \(B\) & \(B\) & \(A, B\) \\
\hline 5 & & & & & \(B\) & \(A, B\) \\
\hline 6 & & & & & & \(S\) \\
\hline \hline\(w=\) & \(a\) & \(b\) & \(a\) & \(c\) & \(b\) & \(a\) \\
\hline
\end{tabular}
\(w=a b a c b a\)

\section*{CYK algorithm: example}
\(S \rightarrow a\)
\(B \rightarrow b\)
\(B \rightarrow C\)
\(S \rightarrow B A\)
\(A \rightarrow B S\)
\(B \rightarrow B B\)
\(B \rightarrow B S\)
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline\(i \backslash j\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & \(S\) & \(\}\) & \(S\) & \(\}\) & & \\
\hline 2 & & \(B\) & \(A, B\) & \(B\) & \(B\) & \\
\hline 3 & & & \(S\) & \(\}\) & \(\}\) & \(S\) \\
\hline 4 & & & & \(B\) & \(B\) & \(A, B\) \\
\hline 5 & & & & & \(B\) & \(A, B\) \\
\hline 6 & & & & & & \(S\) \\
\hline \hline\(w=\) & \(a\) & \(b\) & \(a\) & \(c\) & \(b\) & \(a\) \\
\hline
\end{tabular}
\(w=a b a c b a\)

\section*{CYK algorithm: example}
\(S \rightarrow a\)
\(B \rightarrow b\)
\(B \rightarrow C\)
\(S \rightarrow S A\)
\(A \rightarrow B S\)
\(B \rightarrow B B\)
\(B \rightarrow B S\)
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline\(i \backslash j\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & \(S\) & \(\}\) & \(S\) & \(\}\) & \(\}\) & \\
\hline 2 & & \(B\) & \(A, B\) & \(B\) & \(B\) & \\
\hline 3 & & & \(S\) & \(\}\) & \(\}\) & \(S\) \\
\hline 4 & & & & \(B\) & \(B\) & \(A, B\) \\
\hline 5 & & & & & \(B\) & \(A, B\) \\
\hline 6 & & & & & & \(S\) \\
\hline \hline\(w=\) & \(a\) & \(b\) & \(a\) & \(c\) & \(b\) & \(a\) \\
\hline
\end{tabular}
\(w=a b a c b a\)

\section*{CYK algorithm: example}
\(S \rightarrow a\)
\(B \rightarrow b\)
\(B \rightarrow C\)
\(S \rightarrow B A\)
\(A \rightarrow B S\)
\(B \rightarrow B B\)
\(B \rightarrow B S\)
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline\(i \backslash j\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & \(S\) & \(\}\) & \(S\) & \(\}\) & \(\}\) & \\
\hline 2 & & \(B\) & \(A, B\) & \(B\) & \(B\) & \(A, B\) \\
\hline 3 & & & \(S\) & \(\}\) & \(\}\) & \(S\) \\
\hline 4 & & & & \(B\) & \(B\) & \(A, B\) \\
\hline 5 & & & & & \(B\) & \(A, B\) \\
\hline 6 & & & & & & \(S\) \\
\hline \hline\(w=\) & \(a\) & \(b\) & \(a\) & \(c\) & \(b\) & \(a\) \\
\hline
\end{tabular}
\(w=a b a c b a\)

\section*{CYK algorithm: example}
\(S \rightarrow a\)
\(B \rightarrow b\)
\(B \rightarrow C\)
\(S \rightarrow S A\)
\(A \rightarrow B S\)
\(B \rightarrow B B\)
\(B \rightarrow B S\)
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline\(i \backslash j\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & \(S\) & \(\}\) & \(S\) & \(\}\) & \(\}\) & \(S\) \\
\hline 2 & & \(B\) & \(A, B\) & \(B\) & \(B\) & \(A, B\) \\
\hline 3 & & & \(S\) & \(\}\) & \(\}\) & \(S\) \\
\hline 4 & & & & \(B\) & \(B\) & \(A, B\) \\
\hline 5 & & & & & \(B\) & \(A, B\) \\
\hline 6 & & & & & & \(S\) \\
\hline \hline\(w=\) & \(a\) & \(b\) & \(a\) & \(c\) & \(b\) & \(a\) \\
\hline
\end{tabular}
\(w=a b a c b a\)

\section*{CYK: method}
- Core idea: Bottom-Up dynamic programming
- For all subwords of \(w\) compute the set of all non-terminal symbols from which it can be derived
- Results are stored in the table: Field \(i, j\) stores the non-terminals from which \(w[i] \ldots w[j]\) can be derived
- Start with words of length 1 (on the main diagonal)
\(>\) Only rules of the form \(N \rightarrow t\) relevant
- Fill successive diagonals (going right/up)
\(>\) Remember: Each field represents the NTS which generate a subword!
- Consider all splits of the subword (by going left to right in the row, top to bottom in the column)
- Consider all combinations of non-terminals for each split
\(>\) Only rules of the form \(N \rightarrow X Y\) relevant: If \(X Y\) is a combination generating \(w[i] \ldots w[j]\), add \(N\) at \((i . j)\).
- If \(S\) generates \(w[1] \ldots w[|w|](=w)\), then \(w \in L(G)\)

\section*{CYK: formal algorithm}
for \(i:=1\) to \(n\) do
\[
N_{i i}:=\left\{A \mid A \rightarrow a_{i} \in P\right\}
\]

\section*{CYK: formal algorithm}
for \(i:=1\) to \(n\) do
\(N_{i i}:=\left\{A \mid A \rightarrow a_{i} \in P\right\}\)
for \(d:=1\) to \(n-1\) do

\section*{CYK: formal algorithm}
for \(i:=1\) to \(n\) do
\(N_{i i}:=\left\{A \mid A \rightarrow a_{i} \in P\right\}\)
for \(d:=1\) to \(n-1\) do for \(i:=1\) to \(n-d\) do
\[
\begin{aligned}
& j:=i+d \\
& N_{i j}:=\{ \}
\end{aligned}
\]

\section*{CYK: formal algorithm}
for \(i:=1\) to \(n\) do
\(N_{i i}:=\left\{A \mid A \rightarrow a_{i} \in P\right\}\)
for \(d:=1\) to \(n-1\) do
for \(i:=1\) to \(n-d\) do
\[
\begin{aligned}
& j:=i+d \\
& N_{i j}:=\{ \}
\end{aligned}
\]
\[
\text { for } k:=i \text { to } j-1 \text { do }
\]
\[
N_{i j}:=N_{i j} \cup\left\{A \mid A \rightarrow B C \in P ; B \in N_{i k} ; C \in N_{(k+1) j}\right\}
\]

\section*{CYK algorithm: exercise}

Consider the grammar
\[
\begin{aligned}
P: \quad & \rightarrow A B|S B| B D E \\
A & \rightarrow A a \\
B & \rightarrow b B|B a B| a b \\
C & \rightarrow S B \\
D & \rightarrow E \\
E & \rightarrow \varepsilon
\end{aligned}
\]

Use the CYK algorithm to determine if the following words can be generated by \(G\) :
a) \(w_{1}=b a b a a b\)
b) \(w_{2}=a b b a\)

\section*{CYK algorithm: exercise}

Consider the grammar
\[
\begin{aligned}
P: \quad S & \rightarrow S B\left|B C_{1}\right| X_{b} B \mid X_{a} X_{b} \\
B & \rightarrow B C_{1}\left|X_{b} B\right| X_{a} X_{b} \\
C_{1} & \rightarrow X_{a} B \\
X_{a} & \rightarrow a \\
X_{b} & \rightarrow b
\end{aligned}
\]

Use the CYK algorithm to determine if the following words can be generated by \(G\) :
a) \(w_{1}=b a b a a b\)
b) \(w_{2}=a b b a\)

\section*{CYK algorithm: exercise}

Consider the grammar
\[
\begin{aligned}
P: \quad S & \rightarrow S B|B D| Y B \mid X Y \\
B & \rightarrow B D|Y B| X Y \\
D & \rightarrow X B \\
X & \rightarrow a \\
Y & \rightarrow b
\end{aligned}
\]

Use the CYK algorithm to determine if the following words can be generated by \(G\) :
a) \(w_{1}=b a b a a b\)
b) \(w_{2}=a b b a\)

\section*{CYK algorithm: exercise}

Consider the grammar
\[
\begin{aligned}
P: \quad S & \rightarrow S B|B D| Y B \mid X Y \\
B & \rightarrow B D|Y B| X Y \\
D & \rightarrow X B \\
X & \rightarrow a \\
Y & \rightarrow b
\end{aligned}
\]

Use the CYK algorithm to determine if the following words can be generated by \(G\) :
a) \(w_{1}=b a b a a b\)
b) \(w_{2}=a b b a\)

\section*{CYK algorithm: exercise}

Consider the grammar
\[
\begin{aligned}
P: \quad S & \rightarrow S B|B D| Y B \mid X Y \\
B & \rightarrow B D|Y B| X Y \\
D & \rightarrow X B \\
X & \rightarrow a \\
Y & \rightarrow b
\end{aligned}
\]

Use the CYK algorithm to determine if the following words can be generated by \(G\) :
a) \(w_{1}=b a b a a b\)
b) \(w_{2}=a b b a\)

\section*{Outline}

\section*{Push-Down Automata}

Properties of Context-free
Languages
Parsers and Bison
Turing Machines and Languages of Type 1 and 0

Lecture-specific material
Bonus Exercises
Selected Solutions

\section*{Pushdown automata: motivation}
- DFAs/NFAs are weaker than context-free grammars
- to accept languages like \(a^{n} b^{n}\), an unlimited storage component is needed
- Pushdown automata have an unlimited stack
- LIFO: last in, first out
- only top symbol can be read
- arbitrary amount of symbols can be added to the top

\section*{PDA: conceptual model}
- extends FA by unlimited stack:
- transitions can read and write stack

- only at the top
- stack alphabet \(\Gamma\)
- LIFO: last in, first out
- acceptance condition
- empty stack after reading input
- no final states needed
- commonalities with FA:
- read input from left to right
- set of states, input alphabet
- initial state

\section*{PDA transitions}
\[
\Delta \subseteq Q \times \Sigma \cup\{\varepsilon\} \times \Gamma \times \Gamma^{*} \times Q
\]
- PDA is in a state
- can read next input character or nothing
- must read (and remove) top stack symbol
- can write arbitrary amout of symbols on top of stack
- goes into a new state

\section*{PDA transitions}
\[
\Delta \subseteq Q \times \Sigma \cup\{\varepsilon\} \times \Gamma \times \Gamma^{*} \times Q
\]
- PDA is in a state
- can read next input character or nothing
- must read (and remove) top stack symbol
- can write arbitrary amout of symbols on top of stack
- goes into a new state

A transition \((p, c, A, B C, q)\) can be written as follows:
\[
\begin{array}{llllll}
p & c & A & \rightarrow & B C & q
\end{array}
\]

\section*{Pushdown automata: definition}

\section*{Definition (pushdown automaton)}

A pushdown automaton (PDA) is a 6-tuple (\(Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}\)) where
- \(Q, \Sigma, q_{0}\) are defined as for NFAs.
- \(\Gamma\) is the stack alphabet
- \(Z_{0}\) is the initial stack symbol
- \(\Delta \subseteq Q \times \Sigma \cup\{\varepsilon\} \times \Gamma \times \Gamma^{*} \times Q\) is the transition relation

\section*{Pushdown automata: definition}

\section*{Definition (pushdown automaton)}

A pushdown automaton (PDA) is a 6-tuple (\(Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}\)) where
- \(Q, \Sigma, q_{0}\) are defined as for NFAs.
- \(\Gamma\) is the stack alphabet
- \(Z_{0}\) is the initial stack symbol
- \(\Delta \subseteq Q \times \Sigma \cup\{\varepsilon\} \times \Gamma \times \Gamma^{*} \times Q\) is the transition relation

A configuration of a PDA is a triple \((q, w, \gamma)\) where
- \(q\) is the current state
- \(w\) is the input yet unread
- \(\gamma\) is the current stack content

\section*{Pushdown automata: definition}

\section*{Definition (pushdown automaton)}

A pushdown automaton (PDA) is a 6-tuple (\(Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}\)) where
- \(Q, \Sigma, q_{0}\) are defined as for NFAs.
- \(\Gamma\) is the stack alphabet
- \(Z_{0}\) is the initial stack symbol
- \(\Delta \subseteq Q \times \Sigma \cup\{\varepsilon\} \times \Gamma \times \Gamma^{*} \times Q\) is the transition relation

A configuration of a PDA is a triple \((q, w, \gamma)\) where
- \(q\) is the current state
- \(w\) is the input yet unread
- \(\gamma\) is the current stack content

A PDA \(\mathcal{A}\) accepts a word \(w \in \Sigma^{*}\) if, starting from the configuration \(\left(q_{0}, w, Z_{0}\right), \mathcal{A}\) can reach the configuration \((q, \varepsilon, \varepsilon)\) for some \(q\).

\section*{Example: PDA for \(a^{n} b^{n}\)}

\section*{Example (Automaton \(\mathcal{A}\))}
\[
\begin{aligned}
\mathcal{A} & =(Q, \Sigma, \Gamma, \Delta, 0, Z) \\
& \text { Q } Q=\{0,1\} \\
> & \Sigma=\{a, b\} \\
> & \Gamma=\{A, Z\} \\
> & \Delta:
\end{aligned}
\]

\section*{Example: PDA for \(a^{n} b^{n}\)}

\section*{Example (Automaton \(\mathcal{A}\))}
\[
\begin{aligned}
\mathcal{A} & =(Q, \Sigma, \Gamma, \Delta, 0, Z) \\
> & Q=\{0,1\} \\
> & \Sigma=\{a, b\} \\
> & \Gamma=\{A, Z\} \\
> & \Delta:
\end{aligned}
\]

\(0 \quad \varepsilon \quad Z \rightarrow \varepsilon \quad 0 \quad\) accept empty word
\(0 \quad a \quad Z \rightarrow A Z \quad 0 \quad\) read first a, store A
\(0 \quad a A \rightarrow A A \quad 0 \quad\) read further a, store A
\(0 \quad b \quad A \rightarrow \varepsilon \quad 1\) read first b , delete A
\(1 b A \rightarrow \varepsilon \quad 1\) read further b , delete A
\(1 \varepsilon Z \rightarrow \varepsilon \quad 1\) accept if all As have been deleted

\section*{PDA: example (2)}

Process \(a a b b:\)
\begin{tabular}{llllll}
0 & \(\varepsilon\) & \(Z\) & \(\rightarrow\) & \(\varepsilon\) & 0 \\
0 & \(a\) & \(Z\) & \(\rightarrow\) & \(A Z\) & 0 \\
0 & \(a\) & \(A\) & \(\rightarrow\) & \(A A\) & 0 \\
0 & \(b\) & \(A\) & \(\rightarrow\) & \(\varepsilon\) & 1 \\
1 & \(b\) & \(A\) & \(\rightarrow\) & \(\varepsilon\) & 1 \\
1 & \(\varepsilon\) & \(Z\) & \(\rightarrow\) & \(\varepsilon\) & 1
\end{tabular}

\section*{PDA: example (2)}

\section*{Process aabb:}
\(1(0, a a b b, Z)\)
\begin{tabular}{llllll}
0 & \(\varepsilon\) & \(Z\) & \(\rightarrow\) & \(\varepsilon\) & 0 \\
0 & \(a\) & \(Z\) & \(\rightarrow\) & \(A Z\) & 0 \\
0 & \(a\) & \(A\) & \(\rightarrow\) & \(A A\) & 0 \\
0 & \(b\) & \(A\) & \(\rightarrow\) & \(\varepsilon\) & 1 \\
1 & \(b\) & \(A\) & \(\rightarrow\) & \(\varepsilon\) & 1 \\
1 & \(\varepsilon\) & \(Z\) & \(\rightarrow\) & \(\varepsilon\) & 1
\end{tabular}

\section*{PDA: example (2)}

\section*{Process \(a a b b\) :}
\(1(0, a a b b, Z)\)
\(2(0, a b b, A Z)\)
\begin{tabular}{llllll}
0 & \(\varepsilon\) & \(Z\) & \(\rightarrow\) & \(\varepsilon\) & 0 \\
0 & \(a\) & \(Z\) & \(\rightarrow\) & \(A Z\) & 0 \\
0 & \(a\) & \(A\) & \(\rightarrow\) & \(A A\) & 0 \\
0 & \(b\) & \(A\) & \(\rightarrow\) & \(\varepsilon\) & 1 \\
1 & \(b\) & \(A\) & \(\rightarrow\) & \(\varepsilon\) & 1 \\
1 & \(\varepsilon\) & \(Z\) & \(\rightarrow\) & \(\varepsilon\) & 1
\end{tabular}

\section*{PDA: example (2)}

\section*{Process \(a a b b\) :}
\(1(0, a a b b, Z)\)
\(2(0, a b b, A Z)\)
\(3(0, b b, A A Z)\)
\begin{tabular}{llllll}
0 & \(\varepsilon\) & \(Z\) & \(\rightarrow\) & \(\varepsilon\) & 0 \\
0 & \(a\) & \(Z\) & \(\rightarrow\) & \(A Z\) & 0 \\
0 & \(a\) & \(A\) & \(\rightarrow\) & \(A A\) & 0 \\
0 & \(b\) & \(A\) & \(\rightarrow\) & \(\varepsilon\) & 1 \\
1 & \(b\) & \(A\) & \(\rightarrow\) & \(\varepsilon\) & 1 \\
1 & \(\varepsilon\) & \(Z\) & \(\rightarrow\) & \(\varepsilon\) & 1
\end{tabular}

\section*{PDA: example (2)}

\section*{Process \(a a b b\) :}
\(1(0, a a b b, Z)\)
\(2(0, a b b, A Z)\)
\(3(0, b b, A A Z)\)
\(4(1, b, A Z)\)
\begin{tabular}{llllll}
0 & \(\varepsilon\) & \(Z\) & \(\rightarrow\) & \(\varepsilon\) & 0 \\
0 & \(a\) & \(Z\) & \(\rightarrow\) & \(A Z\) & 0 \\
0 & \(a\) & \(A\) & \(\rightarrow\) & \(A A\) & 0 \\
0 & \(b\) & \(A\) & \(\rightarrow\) & \(\varepsilon\) & 1 \\
1 & \(b\) & \(A\) & \(\rightarrow\) & \(\varepsilon\) & 1 \\
1 & \(\varepsilon\) & \(Z\) & \(\rightarrow\) & \(\varepsilon\) & 1
\end{tabular}

\section*{PDA: example (2)}

\section*{Process \(a a b b\) :}
\(1(0, a a b b, Z)\)
\(2(0, a b b, A Z)\)
\(3(0, b b, A A Z)\)
\(4(1, b, A Z)\)
\begin{tabular}{llllll}
0 & \(\varepsilon\) & \(Z\) & \(\rightarrow\) & \(\varepsilon\) & 0 \\
0 & \(a\) & \(Z\) & \(\rightarrow\) & \(A Z\) & 0 \\
0 & \(a\) & \(A\) & \(\rightarrow\) & \(A A\) & 0 \\
0 & \(b\) & \(A\) & \(\rightarrow\) & \(\varepsilon\) & 1 \\
1 & \(b\) & \(A\) & \(\rightarrow\) & \(\varepsilon\) & 1 \\
1 & \(\varepsilon\) & \(Z\) & \(\rightarrow\) & \(\varepsilon\) & 1
\end{tabular}
\(5(1, \varepsilon, Z)\)

\section*{PDA: example (2)}

\section*{Process \(a a b b\) :}
\(1(0, a a b b, Z)\)
\(2(0, a b b, A Z)\)
\(3(0, b b, A A Z)\)
\(4(1, b, A Z)\)
\begin{tabular}{llllll}
0 & \(\varepsilon\) & \(Z\) & \(\rightarrow\) & \(\varepsilon\) & 0 \\
0 & \(a\) & \(Z\) & \(\rightarrow\) & \(A Z\) & 0 \\
0 & \(a\) & \(A\) & \(\rightarrow\) & \(A A\) & 0 \\
0 & \(b\) & \(A\) & \(\rightarrow\) & \(\varepsilon\) & 1 \\
1 & \(b\) & \(A\) & \(\rightarrow\) & \(\varepsilon\) & 1 \\
1 & \(\varepsilon\) & \(Z\) & \(\rightarrow\) & \(\varepsilon\) & 1
\end{tabular}
\(5(1, \varepsilon, Z)\)
\(6(1, \varepsilon, \varepsilon)\)

\section*{PDA: example (2)}

\section*{Process aabb:}
\(1(0, a a b b, Z)\)
\(2(0, a b b, A Z)\)
\(3(0, b b, A A Z)\)
\(4(1, b, A Z)\)
\begin{tabular}{llllll}
0 & \(\varepsilon\) & \(Z\) & \(\rightarrow\) & \(\varepsilon\) & 0 \\
0 & \(a\) & \(Z\) & \(\rightarrow\) & \(A Z\) & 0 \\
0 & \(a\) & \(A\) & \(\rightarrow\) & \(A A\) & 0 \\
0 & \(b\) & \(A\) & \(\rightarrow\) & \(\varepsilon\) & 1 \\
1 & \(b\) & \(A\) & \(\rightarrow\) & \(\varepsilon\) & 1 \\
1 & \(\varepsilon\) & \(Z\) & \(\rightarrow\) & \(\varepsilon\) & 1
\end{tabular}
\(5(1, \varepsilon, Z)\)
\(6(1, \varepsilon, \varepsilon)\)
Process \(a b b\) :

\section*{PDA: example (2)}

\section*{Process aabb:}
\(1(0, a a b b, Z)\)
\(2(0, a b b, A Z)\)
\(3(0, b b, A A Z)\)
\(4(1, b, A Z)\)
\(\begin{array}{llllll}0 & \varepsilon & Z & \rightarrow & \varepsilon & 0 \\ 0 & a & Z & \rightarrow & A Z & 0 \\ 0 & a & A & \rightarrow & A A & 0 \\ 0 & b & A & \rightarrow & \varepsilon & 1 \\ 1 & b & A & \rightarrow & \varepsilon & 1 \\ 1 & \varepsilon & Z & \rightarrow & \varepsilon & 1\end{array}\)
\(5(1, \varepsilon, Z)\)
\(6(1, \varepsilon, \varepsilon)\)
Process \(a b b\) :
\(1(0, a b b, Z)\)

\section*{PDA: example (2)}

\section*{Process aabb:}
\(1(0, a a b b, Z)\)
\(2(0, a b b, A Z)\)
\(3(0, b b, A A Z)\)
\(4(1, b, A Z)\)
\(\begin{array}{llllll}0 & \varepsilon & Z & \rightarrow & \varepsilon & 0 \\ 0 & a & Z & \rightarrow & A Z & 0 \\ 0 & a & A & \rightarrow & A A & 0 \\ 0 & b & A & \rightarrow & \varepsilon & 1 \\ 1 & b & A & \rightarrow & \varepsilon & 1 \\ 1 & \varepsilon & Z & \rightarrow & \varepsilon & 1\end{array}\)
\(5(1, \varepsilon, Z)\)
\(6(1, \varepsilon, \varepsilon)\)
Process \(a b b\) :
\(1(0, a b b, Z)\)
\(2(0, b b, A Z)\)

\section*{PDA: example (2)}

\section*{Process \(a a b b\) :}
\(1(0, a a b b, Z)\)
\(2(0, a b b, A Z)\)
\(3(0, b b, A A Z)\)
\(4(1, b, A Z)\)
\(5(1, \varepsilon, Z)\)
\(6(1, \varepsilon, \varepsilon)\)
Process \(a b b\) :
\(1(0, a b b, Z)\)
\(2(0, b b, A Z)\)
\(3(1, b, Z)\)

\section*{PDA: example (2)}

\section*{Process \(a a b b\) :}
\(1(0, a a b b, Z)\)
\(2(0, a b b, A Z)\)
\(3(0, b b, A A Z)\)
\(4(1, b, A Z)\)
\(5(1, \varepsilon, Z)\)
\(6(1, \varepsilon, \varepsilon)\)
Process \(a b b\) :
\(1(0, a b b, Z)\)
\(2(0, b b, A Z)\)
\(3(1, b, Z)\)
\(4(1, b, \varepsilon)\)

\section*{PDA: example (2)}

\section*{Process \(a a b b\) :}
\(1(0, a a b b, Z)\)
\(2(0, a b b, A Z)\)
\(3(0, b b, A A Z)\)
\(4(1, b, A Z)\)
\(5(1, \varepsilon, Z)\)
\(6(1, \varepsilon, \varepsilon)\)
Process \(a b b\) :
\(1(0, a b b, Z)\)
\(2(0, b b, A Z)\)
\(3(1, b, Z)\)
\(4(1, b, \varepsilon)\)
5 No rule applicable, input not read entirely

\section*{PDAs: important properties}
- \(\Gamma\) and \(\Sigma\) do not need to be disjoint
- Not uncommon: \(\Sigma \subseteq \Gamma\)
- ... but convention: \(\Sigma\) lowercase letters, \(\Gamma\) uppercase letters
- \(\varepsilon\) transitions are possible
- ... and can modify the stack
- PDAs as defined above are non-deterministic
- Deterministic PDA: For each situation there is only one applicable transition (either \(\varepsilon\) or \(c\))
\(\downarrow\) deterministic PDAs are strictly weaker
- We can also define PDAs with acceptance via final states, but. . .
- this makes representation of PDAs more complex
- makes proofs more difficult

\section*{PDA: exercise}

Define a PDA detecting all palindromes over \(\Sigma=\{a, b\}\), i.e. all words
\[
\left\{w \cdot \overleftarrow{w} \mid w \in \Sigma^{*}\right\}
\]
where
\[
\overleftarrow{w}=a_{n} \ldots a_{1} \text { if } w=a_{1} \ldots a_{n}
\]

Can you define a deterministic automaton?

\section*{Equivalence of PDAs and Context-Free Grammars}

\section*{Theorem}

The class of languages that can be accepted by a PDA is exactly the class of languages that can be produced by a context-free grammar.

\section*{Equivalence of PDAs and Context-Free Grammars}

\section*{Theorem}

The class of languages that can be accepted by a PDA is exactly the class of languages that can be produced by a context-free grammar.

\section*{Proof.}
- For a cf. grammar \(G\), generate a PDA \(\mathcal{A}_{G}\) with \(L\left(\mathcal{A}_{G}\right)=L(G)\).
- For a PDA \(\mathcal{A}\), generate a cf. grammar \(G_{\mathcal{A}}\) with \(L\left(G_{\mathcal{A}}\right)=L(\mathcal{A})\).

\section*{From context-free grammars to PDAs}

For a grammar \(G=(N, \Sigma, P, S)\), an equivalent PDA is:
\[
\mathcal{A}_{G}=(\{q\}, \Sigma, \Sigma \cup N, \Delta, q, S)
\]
\[
\begin{aligned}
\Delta= & \{(q, \varepsilon, A, \gamma, q) \mid A \rightarrow \gamma \in P\} \\
& \{(q, a, a, \varepsilon, q) \mid a \in \Sigma\}
\end{aligned}
\]

\section*{From context-free grammars to PDAs}

For a grammar \(G=(N, \Sigma, P, S)\), an equivalent PDA is:
\[
\begin{aligned}
& \mathcal{A}_{G}=(\{q\}, \Sigma, \Sigma \cup N, \Delta, q, S) \\
\Delta= & \{(q, \varepsilon, A, \gamma, q) \mid A \rightarrow \gamma \in P\} \\
& \{(q, a, a, \varepsilon, q) \mid a \in \Sigma\}
\end{aligned}
\]
\(\mathcal{A}_{G}\) simulates the productions of \(G\) in the following way:
- a production rule is applied to the top stack symbol if it is an NTS
- a TS is removed from the stack if it corresponds to the next input character

\section*{From context-free grammars to PDAs}

For a grammar \(G=(N, \Sigma, P, S)\), an equivalent PDA is:
\[
\begin{aligned}
& \mathcal{A}_{G}=(\{q\}, \Sigma, \Sigma \cup N, \Delta, q, S) \\
\Delta= & \{(q, \varepsilon, A, \gamma, q) \mid A \rightarrow \gamma \in P\} \\
& \{(q, a, a, \varepsilon, q) \mid a \in \Sigma\}
\end{aligned}
\]
\(\mathcal{A}_{G}\) simulates the productions of \(G\) in the following way:
- a production rule is applied to the top stack symbol if it is an NTS
- a TS is removed from the stack if it corresponds to the next input character

Note:
- \(\mathcal{A}_{G}\) is nondeterministic if there are several rules for one NTS.
- \(\mathcal{A}_{G}\) only has one single state.
- Corollary: PDAs need no states, could be written as (\(\Sigma, \Gamma, \Delta, Z_{0}\)).

\section*{From context-free grammars to PDAs: exercise}

For the grammar \(G=(\{S\},\{a, b\}, P, S)\) with
\[
\begin{aligned}
P=\{S & \rightarrow a S a \\
S & \rightarrow b S b \\
S & \rightarrow \varepsilon\}
\end{aligned}
\]
- create an equivalent PDA \(\mathcal{A}_{G}\),
- show how \(\mathcal{A}_{G}\) processes the input abba.

\section*{From PDAs to context-free grammars}

Transforming a PDA \(\mathcal{A}=\left(Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}\right)\) into a grammar \(G_{\mathcal{A}}=(N, \Sigma, P, S)\) is more involved:
- \(N\) contains symbols \([p Z q]\), meaning
\(>\mathcal{A}\) must go from \(p\) to \(q\) deleting \(Z\) from the stack
- for a transition \((p, a, Z, \varepsilon, q)\) that deletes a stack symbol:
\(-\mathcal{A}\) can switch from \(p\) to \(q\) and delete \(Z\) by reading input \(a\)
- this can be expressed by a production rule \([p Z q] \rightarrow a\).
- for transitions \((p, a, Z, A B C, q)\) that produce stack symbols:
- test all possible transitions for removing these symbols
- \([p Z t] \rightarrow a[q A r][r B s][s C t]\) for all states \(r, s, t\)
- intuitive meaning: in order to go from \(p\) to \(t\) and delete \(Z\), you can

1 read the input \(a\)
2 go into state \(q\)
3 find states \(r, s\) through which you can go from \(q\) to \(t\) and delete \(A, B\), and \(C\) from the stack.

\section*{\(G_{\mathcal{A}}:\) formal definition}

For \(\mathcal{A}=\left(Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}\right)\) we define \(G_{\mathcal{A}}=(N, \Sigma, P, S)\) as follows
- \(N=\{S\} \cup\{[p Z q] \mid p, q \in Q, Z \in \Gamma\}\)
- \(P\) contains the following rules:
- for every \(q \in Q, P\) contains \(\left\{S \rightarrow\left[q_{0} Z_{0} q\right]\right\}\) meaning: \(\mathcal{A}\) has to go from \(q_{0}\) to any state \(q\), deleting \(Z_{0}\).
- for each transition (\(p, a, Z, Y_{1} Y_{2} \ldots Y_{n}, q\)) with
\[
\begin{aligned}
& >a \in \Sigma \cup\{\varepsilon\} \text { and } \\
& >Z, Y_{1}, Y_{2} \ldots Y_{n} \in \Gamma,
\end{aligned}
\]

\section*{\(G_{\mathcal{A}}:\) formal definition}

For \(\mathcal{A}=\left(Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}\right)\) we define \(G_{\mathcal{A}}=(N, \Sigma, P, S)\) as follows
- \(N=\{S\} \cup\{[p Z q] \mid p, q \in Q, Z \in \Gamma\}\)
- \(P\) contains the following rules:
- for every \(q \in Q, P\) contains \(\left\{S \rightarrow\left[q_{0} Z_{0} q\right]\right\}\) meaning: \(\mathcal{A}\) has to go from \(q_{0}\) to any state \(q\), deleting \(Z_{0}\).
- for each transition (\(p, a, Z, Y_{1} Y_{2} \ldots Y_{n}, q\)) with
\[
\begin{aligned}
& >a \in \Sigma \cup\{\varepsilon\} \text { and } \\
& >Z, Y_{1}, Y_{2} \ldots Y_{n} \in \Gamma,
\end{aligned}
\]
\(P\) contains rules
\[
\left[p Z q_{n}\right] \rightarrow a\left[q Y_{1} q_{1}\right]\left[q_{1} Y_{2} q_{2}\right] \ldots\left[q_{n-1} Y_{n} q_{n}\right]
\]
for all possible combinations of states \(q_{1}, q_{2}, \ldots q_{n} \in Q\).

\section*{PDA to grammar illustrated}

\section*{PDA to grammar illustrated}

Special case: \(n=0\)

\(\rightsquigarrow 1\) rule!

\section*{PDA to grammar illustrated}

\(q_{1}, \ldots q_{n}\) can be chosen freely from \(Q\) ! \(\rightsquigarrow|Q|^{n}\) rules!

Special case: \(n=0\)

\(\leadsto|Q|\) rules!

\section*{Exercise: transformation of PDA into grammar}
\[
\begin{aligned}
\mathcal{A} & =(Q, \Sigma, \Gamma, \Delta, 0, Z) \\
- & Q=\{0,1\} \\
\text { - } & \Sigma=\{a, b\} \\
\text { - } & \Gamma=\{A, Z\} \\
\text { - } & \Delta:
\end{aligned}
\]

\[
\begin{array}{llllll}
0 & \varepsilon & Z & \rightarrow & \varepsilon & 0 \\
0 & a & Z & \rightarrow & A Z & 0 \\
0 & a & A & \rightarrow & A A & 0 \\
0 & b & A & \rightarrow & \varepsilon & 1 \\
1 & b & A & \rightarrow & \varepsilon & 1 \\
1 & \varepsilon & Z & \rightarrow & \varepsilon & 1
\end{array}
\]
- Transform \(\mathcal{A}\) into a grammar \(G_{\mathcal{A}}\) (and reduce \(G_{\mathcal{A}}\)).
- Show how \(G_{\mathcal{A}}\) produces the words \(\varepsilon, a b\), and \(a a b b\).

\section*{Exercise: transformation of PDA into grammar}
\[
\begin{aligned}
\mathcal{A} & =(Q, \Sigma, \Gamma, \Delta, 0, Z) \\
\text { - } & Q=\{0,1\} \\
\text { - } & \Sigma=\{a, b\} \\
\text { - } & \Gamma=\{A, Z\} \\
\text { - } & \Delta:
\end{aligned}
\]

\begin{tabular}{llllll}
0 & \(\varepsilon\) & \(Z\) & \(\rightarrow\) & \(\varepsilon\) & 0 \\
0 & \(a\) & \(Z\) & \(\rightarrow\) & \(A Z\) & 0 \\
0 & \(a\) & \(A\) & \(\rightarrow\) & \(A A\) & 0 \\
0 & \(b\) & \(A\) & \(\rightarrow\) & \(\varepsilon\) & 1 \\
1 & \(b\) & \(A\) & \(\rightarrow\) & \(\varepsilon\) & 1 \\
1 & \(\varepsilon\) & \(Z\) & \(\rightarrow\) & \(\varepsilon\) & 1
\end{tabular}
- Transform \(\mathcal{A}\) into a grammar \(G_{\mathcal{A}}\) (and reduce \(G_{\mathcal{A}}\)).
- Show how \(G_{\mathcal{A}}\) produces the words \(\varepsilon, a b\), and \(a a b b\).

\section*{Bonus Exercises/Homework}
- Assume \(\Sigma=\{a, b\}\).
\(\triangleright\) Find a PDA \(A_{1}\) that accepts \(L_{1}=\left\{\left.w \in \Sigma^{*}| | w\right|_{a}=|w|_{b}\right\}\).
\(>\) Give an accepting run of \(A_{1}\) on abbbaa.
- Assume \(\Sigma=\{a, b\}\).
\(\triangleright\) Find a PDA \(A_{2}\) that accepts \(L_{2}=\left\{\left.w \in \Sigma^{*}| | w\right|_{a}<|w|_{b}\right\}\).
\(\Rightarrow\) Give an accepting run of \(A_{2}\) on bbbaaaabb.
- Assume \(\Sigma=\{a, b, c\}\).
- Find a PDA \(A_{3}\) that accepts
\(L_{3}=\left\{w \in \Sigma^{*}| | w \mid\right.\) is odd and \(\left.w[(|w|+1) / 2]=a\right\}\) (the middle symbol is an \(a\))
- Give an accepting run of \(A_{3}\) on cccaabb.
- Assume \(\Sigma=\{a, b, c\}\).
- Find a PDA \(A_{4}\) that accepts \(L_{4}=\left\{a^{n} b^{m} c^{o} \mid n, m, o \in \mathbb{N}, n=m+o\right\}\)
- Give an accepting run of \(A_{4}\) on aacc.

\section*{Bonus Exercises/Homework}
- Assume \(\Sigma=\{a, b\}\).
\(\triangleright\) Find a PDA \(A_{1}\) that accepts \(L_{1}=\left\{\left.w \in \Sigma^{*}| | w\right|_{a}=|w|_{b}\right\}\).
- Give an accepting run of \(A_{1}\) on abbbaa.
- Assume \(\Sigma=\{a, b\}\).
\(\Rightarrow\) Find a PDA \(A_{2}\) that accepts \(L_{2}=\left\{\left.w \in \Sigma^{*}| | w\right|_{a}<|w|_{b}\right\}\).
- Give an accepting run of \(A_{2}\) on bbbaaaabb.
- Assume \(\Sigma=\{a, b, c\}\).
- Find a PDA \(A_{3}\) that accepts
\(L_{3}=\left\{w \in \Sigma^{*}| | w \mid\right.\) is odd and \(\left.w[(|w|+1) / 2]=a\right\}\) (the middle symbol is an \(a\))
- Give an accepting run of \(A_{3}\) on cccaabb.
- Assume \(\Sigma=\{a, b, c\}\).
\(\triangleright\) Find a PDA \(A_{4}\) that accepts \(L_{4}=\left\{a^{n} b^{m} c^{o} \mid n, m, o \in \mathbb{N}, n=m+o\right\}\)
- Give an accepting run of \(A_{4}\) on aacc.

\section*{Comparison: Regular vs. context-free languages}

Regular languages

Context-free languages

\section*{Comparison: Regular vs. context-free languages}

Regular languages

Context-free languages

For both language classes there are different but equivalent formal descriptions, supporting different arguments about the classes!

\section*{Outline}

Introduction
Regular Languages and Finite
Automata

\section*{Scanners and Flex}

Formal Grammars and Context-Free Languages

Formal Grammars
The Chomsky Hierarchy
Right-linear Grammars
Context-free Grammars

\section*{Push-Down Automata}

\section*{Properties of Context-free Languages}

Turing Machines and Languages of Type 1 and 0

Lecture-specific material
Bonus Exercises
Selected Solutions

\section*{Beyond context-free languages}

\section*{Theorem (Existence of non-context-free languages)}

Let \(\Sigma\) be an alphabet. There are languages \(L \subseteq \Sigma^{*}\) such that there is no context-free grammar \(G\) with \(L=L(G)\).
- There are languages that are not context-free
\(>\) e.g. \(\left\{a^{n} b^{n} c^{n} \mid n \in \mathbb{N}\right\}\)
- ...but how do we show this?
- For regular languages: Pumping lemma
- Finite automata must loop on long words
- Loops can be repeated
- Hence: A language than cannot be pumped is not regular
- For context-free languages?

\section*{Pumping-lemma for context-free languages}

\section*{Idea:}
- If a context-free grammar \(G\) can produce words of arbitrary length, there is at least one repeated NTS in the derivation
- If there are \(n\) rules in the grammar, at least one rule has to be used more than once in a derivation of length \(n+1\)
- Slightly stronger arguments (based on \(|N|\) instead of \(|P|\) are possible)
- Hence there is a derivation \(A \Longrightarrow^{*} v A x\) for \(v, x \in(\Sigma \cup \Gamma)^{*}\)
- ... and we can repeat this part of the derivation \(A \Longrightarrow^{*} v A x \Longrightarrow^{*} v v A x x \Longrightarrow{ }^{*} v v v A x x x\)
- If \(G\) has no chain rules, at least one of \(v, x\) is non-empty

\section*{Pumping Lemma I vs. Pumping Lemma II:}
- PLI (regular languages)
- Argument based on accepting automaton
- Finite automaton must loop on sufficiently long word
- One non-empty segment can be pumped
- PL II (context-free languages)
- Argument based on generating grammar
- At least one non-terminal must repeat in sufficiently long derivation
- Two segments around this NTS can be pumped in parallel, at least one of which is non-empty

\section*{Pumping Lemma II}

\section*{Theorem (Pumping-Lemma for context-free languages)}

Let \(L\) be a language generated by a context-free grammar \(G_{L}=(N, \Sigma, P, S)\) without contracting rules or chain rules. Let \(m=|N|\), \(r\) be the maximum length of the rhs of a rule in \(P\), and \(k=r \cdot(m+1)\). Then:
For every \(s \in L\) with \(|s|>k\) there exists a segmentation \(u \cdot v \cdot w \cdot x \cdot y=s\) such that
\(1 v x \neq \varepsilon\)
\(2|v w x| \leq k\)
\(3 u \cdot v^{h} \cdot w \cdot x^{h} \cdot y \in L\) for every \(h \in \mathbb{N}\).

\section*{Pumping Lemma II}

\section*{Theorem (Pumping-Lemma for context-free languages)}

Let \(L\) be a context-free language. Then there exists \(k \in \mathbb{N}\) with the following property:

For every \(s \in L\) with \(|s|>k\) there exists a segmentation \(u \cdot v \cdot w \cdot x \cdot y=s\) such that
\(1 v x \neq \varepsilon\)
\(2|v w x| \leq k\)
\(3 u \cdot v^{h} \cdot w \cdot x^{h} \cdot y \in L\) for every \(h \in \mathbb{N}\).

\section*{Pumping Lemma II}

\section*{Theorem (Pumping-Lemma for context-free languages)}

Let \(L\) be a context-free language. Then there exists \(k \in \mathbb{N}\) with the following property:

For every \(s \in L\) with \(|s|>k\) there exists a segmentation \(u \cdot v \cdot w \cdot x \cdot y=s\) such that
\(1 v x \neq \varepsilon\)
\(2|v w x| \leq k\)
\(3 u \cdot v^{h} \cdot w \cdot x^{h} \cdot y \in L\) for every \(h \in \mathbb{N}\).
- Holds for \(\left\{a^{n} b^{n}\right\}\), but not for \(\left\{a^{n} b^{n} c^{n}\right\}\).
- \(\left\{a^{n} b^{n} c^{n}\right\}\) is not context-free, but context-sensitive, as we have seen before.

\section*{Group Exercise: \(a^{n} b^{n} c^{n}\)}

Use the Pumping Lemma II to show that \(L=\left\{a^{n} b^{n} c^{n} \mid n \in \mathbb{N}\right\}\) is not context-free.

\section*{Closure properties}

\section*{Theorem (Closure under \(\cup, \cdot{ }^{*}\))}

The class of context-free languages is closed under union, concatenation, and Kleene star.

\section*{Closure properties}

\section*{Theorem (Closure under \(\cup, \cdot,{ }^{*}\))}

The class of context-free languages is closed under union, concatenation, and Kleene star.

For context-free grammars
\[
G_{1}=\left(N_{1}, \Sigma, P_{1}, S_{1}\right) \quad \text { and } \quad G_{2}=\left(N_{2}, \Sigma, P_{2}, S_{2}\right)
\]
with \(N_{1} \cap N_{2}=\{ \}\) (rename NTSs if needed), let \(S\) be a new start symbol.

\section*{Closure properties}

\section*{Theorem (Closure under \(\cup, \cdot{ }^{*}\))}

The class of context-free languages is closed under union, concatenation, and Kleene star.

For context-free grammars
\[
G_{1}=\left(N_{1}, \Sigma, P_{1}, S_{1}\right) \quad \text { and } \quad G_{2}=\left(N_{2}, \Sigma, P_{2}, S_{2}\right)
\]
with \(N_{1} \cap N_{2}=\{ \}\) (rename NTSs if needed), let \(S\) be a new start symbol.
- for \(L\left(G_{1}\right) \cup L\left(G_{2}\right)\), add productions \(S \rightarrow S_{1}, S \rightarrow S_{2}\).
- for \(L\left(G_{1}\right) \cdot L\left(G_{2}\right)\), add production \(S \rightarrow S_{1} S_{2}\).
- for \(L\left(G_{1}\right)^{*}\), add productions \(S \rightarrow \varepsilon, S \rightarrow S_{1} S\).

\section*{Closure properties (cont.)}

\section*{Theorem (Closure under \(\cap\))}

Context-free languages are not closed under intersection.

\section*{Closure properties (cont.)}

\section*{Theorem (Closure under \(\cap\))}

Context-free languages are not closed under intersection.
Otherwise, \(\left\{a^{n} b^{n} c^{n}\right\}\) would be context-free:
- \(\left\{a^{n} b^{n} c^{m}\right\}\) is context-free
- \(\left\{a^{m} b^{n} c^{n}\right\}\) is context-free
- \(\left\{a^{n} b^{n} c^{n}\right\}=\left\{a^{n} b^{n} c^{m}\right\} \cap\left\{a^{m} b^{n} c^{n}\right\}\)

\section*{Exercise: closure properties}

1 Define context-free grammars for \(L_{1}=\left\{a^{n} b^{n} c^{m} \mid n, m \geq 0\right\}\) and \(L_{2}=\left\{a^{m} b^{n} c^{n} \mid n, m \geq 0\right\}\).

2 Use \(L_{1}, L_{2}\) and the known closure properties to show that context-free languages are not closed under complement.

\section*{Decision problems: word problem}

\section*{Theorem (Word problem for cf. languages)}

For a word \(w\) and a context-free grammar \(G\), it is decidable whether \(w \in L(G)\) holds.

\section*{Decision problems: word problem}

\section*{Theorem (Word problem for cf. languages)}

For a word \(w\) and a context-free grammar \(G\), it is decidable whether \(w \in L(G)\) holds.

\section*{Proof.}

The CYK algorithm decides the word problem.

\section*{Decision problems: emptiness problem}

\section*{Theorem (Emptiness problem for cf. languages)}

For a context-free grammar \(G\), it is decidable if \(L(G)=\{ \}\) holds.

\section*{Decision problems: emptiness problem}

\section*{Theorem (Emptiness problem for cf. languages)}

For a context-free grammar \(G\), it is decidable if \(L(G)=\{ \}\) holds.

\section*{Proof.}

Let \(G=(N, \Sigma, P, S)\).
Iteratively compute productive NTSs, i.e. symbols that produce terminal words as follows:
1 let \(Z=\Sigma\)
2 add all symbols \(A\) to \(Z\) for which there is a rule \(A \rightarrow \beta\) with \(\beta \in Z^{*}\)
3 repeat step 2 until no further symbols can be added
\(4 L(G)=\{ \}\) iff \(S \notin Z\).

\section*{Decision problems: equivalence problem}

\section*{Theorem (Equivalence problem for cf. languages)}

For context-free grammars \(G_{1}, G_{2}\), it is undecidable if \(L\left(G_{1}\right)=L\left(G_{2}\right)\) holds.

\section*{Decision problems: equivalence problem}

\section*{Theorem (Equivalence problem for cf. languages)}

For context-free grammars \(G_{1}, G_{2}\), it is undecidable if \(L\left(G_{1}\right)=L\left(G_{2}\right)\) holds.

This follows from undecidability of Post's Correspondence Problem.
- A PCP can be encoded in grammars such that the PCP has a solution if and only if the two grammars are equivalent
- Since the PCP is undecidable, so is the equivalence problem
- Detail? Who needs details?

\section*{Summary: context-free languages}
- characterised by
- context-free grammars
- pushdown automata
- closure properties
- closed under \(\cup,{ }^{*}\),.
- not closed under \(\cap\),
- decision problems
- decidable: \(w \in L(G), L(G)=\{ \}\) (Chomsky NF, CYK algorithm)
- undecidable: \(L\left(G_{1}\right)=L\left(G_{2}\right)\)
- can describe nested dependencies
- structure of programming languages
- natural language processing
- in compilers, these features are used by parsers (next chapter)

\section*{Outline}

\author{
Introduction
}

Reqular Lanauages and Finite Automata

\section*{Scanners and Flex}

Formal Grammars and Context-Free Languages

Parsers and Bison
Turing Machines and Languages of Type 1 and 0

Lecture-specific material
Bonus Exercises
Selected Solutions

\section*{Parsing: Motivation}

Formal grammars describe formal languages
- A grammar has a set of rules
- Rules replace words with words
- A word that can be derived from the start symbol belongs to the language of the grammar

\section*{Parsing: Motivation}

Formal grammars describe formal languages
- A grammar has a set of rules
- Rules replace words with words
- A word that can be derived from the start symbol belongs to the language of the grammar

In the concrete case of programming languages, "words of the language" are syntactically correct programs!

\section*{Grammars in Practice}
- Most programming languages are described by context-free grammars (with extra "semantic" constraints)
- Grammars generate languages
- PDAs and e.g. CYK-Parsing recognize words
- For compiler we need to ...
- identify correct programs
- and understand their structure!

\section*{Lexing and Parsing}
- Lexer: Breaks programs into tokens
- Smallest parts with semantic meaning
- Can be recognized by regular languages/patterns
- Example: 1, 2, 53 are all Integers
- Example: i, handle, stream are all Identifiers
- Example: >, >=, * are all individual operators
- Parser: Recognizes program structure
- Language described by a grammar that has token types as terminals, not individual characters
- Parser builds parse tree

\section*{Automatisation with Bison}

\section*{YACC/Bison}
- Yacc - Yet Another Compiler Compiler
- Originally written \(\approx 1971\) by Stephen C. Johnson at AT\&T
- LALR parser generator
- Translates grammar into syntax analyser

\section*{YACC/Bison}
- Yacc - Yet Another Compiler Compiler
- Originally written \(\approx 1971\) by Stephen C. Johnson at AT\&T
- LALR parser generator
- Translates grammar into syntax analyser

- GNU Bison
- Written by Robert Corbett in 1988
- Yacc-compatibility by Richard Stallman
- Output languages now C, C++, Java
- Yacc, Bison, BYacc, ... mostly compatible (POSIX P1003.2)

\section*{Yacc/Bison Background}
- By default, Bison constructs a 1 token Look-Ahead Left-to-right Rightmost-derivation or LALR(1) parser
- Input tokens are processed left-to-right
- Shift-reduce parser:
- Stack holds tokens (terminals) and non-terminals
\(>\) Tokens are shifted from input to stack. If the top of the stack contains symbols that represent the right hand side (RHS) of a grammar rule, the content is reduced to the LHS
- Since input is reduced left-to-right, this corresponds to a rightmost derivation
- Ambiguities are solved via look-ahead and special rules
- If input can be reduced to start symbol, success!
- Error otherwise
- LALR(1) is efficient in time and memory
- Can parse "all reasonable languages"
- For unreasonable languages, Bison (but not Yacc) can also construct GLR (General LR) parsers
- Try all possibilities with back-tracking
- Corresponds to the non-determinism of stack machines

\section*{Yacc/Bison Overview}
- Bison reads a specification file and converts it into (C) code of a parser
- Specification file: Declarations, grammar rules with actions, support code
- Declarations: C declarations and data model, token names, associated values, includes
- Grammar rules: Non-terminal with alternatives, action associated with each alternative
- Support code: e.g. main() function, error handling...
- Syntax similar to (F)lex
- Sections separated by \(\%\)
- Special commands start with \%
- Bison generates function yyparse ()
- Bison needs function yylex ()
- Usually provided via (F)lex

\section*{Yacc/Bison workflow}

\section*{Yacc/Bison workflow}

\section*{Execution time}

\section*{Example task: Desk calculator}
- Desk calculator
- Reads algebraic expressions and assignments
- Prints result of expressions
- Can store values in registers R0-R99

\section*{Example task: Desk calculator}
- Desk calculator
- Reads algebraic expressions and assignments
- Prints result of expressions
- Can store values in registers R0-R99
- Example session:
\[
\begin{aligned}
& \text { [Shell]./scicalc } \\
& \text { R10=3*(5+4) } \\
& >\text { RegVal: } 27.000000
\end{aligned}
\]

\section*{Example task: Desk calculator}
- Desk calculator
- Reads algebraic expressions and assignments
- Prints result of expressions
- Can store values in registers R0-R99
- Example session:
\[
\begin{aligned}
& \text { [Shell] ./scicalc } \\
& \text { R10=3*(5+4) } \\
& >\text { RegVal: } 27.000000 \\
& (3.1415 * R 10+3) \\
& >87.820500
\end{aligned}
\]

\section*{Example task: Desk calculator}
- Desk calculator
- Reads algebraic expressions and assignments
- Prints result of expressions
- Can store values in registers R0-R99
- Example session:
\[
\begin{aligned}
& \text { [Shell] ./scicalc } \\
& \text { R10=3*(5+4) } \\
& >\text { RegVal: } 27.000000 \\
& (3.1415 * R 10+3) \\
& >87.820500 \\
& \text { R9=(3.1415*R10+3) } \\
& >\text { RegVal: } 87.820500
\end{aligned}
\]

\section*{Example task: Desk calculator}
- Desk calculator
- Reads algebraic expressions and assignments
- Prints result of expressions
- Can store values in registers R0-R99
- Example session:
```

[Shell] ./scicalc
R10=3* (5+4)
> RegVal: 27.000000
(3.1415*R10+3)
> 87.820500
R9=(3.1415*R10+3)
> RegVal: 87.820500
R9+R10
> 114.820500

## Abstract grammar for desk calculator (partial)

$G_{D C}=(N, \Sigma, P, S)$

- $\Sigma=\{$ PLUS, MULT,

ASSIGN, OPENPAR, CLOSEPAR, REGISTER, FLOAT, ...\}

- Some terminals are single characters (,$+=, \ldots$ )
- Others are complex R10, 1.3e7
- Terminals ("tokens") are generated by the lexer
- $N=$ \{stmt, assign, expr, term, factor, ...\}


## Abstract grammar for desk calculator (partial)

$$
G_{D C}=(N, \Sigma, P, S) \quad \vee P:
$$

- $\Sigma=\{$ PLUS, MULT, ASSIGN, OPENPAR, CLOSEPAR, REGISTER, FLOAT, ...\}
- Some terminals are single characters (,$+=, \ldots$ )
- Others are complex R10, 1.3e7
- Terminals ("tokens") are generated by the lexer
- $N=$ \{stmt, assign, expr, term, factor, ...\}


## Abstract grammar for desk calculator (partial)

```
GDC}=(N,\Sigma,P,S
 - }\Sigma={\mathrm{ PLUS, MULT,
 ASSIGN, OPENPAR,
 CLOSEPAR, REGISTER,
 FLOAT,...}
```

- Some terminals are single characters (,$+=, \ldots$ )
- Others are complex R10, 1.3e7
- Terminals ("tokens") are generated by the lexer
- $N=\{$ stmt, assign, expr, term, factor, ...\}


## Abstract grammar for desk calculator (partial)

$$
G_{D C}=(N, \Sigma, P, S)
$$

- $\Sigma=\{$ PLUS, MULT, ASSIGN, OPENPAR, CLOSEPAR, REGISTER, FLOAT, ...\}
- Some terminals are single characters (,$+=, \ldots$ )
- Others are complex R10, 1.3e7
- Terminals ("tokens") are generated by the lexer
- $N=\{$ stmt, assign, expr, term, factor, ...\}


## Abstract grammar for desk calculator (partial)

$$
G_{D C}=(N, \Sigma, P, S)
$$

- $\Sigma=\{$ PLUS, MULT, ASSIGN, OPENPAR, CLOSEPAR, REGISTER, FLOAT, ...\}
- Some terminals are single characters (,$+=, \ldots$ )
- Others are complex R10, 1.3e7
- Terminals ("tokens") are generated by the lexer
- $N=$ \{stmt, assign, expr, term, factor, ...\}


## Abstract grammar for desk calculator (partial)

$G_{D C}=(N, \Sigma, P, S)$

- $\Sigma=\{$ PLUS, MULT, ASSIGN, OPENPAR, CLOSEPAR, REGISTER, FLOAT, ...\}
- Some terminals are single characters (,$+=, \ldots$ )
- Others are complex R10, 1.3e7
- Terminals ("tokens") are generated by the lexer
- $N=$ \{stmt, assign, expr, term, factor, ...\}
- $P$ :

stmt	$\rightarrow$	assign
	$\mid$	expr
assign	$\rightarrow$	REGISTER ASSIGN expr
expr	$\rightarrow$	expreLUS term
	$\mid$	term
term	$\rightarrow$	termMULT factor
	$\mid$	factor

## Abstract grammar for desk calculator (partial)

$G_{D C}=(N, \Sigma, P, S)$

- $\Sigma=\{$ PLUS, MULT, ASSIGN, OPENPAR, CLOSEPAR, REGISTER, FLOAT, ...\}
- Some terminals are single characters (,$+=, \ldots$ )
- Others are complex R10, 1.3e7
- Terminals ("tokens") are generated by the lexer
- $N=\{$ stmt, assign, expr, term, factor, ...\}

$P:$    stmt $\rightarrow$   assign     $\mid$   expr		
assign	$\rightarrow$	REGISTER ASSIGN expr
expr	$\rightarrow$	expr PLUS term
	$\mid$	term
term	$\rightarrow$	term MULT factor
factor	$\rightarrow$	factor
	$\mid$	REGISTER
	$\mid$	FLOAT
	OPENPAR expr CLOSEPAR	

## Abstract grammar for desk calculator (partial)

$$
\begin{aligned}
G_{D C} & =(N, \Sigma, P, S) \\
& \Sigma=\{\text { PLUS, MULT } \\
& \text { ASSIGN, OPENPAR } \\
& \text { CLOSEPAR, REGISTER, } \\
& \text { FLOAT }, \ldots\}
\end{aligned}
$$

- Some terminals are single characters (,$+=, \ldots$ )
- Others are complex R10, 1.3e7
- Terminals ("tokens") are generated by the lexer
- $N=$ \{stmt, assign, expr, term, factor, $\ldots\}$

- $S$ :
- In practice, we need to handle sequences of statements and empty input lines (not reflected in the grammar)


## Parsing statements (1)

- Example string: $\mathrm{R} 10=\left(4.5+3^{*} 7\right)$
- Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS FLOAT MULT FLOAT CLOSEPAR
- In the following abbreviated R, A, O, F, P, F, M, F, C
- Parsing state:
- Unread input (left column)
- Current stack (middle column, top element on right)
- How state was reached (right column)


## Parsing statements (1)

- Example string: $\mathrm{R} 10=\left(4.5+3^{*} 7\right)$
- Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS FLOAT MULT FLOAT CLOSEPAR
- In the following abbreviated R, A, O, F, P, F, M, F, C
- Parsing state:
- Unread input (left column)
- Current stack (middle column, top element on right)
- How state was reached (right column)
- Parsing:

Input
RAOFPFMFC

Stack
Comment Start

## Parsing statements (1)

- Example string: $\mathrm{R} 10=\left(4.5+3^{*} 7\right)$
- Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS FLOAT MULT FLOAT CLOSEPAR
- In the following abbreviated R, A, O, F, P, F, M, F, C
- Parsing state:
- Unread input (left column)
- Current stack (middle column, top element on right)
- How state was reached (right column)
- Parsing:


Comment Start
Shift R to stack

## Parsing statements (1)

- Example string: $\mathrm{R} 10=\left(4.5+3^{*} 7\right)$
- Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS FLOAT MULT FLOAT CLOSEPAR
- In the following abbreviated R, A, O, F, P, F, M, F, C
- Parsing state:
- Unread input (left column)
- Current stack (middle column, top element on right)
- How state was reached (right column)
- Parsing:

Input		Stack	Comment
R A O F P F M F C			
A O F P F F M F C	R	Start	
O F P F M F F	R	Shift R to stack	
	RA	Shift A to stack	

## Parsing statements (1)

- Example string: $\mathrm{R} 10=\left(4.5+3^{*} 7\right)$
- Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS FLOAT MULT FLOAT CLOSEPAR
- In the following abbreviated R, A, O, F, P, F, M, F, C
- Parsing state:
- Unread input (left column)
- Current stack (middle column, top element on right)
- How state was reached (right column)
- Parsing:

Input	Stack	Comment
R A OFPFMFC		Start
A OFPFMFC	R	Shift R to stack
OFPFMFC	R A	Shift A to stack
F P F M F C	R A O	Shift O to stack

## Parsing statements (1)

- Example string: $\mathrm{R} 10=\left(4.5+3^{*} 7\right)$
- Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS FLOAT MULT FLOAT CLOSEPAR
- In the following abbreviated R, A, O, F, P, F, M, F, C
- Parsing state:
- Unread input (left column)
- Current stack (middle column, top element on right)
- How state was reached (right column)
- Parsing:

Input				Stack		
R A O	F P	F M F	F			
A 0 F	P F	M F C	C	R		
$\bigcirc \mathrm{F}$ P	F M	F C			A	
F P F	M F	C			A	
P F M	1 F C				A	0

Comment Start
Shift R to stack
Shift A to stack
Shift O to stack
Shift F to stack

## Parsing statements (1)

- Example string: $\mathrm{R} 10=\left(4.5+3^{*} 7\right)$
- Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS FLOAT MULT FLOAT CLOSEPAR
- In the following abbreviated R, A, O, F, P, F, M, F, C
- Parsing state:
- Unread input (left column)
- Current stack (middle column, top element on right)
- How state was reached (right column)
- Parsing:

Input	Stack	Comment
R A O F P F M F		Start
A OFP F M F C	R	Shift R to stack
$\bigcirc \mathrm{F}$ P F M F C	R A	Shift A to stack
F P F M F C	R A 0	Shift O to stack
P F M F C	$R A \bigcirc F$	Shift F to stack
P F M F C	R A O factor	Reduce F

## Parsing statements (1)

- Example string: $\mathrm{R} 10=\left(4.5+3^{*} 7\right)$
- Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS FLOAT MULT FLOAT CLOSEPAR
- In the following abbreviated R, A, O, F, P, F, M, F, C
- Parsing state:
- Unread input (left column)
- Current stack (middle column, top element on right)
- How state was reached (right column)
- Parsing:

Input	Stack	Comment
R A OFP FMFC		Start
A OFP F M F C	R	Shift R to stack
OFP F M F C	R A	Shift A to stack
F P F M F C	R A 0	Shift O to stack
P F M F C	$R A \bigcirc F$	Shift F to stack
P F M F C	R A O factor	Reduce F
P F M F C	R A O term	Reduce factor

## Parsing statements (1)

- Example string: $\mathrm{R} 10=\left(4.5+3^{*} 7\right)$
- Tokenized: REGISTER ASSIGN OPENPAR FLOAT PLUS FLOAT MULT FLOAT CLOSEPAR
- In the following abbreviated R, A, O, F, P, F, M, F, C
- Parsing state:
- Unread input (left column)
- Current stack (middle column, top element on right)
- How state was reached (right column)
- Parsing:

Input	Stack	Comment
R A OFP FMFC		Start
A OFP F M F C	R	Shift R to stack
OFP F M F C	R A	Shift A to stack
F P F M F C	R A 0	Shift O to stack
P F M F C	$R A O F$	Shift F to stack
P F M F C	R A O factor	Reduce F
P F M F C	R A O term	Reduce factor

## Parsing statements (2)



Start
Shift R to stack
Shift A to stack
Shift O to stack
Shift F to stack
Reduce F
Reduce factor

## Parsing statements (2)



Start
Shift R to stack
Shift A to stack
Shift O to stack
Shift F to stack
Reduce F
Reduce factor
LA! Reduce term

## Parsing statements (2)



Start
Shift R to stack
Shift A to stack
Shift O to stack
Shift F to stack
Reduce F
Reduce factor
LA! Reduce term
Shift P

## Parsing statements (2)



Start
Shift R to stack
Shift A to stack
Shift O to stack
Shift F to stack
Reduce F
Reduce factor
LA! Reduce term
Shift P
Shift F

## Parsing statements (2)

$R$	$A$	$O$	$F$	$P$	$F$	$M$	$F$	$C$
$A$	$O$	$F$	$P$	$F$	$M$	$F$	$C$	
$O$	$F$	$P$	$F$	$M$	$F$	$C$		
$F$	$P$	$F$	$M$	$F$	$C$			
$P$	$F$	$M$	$F$	$C$				
$P$	$F$	$M$	$F$	$C$				
$P$	$F$	$M$	$F$	$C$				
$P$	$F$	$M$	$F$	$C$				
$F$	$M$	$F$	$C$					
$M$	$F$	$C$						
$M$	$F$	$C$						
M								



Start
Shift R to stack
Shift A to stack
Shift O to stack
Shift F to stack
Reduce F
Reduce factor
LA! Reduce term
Shift P
Shift F
Reduce F

## Parsing statements (2)

$R$	$A$	$O$	$F$	$P$	$F$	$M$	$F$	$C$
$A$	$O$	$F$	$P$	$F$	$M$	$F$	$C$	
$O$	$F$	$P$	$F$	$M$	$F$	$C$		
$F$	$P$	$F$	$M$	$F$	$C$			
$P$	$F$	$M$	$F$	$C$				
$P$	$F$	$M$	$F$	$C$				
$P$	$F$	$M$	$F$	$C$				
$P$	$F$	$M$	$F$	$C$				
F	$M$	$F$	$C$					
$M$	$F$	$C$						
$M$	$F$	$C$						
$M$	$F$	$C$						
M								


R
R A
R A 0
$R A O F$
R A O factor
R A O term
R A O expr
R A O expr P
R A O expr P F
R A O expr P factor
R A O expr P term

Start
Shift R to stack
Shift A to stack
Shift O to stack
Shift F to stack
Reduce F
Reduce factor
LA! Reduce term
Shift P
Shift F
Reduce F
Reduce factor

## Parsing statements (2)



Start
Shift R to stack
Shift A to stack
Shift O to stack
Shift F to stack
Reduce F
Reduce factor
LA! Reduce term
Shift P
Shift F
Reduce F
Reduce factor
LA! Shift M

## Parsing statements (2)

$R$	$A$	$O$	$F$	$P$	$F$	$M$	$F$	$C$
$A$	$O$	$F$	$P$	$F$	$M$	$F$	$C$	
$O$	$F$	$P$	$F$	$M$	$F$	$C$		
$F$	$P$	$F$	$M$	$F$	$C$			
$P$	$F$	$M$	$F$	$C$				
$P$	$F$	$M$	$F$	$C$				
$P$	$F$	$M$	$F$	$C$				
$P$	$F$	$M$	$F$	$C$				
$F$	$M$	$F$	$C$					
$M$	$F$	$C$						
$M$	$F$	$C$						
$M$	$F$	$C$						
$F$	$C$							
$C$								
C								

```
R
R A
R A O
R A O F
R A O factor
R A O term
R A O expr
R A O expr P
R A O expr P F
R A O expr P factor
R A O expr P term
R A O expr P term M
R A O expr P term M F
```

Start
Shift R to stack
Shift A to stack
Shift O to stack
Shift F to stack
Reduce F
Reduce factor
LA! Reduce term
Shift P
Shift F
Reduce F
Reduce factor
LA! Shift M
Shift F

## Parsing statements (2)

$R$	$A$	$O$	$F$	$P$	$F$	$M$	$F$	$C$
$A$	$O$	$F$	$P$	$F$	$M$	$F$	$C$	
$O$	$F$	$P$	$F$	$M$	$F$	$C$		
$F$	$P$	$F$	$M$	$F$	$C$			
$P$	$F$	$M$	$F$	$C$				
$P$	$F$	$M$	$F$	$C$				
$P$	$F$	$M$	$F$	$C$				
$P$	$F$	$M$	$F$	$C$				
$F$	$M$	$F$	$C$					
$M$	$F$	$C$						
$M$	$F$	$C$						
$M$	$F$	$C$						
$F$	$C$							
$C$								
$C$								


R	Shift R to stack
R A	Shift A to stack
R A O	Shift O to stack
$R A O F$	Shift F to stack
R A O factor	Reduce F
R A O term	Reduce factor
R A O expr	LA! Reduce term
R A O expr P	Shift P
$R$ A O expr P F	Shift F
$R$ A O expr $P$ factor	Reduce F
R A O expr P term	Reduce factor
$R$ A O expr P term M	LA! Shift M
R A O expr P term M F	Shift F
R A O expr P term M factor	Reduce F

## Parsing statements (2)

$R$	$A$	$O$	$F$	$P$	$F$	$M$	$F$	$C$
$A$	$O$	$F$	$P$	$F$	$M$	$F$	$C$	
$O$	$F$	$P$	$F$	$M$	$F$	$C$		
$F$	$P$	$F$	$M$	$F$	$C$			
$P$	$F$	$M$	$F$	$C$				
$P$	$F$	$M$	$F$	$C$				
$P$	$F$	$M$	$F$	$C$				
$P$	$F$	$M$	$F$	$C$				
F	M	F	C					
$M$	$F$	$C$						
$M$	$F$	$C$						
$M$	$F$	$C$						
F	$C$							
$C$								
$C$								
C								



Start
Shift R to stack
Shift A to stack
Shift O to stack
Shift F to stack
Reduce F
Reduce factor
LA! Reduce term
Shift P
Shift F
Reduce F
Reduce factor
LA! Shift M
Shift F
Reduce F
Reduce tMf

## Parsing statements (2)

$R$	$A$	$O$	$F$	$P$	$F$	$M$	$F$	$C$
$A$	$O$	$F$	$P$	$F$	$M$	$F$	$C$	
$O$	$F$	$P$	$F$	$M$	$F$	$C$		
F	$P$	$F$	$M$	$F$	$C$			
$P$	$F$	$M$	$F$	$C$				
$P$	$F$	$M$	$F$	$C$				
$P$	$F$	$M$	$F$	$C$				
$P$	$F$	$M$	$F$	$C$				
F	$M$	$F$	$C$					
$M$	$F$	$C$						
$M$	$F$	$C$						
$M$	$F$	$C$						
F	$C$							
C								
$C$								
C								
C								



Start
Shift R to stack
Shift A to stack
Shift O to stack
Shift F to stack
Reduce F
Reduce factor
LA! Reduce term
Shift P
Shift F
Reduce F
Reduce factor
LA! Shift M
Shift F
Reduce F
Reduce tMf
Reduce ePt

## Parsing statements (2)



Start
Shift R to stack
Shift A to stack
Shift O to stack
Shift F to stack
Reduce F
Reduce factor
LA! Reduce term
Shift P
Shift F
Reduce F
Reduce factor
LA! Shift M
Shift F
Reduce F
Reduce tMf
Reduce ePt
Shift C

## Parsing statements (2)



Start
Shift R to stack
Shift A to stack
Shift O to stack
Shift F to stack
Reduce F
Reduce factor
LA! Reduce term
Shift P
Shift F
Reduce F
Reduce factor
LA! Shift M
Shift F
Reduce F
Reduce tMf
Reduce ePt
Shift C
Reduce OeC

## Parsing statements (2)



Start
Shift R to stack
Shift A to stack
Shift O to stack
Shift F to stack
Reduce F
Reduce factor
LA! Reduce term
Shift P
Shift F
Reduce F
Reduce factor
LA! Shift M
Shift F
Reduce F
Reduce tMf
Reduce ePt
Shift C
Reduce OeC
Reduce factor

## Parsing statements (2)



Start
Shift R to stack
Shift A to stack
Shift O to stack
Shift F to stack
Reduce F
Reduce factor
LA! Reduce term
Shift P
Shift F
Reduce F
Reduce factor
LA! Shift M
Shift F
Reduce F
Reduce tMf
Reduce ePt
Shift C
Reduce OeC
Reduce factor
Reduce term

## Parsing statements (2)



Start
Shift R to stack
Shift A to stack
Shift O to stack
Shift F to stack
Reduce F
Reduce factor
LA! Reduce term
Shift P
Shift F
Reduce F
Reduce factor
LA! Shift M
Shift F
Reduce F
Reduce tMf
Reduce ePt
Shift C
Reduce OeC
Reduce factor
Reduce term
Reduce RAe

## Parsing statements (2)



Start
Shift R to stack
Shift A to stack
Shift O to stack
Shift F to stack
Reduce F
Reduce factor
LA! Reduce term
Shift P
Shift F
Reduce F
Reduce factor
LA! Shift M
Shift F
Reduce F
Reduce tMf
Reduce ePt
Shift C
Reduce OeC
Reduce factor
Reduce term
Reduce RAe
Reduce assign

## Lexer interface

- Bison parser requires yylex () function
- yylex () returns token
- Token text is defined by regular expression pattern
- Tokens are encoded as integers
- Symbolic names for tokens are defined by Bison in generated header file
- By convention: Token names are all CAPITALS
- yylex () provides optional semantic value of token
- Stored in global variable yylval
- Type of yylval defined by Bison in generated header file
$\Rightarrow$ Default is int
- For more complex situations often a union
- For our example: Union of double (for floating point values) and integer (for register numbers)


## Lexer for desk calculator (1)

```
/*
Lexer for a minimal "scientific" calculator.
Copyright 2014 by Stephan Schulz, schulz@eprover.org.
This code is released under the GNU General Public Licence
Version 2.
*/
%option noyywrap
% {
 #include "scicalcparse.tab.h"
%}
```


## Lexer for desk calculator (2)

```
DIGIT [0-9]
INT {DIGIT}+
PLAINFLOAT {INT}|{INT}[.]|{INT}[.]{INT}|[.]{INT}
EXP [eE] (\+|-)?{INT}
NUMBER {PLAINFLOAT}{EXP}?
REG R{DIGIT}{DIGIT}?
%%
"*" {return MULT;}
"+" {return PLUS;}
"=" {return ASSIGN; }
"(" {return OPENPAR;}
")" {return CLOSEPAR;}
\n {return NEWLINE;}
```


## Lexer for desk calculator (3)

```
{REG } {
 yylval.regno = atoi(yytext+1);
 return REGISTER;
}
{NUMBER} {
 yylval.val = atof(yytext);
 return FLOAT;
}
[] { /* Skip whitespace*/ }
/* Everything else is an invalid character. */
. { return ERROR;}
%%
```


## Data model of desk calculator

- Desk calculator has simple state
- 100 floating point registers
- R0-R99
- Represented in C as array of doubles:

$$
\begin{aligned}
& \text { \#define MAXREGS } 100 \\
& \text { double regfile[MAXREGS]; }
\end{aligned}
$$

- Needs to be initialized in support code


## Bison code for desk calculator: Declarations

```
O
 #include <stdio.h>
 #define MAXREGS 100
 double regfile[MAXREGS];
 extern int yyerror(char* err);
 extern int yylex(void);
% }
%union {
 double val;
 int regno;
 }
```


## Bison code for desk calculator: Tokens

\%start stmtseq<br>\%left PLUS<br>\%left MULT<br>\%token ASSIGN<br>\%token OPENPAR<br>\%token CLOSEPAR<br>\%token NEWLINE<br>\%token REGISTER<br>\%token FLOAT<br>\%token ERROR<br>$\% \%$

## Actions in Bison

- Bison is based on syntax rules with associated actions
- Whenever a reduce is performed, the action associated with the rule is executed
- Actions can be arbitrary C code
- Frequent: semantic actions
- The action sets a semantic value based on the semantic value of the symbols reduced by the rule
- For terminal symbols: Semantic value is yylval from Flex
- Semantic actions have "historically valuable" syntax
- Value of reduced symbol: \$\$
- Value of first symbol in syntax rule body: \$1
- Value of second symbol in syntax rule body: \$2
...
- Access to named components: \$<val>1


## Bison code for desk calculator: Grammar (1)

```
stmtseq: /* Empty */
 | NEWLINE stmtseq {}
 | stmt NEWLINE stmtseq {}
 | error NEWLINE stmtseq {}; /* After an error,
 start afresh */
```

- Head: sequence of statements
- First body line: Skip empty lines
- Second body line: separate current statement from rest
- Third body line: After parse error, start again with new line


## Bison code for desk calculator: Grammar (2)

```
stmt: assign {printf("> RegVal: %f\n", $<val>1);}
 |expr {printf("> %f\n", $<val>1);};
assign: REGISTER ASSIGN expr {regfile[$<regno>1] = $<val>3;
 $<val>$ = $<val>3;} ;
expr: expr PLUS term {$<val>$ = $<val>1 + $<val>3;}
 | term {$<val>$ = $<val>1;};
term: term MULT factor {$<val>$ = $<val>1 * $<val>3;}
 | factor {$<val>$ = $<val>1;};
factor: REGISTER {$<val>$ = regfile[$<regno>1];}
 | FLOAT {$<val>$ = $<val>1;}
 | OPENPAR expr CLOSEPAR {$<val>$ = $<val>2;};
```


## Bison code for desk calculator: Support code

```
int yyerror(char* err)
{
 printf("Error: %s\n", err);
 return 0;
}
int main (int argc, char* argv[])
{
 int i;
 for(i=0; i<MAXREGS; i++)
 {
 regfile[i] = 0.0;
 }
 return yyparse();
}
```


## Bison workflow and dependencies



## Building the calculator

1 Generate parser C code and include file for lexer

- bison -d scicalcparse.y
- Generates scicalcparse.tab.c and scicalcparse.tab.h

2. Generate lexer C code

- flex -t scicalclex.l > scicalclex.c

3 Compile lexer

- gcc -c -o scicalclex.o scicalclex.c

4 Compile parser and support code

- gcc -c -o scicalcparse.tab.o scicalcparse.tab.c

5 Link everything

- gcc scicalclex.o scicalcparse.tab.o -o scicalc

6 Fun!

- ./scicalc


## Exercise: calculator

- Exercise 1:
- Go to http://wwwlehre.dhbw-stuttgart.de/~sschulz/ fla2023.html
- Download scicalcparse.y and scicalclex.l
- Build the calculator
- Run and test the calculator
- Exercise 2 :
- Add support for division and subtraction /, -
- Add support for unary minus (the negation operator -)


## Derivations

## Definition (derivation)

For a grammar $G$, a derivation of a word $w_{n}$ in $L(G)$ is a sequence $S \Rightarrow w_{1} \Rightarrow \ldots \Rightarrow w_{n}$ where $S$ is the start symbol, and each $w_{i}$ is generated from its predecessor by application of a production of the grammar

## Example: derivation

## Example (well-formed expressions over $x,+, * .()$,

```
Let \(G_{E}=(N, \Sigma, P, E)\) with
- \(N=\{E\}\)
- \(\Sigma=\{(),,+, *, x\}\)
- P :
```

    \(1 E \rightarrow x\)
    \(2 E \rightarrow(E)\)
    \(3 E \rightarrow E+E\)
    \(4 E \rightarrow E * E\)
    
## Example: derivation

## Example (well-formed expressions over $x,+, * .()$,

Let $G_{E}=(N, \Sigma, P, E)$ with

- $N=\{E\}$
- $\Sigma=\{(),,+, *, x\}$
- P :
$1 E \rightarrow x$
$2 E \rightarrow(E)$
$3 E \rightarrow E+E$
$4 E \rightarrow E * E$

The following is a derivation of $x+x+x * x$ (with the replaced symbol printed bold):

E

## Example: derivation

## Example (well-formed expressions over $x,+, * .()$,

Let $G_{E}=(N, \Sigma, P, E)$ with

- $N=\{E\}$
- $\Sigma=\{(),,+, *, x\}$
- P :
$1 E \rightarrow x$
$2 E \rightarrow(E)$
$3 E \rightarrow E+E$
$4 E \rightarrow E * E$

The following is a derivation of $x+x+x * x$ (with the replaced symbol printed bold):

$$
\begin{aligned}
& \mathbf{E} \\
& \mathbf{E}+E
\end{aligned}
$$

## Example: derivation

## Example (well-formed expressions over $x,+, * .()$,

Let $G_{E}=(N, \Sigma, P, E)$ with

- $N=\{E\}$
- $\Sigma=\{(),,+, *, x\}$
- P :

$$
\begin{array}{ll}
1 & E \rightarrow x \\
2 & E \rightarrow(E) \\
3 & E \rightarrow E+E \\
4 & E \rightarrow E * E
\end{array}
$$

The following is a derivation of $x+x+x * x$ (with the replaced symbol printed bold):

$$
\begin{aligned}
& \mathbf{E} \\
\Rightarrow & \mathbf{E}+E \\
\Rightarrow & E+E+\mathbf{E}
\end{aligned}
$$

## Example: derivation

## Example (well-formed expressions over $x,+, * .()$,

Let $G_{E}=(N, \Sigma, P, E)$ with

- $N=\{E\}$
- $\Sigma=\{(),,+, *, x\}$
- P :
$\begin{array}{lll}1 & E \rightarrow x \\ 2 & E \rightarrow(E) \\ 3 & E \rightarrow E+E \\ 4 & E \rightarrow E * E\end{array}$

The following is a derivation of $x+x+x * x$ (with the replaced symbol printed bold):

$$
\begin{aligned}
& \mathbf{E} \\
\Rightarrow & \mathbf{E}+E \\
\Rightarrow & E+E+\mathbf{E} \\
\Rightarrow & \mathbf{E}+E+E * E
\end{aligned}
$$

## Example: derivation

## Example (well-formed expressions over $x,+, * .()$,

Let $G_{E}=(N, \Sigma, P, E)$ with

- $N=\{E\}$
- $\Sigma=\{(),,+, *, x\}$
- P :
$\begin{array}{ll}1 & E \rightarrow x \\ 2 & E \rightarrow(E) \\ 3 & E \rightarrow E+E \\ 4 & E \rightarrow E * E\end{array}$

The following is a derivation of $x+x+x * x$ (with the replaced symbol printed bold):

$$
\begin{aligned}
& \mathbf{E} \\
\Rightarrow & \mathbf{E}+E \\
\Rightarrow & E+E+\mathbf{E} \\
\Rightarrow & \mathbf{E}+E+E * E \\
\Rightarrow & x+\mathbf{E}+E * E
\end{aligned}
$$

## Example: derivation

## Example (well-formed expressions over $x,+, * .()$,

Let $G_{E}=(N, \Sigma, P, E)$ with

- $N=\{E\}$
- $\Sigma=\{(),,+, *, x\}$
- P :
$\begin{array}{rl}1 & E \rightarrow x \\ 2 & E \rightarrow(E) \\ 3 & E \rightarrow E+E \\ 4 & E \rightarrow E * E\end{array}$

The following is a derivation of $x+x+x * x$ (with the replaced symbol printed bold):

$$
\begin{aligned}
& \mathbf{E} \\
\Rightarrow & \mathbf{E}+E \\
\Rightarrow & E+E+\mathbf{E} \\
\Rightarrow & \mathbf{E}+E+E * E \\
\Rightarrow & x+\mathbf{E}+E * E \\
\Rightarrow & x+x+\mathbf{E} * E
\end{aligned}
$$

## Example: derivation

## Example (well-formed expressions over $x,+, * .()$,

Let $G_{E}=(N, \Sigma, P, E)$ with

- $N=\{E\}$
- $\Sigma=\{(),,+, *, x\}$
- P :
$\begin{array}{rl}1 & E \rightarrow x \\ 2 & E \rightarrow(E) \\ 3 & E \rightarrow E+E \\ 4 & E \rightarrow E * E\end{array}$

The following is a derivation of $x+x+x * x$ (with the replaced symbol printed bold):

$$
\begin{aligned}
& \mathbf{E} \\
\Rightarrow & \mathbf{E}+E \\
\Rightarrow & E+E+\mathbf{E} \\
\Rightarrow & \mathbf{E}+E+E * E \\
\Rightarrow & x+\mathbf{E}+E * E \\
\Rightarrow & x+x+\mathbf{E} * E \\
\Rightarrow & x+x+x * \mathbf{E}
\end{aligned}
$$

## Example: derivation

## Example (well-formed expressions over $x,+, * .()$,

Let $G_{E}=(N, \Sigma, P, E)$ with

- $N=\{E\}$
- $\Sigma=\{(),,+, *, x\}$
- P :
$\begin{array}{rl}1 & E \rightarrow x \\ 2 & E \rightarrow(E) \\ 3 & E \rightarrow E+E \\ 4 & E \rightarrow E * E\end{array}$

The following is a derivation of $x+x+x * x$ (with the replaced symbol printed bold):

$$
\begin{aligned}
& \mathbf{E} \\
\Rightarrow & \mathbf{E}+E \\
\Rightarrow & E+E+\mathbf{E} \\
\Rightarrow & \mathbf{E}+E+E * E \\
\Rightarrow & x+\mathbf{E}+E * E \\
\Rightarrow & x+x+\mathbf{E} * E \\
\Rightarrow & x+x+x * \mathbf{E} \\
\Rightarrow & x+x+x * x
\end{aligned}
$$

## Rightmost and leftmost Derivations

## Definition (rightmost/leftmost)

- A derivation is called a rightmost derivation, if at any step it replaces the rightmost non-terminal in the current word.
- A derivation is called a leftmost derivation, if at any step it replaces the leftmost non-terminal in the current word.


## Rightmost and leftmost Derivations

## Definition (rightmost/leftmost)

- A derivation is called a rightmost derivation, if at any step it replaces the rightmost non-terminal in the current word.
- A derivation is called a leftmost derivation, if at any step it replaces the leftmost non-terminal in the current word.


## Example

- The derivation on the previous slide is neither leftmost nor rightmost.
- A rightmost derivation is:
$\mathbf{E} \Rightarrow E+\mathbf{E} \Rightarrow E+E+\mathbf{E} \Rightarrow E+E+E * \mathbf{E} \Rightarrow E+E+\mathbf{E} * x \Rightarrow$ $E+\mathbf{E}+x * x \Rightarrow \mathbf{E}+x+x * x \Rightarrow x+x+x * x$


## Parse trees

## Definition (parse tree)

A parse tree for a derivation in a grammar $G=(N, \Sigma, P, S)$ is an ordered, labelled tree with the following properties:

- Each node is labelled with a symbol from $N \cup \Sigma$
- The root of the tree is labelled with the start symbol $S$.
- Each inner node is labelled with a single non-terminal symbol from $N$
- If an inner node with label $A$ has children labelled with symbols $\alpha_{1}, \ldots, \alpha_{n}$, then there is a production $A \rightarrow \alpha_{1} \ldots \alpha_{n}$ in $P$.


## Parse trees

## Definition (parse tree)

A parse tree for a derivation in a grammar $G=(N, \Sigma, P, S)$ is an ordered, labelled tree with the following properties:

- Each node is labelled with a symbol from $N \cup \Sigma$
- The root of the tree is labelled with the start symbol $S$.
- Each inner node is labelled with a single non-terminal symbol from $N$
- If an inner node with label $A$ has children labelled with symbols $\alpha_{1}, \ldots, \alpha_{n}$, then there is a production $A \rightarrow \alpha_{1} \ldots \alpha_{n}$ in $P$.
- The parse tree represents a derivation of the word formed by the labels of the leaf nodes
- It abstracts from the order in which productions are applied.


## Example: parse trees

## Example

The derivation $\mathbf{E} \Rightarrow E+\mathbf{E} \Rightarrow E+E+\mathbf{E} \Rightarrow E+E+E * \mathbf{E} \Rightarrow$ $E+E+\mathbf{E} * x \Rightarrow E+\mathbf{E}+x * x \Rightarrow \mathbf{E}+x+x * x \Rightarrow x+x+x * x$ can be represented by a sequence of parse trees:

## Example: parse trees

## Example

The derivation $\mathbf{E} \Rightarrow E+\mathbf{E} \Rightarrow E+E+\mathbf{E} \Rightarrow E+E+E * \mathbf{E} \Rightarrow$ $E+E+\mathbf{E} * x \Rightarrow E+\mathbf{E}+x * x \Rightarrow \mathbf{E}+x+x * x \Rightarrow x+x+x * x$ can be represented by a sequence of parse trees:


## Example: parse trees

## Example

The derivation $\mathbf{E} \Rightarrow E+\mathbf{E} \Rightarrow E+E+\mathbf{E} \Rightarrow E+E+E * \mathbf{E} \Rightarrow$ $E+E+\mathbf{E} * x \Rightarrow E+\mathbf{E}+x * x \Rightarrow \mathbf{E}+x+x * x \Rightarrow x+x+x * x$ can be represented by a sequence of parse trees:


## Example: parse trees

## Example

The derivation $\mathbf{E} \Rightarrow E+\mathbf{E} \Rightarrow E+E+\mathbf{E} \Rightarrow E+E+E * \mathbf{E} \Rightarrow$ $E+E+\mathbf{E} * x \Rightarrow E+\mathbf{E}+x * x \Rightarrow \mathbf{E}+x+x * x \Rightarrow x+x+x * x$ can be represented by a sequence of parse trees:


## Example: parse trees

## Example

The derivation $\mathbf{E} \Rightarrow E+\mathbf{E} \Rightarrow E+E+\mathbf{E} \Rightarrow E+E+E * \mathbf{E} \Rightarrow$ $E+E+\mathbf{E} * x \Rightarrow E+\mathbf{E}+x * x \Rightarrow \mathbf{E}+x+x * x \Rightarrow x+x+x * x$ can be represented by a sequence of parse trees:


## Example: parse trees

## Example

The derivation $\mathbf{E} \Rightarrow E+\mathbf{E} \Rightarrow E+E+\mathbf{E} \Rightarrow E+E+E * \mathbf{E} \Rightarrow$ $E+E+\mathbf{E} * x \Rightarrow E+\mathbf{E}+x * x \Rightarrow \mathbf{E}+x+x * x \Rightarrow x+x+x * x$ can be represented by a sequence of parse trees:


## Example: parse trees

## Example

The derivation $\mathbf{E} \Rightarrow E+\mathbf{E} \Rightarrow E+E+\mathbf{E} \Rightarrow E+E+E * \mathbf{E} \Rightarrow$ $E+E+\mathbf{E} * x \Rightarrow E+\mathbf{E}+x * x \Rightarrow \mathbf{E}+x+x * x \Rightarrow x+x+x * x$ can be represented by a sequence of parse trees:


## Example: parse trees

## Example

The derivation $\mathbf{E} \Rightarrow E+\mathbf{E} \Rightarrow E+E+\mathbf{E} \Rightarrow E+E+E * \mathbf{E} \Rightarrow$ $E+E+\mathbf{E} * x \Rightarrow E+\mathbf{E}+x * x \Rightarrow \mathbf{E}+x+x * x \Rightarrow x+x+x * x$ can be represented by a sequence of parse trees:


## Example: parse trees

## Example

The derivation $\mathbf{E} \Rightarrow E+\mathbf{E} \Rightarrow E+E+\mathbf{E} \Rightarrow E+E+E * \mathbf{E} \Rightarrow$ $E+E+\mathbf{E} * x \Rightarrow E+\mathbf{E}+x * x \Rightarrow \mathbf{E}+x+x * x \Rightarrow x+x+x * x$ can be represented by a sequence of parse trees:


## Ambiguity

## Definition (ambiguous)

A grammar $G=(N, \Sigma, P, S)$ is ambiguous if it has multiple different parse trees for a word $w$ in $L(G)$.

## Ambiguity

## Definition (ambiguous)

A grammar $G=(N, \Sigma, P, S)$ is ambiguous if it has multiple different parse trees for a word $w$ in $L(G)$.

## Example

$G_{E}$ is ambiguous since it has several parse trees for $x+x+x$.
$1 E \rightarrow x$
$2 E \rightarrow(E)$
$3 E \rightarrow E+E$
$4 E \rightarrow E * E$


## Ambiguity

## Definition (ambiguous)

A grammar $G=(N, \Sigma, P, S)$ is ambiguous if it has multiple different parse trees for a word $w$ in $L(G)$.

## Example

$G_{E}$ is ambiguous since it has several parse trees for $x+x+x$.
$1 E \rightarrow x$
$2 E \rightarrow(E)$
$3 E \rightarrow E+E$
$4 E \rightarrow E * E$


## Exercise: Ambiguity is worse...

Consider the grammar $G_{E}$ and its parse trees for $x+x+x$.
$1 E \rightarrow x$
$2 E \rightarrow(E)$
$3 E \rightarrow E+E$
$4 E \rightarrow E * E$


- Provide a rightmost derivation for the right tree.
- Provide a rightmost derivation for the left tree.
- Provide a leftmost derivation for the left tree.
- Provide a leftmost derivation for the right tree.


## Exercise: Eliminating Ambiguity

Consider $G_{E}$ with the following productions:
$1 E \rightarrow x$
$2 E \rightarrow(E)$
$3 E \rightarrow E+E$
$4 E \rightarrow E * E$

Define a grammar $G^{\prime}$ with $L(G)=L\left(G^{\prime}\right)$ that is not ambiguous, that respects that $*$ has a higher precedence than + , and that respects left-associativity for all operators.

## Abstract Syntax Trees

- Abstract Syntax Trees represent the structure of a derivation without the specific details
- Think: "Parse trees without redundant syntactic elements"


## Abstract Syntax Trees

- Abstract Syntax Trees represent the structure of a derivation without the specific details
- Think: "Parse trees without redundant syntactic elements"


## Example

## Parse Tree:



## Abstract Syntax Trees

- Abstract Syntax Trees represent the structure of a derivation without the specific details
- Think: "Parse trees without redundant syntactic elements"


## Example



Corresponding AST:


## High-Level Architecture of a Compiler



## Syntactic Analysis/Parsing

- Description of the language with a context-free grammar
- Parsing:
- Try to build a parse tree/abstract syntax tree (AST)
- Parse tree unambiguously describes structure of a program
- AST reflects abstract syntax (can e.g. drop parenthesis)
- Methods:
- Manual recursive descent parser
- Automatic with a table-driven bottom-up parser


## Syntactic Analysis/Parsing

- Description of the language with a context-free grammar
- Parsing:
- Try to build a parse tree/abstract syntax tree (AST)
- Parse tree unambiguously describes structure of a program
- AST reflects abstract syntax (can e.g. drop parenthesis)
- Methods:
- Manual recursive descent parser
- Automatic with a table-driven bottom-up parser

Result: Abstract Syntax Tree

## Semantic Analysis

- Analyze static properties of the program
- Which variable has which type?
- Are all expressions well-typed?
- Which names are defined?
- Which names are referenced?
- Core tool: Symbol table


## Semantic Analysis

- Analyze static properties of the program
- Which variable has which type?
- Are all expressions well-typed?
- Which names are defined?
- Which names are referenced?
- Core tool: Symbol table

Result: Annotated AST

## Optimization

- Transform Abstract Syntax Tree to generate better code
- Smaller
- Faster
- Both
- Mechanisms
- Common sub-expression elimination
- Loop unrolling
- Dead code/data elimination


## Optimization

- Transform Abstract Syntax Tree to generate better code
- Smaller
- Faster
- Both
- Mechanisms
- Common sub-expression elimination
- Loop unrolling
- Dead code/data elimination

Result: Optimized AST

## Code Generation

- Convert optimized AST into low-level code
- Target languages:
- Assembly code
- Machine code
- VM code (z.B. JAVA byte-code, p-Code)
- C (as a "portable assembler")


## Code Generation

- Convert optimized AST into low-level code
- Target languages:
- Assembly code
- Machine code
- VM code (z.B. JAVA byte-code, p-Code)
- C (as a "portable assembler")

Result: Program in target language

## Summary: parsers

## Parsers

- recognise structure of programs
- receive tokens from scanner
- construct parse tree and symbol table
- common: shift-reduce parsing


## Summary: parsers

## Parsers

- recognise structure of programs
- receive tokens from scanner
- construct parse tree and symbol table
- common: shift-reduce parsing

Bison

- receives tokens and their semantic values from Flex
- uses grammar rules to perform semantic actions
- uses look-ahead to resolve conflicts


## Summary: parsers

## Parsers

- recognise structure of programs
- receive tokens from scanner
- construct parse tree and symbol table
- common: shift-reduce parsing

Bison

- receives tokens and their semantic values from Flex
- uses grammar rules to perform semantic actions
- uses look-ahead to resolve conflicts


## Outline

Turing Machines and Languages of Type 1 and 0

Turing Machines
Unrestricted Grammars
Linear Bounded Automata
Properties of Type-0-languages
Lecture-specific material
Bonus Exercises
Selected Solutions

## Outline

Turing Machines and Languages of

## Introduction

Reqular Lanquages and Finite Automata
Scanners and Flex
Formal Grammars and Context-Free Languages

Parsers and Bison

Type 1 and 0
Turing Machines
Unrestricted Grammars
Linear Bounded Automata
Properties of Type-0-languages
Lecture-specific material
Bonus Exercises

## Selected Solutions

## Turing Machines

## Turing Machine: Motivation

Four classes of languages described by grammars and equivalent machine models:
1 regular languages $\sim$ finite automata
2 context-free languages $\sim$ pushdown automata
3 context-sensitive languages $\sim$ ?
4 Type-0-languages $\sim$ ?


## Turing Machine: Motivation

Four classes of languages described by grammars and equivalent machine models:
1 regular languages $\sim$ finite automata
2 context-free languages $\sim$ pushdown automata
3 context-sensitive languages $\sim$ ?
4 Type-0-languages $\sim$ ?


We need a machine model that is more powerful than PDAs: Turing Machines

## Turing Machine: history

- proposed in 1936 by Alan Turing
- paper: On computable numbers, with an application to the Entscheidungsproblem
- uses the TM to show that satisfiability of first-order formulas is undecidable
- model of a universal computer
- very simple (and thus easy to describe formally)

- but as powerful as any conceivable machine


## Turing Machine: conceptual model



- memory: unlimited tape (bidirectional)
- initially contains input (and blanks \#)
- TM can read and write tape
- TM can move arbitrarily over tape
- serves for input, working, output
- output possible
- transition relation
- read and write current position
- moving instructions (I, r, n)
- acceptance condition
- final state is reached
- no transitions possible
- commonalities with FA
- control unit (finite set of states),
- initial and final states
- input alphabet


## Transitions in Turing Machines

$$
\Delta \subseteq Q \times \Gamma \times \Gamma \times\{l, n, r\} \times Q
$$

- TM is in state
- reads tape symbol from current position
- writes tape symbol on current position
- moves to left, right, or stays
- goes into a new state


## Transitions in Turing Machines

$$
\Delta \subseteq Q \times \Gamma \times \Gamma \times\{l, n, r\} \times Q
$$

- TM is in state
- reads tape symbol from current position
- writes tape symbol on current position
- moves to left, right, or stays
- goes into a new state

A transition $p, a, b, l, q$ can also be written as

$$
\begin{array}{cccccc}
p & a & \rightarrow & b & l & q
\end{array}
$$

## Example: transition

Example (transition $1, t \rightarrow c, r, 2$ )


## Example: transition

Example (transition $1, t \rightarrow c, r, 2$ )


## Turing Machine: formal definition

## Definition (Turing Machine)

A Turing Machine (TM) is a 6-tuple $\left(Q, \Sigma, \Gamma, \Delta, q_{0}, F\right)$ where

- $Q, \Sigma, q_{0}, F$ are defined as for NFAs,
- $\Gamma \supseteq \Sigma \cup\{\#\}$ is the tape alphabet, including at least $\Sigma$ and the blank symbol,
- $\Delta \subseteq Q \times \Gamma \times \Gamma \times\{l, n, r\} \times Q$ is the transition relation.


## Turing Machine: formal definition

## Definition (Turing Machine)

A Turing Machine (TM) is a 6-tuple $\left(Q, \Sigma, \Gamma, \Delta, q_{0}, F\right)$ where

- $Q, \Sigma, q_{0}, F$ are defined as for NFAs,
- $\Gamma \supseteq \Sigma \cup\{\#\}$ is the tape alphabet, including at least $\Sigma$ and the blank symbol,
- $\Delta \subseteq Q \times \Gamma \times \Gamma \times\{l, n, r\} \times Q$ is the transition relation.

If $\Delta$ contains at most one transition $(p, a, b, d, q)$ for each pair $(p, a) \in Q \times \Sigma$, the TM is called deterministic. The transition function is then denoted by $\delta$.

## Turing Machine: formal definition

## Definition (Turing Machine)

A Turing Machine (TM) is a 6-tuple $\left(Q, \Sigma, \Gamma, \Delta, q_{0}, F\right)$ where

- $Q, \Sigma, q_{0}, F$ are defined as for NFAs,
- $\Gamma \supseteq \Sigma \cup\{\#\}$ is the tape alphabet, including at least $\Sigma$ and the blank symbol,
- $\Delta \subseteq Q \times \Gamma \times \Gamma \times\{l, n, r\} \times Q$ is the transition relation.

If $\Delta$ contains at most one transition $(p, a, b, d, q)$ for each pair $(p, a) \in Q \times \Sigma$, the TM is called deterministic. The transition function is then denoted by $\delta$.

Note:

- $\Gamma$ (the tape alphabet) can contain additional characters
- This does not increase the power, but makes developing TMs easier


## Configurations of TMs

## Definition (configuration)

A configuration $c=\alpha q \beta$ of a Turing Machine is given by

- the current state $q$
- the tape content $\alpha$ on the left of the read/write head (except unlimited \# sequences)
- the tape content $\beta$ starting with the position of the head (except unlimited \# sequences)


## Configurations of TMs

## Definition (configuration)

A configuration $c=\alpha q \beta$ of a Turing Machine is given by

- the current state $q$
- the tape content $\alpha$ on the left of the read/write head (except unlimited \# sequences)
- the tape content $\beta$ starting with the position of the head (except unlimited \# sequences)

A configuration $c=\alpha q \beta$ is accepting if $q \in F$.

## Configurations of TMs

## Definition (configuration)

A configuration $c=\alpha q \beta$ of a Turing Machine is given by

- the current state $q$
- the tape content $\alpha$ on the left of the read/write head (except unlimited \# sequences)
- the tape content $\beta$ starting with the position of the head (except unlimited \# sequences)

A configuration $c=\alpha q \beta$ is accepting if $q \in F$.
A configuration $c$ is a stop configuration if there are no transitions from $c$.

## Example: configuration

## Example: configuration

## Example (configurations)



- This TM is in the configuration c2ape.


## Example: configuration

## Example (configurations)



- This TM is in the configuration c2ape.
- The configuration 4tape is accepting.
- If there are no transitions $4, t \rightarrow \ldots$, 4tape also is a stop configuration.


## Computations of TMs

## Definition (computation, acceptance)

A computation of a TM $\mathcal{M}$ on a word $w$ is a sequence of configurations (according to the transition function) of configurations of $\mathcal{M}$, starting from $q_{0} w$.

## Computations of TMs

## Definition (computation, acceptance)

A computation of a TM $\mathcal{M}$ on a word $w$ is a sequence of configurations (according to the transition function) of configurations of $\mathcal{M}$, starting from $q_{0} w$.
$\mathcal{M}$ accepts $w$ if there exists a computation of $\mathcal{M}$ on $w$ that leads to an accepting stop configuration.

## Computations of TMs

## Definition (computation, acceptance)

A computation of a TM $\mathcal{M}$ on a word $w$ is a sequence of configurations (according to the transition function) of configurations of $\mathcal{M}$, starting from $q_{0} w$.
$\mathcal{M}$ accepts $w$ if there exists a computation of $\mathcal{M}$ on $w$ that leads to an accepting stop configuration.

- Physical Turing maschine:
https://www.youtube.com/watch?v=E3keLeMwfHY\&t=13s
- Turing machine in Conway's Game of Life
https://www.youtube.com/watch?v=My8AsV7bA94


## Exercise: Turing Machines

$$
\text { Let } \Sigma=\{a, b\} \text { and } L=\left\{\left.w \in \Sigma^{*}| | w\right|_{a} \text { is even }\right\} .
$$

- Give a TM $\mathcal{M}$ that accepts (exactly) the words in $L$.
- Give the computation of $\mathcal{M}$ on the words $a b b a b$ and $b b a b$.


## Example: TM for $a^{n} b^{n} c^{n}$

$$
\begin{aligned}
\mathcal{M} & =(Q, \Sigma, \Gamma, \Delta, \text { start, }\{\mathrm{f}\}) \text { with } \\
& \text { - } Q=\{\text { start, findb, findc, check, back, end, } \mathrm{f}\} \\
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} \text { and } \Gamma=\Sigma \cup\{\#, \mathrm{x}, \mathrm{y}, \mathrm{z}\}
\end{aligned}
$$

state	read	write	move	state	state	read	write	move	state
start	\#	\#	n	f	back	z	z	I	back
start	a	X	r	findb	back	b	b	I	back
findb	a	a	$r$	findb	back	y	y	I	back
findb	y	y	$r$	findb	back	a	a	1	back
findb	b	y	$r$	findc	back	x	x	$r$	start
findc	b	b	$r$	findc	end	z	z	I	end
findc	z	z	$r$	findc	end	y	y	I	end
findc	c	z	r	check	end	x	x	I	end
check	C	C	1	back	end	\#	\#	n	f
check	\#	\#	I	end					

## Exercise: Turing Machines (2)

a) Simulate the computations of $\mathcal{M}$ on $a a b b c c$ and $a a b c$.
b) Develop a Turing Machine $\mathcal{P}$ accepting $L_{\mathcal{P}}=\left\{w c w \mid w \in\{a, b\}^{*}\right\}$.
c) How do you have to modify $\mathcal{P}$ if you want to recognise inputs of the form $w w$ ?

## Turing Machines with several tapes

- A $k$-tape TM has $k$ tapes on which the heads can move independently.
- $\Delta \subseteq Q \times \Gamma^{k} \times \Gamma^{k} \times\{r, l, n\}^{k} \times Q$
- It is possible to simulate a $k$-tape TM with a (1-tape) TM:
$\Rightarrow$ use alphabet $\Gamma^{k} \times\{X, \#\}^{k}$
$\Rightarrow$ the first $k$ language elements encode the tape content, the remaining ones the positions of the heads.


## Nondeterminism

## Reminder

- just like FAs and PDAs, TMs can be deterministic or non-deterministic, depending on the transition relation.
- for non-deterministic TMs, the machine accepts $w$ if there exists a sequence of transitions leading to an accepting stop configuration.


## Simulating non-deterministic TMs

Theorem (equivalence of deterministic and non-deterministic TMs)

Deterministic TMs can simulate computations of non-deterministic TMs; i.e. they describe the same class of languages.

## Simulating non-deterministic TMs

## Theorem (equivalence of deterministic and non-deterministic TMs)

Deterministic TMs can simulate computations of non-deterministic TMs; i.e. they describe the same class of languages.

## Proof.

Use a 3-tape TM:

- tape 1 stores the input $w$
- tape 2 enumerates all possible sequences of non-deterministic choices (for all non-deterministic transitions)
- tape 3 encodes the computation on $w$ with choices stored on tape 2.


## Outline

Turing Machines and Languages of Type 1 and 0

Turing Machines
Unrestricted Grammars
Linear Bounded Automata Properties of Type-0-languages

Lecture-specific material
Bonus Exercises

## Selected Solutions

## Turing Machines and unrestricted grammars

Theorem (equivalence of TMs and unrestricted grammars)
The class of languages that can be accepted by a Turing Machine is exactly the class of languages that can be generated by unrestricted Chomsky grammars.

## Turing Machines and unrestricted grammars

## Theorem (equivalence of TMs and unrestricted grammars)

The class of languages that can be accepted by a Turing Machine is exactly the class of languages that can be generated by unrestricted Chomsky grammars.

Proof.
1 simulate grammar derivations with a TM
2 simulate a TM computation with a grammar

## Simulating a Type-0-grammar $G$ with a TM

Use a non-deterministic 2-tape TM:

- tape 1 stores input word $w$
- tape 2 simulates the derivations of $G$, starting with $S$
- (non-deterministically) choose a position
- if the word starting at the position, matches $\alpha$ of a rule $\alpha \rightarrow \beta$, apply the rule
- move tape content if necessary
$>$ replace $\alpha$ with $\beta$
- compare content of tape 2 with tape 1
- if they are equal, accept
- otherwise continue


## Simulating a TM with a Type-0-grammar

Goal: transform TM $\mathcal{A}=\left(Q, \Sigma, \Gamma, \Delta, q_{0}, F\right)$ into grammar $G$ Technical difficulty:

- $\mathcal{A}$ receives word as input at the start, possibly modifies it, then possibly accepts.
- $G$ starts with $S$, applies rules, possibly generating $w$ at the end.


## Simulating a TM with a Type-0-grammar

Goal: transform TM $\mathcal{A}=\left(Q, \Sigma, \Gamma, \Delta, q_{0}, F\right)$ into grammar $G$ Technical difficulty:

- $\mathcal{A}$ receives word as input at the start, possibly modifies it, then possibly accepts.
- $G$ starts with $S$, applies rules, possibly generating $w$ at the end.

1 generate initial configuration $q_{0} w \in \Sigma^{*}$ with blanks left and right
2 simulate the computation of $\mathcal{A}$ on $w$

$$
\begin{aligned}
(p, a, b, r, q) & \sim p a \rightarrow b q \\
(p, a, b, l, q) & \sim c p a \rightarrow q c b(\text { for all } c \in \Gamma) \\
(p, a, b, n, q) & \sim p a \rightarrow q b
\end{aligned}
$$

3 if an accepting stop configuration is reached, recreate $w$

- requires a more complex alphabet with a "backup track"


## Outline

Turing Machines and Languages of Type 1 and 0

Turing Machines
Unrestricted Grammars
Linear Bounded Automata
Properties of Type-0-languages
Lecture-specific material
Bonus Exercises

## Selected Solutions

## Linear bounded automata

- context-sensitive grammars do not allow for contracting rules
- a linear bounded automaton (LBA) is a TM that only uses the space originally occupied by the input $w$.
- limits of $w$ are indicated by markers that cannot be passed by the read/write head


## Linear bounded automata

- context-sensitive grammars do not allow for contracting rules
- a linear bounded automaton (LBA) is a TM that only uses the space originally occupied by the input $w$.
- limits of $w$ are indicated by markers that cannot be passed by the read/write head



## Equivalence of cs. grammars and LBAs

Transformation of cs. grammar $G$ into LBA:

- as for Type-0-grammar: use 2-tape-TM
- input on tape 1
- simulate operations of $G$ on tape 2
- since the productions of $G$ are non-contracting, words longer than $w$ need not be considered


## Equivalence of cs. grammars and LBAs

Transformation of cs. grammar $G$ into LBA:

- as for Type-0-grammar: use 2-tape-TM
- input on tape 1
- simulate operations of $G$ on tape 2
- since the productions of $G$ are non-contracting, words longer than $w$ need not be considered

Transformation of LBA $\mathcal{A}$ into cs. grammar:

- similar to construction for TM:
- generate $w$ without blanks
- simulate operation of $\mathcal{A}$ on $w$
$>$ rules are non-contracting


## Closure properties: regular operations

## Theorem (closure under $\cup, \cdot{ }^{*}$ )

The class of languages described by context-sensitive grammars is closed under $\cup, \cdot,{ }^{*}$.

## Closure properties: regular operations

## Theorem (closure under $\cup, \cdot{ }^{*}$ )

The class of languages described by context-sensitive grammars is closed under $\cup, \cdot,{ }^{*}$.

## Proof.

Concatenation and Kleene-star are more complex than for cf. grammars because the context can influence rule applicability.

- rename NTSs (as for cf. grammars)
- only allow NTSs as context
- only allow productions of the kind

$$
\begin{aligned}
& >N_{1} N_{2} \ldots N_{k} \rightarrow M_{1} M_{2} \ldots M_{j} \\
& >N \rightarrow a
\end{aligned}
$$

## Closure properties: intersection and complement

Theorem (closure under $\cap$ )
The class of context-sensitive languages is closed under intersection.

## Closure properties: intersection and complement

Theorem (closure under $\cap$ )
The class of context-sensitive languages is closed under intersection.

## Proof.

- use a 2-tape-LBA
- simulate computation of $\mathcal{A}_{1}$ on tape $1, \mathcal{A}_{2}$ on tape 2
- accept if both $\mathcal{A}_{1}$ and $\mathcal{A}_{2}$ accept


## Closure properties: intersection and complement

Theorem (closure under $\cap$ )
The class of context-sensitive languages is closed under intersection.

## Proof.

- use a 2-tape-LBA
- simulate computation of $\mathcal{A}_{1}$ on tape $1, \mathcal{A}_{2}$ on tape 2
- accept if both $\mathcal{A}_{1}$ and $\mathcal{A}_{2}$ accept


## Theorem (closure under

The class of context-sensitive languages is closed under complement.

## Closure properties: intersection and complement

Theorem (closure under $\cap$ )
The class of context-sensitive languages is closed under intersection.

## Proof.

- use a 2-tape-LBA
- simulate computation of $\mathcal{A}_{1}$ on tape $1, \mathcal{A}_{2}$ on tape 2
- accept if both $\mathcal{A}_{1}$ and $\mathcal{A}_{2}$ accept


## Theorem (closure under

The class of context-sensitive languages is closed under complement.

- shown in 1988


## Context-sensitive grammars: decision problems

## Theorem (Word problem for cs. languages)

The word problem for cs. languages is decidable.

## Context-sensitive grammars: decision problems

## Theorem (Word problem for cs. languages)

The word problem for cs. languages is decidable.

## Proof.

- $N, \Sigma$ and $P$ are finite
- rules are non-contracting
- for a word of length $n$ only a finite number of derivations up to length $n$ has to be considered.


## Context-sensitive grammars: decision problems (cont')

## Theorem (Emptiness problem for cs. languages)

The emptiness problem for cs. languages is undecidable.

## Proof.

Also follows from undecidability of Post's correspondence problem.

## Context-sensitive grammars: decision problems (cont')

Theorem (Emptiness problem for cs. languages)
The emptiness problem for cs. languages is undecidable.
Proof.
Also follows from undecidability of Post's correspondence problem.

Theorem (Equivalence problem for cs. languages)
The equivalence problem for cs. languages is undecidable.

## Proof.

If this problem was decidable for cs. languages, it would also be decidable for cf. languages (since every cf. language is also cs.).

## Outline

Turing Machines and Languages of Type 1 and 0

Turing Machines
Unrestricted Grammars
Linear Bounded Automata
Properties of Type-0-languages
Lecture-specific material
Bonus Exercises

## Selected Solutions

## The universal Turing Machine $\mathcal{U}$

- $\mathcal{U}$ is a TM that simulates other Turing Machines
- since TMs have finite alphabets and state sets, they can be encoded by a (binary) alphabet by an encoding function $c()$
- Input:
- encoding $c(\mathcal{A})$ of a TM $\mathcal{A}$ on tape 1
$>$ encoding $c(w)$ of an input word $w$ for $\mathcal{A}$ on tape 2
- with input $c(\mathcal{A})$ and $c(w), \mathcal{U}$ behaves exactly like $\mathcal{A}$ on $w$ :
- $\mathcal{U}$ accepts iff $\mathcal{A}$ accepts
- $\mathcal{U}$ halts iff $\mathcal{A}$ halts
- $\mathcal{U}$ runs forever if $\mathcal{A}$ runs forever


## The universal Turing Machine $\mathcal{U}$

- $\mathcal{U}$ is a TM that simulates other Turing Machines
- since TMs have finite alphabets and state sets, they can be encoded by a (binary) alphabet by an encoding function $c()$
- Input:
- encoding $c(\mathcal{A})$ of a TM $\mathcal{A}$ on tape 1
$>$ encoding $c(w)$ of an input word $w$ for $\mathcal{A}$ on tape 2
- with input $c(\mathcal{A})$ and $c(w), \mathcal{U}$ behaves exactly like $\mathcal{A}$ on $w$ :
- $\mathcal{U}$ accepts iff $\mathcal{A}$ accepts
- $\mathcal{U}$ halts iff $\mathcal{A}$ halts
- $\mathcal{U}$ runs forever if $\mathcal{A}$ runs forever

Every solvable problem can be solved in software.

## Operation of $\mathcal{U}$

1 encode initial configuration

- tape on Ihs of head
- state
- tape on rhs of head

2 use $c(\mathcal{A})$ to find a transition from the current configuration
3 modify the current configuration accordingly
4 accept if $\mathcal{A}$ accepts
5 stop if $\mathcal{A}$ stops
6 otherwise, continue with step 2

## The Halting problem

## Definition (halting problem)

For a $\operatorname{TM} \mathcal{A}=\left(Q, \Sigma, \Gamma, q_{0}, \Delta, F\right)$ and a word $w \in \Sigma^{*}$, does $\mathcal{A}$ halt (i.e. reach a stop configuration) with input $w$ ?

## The Halting problem

## Definition (halting problem)

For a $\operatorname{TM} \mathcal{A}=\left(Q, \Sigma, \Gamma, q_{0}, \Delta, F\right)$ and a word $w \in \Sigma^{*}$, does $\mathcal{A}$ halt (i.e. reach a stop configuration) with input $w$ ?

Wanted: TMs $\mathcal{H} 1$ and $\mathcal{H} 2$, such that with input $c(\mathcal{A})$ and $c(w)$

## The Halting problem

## Definition (halting problem)

For a $\operatorname{TM} \mathcal{A}=\left(Q, \Sigma, \Gamma, q_{0}, \Delta, F\right)$ and a word $w \in \Sigma^{*}$, does $\mathcal{A}$ halt (i.e. reach a stop configuration) with input $w$ ?

Wanted: TMs $\mathcal{H} 1$ and $\mathcal{H} 2$, such that with input $c(\mathcal{A})$ and $c(w)$
$1 \mathcal{H} 1$ accepts iff $\mathcal{A}$ halts on $w$ and

## The Halting problem

## Definition (halting problem)

For a $\operatorname{TM} \mathcal{A}=\left(Q, \Sigma, \Gamma, q_{0}, \Delta, F\right)$ and a word $w \in \Sigma^{*}$, does $\mathcal{A}$ halt (i.e. reach a stop configuration) with input $w$ ?

Wanted: TMs $\mathcal{H} 1$ and $\mathcal{H} 2$, such that with input $c(\mathcal{A})$ and $c(w)$
$1 \mathcal{H} 1$ accepts iff $\mathcal{A}$ halts on $w$ and
2 $\mathcal{H} 2$ accepts iff $\mathcal{A}$ does not halt on $w$.

## The Halting problem

## Definition (halting problem)

For a $\operatorname{TM} \mathcal{A}=\left(Q, \Sigma, \Gamma, q_{0}, \Delta, F\right)$ and a word $w \in \Sigma^{*}$, does $\mathcal{A}$ halt (i.e. reach a stop configuration) with input $w$ ?

Wanted: TMs $\mathcal{H} 1$ and $\mathcal{H} 2$, such that with input $c(\mathcal{A})$ and $c(w)$
$1 \mathcal{H} 1$ accepts iff $\mathcal{A}$ halts on $w$ and
$2 \mathcal{H} 2$ accepts iff $\mathcal{A}$ does not halt on $w$.
decision procedure for HP: let $\mathcal{H} 1$ and $\mathcal{H} 2$ run in parallel

## The Halting problem

## Definition (halting problem)

For a $\operatorname{TM} \mathcal{A}=\left(Q, \Sigma, \Gamma, q_{0}, \Delta, F\right)$ and a word $w \in \Sigma^{*}$, does $\mathcal{A}$ halt (i.e. reach a stop configuration) with input $w$ ?

Wanted: TMs $\mathcal{H} 1$ and $\mathcal{H} 2$, such that with input $c(\mathcal{A})$ and $c(w)$
$1 \mathcal{H} 1$ accepts iff $\mathcal{A}$ halts on $w$ and
$2 \mathcal{H} 2$ accepts iff $\mathcal{A}$ does not halt on $w$.
decision procedure for HP: let $\mathcal{H} 1$ and $\mathcal{H} 2$ run in parallel
$1 \mathcal{U}$ (almost) does what $\mathcal{H} 1$ needs to do.

## The Halting problem

## Definition (halting problem)

For a TM $\mathcal{A}=\left(Q, \Sigma, \Gamma, q_{0}, \Delta, F\right)$ and a word $w \in \Sigma^{*}$, does $\mathcal{A}$ halt (i.e. reach a stop configuration) with input $w$ ?

Wanted: TMs $\mathcal{H} 1$ and $\mathcal{H} 2$, such that with input $c(\mathcal{A})$ and $c(w)$
$1 \mathcal{H} 1$ accepts iff $\mathcal{A}$ halts on $w$ and
$2 \mathcal{H} 2$ accepts iff $\mathcal{A}$ does not halt on $w$.
decision procedure for HP: let $\mathcal{H} 1$ and $\mathcal{H} 2$ run in parallel
$1 \mathcal{U}$ (almost) does what $\mathcal{H} 1$ needs to do.
2 Difficult: $\mathcal{H} 2$ needs to detect that that $\mathcal{A}$ does not terminate.

- infinite tape $\sim$ infinite number possible configurations
- recognising repeated configurations not sufficient.


## Undecidability of the halting problem

Assumption: there is a TM $\mathcal{H} 2$ which, given $c(\mathcal{A})$ and $c(w)$ as input
11 accepts if $\mathcal{A}$ does not halt with input $w$ and
2 runs forever if $\mathcal{A}$ halts with input $w$.

## Undecidability of the halting problem

Assumption: there is a TM $\mathcal{H} 2$ which, given $c(\mathcal{A})$ and $c(w)$ as input
1 accepts if $\mathcal{A}$ does not halt with input $w$ and
2 runs forever if $\mathcal{A}$ halts with input $w$.

If $\mathcal{H} 2$ exists, then there is also a TM $\mathcal{S}$ accepting exactly those encodings of TMs that do not accept their own encoding

## Undecidability of the halting problem

Assumption: there is a TM $\mathcal{H} 2$ which, given $c(\mathcal{A})$ and $c(w)$ as input
1 accepts if $\mathcal{A}$ does not halt with input $w$ and
2 runs forever if $\mathcal{A}$ halts with input $w$.

If $\mathcal{H} 2$ exists, then there is also a TM $\mathcal{S}$ accepting exactly those encodings of TMs that do not accept their own encoding
1 input: TM encoding $c(\mathcal{A})$ on tape 1

## Undecidability of the halting problem

Assumption: there is a TM $\mathcal{H} 2$ which, given $c(\mathcal{A})$ and $c(w)$ as input
1 accepts if $\mathcal{A}$ does not halt with input $w$ and
2 runs forever if $\mathcal{A}$ halts with input $w$.

If $\mathcal{H} 2$ exists, then there is also a TM $\mathcal{S}$ accepting exactly those encodings of TMs that do not accept their own encoding
1 input: TM encoding $c(\mathcal{A})$ on tape 1
$2 \mathcal{S}$ copies $c(\mathcal{A})$ to tape 2

## Undecidability of the halting problem

Assumption: there is a TM $\mathcal{H} 2$ which, given $c(\mathcal{A})$ and $c(w)$ as input
1 accepts if $\mathcal{A}$ does not halt with input $w$ and
2 runs forever if $\mathcal{A}$ halts with input $w$.

If $\mathcal{H} 2$ exists, then there is also a TM $\mathcal{S}$ accepting exactly those encodings of TMs that do not accept their own encoding
1 input: TM encoding $c(\mathcal{A})$ on tape 1
$2 \mathcal{S}$ copies $c(\mathcal{A})$ to tape 2
3 afterwards $\mathcal{S}$ operates like $\mathcal{H} 2$

## Computation of $\mathcal{S}$ with input $c(\mathcal{S})$

Reminder: $\mathcal{S}$ accepts $c(\mathcal{A}) \quad$ iff $\quad \mathcal{A}$ does not accept $c(\mathcal{A})$.

## Computation of $\mathcal{S}$ with input $c(\mathcal{S})$

Reminder: $\mathcal{S}$ accepts $c(\mathcal{A}) \quad$ iff $\quad \mathcal{A}$ does not accept $c(\mathcal{A})$.
$\mathrm{C}_{\varepsilon} \mathcal{S}$ accepts $c(\mathcal{S})$. This implies that $\mathcal{S}$ does not halt on the input $c(\mathcal{S})$. Therefore $\mathcal{S}$ does not accept $c(\mathcal{S})$.

## Computation of $\mathcal{S}$ with input $c(\mathcal{S})$

Reminder: $\mathcal{S}$ accepts $c(\mathcal{A}) \quad$ iff $\quad \mathcal{A}$ does not accept $c(\mathcal{A})$.
$\mathrm{CE}_{\varepsilon} \mathcal{S}$ accepts $c(\mathcal{S})$. This implies that $\mathcal{S}$ does not halt on the input $c(\mathcal{S})$. Therefore $\mathcal{S}$ does not accept $c(\mathcal{S})$.
$\mathrm{C}_{\varepsilon} \mathcal{S}$ rejects $c(\mathcal{S})$. Since $\mathcal{S}$ accepts exactly the encodings of those TMs that reject their own encoding, this implies that $\mathcal{S}$ accepts the input $c(\mathcal{S})$.

## Computation of $\mathcal{S}$ with input $c(\mathcal{S})$

Reminder: $\mathcal{S}$ accepts $c(\mathcal{A}) \quad$ iff $\quad \mathcal{A}$ does not accept $c(\mathcal{A})$.
$\mathrm{CE}_{\mathcal{E}} \mathcal{S}$ accepts $c(\mathcal{S})$. This implies that $\mathcal{S}$ does not halt on the input $c(\mathcal{S})$. Therefore $\mathcal{S}$ does not accept $c(\mathcal{S})$.
$\mathrm{C}_{\varepsilon} \mathcal{S}$ rejects $c(\mathcal{S})$. Since $\mathcal{S}$ accepts exactly the encodings of those TMs that reject their own encoding, this implies that $\mathcal{S}$ accepts the input $c(\mathcal{S})$.

This implies:
1 There is no such TM $\mathcal{S}$.

## Computation of $\mathcal{S}$ with input $c(\mathcal{S})$

Reminder: $\mathcal{S}$ accepts $c(\mathcal{A}) \quad$ iff $\quad \mathcal{A}$ does not accept $c(\mathcal{A})$.
$\mathrm{CE}_{\varepsilon} \mathcal{S}$ accepts $c(\mathcal{S})$. This implies that $\mathcal{S}$ does not halt on the input $c(\mathcal{S})$. Therefore $\mathcal{S}$ does not accept $c(\mathcal{S})$.
$\mathrm{C}_{\varepsilon} \mathcal{S}$ rejects $c(\mathcal{S})$. Since $\mathcal{S}$ accepts exactly the encodings of those TMs that reject their own encoding, this implies that $\mathcal{S}$ accepts the input $c(\mathcal{S})$.

This implies:
1 There is no such TM $\mathcal{S}$.
2 There is no TM $\mathcal{H} 2$.

## Computation of $\mathcal{S}$ with input $c(\mathcal{S})$

Reminder: $\mathcal{S}$ accepts $c(\mathcal{A}) \quad$ iff $\quad \mathcal{A}$ does not accept $c(\mathcal{A})$.
$\mathrm{C}_{\varepsilon} \mathcal{S}$ accepts $c(\mathcal{S})$. This implies that $\mathcal{S}$ does not halt on the input $c(\mathcal{S})$. Therefore $\mathcal{S}$ does not accept $c(\mathcal{S})$.
$\mathrm{C}_{\varepsilon} \mathcal{S}$ rejects $c(\mathcal{S})$. Since $\mathcal{S}$ accepts exactly the encodings of those TMs that reject their own encoding, this implies that $\mathcal{S}$ accepts the input $c(\mathcal{S})$. \&

This implies:
1 There is no such TM $\mathcal{S}$.
2 There is no TM $\mathcal{H} 2$.

## Theorem (Turing 1936)

The halting problem is undecidable.

## Decision problems

## Theorem (Decision problems for Turing Machines)

The word problem, the emptiness problem, and the equivalence problem are undecidable.

## Decision problems

## Theorem (Decision problems for Turing Machines)

The word problem, the emptiness problem, and the equivalence problem are undecidable.

## Proof.

If any of these problems were decidable, one could easily derive a decision procedure for the halting problem.

## Closure properties

## Theorem (closure under

The class of languages accepted by Turing Machines is not closed under complement.

## Closure properties

## Theorem (closure under

The class of languages accepted by Turing Machines is not closed under complement.

## Proof.

If it were closed under complement, $\mathcal{H} 2$ would exist.

## Closure properties

## Theorem (closure under

The class of languages accepted by Turing Machines is not closed under complement.

## Proof.

If it were closed under complement, $\mathcal{H} 2$ would exist.

Theorem (closure under $\cup, \cdot{ }^{*}, \cap$ )
The class of languages accepted by TMs is closed under $\cup, \cdot,{ }^{*}, \cap$.

## Closure properties

Theorem (closure under
The class of languages accepted by Turing Machines is not closed under complement.

## Proof.

If it were closed under complement, $\mathcal{H} 2$ would exist.

Theorem (closure under $\cup, \cdot{ }^{*}, \cap$ )
The class of languages accepted by TMs is closed under $\cup, \cdot,{ }^{*}, \cap$.

## Proof.

Analogous to Type-1-grammars / LBAs.

## Diagonalisation

Challenge of the proof:
show for all possible (infinitely many) TMs that none of them can decide the halting problem.

## Diagonalisation

Challenge of the proof:
show for all possible (infinitely many) TMs that none of them can decide the halting problem.

$\text { TM } \stackrel{\stackrel{\rightharpoonup}{\mathrm{I}}}{\underline{D}}$	$\frac{\widetilde{5}}{6}$	$\underset{\sim}{0}$	$\underset{v}{U}$	$\underset{\sim}{\ominus}$	$\underset{\sim}{\omega}$	$\ldots$
$\mathcal{A}$	$x$					
$\mathcal{B}$		$x$				
$\mathcal{C}$			$x$			
$\mathcal{D}$				$x$		
$\mathcal{E}$					$x$	
$\vdots$						$\because$

## Further diagonalisation arguments

Theorem (Cantor diagonalisation, 1891)
The set of real numbers is uncountable.
Theorem (Epimenides paradox, 6th century BC)
Epimenides [the Cretan] says: "[All] Cretans are always liars."
Theorem (Russell's paradox, 1903)
$R:=\{T \mid T \notin T\}$ Does $R \in R$ hold?
Theorem (Gödel's incompleteness theorem, 1931)
Construction of a sentence in 2nd order predicate logic which states that itself cannot be proved.

## Is this important?

- What is so bad about not being able to decide if a TM halts?
- Isn't this a purely academic problem?


## Is this important?

- What is so bad about not being able to decide if a TM halts?
- Isn't this a purely academic problem?

Ludwig Wittgenstein:
It is very queer that this should have puzzled anyone. [...] If a man says "I am lying" we say that it follows that he is not lying, from which it follows that he is lying and so on. Well, so what? You can go on like that until you are black in the face. Why not? It doesn't matter.
(Lectures on the Foundations of Mathematics, Cambridge 1939)

## Is this important?

- What is so bad about not being able to decide if a TM halts?
- Isn't this a purely academic problem?

Ludwig Wittgenstein:
It is very queer that this should have puzzled anyone. [...] If a man says "I am lying" we say that it follows that he is not lying, from which it follows that he is lying and so on. Well, so what? You can go on like that until you are black in the face. Why not? It doesn't matter.
(Lectures on the Foundations of Mathematics, Cambridge 1939)

## Does it matter in practice?

## It does not only affect halting

Halting is a fundamental property. If halting cannot be decided, what can be?

## It does not only affect halting

Halting is a fundamental property. If halting cannot be decided, what can be?

Theorem (Rice, 1953)
Every non-trivial semantic property of TMs is undecidable.

## It does not only affect halting

Halting is a fundamental property.
If halting cannot be decided, what can be?

## Theorem (Rice, 1953)

Every non-trivial semantic property of TMs is undecidable.
non-trivial satisfied by some TMs, not satisfied by others semantic referring to the accepted language

## Undecidability of semantic properties

## Example (Property E: TM accepts the set of prime numbers $P$ )

If $E$ is decidable, then so is the halting problem for $\mathcal{A}$ and an input $w_{\mathcal{A}}$. Approach: Turing Machine $\mathcal{E}$, input $w_{\mathcal{E}}$

## Undecidability of semantic properties

## Example (Property E: TM accepts the set of prime numbers $P$ )

If $E$ is decidable, then so is the halting problem for $\mathcal{A}$ and an input $w_{\mathcal{A}}$. Approach: Turing Machine $\mathcal{E}$, input $w_{\mathcal{E}}$
1 simulate computation of $\mathcal{A}$ on $w_{\mathcal{A}}$
2 decide if $w_{\mathcal{E}} \in P$

## Undecidability of semantic properties

## Example (Property E: TM accepts the set of prime numbers $P$ )

If $E$ is decidable, then so is the halting problem for $\mathcal{A}$ and an input $w_{\mathcal{A}}$. Approach: Turing Machine $\mathcal{E}$, input $w_{\mathcal{E}}$
1 simulate computation of $\mathcal{A}$ on $w_{\mathcal{A}}$
2 decide if $w_{\mathcal{E}} \in P$
Check if $\mathcal{E}$ accepts the set of prime numbers:
yes $\leadsto \mathcal{A}$ halts with input $w_{\mathcal{A}} \quad$ no $\leadsto \mathcal{A}$ does not halt on input $w_{\mathcal{A}}$

## It does not only affect Turing Machines

## Church-Turing-thesis

Every effectively calculable function is a computable function.

## It does not only affect Turing Machines

## Church-Turing-thesis

Every effectively calculable function is a computable function.
computable means calculable by a (Turing) machine effectively calculable refers to the intuitive idea without reference to a particular computing model

## It does not only affect Turing Machines

## Church-Turing-thesis

Every effectively calculable function is a computable function.
computable means calculable by a (Turing) machine effectively calculable refers to the intuitive idea without reference to a particular computing model

What holds for Turing Machines also holds for

- unrestricted grammars,
- while programs,
- von Neumann architecture,


## It does not only affect Turing Machines

## Church-Turing-thesis

Every effectively calculable function is a computable function.
computable means calculable by a (Turing) machine effectively calculable refers to the intuitive idea without reference to a particular computing model
What holds for Turing Machines also holds for

- unrestricted grammars,
- while programs.
- von Neumann architecture,
- Java/C++/Lisp/Prolog programs,


## It does not only affect Turing Machines

## Church-Turing-thesis

Every effectively calculable function is a computable function.
computable means calculable by a (Turing) machine effectively calculable refers to the intuitive idea without reference to a particular computing model
What holds for Turing Machines also holds for

- unrestricted grammars,
- while programs.
- von Neumann architecture,
- Java/C++/Lisp/Prolog programs,
- future machines and languages


## It does not only affect Turing Machines

## Church-Turing-thesis

Every effectively calculable function is a computable function.
computable means calculable by a (Turing) machine effectively calculable refers to the intuitive idea without reference to a particular computing model

What holds for Turing Machines also holds for

- unrestricted grammars,
- while programs.
- von Neumann architecture,
- Java/C++/Lisp/Prolog programs,
- future machines and languages

No interesting property is decidable for any powerful programming language!

## Undecidable problems in practice

software development Does the program match the specification?
debugging Does the program have a memory leak?
malware Does the program harm the system?
education Does the student's TM compute the same function as the teacher's TM?
formal languages Do two cf. grammars generate the same language?
mathematics Hilbert's tenth problem: find integer solutions for a polynomial with several variables
logic Satisfiability of formulas in first-order predicate logic

## Undecidable problems in practice

software development Does the program match the specification?
debugging Does the program have a memory leak?
malware Does the program harm the system?
education Does the student's TM compute the same function as the teacher's TM?
formal languages Do two cf. grammars generate the same language?
mathematics Hilbert's tenth problem: find integer solutions for a polynomial with several variables
logic Satisfiability of formulas in first-order predicate logic

## Yes, it does matter!

## Some things that are still possible

It is possible
to translate a program $P$ from
a language into an equivalent one in another language

## Some things that are still possible

It is possible
because
to translate a program $P$ from one specific program is created for a language into an equivalent $P$. one in another language

## Some things that are still possible

It is possible
to translate a program $P$ from a language into an equivalent $P$. one in another language
to detect if a program contains a instruction to write to the hard disk

because

one specific program is created for

## Some things that are still possible

It is possible
to translate a program $P$ from a language into an equivalent one in another language
to detect if a program con- this is a syntactic property. Decidtains a instruction to write to ing if this instruction is eventually the hard disk

## because

one specific program is created for $P$. executed is impossible in general.

## Some things that are still possible

It is possible
to translate a program $P$ from a language into an equivalent one in another language
to detect if a program contains a instruction to write to the hard disk
to check at runtime if a program accesses the hard disk

## because

one specific program is created for $P$.
this is a syntactic property. Deciding if this instruction is eventually executed is impossible in general.

## Some things that are still possible

It is possible
to translate a program $P$ from a language into an equivalent one in another language
to detect if a program con- this is a syntactic property. Decidtains a instruction to write to ing if this instruction is eventually the hard disk
to check at runtime if a program accesses the hard disk
because
one specific program is created for $P$. executed is impossible in general.
this corresponds to the simulation by $\mathcal{U}$. It is undecidable if the code is never executed.

## Some things that are still possible

It is possible
to translate a program $P$ from a language into an equivalent one in another language
to detect if a program contains a instruction to write to the hard disk
to check at runtime if a program accesses the hard disk
because
one specific program is created for $P$.
this is a syntactic property. Deciding if this instruction is eventually executed is impossible in general.
this corresponds to the simulation by $\mathcal{U}$. It is undecidable if the code is never executed.
to write a program that gives the correct answer in many "interesting" cases

## Some things that are still possible

It is possible
to translate a program $P$ from a language into an equivalent one in another language
to detect if a program contains a instruction to write to the hard disk
to check at runtime if a program accesses the hard disk
to write a program that gives the correct answer in many "interesting" cases
because
one specific program is created for $P$.

## What can be done?

Can the Turing Machine be "fixed"?

## What can be done?

Can the Turing Machine be "fixed"?

- undecidability proof does not use any specific TM properties


## What can be done?

Can the Turing Machine be "fixed"?

- undecidability proof does not use any specific TM properties
- only requirement: existence of universal machine $\mathcal{U}$


## What can be done?

Can the Turing Machine be "fixed"?

- undecidability proof does not use any specific TM properties
- only requirement: existence of universal machine $\mathcal{U}$
- TM is not to weak, but too powerful


## What can be done?

Can the Turing Machine be "fixed"?

- undecidability proof does not use any specific TM properties
- only requirement: existence of universal machine $\mathcal{U}$
- TM is not to weak, but too powerful
- different machine models have the same problem (or are weaker)


## What can be done?

Can the Turing Machine be "fixed"?

- undecidability proof does not use any specific TM properties
- only requirement: existence of universal machine $\mathcal{U}$
- TM is not to weak, but too powerful
- different machine models have the same problem (or are weaker)

Alternatives:

- If possible: use weaker formalisms (modal logic, dynamic logic)


## What can be done?

Can the Turing Machine be "fixed"?

- undecidability proof does not use any specific TM properties
- only requirement: existence of universal machine $\mathcal{U}$
- TM is not to weak, but too powerful
- different machine models have the same problem (or are weaker)

Alternatives:

- If possible: use weaker formalisms (modal logic, dynamic logic)
- use heuristics that work well in many cases, solve remaining ones manually


## What can be done?

Can the Turing Machine be "fixed"?

- undecidability proof does not use any specific TM properties
- only requirement: existence of universal machine $\mathcal{U}$
- TM is not to weak, but too powerful
- different machine models have the same problem (or are weaker)

Alternatives:

- If possible: use weaker formalisms (modal logic, dynamic logic)
- use heuristics that work well in many cases, solve remaining ones manually
- interactive programs


## Turing Machines: summary

- Halting problem: does TM $\mathcal{A}$ halt on input $w$ ?
- Turing: no TM can decide the halting problem.
- Rice: no TM can decide any non-trivial semantic property of TMs.
- Church-Turing: this holds for every powerful machine model.
- No interesting problem of programs in any powerful programming language is decidable.


## Turing Machines: summary

- Halting problem: does TM $\mathcal{A}$ halt on input $w$ ?
- Turing: no TM can decide the halting problem.
- Rice: no TM can decide any non-trivial semantic property of TMs.
- Church-Turing: this holds for every powerful machine model.
- No interesting problem of programs in any powerful programming language is decidable.

Consequences:
$\odot$ Computers cannot take all work away from computer scientists.
(-) Computers will never make computer scientists redundant.

## Property overview

property	regular   (Type 3)	context-free   (Type 2)	context-sens.   (Type 1)	unrestricted   (Type 0)
closure				
$\cup, \cdot,^{*}$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
$\cap$	$\checkmark$	$x$	$\checkmark$	$\checkmark$
	$\checkmark$	$x$	$\checkmark$	$x$
decidability				
word	$\checkmark$	$\checkmark$	$\checkmark$	$x$
emptiness	$\checkmark$	$\checkmark$	$x$	$x$
equiv.	$\checkmark$	$x$	$x$	$x$
deterministic				
equivalent to	$\checkmark$	$x$		$\checkmark$
non-det.				

## Property overview

property	regular   (Type 3)	context-free   (Type 2)	context-sens.   (Type 1)	unrestricted   (Type 0)
closure				
$\cup, \cdot{ }^{*}$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
$\cap$	$\checkmark$	$x$	$\checkmark$	$\checkmark$
	$\checkmark$	$x$	$\checkmark$	$x$
decidability				
word	$\checkmark$	$\checkmark$	$\checkmark$	$x$
emptiness	$\checkmark$	$\checkmark$	$x$	$x$
equiv.	$\checkmark$	$x$	$x$	$x$
deterministic				
equivalent to	$\checkmark$	$x$		
non-det.				

## This is the End...

## Outline

Introduction
Regular Languages and Finite Automata
Scanners and Flex
Formal Grammars anc Context-Free Languages

## Parsers and Bison

Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

## Lecture-specific material

## Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free Languages

## Parsers and Bison

Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

## Goals for Lecture 1

- Getting acquainted
- Clarifying practical issues
- Course outline and motivation
- Formal languages
- Language classes
- Grammars
- Automata
- Questions
- Applications


## Practical Issues

- Lecture times (usually, check RAPLA)
- Wedneday, 15:45-17:45
- Thursday 10:00-12:00 (September 21: 13:00)
- Some Fridays 12:15-14:15
- No lectures calender weeks 36, 43, 44
- Really, check RAPLA
- Final exam
- Written exam (Open-Book or nearly so)
- Probably week 47 (November 20th to 24th)
- Probably here


## Summary Lecture 1

- Clarifying practical issues
- You need running flex, bison, C compiler, editor!
- Course outline and motivation
- Formal languages
- Language classes
- Grammars
- Automata
- Questions
- Applications


## Feedback round

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
- Optional: how would you improve it?


## Outline

Introduction
Regular Languages and Finite Automata
Scanners and Flex
Formal Grammars and Context-Free Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Lecture 1

## Lecture 2

Lecture 3
Lecture 4

## Goals for Lecture 2

- Review of last lecture
- Formal basics of formal languages
- Operations on words
- Operations on languages
- Introduction to regular expressions
- Examples
- Formal definition


## Review

- Introduction
- Language classes
- Grammars
- Automata
- Applications
- flex and bison are available via most Open Source install methods (if not installed by default)
- E.g. apt-get install bison (Debian/Ubuntu)
- E.g. sudo port install flex (MacPorts)
- Check out http://dinosaur.compilertools.net/
- Documentation, sources
- flex direct: https://github.com/westes/flex
- bison direct: https://www.gnu.org/software/bison/


## Summary

- Formal languages
- Alphabets
- Words
- Languages
- Examples of languages
- Operations on words and languages
- Concatenation
- Power
- Kleene star
- Introduction to regular expressions


## Summary

- Formal languages
- Alphabets
- Words
- Languages
- Examples of languages
- Operations on words and languages
- Concatenation
- Power
- Kleene star
- Introduction to regular expressions

Remark: Formal languages are sets, and hence we can also apply set operations like $\cup$ (union), $\cap$ (intersection), - (complement) to them!

## Feedback round

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
- Optional: how would you improve it?


## Outline

Introduction
Regular Languages and Finite
Automata
Scanners and Flex
Formal Grammars and Context-Free Languages

Parsers and Bison
Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

## Goals for Lecture 3

- Review of last lecture
- Understanding regular expressions
- Regular expression algebra
- Equivalences on regular expressions
- Simplifying REs


## Review (1)

- Formal languages
- Finite alphabet $\Sigma$ of symbols/letters
- Words are finite sequences of letters from $\Sigma$
- Languages are (finite or infinite) sets of words
- Words - properties and operations
$>|w|,|w|_{a}, w[k]$
$>w_{1} \cdot w_{2}, w^{n}$


## Review (2)

- Interesting languages
- Binary representations of natural numbers
- Binary representations of prime numbers
- C functions (over strings)
- C functions with input/output pairs
- Operations on Languages
- Product $L_{1} \cdot L_{2}$ : Concatenation of one word from each language
- Power $L^{n}$ : Concatenation of $n$ words from $L$
- Kleene Star: $L^{*}$ : Concat any number of words from $L$


## Review (2)

- Interesting languages
- Binary representations of natural numbers
- Binary representations of prime numbers
- C functions (over strings)
- C functions with input/output pairs
- Operations on Languages
- Product $L_{1} \cdot L_{2}$ : Concatenation of one word from each language
- Power $L^{n}$ : Concatenation of $n$ words from $L$
- Kleene Star: $L^{*}$ : Concat any number of words from $L$

Remark: Formal languages are sets, and hence we can also apply set operations like $\cup$ (union), $\cap$ (intersection), ${ }^{-}$(complement) to them!

## Review (3)

- Regular expressions $R_{\Sigma}$


## - Base cases:

$\Rightarrow L(\emptyset)=\{ \}$
$\Rightarrow L(\epsilon)=\{\epsilon\}$
$\triangleright L(a)=\{a\}$ for each $a \in \Sigma$

- Complex cases:
- $L\left(r_{1}+r_{2}\right)=L\left(r_{1}\right) \cup L\left(r_{2}\right)$
$\nabla L\left(r_{1} \cdot r_{2}\right)=L\left(r_{1} r_{2}\right)=L\left(r_{1}\right) \cdot L\left(r_{2}\right)$
- $L\left(r^{*}\right)=L(r)^{*}$
- $L((r))=L(r)$ (brackets are used to group expressions)


## Summary

- Regular expression algebra
- REs are equivalent if they describe the same language
- REs can be simplified applying equivalences
- Recursive definitions: Lemmas of Arden/Salomaa


## Feedback round

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
- Optional: how would you improve it?


## Outline

Introduction
Regular Languages and Finite
Automata
Scanners and Flex
Formal Grammars anc Context-Free Languages

## Parsers and Bison

Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

## Goals for Lecture 4

- Review of last lecture
- Warmup exercise
- Finite Automata
- Graphical representation
- Formal definition
- Language recognized by an automata
- Tabular representation
- Exercises


## Review (1)

- Regular expressions $R_{\Sigma}$
- Base cases:
- $L(\emptyset)=\{ \}$
$\Rightarrow L(\epsilon)=\{\epsilon\}$
- $L(a)=\{a\}$ for each $a \in \Sigma$
- Complex cases:
$\Rightarrow L\left(r_{1}+r_{2}\right)=L\left(r_{1}\right) \cup L\left(r_{2}\right)$
$>L\left(r_{1} \cdot r_{2}\right)=L\left(r_{1} r_{2}\right)=L\left(r_{1}\right) \cdot L\left(r_{2}\right)$
- $L\left(r^{*}\right)=L(r)^{*}$
$>L((r))=L(r)$ (brackets are used to group expressions)


## Review (2)

- Regular expression algebra
- REs are equivalent if they describe the same language
$\Rightarrow$ REs can be simplified applying equivalences
- 17 equivalences
- Commutativity of + , associativity of,$+ \cdot$, distributivity (!)
- Arden/Salomaa


## Warmup Exercise

- Assume $\Sigma=\{a, b\}$
- Find a regular expression for the language $L_{1}$ of all words over $\Sigma$ with at least 3 characters and where the third character is an " $a$ ".
- Describe $L_{1}$ formally (i.e. as a set)
- Find a regular expression for the language $L_{2}$ of all words over $\Sigma$ with at least 3 characters and where the third character is the same as the third-last character
- Describe $L_{2}$ formally.


## Warmup Exercise

- Assume $\Sigma=\{a, b\}$
- Find a regular expression for the language $L_{1}$ of all words over $\Sigma$ with at least 3 characters and where the third character is an " $a$ ".
- Describe $L_{1}$ formally (i.e. as a set)
- Find a regular expression for the language $L_{2}$ of all words over $\Sigma$ with at least 3 characters and where the third character is the same as the third-last character
- Describe $L_{2}$ formally.


## Summary

- REs revisited (with exercise)
- Finite Automata
- Graphical representation
- Formal definition
- Language recognized by an automata
- Tabular representation
- Exercises


## Feedback round

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
- Optional: how would you improve it?


## Outline

```
 Lecture 5
 Lecture 6
 Lecture 7
 Lecture 8
 Lecture 9
 Lecture 10
 Lecture 11
 Lecture 12
 Lecture 13
 Lecture 14
 Lecture 15
 Lecture 16
 Lecture 17
 Lecture 18
Bonus Exercises
Selected Solutions
```


## Goals for Lecture 5

- Review of last lecture
- Introduction to Nondeterministic Finite Automata
- Definitions
- Exercises
- Equivalency of deterministic and nondeterministic finite automata
- Converting NFAs to DFAs
- Exercises


## Review

- Finite Automata
- Graphical representation
- Formal definition
- $Q$ : Set of states
$\downarrow \Sigma$ : Alphabet
$-\delta$ : Transition function
- $q_{0}$ : Initial state
- F: Final (accepting) states
- Language recognized by an automata
- $w \in L(A)$ if $\delta^{\prime}(w) \in F$ or there exist an accepting run of $A$ for $w$
- Tabular representation
- Exercises


## Review

- Finite Automata
- Graphical representation
- Formal definition
- $Q$ : Set of states
$\downarrow \Sigma$ : Alphabet
$-\delta$ : Transition function
- $q_{0}$ : Initial state
- F: Final (accepting) states
- Language recognized by an automata
$\nabla w \in L(A)$ if $\delta^{\prime}(w) \in F$ or there exist an accepting run of $A$ for $w$
- Tabular representation
- Exercises


## Summary

- Nondeterministic Finite Automata
- $Q$ : Set of states
$>\Sigma$ : Alphabet
- $\Delta$ : Transition relation (with $\varepsilon$-transitions!)
- $q_{0}$ : Initial state
- F: Final (accepting) states
- NFAs and DFAs accept the same class of languages!
- Converting NFA to DFA
- States of $\operatorname{det}(\mathcal{A})$ are elements of $2^{Q}$


## Feedback round

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
- Optional: how would you improve it?


## Outline

```
Introduction
Regular Languages and Finite
Automata
Scanners and Flex
Formal Grammars ancl Context-Free
Languages
Parsers and Bison
Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
 Lecture 1
 Lecture 2
 Lecture 3
 Lecture 4
```

```
 Lecture 5
 Lecture 6
 Lecture 7
 Lecture 8
 Lecture }
 Lecture 10
 Lecture 11
 Lecture 12
 Lecture 13
 Lecture 14
 Lecture 15
 Lecture 16
 Lecture 17
 Lecture 18
Bonus Exercises
Selected Solutions
```


## Goals for Lecture 6

- Review of last lecture
- Equivalency of regular expressions and NFAs
- Construction of an NFA from a regular expression
- Extraction of an RE from a DFA


## Review

- Nondeterministic Finite Automata
- $Q$ : Set of states
- $\Sigma$ : Alphabet
$\Delta \Delta$ : Transition relation (with $\varepsilon$-transitions!)
- $q_{0}$ : Initial state
- F: Final (accepting) states
- NFAs and DFAs accept the same class of languages!
- Converting NFA to DFA
- States of $\operatorname{det}(\mathcal{A})$ are elements of $2^{Q}$


## Summary

- Equivalency of regular expressions and NFAs
- Construction of an NFA from a regular expression
- Base cases each result in a trivial 2-state automaton
- Compose automata for composite regular expressions
- Glue automata together with $\varepsilon$-Transitions
- Extraction of an RE for a DFA
- Determine system of equations
- For each state add one alternative for each transition
$>$ For accepting states add $\varepsilon$.
- Solve the system of equations, handling loops with Arden's lemma


## Feedback round

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
- Optional: how would you improve it?


## Outline

Introduction
Regular Languages and Finite
Automata
Scanners and Flex
Formal Grammars anc Context-Free Languages

## Parsers and Bison

Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18
Bonus Exercises
Selected Solutions

## Goals for Lecture 7

- Review of last lecture
- Minimizing DFAs
- ... and a first application
- Exercises


## Review

- Central result: REs, NFAs and DFAs describe the same class of lanuguages (namely regular languages)
- Proof via construcive algorithms
- NFA to DFA already done
- RE to NFA and DFA to RE new
- Construction of an NFA from a regular expression
- Base cases each result in a trivial 2-state automaton
- Compose automata for composite regular expressions
- Glue automata together with $\varepsilon$-Transitions
- Extraction of an RE for a DFA
- Determine system of equations describing language accepted at each state
- For each state add one alternative for each transition
$>$ For accepting states add $\varepsilon$.
- Solve the system of equations, handling loops with Arden's lemma


## Homework assignment

- Get access to an operational Linux/UNIX enviroment
- You can install VirtualBox (https://www.virtualbox.org) and then install e.g. Ubuntu (http: / /www.ubuntu.com/) on a virtual machine
- For Windows, you can install the complete UNIX emulation package Cygwin from http: / / cygwin.com
- For MacOS, you can install fink (http://fink.sourceforge.net/) or MacPorts (https://www.macports.org/) and the necessary tools
- You will need at least flex, bison, gcc, grep, sed, AWK, make, and a good text editor of your choice


## Summary

- Minimizing DFAs
- Identify and merge equivalent states
- Result is unique (up to names of states)
- Equivalency of REs can be decided by comparison of corresponding minimal DFAs
- Homework: Get ready for flexing...


## Feedback round

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
- Optional: how would you improve it?


## Outline

Introduction
Regular Languages and Finite
Automata
Scanners and Flex
Formal Grammars and Context-Free Languages

## Parsers and Bison

Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

## Goals for Lecture 8

- Review of last lecture
- Beyond regular languages: The Pumping Lemma
- Motivation/Lemma
- Application of the lemma
- Implications
- Properties of regular languages
- Which operations leave regular languages regular?


## Review

- Minimizing DFAs
- Identify and merge equivalent states
- Result is unique (up to names of states)
- Equivalency of REs can be decided by comparison of corresponding minimal DFAs


## Reminder: Homework assignment

- Install an operational UNIX/Linux environment on your computer
- You can install VirtualBox (https://www.virtualbox.org) and then install e.g. Ubuntu (http: //www. ubuntu.com/) on a virtual machine
- For Windows, you can install the complete UNIX emulation package Cygwin from http: / /cygwin.com
- For MacOS, you can install fink (http://fink.sourceforge.net/) or MacPorts (https://www.macports.org/) and the necessary tools
- You will need at least flex, bison, gcc, grep, sed, AWK, make, and a good text editor of your choice


## Summary

- Beyond regular languages: The Pumping Lemma
- Motivation/Lemma
- Application of the lemma $\left(a^{n} b^{n}, a^{n} b^{m}, n<m\right)$
- Implications (Nested structures are not regular)
- Properties of regular languages
- Closure properties (union, intersection, ...)
- Proof per construction of suitable NFA (union, concatenation, Kleene Star)
- Proof per construction of product automaton (intersection)


## Feedback round

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
- Optional: how would you improve it?


## Outline

## Introduction

Reaular Lanauages and Finite Automata

## Scanners and Flex

Formal Grammars and Context-Free Languages

## Parsers and Bison

Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

## Goals for Lecture 9

- Completing the theory of regular languages
- Complement
- Finite languages
- Decision problems: Emptiness, word problem, ...
- Decision problems: Equivalence, finiteness, ...
- Wrap-up


## Review

- The Pumping Lemma
- Motivation/Lemma
$\downarrow$ For every regular language $L$ there exits a $k$ such that any word $s$ with $|s| \geq k$ can be split into $s=u v w$ with $|u v| \leq k$ and $v \neq \varepsilon$ and $u v^{h} w \in L$ for all $h \in \mathbb{N}$
- Use in proofs by contradiction: Assume a language is regular, then derive contradiction
- Application of the lemma $\left(a^{n} b^{n}, a^{n} b^{m}, n<m\right)$
- Implications (Nested structures are not regular)
- Properties of regular languages
- The union of two regular languages is regular
- The intersection of two regular languages is regular (Solution: Product automaton!)
- The concatenation of two regular languages is regular
- The Kleene star of a regular language is regular
- (The complement of a regular language is regular)


## Summary

- Completing the theory of regular languages
- Complement
- All finite languages are regular
- Decidable for regular languages: Emptiness, word problem
- Decidable for regular languages: Equivalence, finiteness
- Wrap-up


## Feedback round

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
- Optional: how would you improve it?


## Outline

Introduction
Regular Languages and Finite
Automata
Scanners and Flex
Formal Grammars and Context-Free Languages

## Parsers and Bison

Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

## Goals for Lecture 10

- Review of last lecture
- Scanning in practice
- Scanners in context
- Practical regular expressions
- Automatic scanner creation with flex
- Flex exercise


## Review

- Completing the theory of regular languages
- Complement
- All finite languages are regular
- Decidable for regular languages: Emptiness, word problem
- Decidable for regular languages: Equivalence, finiteness
- Use of properties to prove statements (e.g. non-regularity, e.g. reducing emptyness question to equivalency)
- Wrap-up


## Summary

- Scanners in context
- Practical regular expressions
- Basic characters, escapes, ranges, escape with $\backslash$
- Richer operators, z.B. +, \{4\},?...
- Flex
$>$ Definition section
- Rule section
- User code section/yylex()
- Exercise


## Feedback round

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
- Optional: how would you improve it?


## Outline

Introduction
Regular Languages and Finite
Automata
Scanners and Flex
Formal Grammars and Context-Free Languages

## Parsers and Bison

Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

## Goals for Lecture 11

- Review of last lecture
- Grammars and languages
- Formal grammars
- Derivations
- Languages
- The Chomsky-Hierarchy


## Review

- Scanners in context
- Practical regular expressions
- Basic characters, escapes, ranges, escape with $\backslash$
- Richer operators, z.B. $+,\{4\}, ? \ldots$
- Flex
- Definition section
- Rule section
- User code section/yylex()
- make
- Exercise


## Summary

- Grammars and languages
- Formal grammars
- Derivations
- Languages
- Grammars can describe non-regular languages
- The Chomsky-Hierarchy
- Type 0: Unrestricted grammars
- Type 1: Context-sensitive/monotonic grammars
- Type 2: Context-free grammars
- Type 3: Right-linear/regular grammars


## Feedback round

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
- Optional: how would you improve it?


## Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free Languages

## Parsers and Bison

Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18
Bonus Exercises
Selected Solutions

## Goals for Lecture 12

- Review of last lecture
- Right-linear grammars
- Equivalence with finite automata
- Context-free grammars
- Equivalency for grammars
- Reducing grammars
- Eliminating $\varepsilon$-Productions
- Chomsky-hierarchy revisited


## Reviews

- Grammars and languages
- Formal grammars ( $N, \Sigma, P, S$ )
- Derivations
- Languages $L(G)=\left\{w \in \Sigma^{*} \mid S \Rightarrow^{*} w\right\}$
- Grammars can describe non-regular languages
- The Chomsky-Hierarchy
- Type 0: Unrestricted grammars
- Type 1: Context-sensitive/monotonic grammars (non-shortening rules)
- Type 2: Context-free grammars (Only one non-terminal on LHS)
- Type 3: Right-linear/regular grammars (limited RHS)


## Summary

- Right-linear grammars: $N \rightarrow a B, a \in \Sigma \cup\{\epsilon\}$
- Convert DFA to right-linear grammar
- Convert right-linear grammar to NFA
- Context-free grammars
- Chomsky Normal Form
- Towards CNF
$>$ Remove non-terminating symbols and corresponding rules
- Remove non-reachable symbols and corresponding rules
- Inline $\varepsilon$-rules


## Feedback round

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
- Optional: how would you improve it?


## Outline

Introduction
Regular Languages and Finite
Automata
Scanners and Flex
Formal Grammars and Context-Free Languages

## Parsers and Bison

Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18
Bonus Exercises
Selected Solutions

## Goals for Lecture 13

- Review of last lecture
- Completing Chomsky Normal Form tranformation
- Eliminating chain rules
- Bring right hand sides into normalform
- Solving the word problem for context-free grammars
- Derivations in CNF
- Parsing with Dynamic Programming: Cocke-Younger-Kasami


## Review

- Right-linear grammars: $N \rightarrow a B, a \in \Sigma \cup\{\epsilon\}$
- Convert DFA to right-linear grammar ( $N \sim Q, \delta \sim P$ )
- Convert right-linerar grammar to NFA
- Context-free grammars
- Chomsky Normal Form
- Towards CNF
$>$ Remove non-terminating symbols and corresponding rules
- Remove non-reachable symbols and corresponding rules
- Inline $\varepsilon$-rules
- ...


## Summary

- Chomsky Normal Form tranformation
- Inline $\varepsilon$-rules
- Inline chain rules
- Reduce grammar
- Introduce NTS names for terminals
- Break long RHS via introduction of definitions/intermediate rules
- Solving the word problem for context-free grammars
- Derivations in CNF
- Cocke-Younger-Kasami
- Systematically consider all decompositions of $w$
$>$ Tabulate all NTS for given subwords bottom-up
- Example of dynamic programming


## Feedback round

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
- Optional: how would you improve it?


## Outline

Introduction
Regular Languages and Finite
Automata
Scanners and Flex
Formal Grammars and Context-Free Languages

## Parsers and Bison

Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

## Goals for Lecture 14

- Review of last lecture
- Pushdown automata
- NFA+unlimited stack
- Equivalence of context-free grammars and PDAs
- From grammar to PDA
- From PDA to grammar


## Review

- Chomsky Normal Form tranformation
- Inline $\varepsilon$-rules
- Inline chain rules
- Reduce grammar
- Introduce NTS names for terminals
- Break long RHS via introduction of definitions/intermediate rules
- Solving the word problem for context-free grammars
- Derivations in CNF
- Cocke-Younger-Kasami
- Systematically consider all decompositions of $w$
- Tabulate all NTS for given subwords bottom-up
- Complexity: $O\left(n^{3}\right)$ with $n=|w|$


## Summary

- Pushdown automata
- Transitions must read/can write unlimited stack
- Transition can read characters from word (left-to-right only)
- Acceptance: Empty stack, empty word
- Equivalence of context-free grammars and PDAs
- From grammar to PDA
- Simulate grammar rules on the stack
- Highly non-deterministic
- From PDA to grammar
$>$ Non-terminals represent state changes with removal of a symbols from stack
- Complex encoding of transition relation into grammar rules


## Feedback round

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
- Optional: how would you improve it?


## Outline

Introduction
Regular Languages and Finite
Automata
Scanners and Flex
Formal Grammars and Context-Free Languages

## Parsers and Bison

Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

## Goals for Lecture 15

- Review of last lecture
- Limits of context-free languages
- Pumping Lemma II
- Closure properties of context-free languages
- Decision problems for context-free languages


## Review

- Pushdown automata
- Transitions must read/can write unlimited stack
- Transition can read characters from word (left-to-right only)
- Acceptance: Empty stack, empty word
- Equivalence of context-free grammars and PDAs
- From grammar to PDA
- Simulate grammar rules on the stack
- Highly non-deterministic
- From PDA to grammar
- Non-terminals represent state changes with removal of a symbols from stack
- Complex encoding of transition relation into grammar rules


## Summary

- Limits of context-free languages
- Pumping Lemma II
- Closure properties of context-free languages
- The class of context-free languages is closed under $\cup, \cdot$, .
- The class of context-free languages is not closed under $\cap$, complement
- Decision problems for context-free languages
- Decidable: Word problem, emptiness problem
- Undeciable: Equivalence


## Feedback round

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
- Optional: how would you improve it?


## Outline

Introduction
Regular Languages and Finite
Automata

Scanners and Flex
Formal Grammars and Context-Free Languages

## Parsers and Bison

Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

## Goals for Lecture 16

- Review of last lecture
- Introduction to parsing
- YACC/Bison
- Automatic parser generation
- Example: desk calculator
- LALR(1) shift/reduce parsing
- Parse trees and abstract syntax trees


## Review

- Limits of context-free languages
- Pumping Lemma II
- Sufficiently long words require correspondingly long derivations
- Sufficiently long derivations will contain at least one duplicate NTS A
- The partial derivation from $A$ to $u A v$ can be repeated
- Closure properties of context-free languages
- The class of context-free languages is closed under $\cup, \cdot,{ }^{*}$
- The class of context-free languages is not closed under $\cap$, complement
- Decision problems for context-free languages
- Decidable: Word problem, emptiness problem
- Undeciable: Equivalence


## Summary

- Introduction to parsing
- Recognize words (programs) in $L(G)$
- Understand structure of words
- YACC/Bison
- Automatic parser generation
- Core: Syntax rules with actions (C code)
$>$ Whenever input can be reduced, action is executed
- Often: Manipulation of semantic values
- Example: desk calculator
- LALR(1) shift/reduce parsing
- Shift input to stack
- Reduce RHS to LHS
- Use lookahead to reduce ambiguity
- Parse trees and abstract syntax trees
- Parse trees: Represents not just word but derivation
- AST: "parse tree without syntactic details


## Feedback round

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
- Optional: how would you improve it?


## Outline

Introduction
Regular Languages and Finite
Automata
Scanners and Flex
Formal Grammars and Context-Free Languages

## Parsers and Bison

Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
Lecture 18
Bonus Exercises
Selected Solutions

## Goals for Lecture 17

- Review of last lecture
- Beyond context-free languages: Turing Machines
- Idea
- Definition
- Examples
- Variants
- Context-sensitive languages
- Linear bounded Turing Machine (LBA)
- Closure properties
- Decision problems
- Type-0 languages
- The Universal Turing Machine
- The Halting Problem
- Thesis of Church-Turing
- ... and practical applications


## Review

- Introduction to parsing
- Recognize words (programs) in $L(G)$
- Understand structure of words
- YACC/Bison
- Automatic parser generation
- Core: Syntax rules with actions (C code)
- Whenever input can be reduced, action is executed
- Often: Manipulation of semantic values
- Example: desk calculator
- LALR(1) shift/reduce parsing
- Shift input to stack
- Reduce RHS to LHS
- Use lookahead to reduce ambiguity
- Parse trees and abstract syntax trees
- Parse trees: Represents not just word but derivation
- AST: "parse tree without syntactic details


## Summary

- Turing Machines
- Unbounded tape memory
- Finite automaton controls head movement, writing based on current state and input at current tape location
- Configurations (general, stopping and accepting)
- TM for $a^{n} b^{n} c^{n}$
- Context-sensitive languages
- Linear bounded Turing Machine (LBA)
- Closure properties: Closed under $\cup, \cdot,{ }^{*}, \cap$,
- Decision problems: Word yes, emptiness, equivalence no
- Type-0 languages
- The Universal Turing Machine
- The Halting Problem
- Thesis of Church-Turing: All "strong" computing models are equivalent
- ... and so may be humans (!)


## Feedback round

- What was the best part of todays lecture?
- What part of todays lecture has the most potential for improvement?
- Optional: how would you improve it?


## Outline

## Introduction

Reaular Lanauages and Finite Automata

## Scanners and Flex

Formal Grammars and Context-Free Languages

## Parsers and Bison

Turing Machines and Languages of
Type 1 and 0
Lecture-specific material
Lecture 1
Lecture 2
Lecture 3
Lecture 4

# Test Exam 

## Summary

- Review of last lecture
- Test exam
- Solutions


## Final feedback round

- What was the best part of the course?
- What part of the course that has the most potential for improvement?
- Optional: how would you improve it?


## Outline

## Introduction

Reaular Lanauages and Finite Automata

## Scanners and Flex

Formal Grammars and Context-Free Languages

## Parsers and Bison

Turing Machines and Languages of Type 1 and 0

Lecture-specific material
Bonus Exercises
Selected Solutions

## Bonus Exercises

Assume $\Sigma=\{a, b\}$. Consider the automaton $A$.

- Give a formal description of $A$.
- Which language $L(A)$ is accepted by A? Give a formal description.
- Where does $L(A)$ reside in the Chomsky-hierarchy?
- Manually find a regular expression $R$ with $L(R)=L(A)$.
- Generate a system of equations for $A$ and generate a regular expression $R_{S}$ for $L(A)$ by solving this. Compare your result the the previous one.
- Convert $A$ into a regular grammar $G$ with $L(A)=L(G)$.

- Can $L(A)$ be pumped? If yes, provide an example of a pumpable word.
- Generalize $A$ to recognize $L_{3}=$ $\left\{\left.w \in \Sigma^{*}| | w\right|_{a}\right.$ modulo $\left.3=0\right\}$
- Form the product automaton $P$ to find $L(A) \cap L_{3}$.
- Minmize $P$.
- Systematically construct a NFA $D_{A}$ for $R_{S}$.
- Convert $D_{R}$ to a DFA.


## Outline

## Introduction

Reqular Lanauages and Finite Automata

## Scanners and Flex

Formal Grammars and Context-Free Languages

Parsers and Bison<br>Turing Machines and Languages of Type 1 and 0<br>Lecture-specific material<br>Bonus Fxercises<br>Selected Solutions

## Equivalence of regular expressions

Solution to Exercise: Algebra on regular expressions (1)

- Claim: $r^{*} \doteq \varepsilon+r^{*}$

$$
\begin{align*}
\varepsilon+r^{*} & \doteq \varepsilon+\varepsilon+r^{*} r & (13) \\
\text { Proof: } & \doteq \varepsilon+r^{*} r & (9) \\
& \doteq r^{*} & (13) \tag{9}
\end{align*}
$$

## Simplification of regular expressions

Solution to Exercise: Algebra on regular expressions (2)

$$
\begin{array}{rll}
r & = & 0(\varepsilon+0+1)^{*}+(\varepsilon+1)(1+0)^{*}+\varepsilon \\
& \stackrel{14,1}{\doteq} & 0(0+1)^{*}+(\varepsilon+1)(0+1)^{*}+\varepsilon \\
& \stackrel{7}{\doteq} & 0(0+1)^{*}+\varepsilon(0+1)^{*}+1(0+1)^{*}+\varepsilon \\
& \stackrel{5}{\doteq} & 0(0+1)^{*}+(0+1)^{*}+1(0+1)^{*}+\varepsilon \\
& 1,7 & \\
& \doteq & \varepsilon+(0+1)(0+1)^{*}+(0+1)^{*} \\
& 16 & \\
& \doteq & \\
& 13 & \\
& \doteq & (0+1)^{*}+(0+1)^{*} \\
& \\
& \doteq & (0+1)^{*} .
\end{array}
$$

## Application of Arto's lemma

Solution to Exercise: Algebra on regular expressions (3)

- Show that $u=10(10)^{*} \doteq 1(01)^{*} 0$
- Idea: $u$ is of the form $t s^{*}$ with:
- $t=10$
- $s=10$
- This suggest Arto's Lemma. To apply the lemma, we must show that $r=1(01)^{*} 0 \doteq r s+t$

$$
\begin{aligned}
r s+t & =1(01)^{*} 010+10 & & \\
& \doteq 1\left((01)^{*} 010+0\right) & & \text { (factor out } 1) \\
& \doteq 1\left((01)^{*} 01+\varepsilon\right) 0 & & \text { (factor out } 0) \\
& \doteq 1(01)^{*} 0 & & (1),(13) \\
& =r & & \\
& =r & &
\end{aligned}
$$

- Since $L(s)=\{10\}$ (and hence $\varepsilon \notin L(s)$ ), we can apply Arto and rewrite $r \doteq t s^{*} \doteq 10(10)^{*}$.


## Transformation into DFA (1)

- Incremental computation of $\hat{Q}$ and $\hat{\delta}$ :
- Initial state $S_{0}=e c\left(q_{0}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}$
- $\hat{\delta}\left(S_{0}, a\right)=\delta^{*}\left(q_{0}, a\right) \cup \delta^{*}\left(q_{1}, a\right) \cup \delta^{*}\left(q_{2}, a\right)=\{ \} \cup\{ \} \cup\left\{q_{4}\right\}=\left\{q_{4}\right\}=S_{1}$
- $\hat{\delta}\left(S_{0}, b\right)=\left\{q_{3}\right\}=S_{2}$
$>\hat{\delta}\left(S_{1}, a\right)=\{ \}=S_{3}$
$\Rightarrow \hat{\delta}\left(S_{1}, b\right)=e c\left(q_{6}\right)=\left\{q_{6}, q_{7}, q_{0}, q_{1}, q_{2}\right\}=S_{4}$
$>\hat{\delta}\left(S_{2}, a\right)=\left\{q_{5}, q_{7}, q_{0}, q_{1}, q_{2}\right\}=S_{5}$
- $\hat{\delta}\left(S_{2}, b\right)=\{ \}=S_{3}$
- $\hat{\delta}\left(S_{3}, a\right)=\{ \}=S_{3}$
- $\hat{\delta}\left(S_{3}, b\right)=\{ \}=S_{3}$
- $\hat{\delta}\left(S_{4}, a\right)=\left\{q_{4}\right\}=S_{1}$
- $\hat{\delta}\left(S_{4}, b\right)=\left\{q_{3}\right\}=S_{2}$
$\Rightarrow \hat{\delta}\left(S_{5}, a\right)=\left\{q_{4}\right\}=S_{1}$
- $\hat{\delta}\left(S_{5}, b\right)=\left\{q_{3}\right\}=S_{2}$
- $\hat{F}=\left\{S_{4}, S_{5}\right\}$ (since $q_{7} \in S_{4}, q_{7} \in S_{5}$ )


## Transformation into DFA (2)

$-\operatorname{det}(\mathcal{A})=\left(\hat{Q}, \Sigma, \hat{\delta}, S_{0}, \hat{F}\right)$
$-\hat{Q}=\left\{S_{0}, S_{1}, S_{2}, S_{3}, S_{4}, S_{5}\right\}$
$\Rightarrow \hat{F}=\left\{S_{4}, S_{5}\right\}$
$>\hat{\delta}$ given by the table below

$\hat{\delta}$	$a$	$b$
$\rightarrow S_{0}$	$S_{1}$	$S_{2}$
$S_{1}$	$S_{3}$	$S_{4}$
$S_{2}$	$S_{5}$	$S_{3}$
$S_{3}$	$S_{3}$	$S_{3}$
$* S_{4}$	$S_{1}$	$S_{2}$
$* S_{5}$	$S_{1}$	$S_{2}$



- Regexp:
$L(\mathcal{A})=L\left((a b+b a)(a b+b a)^{*}\right)$


## Transformation into DFA (2)

- $\operatorname{det}(\mathcal{A})=\left(\hat{Q}, \Sigma, \hat{\delta}, S_{0}, \hat{F}\right)$
- $\hat{Q}=\left\{S_{0}, S_{1}, S_{2}, S_{3}, S_{4}, S_{5}\right\}$
$\Rightarrow \hat{F}=\left(S_{4}, S_{5}\right\}$
- $\hat{\delta}$ given by the table below

$\hat{\delta}$	$a$	$b$
$\rightarrow S_{0}$	$S_{1}$	$S_{2}$
$S_{1}$	$S_{3}$	$S_{4}$
$S_{2}$	$S_{5}$	$S_{3}$
$S_{3}$	$S_{3}$	$S_{3}$
$* S_{4}$	$S_{1}$	$S_{2}$
$* S_{5}$	$S_{1}$	$S_{2}$

- Regexp:

$L(\mathcal{A})=L\left((a b+b a)(a b+b a)^{*}\right)$


## Transformation of RE into NFA

Systematically construct an NFA accepting the same language as the regular expression $(a+b) a^{*} b$.

Solution:


Corresponding DFA:


## Solution: NFA to DFA "aba"



## Show $10(10)^{*} \doteq 1(01)^{*} 0$ via minimal DFAs (1)

- Step 1: NFA for 10(10)*:

	epsilon	0	1
-> q0	\{\}	\{ \}	\{q1 \}
q1	\{q2 \}	\{ \}	\{ \}
q2	\{\}	\{ 93 \}	\{ \}
q3	\{q4 \}	\{ \}	\{ \}
q4	\{q5, q6 \}	\{ \}	\{ \}
* 95	\{ \}	\{ \}	\{ \}
q6	\{ \}	\{ \}	\{q7 \}
q7	\{ q8 \}	\{ \}	\{ \}
q8	\{ \}	\{ 99 \}	\{ \}
q9	\{q5, q6 \}	\{ \}	\{ \}



## Show $10(10)^{*} \doteq 1(01)^{*} 0$ via minimal DFAs $(2)$

- Step 2: DFA $\mathcal{A}$ for $10(10)^{*}$ :

- Step 3: Minimizing of $\mathcal{A}$

	$S_{0}$	$S_{1}$	$S_{2}$	$S_{3}$	$S_{4}$	$S_{5}$
$S_{0}$	$=$	x	x	x	x	x
$S_{1}$	x	$=$	x	x	o	x
$S_{2}$	x	x	$=$	x	x	x
$S_{3}$	x	x	x	$=$	x	o
$S_{4}$	x	o	x	x	$=$	x
$S_{5}$	x	x	x	o	x	$=$



Result: $\left(S_{1}, S_{4}\right)$ and ( $S_{3}, S_{5}$ ) can be merged

## Show $10(10)^{*} \doteq 1(01)^{*} 0$ via minimal DFAs (3)

- Step 4: NFA for $1(01)^{*} 0$ :

	epsilon	0	1
-> q0	\{\}	\{\}	\{ q1 \}
q1	\{ $q 2\}$	\{ \}	\{\}
q2	\{q3, q4 \}	\{ \}	\{\}
q3	\{ 98 \}	\{\}	\{\}
q4	\{\}	\{ 95$\}$	\{\}
q5	\{ 96$\}$	\{ \}	\{\}
q6	\{ \}	\{ \}	\{q7 \}
q7	\{q4, q3 \}	\{ \}	\{\}
q8	\{ \}	\{ \}	\{q9\}
* q9	\{\}	\{ \}	\{\}



## Show $10(10)^{*} \doteq 1(01)^{*} 0$ via minimal DFAs (4)

- Step 5: DFA $\mathcal{B}$ for $1(01)^{*} 0$

- Step 6: Minimization of $\mathcal{B}$

	$S_{0}$	$S_{1}$	$S_{2}$	$S_{3}$	$S_{4}$
$S_{0}$	$=$	X	x	x	X
$S_{1}$	X	$=$	X	x	0
$S_{2}$	x	x	$=$	x	X
$S_{3}$	X	x	X	$=$	X
$S_{4}$	X	0	x	x	$=$



Result: $\left(S_{1}, S_{4}\right)$ can be merged

## Show $10(10)^{*} \doteq 1(01)^{*} 0$ via minimal DFAs (5)

- Step 7: Comparision of $\mathcal{A}^{-}$and $\mathcal{B}^{-}$


$$
\mathcal{B}^{-}
$$



- Result: The two automata are identical, hence the two original regular expressions describe the same languages.


## Pumping lemma

Solution to $a^{n} b^{m}$ with $n<m$

- Proposition: $L=\left\{a^{n} b^{m} \mid n<m\right\}$ is not regular.
- Proof by contradiction. We assume $L$ is regular
- Then: $\exists k \in \mathbb{N}$ with:
- $\forall s \in L$ with $|s| \geq k: \exists u, v, w \in \Sigma^{*}$ such that

```
> \(s=u v w\)
\(>|u v| \leq k\)
\(>v \neq \varepsilon\)
\(\nabla u v^{h} w \in L\) for all \(h \in \mathbb{N}\)
```

- We consider the word $s=a^{k} b^{k+1} \in L$
$>$ Since $|u v| \leq k: u=a^{i}, v=a^{j}, w=a^{l} b^{k+1}$ and $j>0, i+j+l=k$
- Now consider $s^{\prime}=u v^{2} w$. According to the pumping lemma, $s^{\prime} \in L$. But $s^{\prime}=a^{i} a^{j} a^{j} a^{l} b^{k+1}=a^{i+j+l+j} b^{k+1}=a^{k+j} b^{k+1}$. Since $j \in \mathbb{N}, j>0$ : $k+j \nless k+1$. Hence $s^{\prime} \notin L$. This is a contradiction. Hence the assumption is wrong, and the original proposition is true. q.e.d.


## Pumping lemma

Solution to $a^{n} b^{m}$ with $n<m$

- Proposition: $L=\left\{a^{n} b^{m} \mid n<m\right\}$ is not regular.
- Proof by contradiction. We assume $L$ is regular
- Then: $\exists k \in \mathbb{N}$ with:
- $\forall s \in L$ with $|s| \geq k: \exists u, v, w \in \Sigma^{*}$ such that

```
- \(s=u v w\)
\(>|u v| \leq k\)
\(>v \neq \varepsilon\)
\(\nabla u v^{h} w \in L\) for all \(h \in \mathbb{N}\)
```

- We consider the word $s=a^{k} b^{k+1} \in L$
$\Rightarrow$ Since $|u v| \leq k: u=a^{i}, v=a^{j}, w=a^{l} b^{k+1}$ and $j>0, i+j+l=k$
- Now consider $s^{\prime}=u v^{2} w$. According to the pumping lemma, $s^{\prime} \in L$. But $s^{\prime}=a^{i} a^{j} a^{j} a^{l} b^{k+1}=a^{i+j+l+j} b^{k+1}=a^{k+j} b^{k+1}$. Since $j \in \mathbb{N}, j>0$ : $k+j \nless k+1$. Hence $s^{\prime} \notin L$. This is a contradiction. Hence the assumption is wrong, and the original proposition is true. q.e.d.


## Solution: Pumping lemma (Prime numbers)

- Proposition: $L=\left\{a^{p} \mid p \in \mathbb{P}\right\}$ is not regular (where $\mathbb{P}$ is the set of all prime numbers)
- Proof: By contradiction, using the pumping lemma.
- Assumption: $L$ is regular. Then there exist a $k$ such that all words in $L$ with at least length $k$ can be pumped.
- Consider the word $s=a^{p}$, where $p \in \mathbb{P}, p \geq k$
- Then there are $u, v, w \in \Sigma^{*}$ with $u v w=s,|u v| \leq k, v \neq \varepsilon$, and $u v^{h} w \in L$ for all $h \in \mathbb{N}$.
- We can write $u=a^{i}, v=a^{j}, w=a^{l}$ with $i+j+l=p$
- So $s=a^{i} a^{j} a^{l}$ and $a^{i} a^{j \cdot h} a^{l} \in L$ for all $h \in \mathbb{N}$.
- Consider $h=p+1$. Then $a^{i} a^{j \cdot(p+1)} a^{l} \in L$
$>a^{i} a^{j \cdot(p+1)} a^{l}=a^{i} a^{j p+j} a^{l}=a^{i} a^{j p} a^{j} a^{l}=a^{i} a^{j} a^{l} a^{j p}=a^{p} a^{j p}=a^{(j+1) p}$
- But $(j+1) p \notin \mathbb{P}$, since $j+1>1$ and $p>1$, and $(j+1) p$ thus has (at least)two non-trivial divisors.
- Thus $a^{(j+1) p} \notin L$. This violates the pumping lemma and hence contradicts the assumption. Thus the assumption is wrong and the proposition holds.
q.e.d.


## Solution: Pumping lemma (Prime numbers)

- Proposition: $L=\left\{a^{p} \mid p \in \mathbb{P}\right\}$ is not regular (where $\mathbb{P}$ is the set of all prime numbers)
- Proof: By contradiction, using the pumping lemma.
- Assumption: $L$ is regular. Then there exist a $k$ such that all words in $L$ with at least length $k$ can be pumped.
- Consider the word $s=a^{p}$, where $p \in \mathbb{P}, p \geq k$
- Then there are $u, v, w \in \Sigma^{*}$ with $u v w=s,|u v| \leq k, v \neq \varepsilon$, and $u v^{h} w \in L$ for all $h \in \mathbb{N}$.
- We can write $u=a^{i}, v=a^{j}, w=a^{l}$ with $i+j+l=p$
- So $s=a^{i} a^{j} a^{l}$ and $a^{i} a^{j \cdot h} a^{l} \in L$ for all $h \in \mathbb{N}$.
- Consider $h=p+1$. Then $a^{i} a^{j \cdot(p+1)} a^{l} \in L$
$\triangleright a^{i} a^{j \cdot(p+1)} a^{l}=a^{i} a^{j p+j} a^{l}=a^{i} a^{j p} a^{j} a^{l}=a^{i} a^{j} a^{l} a^{j p}=a^{p} a^{j p}=a^{(j+1) p}$
- But $(j+1) p \notin \mathbb{P}$, since $j+1>1$ and $p>1$, and $(j+1) p$ thus has (at least)two non-trivial divisors.
- Thus $a^{(j+1) p} \notin L$. This violates the pumping lemma and hence contradicts the assumption. Thus the assumption is wrong and the proposition holds.
q.e.d.


## Solution: Product automaton for $L_{1} \cap L_{2}$

Solution to Exercise: Product automaton

$A_{2}$ :


$$
A_{1} \times A 2 \text { for } L_{1} \cap L_{2}:
$$



Equivalent Automaton for $L_{1} \cap L_{2}$ :


## Solution: Product automaton for $L_{1} \cap L_{2}$

Solution to Exercise: Product automaton

$A_{2}$ :


$$
A_{1} \times A 2 \text { for } L_{1} \cap L_{2} \text { : }
$$



Equivalent Automaton for $L_{1} \cap L_{2}$ :


## Solution: Transformation to Chomsky Normal Form (1)

Compute the Chomsky normal form of the following grammar:
$G=(N, \Sigma, P, S)$

- $N=\{S, A, B, C, D, E\}$
- $\Sigma=\{\mathrm{a}, \mathrm{b}\}$

S	$S \rightarrow$	$A B\|S B\| B D E$		-		
A	$A \rightarrow$	$A a$		-		
$B$	$\rightarrow$	$b B\|B a B\| a b$				

Step 1: $\varepsilon$-Elimination

- Nullable NTS: $N=\{E, D\}$
- New rules:

$$
\begin{array}{ll}
S \rightarrow B D & \text { (from } \left.S \rightarrow B D E, \beta_{1}=B D, \beta_{2}=\varepsilon\right) \\
S \rightarrow B E & \text { (from } \left.S \rightarrow B D E, \beta_{1}=B, \beta_{2}=E\right) \\
S \rightarrow B & \text { (from } S \rightarrow B D \text { or } S \rightarrow B E, \beta_{1}=B, \beta_{2}=\varepsilon \text { ) }
\end{array}
$$

- Remove $E \rightarrow \varepsilon$


## Solution: Transformation to Chomsky Normal Form (2)

Step 2: Elimination of Chain Rules.

- Current chain rules: $S \rightarrow B, D \rightarrow E$
- Eliminate $S \rightarrow B$ :
$-N(S)=\{B\}$
- New rules: $S \rightarrow b B, S \rightarrow B a B, S \rightarrow a b$
- Eliminate $D \rightarrow E$
- $N(D)=\{E\}$
- $E$ has no rule, therefore no new rules!
- Current state of $P$ :

$$
\begin{array}{lll}
S \rightarrow A B|S B| B D E|B D| B E|b B| B a B \mid a b & C & \rightarrow S B \\
A \rightarrow A a & B & \rightarrow b B|B a B| a b
\end{array}
$$

## Solution: Transformation to Chomsky Normal Form (3)

Step 3: Reducing the grammar

- Terminating symbols: $T=\{S, B, C\}$ ( $A, D, E$ do not terminate)
- Remove all rules that contain $A, E, D$. Remaining:

$$
\begin{array}{lllll}
S & \rightarrow S B|b B| B a B \mid a b & C & \rightarrow & S B \\
B & \rightarrow b B|B a B| a b & &
\end{array}
$$

- Reachable symbols: $R=\{S, B\}$ ( $C$ is not reachable)
- Remove all rules containing $C$. Remaining:

$$
\begin{aligned}
& S \rightarrow S B|b B| B a B \mid a b \\
& B \rightarrow b B|B a B| a b
\end{aligned}
$$

## Solution: Transformation to Chomsky Normal Form (4)

Step 4: Introduce new non-terminals for terminals

- New rules: $X_{a} \rightarrow a, X_{b} \rightarrow b$. Result:

$$
\begin{array}{lll}
S \rightarrow S B\left|X_{b} B\right| B X_{a} B \mid X_{a} X_{b} & X_{a} \rightarrow a \\
B \rightarrow X_{b} B\left|B X_{a} B\right| X_{a} X_{b} & X_{b} \rightarrow b
\end{array}
$$

Step 5: Introduce new non-terminals to break up long right hand sides:

- Problematic RHS: $B X_{a} B$ (in two rules)
- New rule: $C_{1} \rightarrow X_{a} B$. Result:

$$
\begin{array}{lllll}
S & \rightarrow S B\left|X_{b} B\right| B C_{1} \mid X_{a} X_{b} & X_{a} & \rightarrow a \\
B & \rightarrow X_{b} B\left|B C_{1}\right| X_{a} X_{b} & X_{b} & \rightarrow b \\
C_{1} \rightarrow X_{a} B & &
\end{array}
$$

## Solution: Transformation to Chomsky Normal Form (5)

Final grammar: $G^{\prime}=\left(N^{\prime}, \Sigma, P^{\prime}, S\right)$ with

- $N^{\prime}=\left\{S, B, C_{1}, X_{a}, X_{b}\right\}$
- $\Sigma=\{a, b\}$



## Solution: CYK



## Solution: CYK



$$
\begin{aligned}
S & \rightarrow S B|B D| Y B \mid X Y \\
B & \rightarrow B D|Y B| X Y \\
D & \rightarrow X B \\
X & \rightarrow a \\
Y & \rightarrow b
\end{aligned}
$$

Therefore ab.ba $\notin L(G)$

## Solution: PDA to Grammar (1)

$$
\left.\begin{array}{rlrllll}
\mathcal{A} & =(Q, \Sigma, \Gamma, \Delta, 0, Z) & (1) & 0 & \varepsilon & Z & \rightarrow \\
\bullet & (2) & 0 & a & Z & \rightarrow & A Z
\end{array}\right) 0
$$

- Start rules for $P$ :
$>S \rightarrow[0 Z 0]$
$\nabla S \rightarrow[0 Z 1]$


## Solution: PDA to Grammar (2)

$$
\begin{aligned}
\mathcal{A} & =(Q, \Sigma, \Gamma, \Delta, 0, Z) \\
> & Q=\{0,1\} \\
> & \Sigma=\{a, b\} \\
> & \Gamma=\{A, Z\}
\end{aligned}
$$

$\Delta:$| $(1)$ | 0 | $\varepsilon$ | $Z$ | $\rightarrow$ | $\varepsilon$ | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $(2)$ | 0 | $a$ | $Z$ | $\rightarrow$ | $A Z$ | 0 |
| $(3)$ | 0 | $a$ | $A$ | $\rightarrow$ | $A A$ | 0 |
| $(4)$ | 0 | $b$ | $A$ | $\rightarrow$ | $\varepsilon$ | 1 |
| $(5)$ | 1 | $b$ | $A$ | $\rightarrow$ | $\varepsilon$ | 1 |
| $(6)$ | 1 | $\varepsilon$ | $Z$ | $\rightarrow$ | $\varepsilon$ | 11 |

Computing of $P$ continued:

- From (2):

$$
\begin{aligned}
& {[0 \mathrm{ZO}] \rightarrow a[0 A 0][0 \mathrm{ZO}] } \\
> & {[0 \mathrm{ZO}] \rightarrow a[0 A 1][1 \mathrm{ZO}] } \\
> & {[0 \mathrm{Z1}] \rightarrow a[0 \mathrm{OA} 0][0 \mathrm{Z1}] } \\
\nabla & {[0 \mathrm{Z1}] \rightarrow a[0 \mathrm{~A} 1][\mathrm{Z1}] }
\end{aligned}
$$

- From (3):
- $\quad[0 A 0] \rightarrow a[0 A 0][0 A 0]$
- [0A0] $\rightarrow a[0 A 1][1 A 0]$
- [0A1] $\rightarrow a[0 A 0][0 A 1]$
$-[0 A 1] \rightarrow a[0 A 1][1 A 1]$


## Solution: PDA to Grammar (3)

Full grammar $G=\{N, \Sigma, P, S\}$

- $N=\{S,[0 A 0],[0 A 1],[1 A 0]$, [1A1], [0Z0], [0Z1], [1Z0], [1Z1]\}
- $\Sigma=\{a, b\}$
- $P$ :

	$S \rightarrow[0 Z 0]$
$>$	$S \rightarrow[0 Z 1]$
$>$	$[0 Z 0] \rightarrow \varepsilon$
$>$	$[0 A 1] \rightarrow b$
$>$	$[1 A 1] \rightarrow b$
$>$	$[1 Z 1] \rightarrow \varepsilon$
$>$	$[0 Z 0] \rightarrow a[0 A 0][0 Z 0]$
$>$	$[0 Z 0] \rightarrow a[0 A 1][1 Z 0]$
$>$	$[0 Z 1] \rightarrow a[0 A 0][0 Z 1]$
$>$	$[0 Z 1] \rightarrow a[0 A 1][1 Z 1]$
$>$	$[0 A 0] \rightarrow a[0 A 0][0 A 0]$
$>$	$[0 A 0] \rightarrow a[0 A 1][1 A 0]$
$>$	$[0 A 1] \rightarrow a[0 A 0][0 A 1]$
$>$	$[0 A 1] \rightarrow a[0 A 1][1 A 1]$

- Terminating: $T=\{[0 Z 0],[0 A 1]$, [1A1], 1Z1], S, [0Z1]\}
- Remaining rules:

- Reachable:
$R=\{S,[0 Z 0],[0 Z 1]$,
[0A1], [1Z1], [1A1]\}
- No change!


## Solution: PDA to Grammar (4)

- $P$ :
$\begin{array}{ll}1 & S \rightarrow[0 Z 0] \\ 2 & S \rightarrow[0 Z 1] \\ 3 & {[0 Z 0] \rightarrow \varepsilon} \\ 4 & {[0 A 1] \rightarrow b} \\ 5 & {[1 A 1] \rightarrow b} \\ 6\left[\begin{array}{ll}{[1 Z 1]} & \rightarrow \varepsilon \\ 7 & {[0 Z 1] \rightarrow a[0 A 1][1 Z 1]} \\ \hline 8[0 A 1] \rightarrow a[0 A 1][1 A 1]\end{array}\right.\end{array}$
- Derivation of $\varepsilon$ :

$$
\checkmark S \Rightarrow_{1}[0 \mathrm{ZO}] \Rightarrow_{3} \varepsilon
$$

- Derivation of $a b$ :

$$
\begin{aligned}
& \text { - } S \Rightarrow_{2}[0 Z 1] \Rightarrow_{7} a[0 A 1][1 Z 1] \Rightarrow_{4} \\
& a b[1 Z 1]{ }_{6} a b
\end{aligned}
$$

- Derivation of $a a b b$ :

```
\(\Rightarrow S \Rightarrow_{2}[0 Z 1] \Rightarrow_{7} a[0 A 1][1 Z 1] \Rightarrow_{8}\)
 \(a a[0 A 1][1 A 1][1 Z 1] \Rightarrow 4\)
 \(a a b[1 A 1][1 Z 1] \Rightarrow_{5} a a b b[1 Z 1] \Rightarrow_{6}\)
 \(a a b b\)
```


## Bibliography

Nariyoshi Chida and Tachio Terauchi.
On Lookaheads in Regular Expressions with Backreferences.
In Amy P. Felty, editor, 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022), volume 228 of Leibniz International Proceedings in Informatics (LIPICs), pages 15:1-15:18, Dagstuhl, Germany, 2022.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik.


Ulrich Hedstück.
Einführung in die Theoretische Informatik: Formale Sprachen und Automatentheorie.
Oldenbourg Wissenschaftsverlag, 5th edition, 2012.
Dirk W. Hoffmann.
Theoretische Informatik.
Carl Hanser Verlag GmbH \& Co. KG, 5th edition, 2022.
John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman.
Introduction to Automata Theory, Languages and Computation.
Pearson Addison-Wesley, 3 edition, 2007.
Michael Sipser.
Introduction to the Theory of Computation.
Cenage Learning, 3rd edition, 2012.

