E 0.8x
User Manual

—preliminary version—

Stephan Schulz

August 1, 2003

Abstract

E is an equational theorem prover for full clausal logic, based on su-
perposition and rewriting. In this very preliminary manual we first give
a short introduction for impatient new users, and then cover calculus,
control, options and input/output of the prover in some more detail.

Contents

Introduction
Getting Started

Calculus and Proof Procedure
3.1 Calculus
3.2 Proof Procedure

Usage

4.1 Search Control Heuristics
4.1.1 Priority functions
4.1.2 Generic Weight Functions
4.1.3 Clause Evaluation Functions
4.1.4 Heuristics

4.2 Term Orderings o

4.3 Literal Selection Strategies.

4.4 Other Options

Input Language

6 Output...or how to interpret what you see 16

6.1 The Bare Essentials 16
6.2 Impressing your Friends 17
6.3 Detailed Reporting oo 18
6.4 Requesting Specific Results 18
A License 20

1 Introduction

This is a short and very sketchy documentation to the E equational theorem
prover. E is an purely equational theorem prover for clausal logic with equality.
It is based on paramodulation and rewriting. This means that E reads a set of
clauses and saturates it by systematically applying a number of inference rules
until either all possible inferences have been performed or until the empty clause
has been derived, i.e. the clause set has been found to be unsatisfiable and thus
a conjecture has been proved.

E is still a moving target, but most recent releases have been quite stable,
and it the prover is being used productively by serveral independent groups of
people. This manual should enable you to experiment with the prover and to
use some of its more advanced features.

The manual assumes a working knowledge of refutational theorem proving,
which can be gained from e.g. [CL73]. For a short description of E including
performance data, see [Sch01], a more detailed description will be published
as [Sch02]. Most papers on E and much more information is available at or a
few hops away from the E homepage, http://www4.informatik.tu-muenchen.
de/~schulz/WORK/eprover.html.

Some other provers have influenced the design of E and may be refer-
enced in the course of this manual. These include SETHEO [MIL*"97], Ot-
ter [McC94, MW97], SPASS [WGR96, WAB199], DISCOUNT [DKS97|, Wald-
meister [HBF96, HJL99] and Vampire [RV02, RV01].

2 Getting Started

Installation of E should be straightforward. The file README in the main direc-
tory of the distribution contains the necessary information. After building, you
will find the standalone executable E/PROVER/eprover.

E is controlled by a very wide range of parameters. However, if you do not
want to bother with the details, you can leave configuration for a problem to
the prover. To use this feature, use the following command line options:

-xAuto Select a literal selection strategy and a selection
heuristic automagically (based on problem fea-
tures).

-tAuto Select a term ordering automagically.

--memory-limit=xx Tell the prover how much memory (measured in
MB) to use at most. In automatic mode E will op-
timize its behaviour for this amount (20 MB will
work, 64 MB is reasonable, 192 MB is what I use.
More is better', but if you go over your physical
memory, you will probably experience very heavy

swapping.).

Example: If you happen to have a workstation with 64 MB RAM?2, the
following command is reasonable:

eprover -xAuto -tAuto --memory-limit=48 PUZ031-1+rm_eq_rstfp.lop

This documentation will probably lag behind the development of the latest
version of the prover for quite some time. To find out more about the options
available, type eprover --help (or consult the source code included with the
distribution).

3 Calculus and Proof Procedure

E is a purely equational theorem prover, based on ordered paramodulation and
rewriting. As such, it implements an instance of the superposition calculus de-
scribed in [BG94]. We have extended the calculus with some stronger contrac-
tion rules and more general approach to literal selection. The proof procedure
is a variant of the given-clause algorithm.

3.1 Calculus

Term(F, V) denotes the set of (first order) terms over a finite set of function
symbols F (with associated arities) and an enumerable set of variables V. We
write t|, to denote the subterm of ¢ at a position p and write t[p «— t'] to
denote t with t|, replaced by . An equation s~ is an (implicitly symmetrical)
pair of terms. A positive literal is an equation s ~ ¢, a negative literal is a
negated equation s %t. We write st to denote an arbitrary literal®. Literals

IEmphasis added for E 0.7 and up, which globally cache rewrite steps.
2Yes, this is outdated. If it still applies to you, get a new computer! It will still work ok,

though.
3Nonequational literals are encoded as equations or disequations of the form
P(t1,...,Pn)~T. In this case, we treat predicate symbols as special function symbols that

can only occur at the top-most positions and demand that atoms (terms formed with a top
predicate symbol) cannot be unified with a first-order variable from V, i.e. we treat normal
terms and predicate terms as two disjoint types.

can be represented as multi-sets of multi-sets of terms, with s ~¢ represented
as {{s},{t}} and s#t represented as {{s,t}}. A ground reduction ordering >
is a Noetherian partial ordering that is stable w.r.t. the term structure and
substitutions and total on ground terms. > can be extended to an ordering >;
on literals by comparing the multi-set representation of literals with >>>> (the
multi-set-multi-set extension of >).

Clauses are multi-sets of literals. They are usually represented as disjunc-
tions of literals, s12t1 V sa™~ts ...V $,~t,,. We write Clauses(F', P, V') to denote
the set of all clauses with function symbols F', predicate symbols P and variable
V. If C is a clause, we denote the (multi-)set of positive literals in C by C* and
the (multi-)set of negative literals in C by C~

The introduction of an extended notion of literal selection has improved the
performance of E significantly. The necessary concepts are explained in the
following.

Definition 3.1 (Selection functions)
sel : Clauses(F, P, V) — Clauses(F, P, V) is a selection function, if it has the
following properties for all clauses C:

e sel(C) CC.
o If sel(C) NC~ =0, then sel(C) = 0.

We say that a literal £ is selected (with respect to a given selection function)
in a clause C if £ € sel(C). <

We will use two kinds of restrictions on deducing new clauses: One induced
by ordering constraints and the other by selection functions. We combine these
in the notion of eligible literals.

Definition 3.2 (Eligible literals)
Let C = L V'R be a clause, let ¢ be a substitution and let sel be a selection
function.

e We say o(L) is eligible for resolution if either
— sel(C) =0 and o(L) is >p-maximal in o(C) or
— sel(C) # 0 and (L) is >p-maximal in o(selC) NC™) or
— sel(C) # 0 and (L) is >r-maximal in o(sel(C) NCT)).
e o(L) is eligible for paramodulation if L is positive, sel(C) = () and (L) is
strictly > p-maximal in o(C).
<

The calculus is represented in the form of inference rules. For convenience, we
distinguish two types of inference rules. For generating inference rules, written
with a single line separating preconditions and results, the result is added to
the set of all clauses. For contracting inference rules, written with a double

line, the result clauses are substituted for the clauses in the precondition. In
the following, u, v, s and t are terms, o is a substitution and R, S and T are
(partial) clauses. p is a position in a term and A is the empty or top-position.
Different clauses are assumed to not share any common variables.

Definition 3.3 (The inference system SP)

Let > be a total simplification ordering (extended to orderings >, and >¢ on
literals and clauses) and let sel be a selection function. The inference system
SP consists of the following inference rules:

o FEquality Resolution:

(ER) utvV R if 0 = mgu(u,v) and o(u®
o(R) v) is eligible for resolution.

e Superposition into negative literals:

if o0 = mgu(ulp,s), a(s) £

s~tVS u®rvVR _G(t)’_ ‘T(u) # o(v), als =)

(SN) is eligible for paramodula-

o(ulp —t]#vV SV R) tion, o(uw) is eligible for
resolution, and ul, ¢ V.

e Superposition into positive literals:
if o = mgu(“"?vs)a U(S) %
cmiVS wewy R o(t), o(u) £ o(v), o(s=1)
(SP) is eligible for paramodula-
o(ulp —t]>vV SV R) tion, o(usw) is eligible for
resolution, and ul, ¢ V.
e Fquality factoring:
s~tVu~oV R if 0 = mgu(s,u), o(s) #
(EF) o(t) and o(s~t) eligible for
U(t FoVuxvV R) paramodulation.
o Rewriting of negative literals:

(RN) s>t upvVh if ul, = o(s) and o(s) > o(t)
s:t ULPHO_(t)]¢,U\/R 1 Up—O'S and o(s g .

o Rewriting of positive literals*:

s~t u~vVR if ulp = o(s), o(s) > o(t), and
(RP) if u~w is not eligible for reso-
st ulp—ot)]=vVR lution or u % v or p # A.

e Clause subsumption:

if 0(S) =T for a substitution

T RVS corVs~teo(S):s~teT
for a substitution o that is not
a variable renaming.

(CS)

e Fquality subsumption:

s=t ulp — o(s)|~ulp — o(t)] VR

s~t

(ES)

o Positive simplify-reflect’:

s~t wul[p—o(s)]Eulp—oct)]VR

PS
(PS) s~t R

e Negative simplify-reflect

s#t o(s)~o(t)VR
s~t R

(NS)

e Tautology deletion:

C
(TD) =—= if C is a tautology®. try to detect

4A stronger version of (RP) is proven to maintain completeness for Unit and Horn prob-
lems and is generally believed to maintain completeness for the general case as well [Bac98].
However, the proof of completeness for the general case seems to be rather involved, as it re-
quires a very different clause ordering than the one introduced [BG94], and we are not aware
of any existing proof in the literature. The variant rule allows rewriting of maximal terms of
maximal literals under certain circumstances:

if ulp = o(s), o(s) > o(t) and if

(RP?) s>t u~vVR u~v is not eligible for resolution or
s~t u[p—o(t)~vVR u ¥ vorpF Aor o is not a variable
renaming.

This stronger rule is implemented successfully by both E and SPASS [Wei99].
5In practice, this rule is only applied if o(s) and o(t) are >-incomparable — in all other
cases this rule is subsumed by (RN) and the deletion of resolved literals (DR).

tautologies by checking if the ground-completed negative literals imply at
least one of the positive literals, as suggested in [NN93].

e Deletion of duplicate literals:

s~tVs~tV R
s~tV R

(DD)

e Deletion of resolved literals:

s#tsVR

(DR) =

e Destructive equality resolution:

VR
(DE) L if z,y € V,0 = mgu(z,y)
o(R)

We write SP(N) to denote the set of all clauses that can be generated with one
generating inference from I on a set of clauses N, Dgp to denote the set of all
SP-derivations, and Dz to denote the set of all finite SP-derivations.

<

As SP only removes clauses that are composite with respect to the remaining
set of clauses, the calculus is complete. For the case of unit clauses, it degener-
ates into unfailing completion [BDP89] as implemented in DISCOUNT. E can
also simulate the positive unit strategy for Horn clauses described in [Der91]
using appropriate selection functions.

Contrary to e.g. SPASS, E does not implement special rules for non-equational
literals or sort theories, as we expect this part to be taken care of by SETHEO
in a later combined system. Instead, non-equation literals are encoded as equa-
tions and dealt with accordingly.

3.2 Proof Procedure

The basic proof procedure of E is quite straightforward. The set of all clauses
is split into two sets, a set P of processed clauses and a set U of unprocessed
clauses. Initially, all input clauses are in in U, and P is empty. The algorithm
selects a new clause from U, simplifies it w.r.t. to P, then uses it to simplify the
clauses in P in turn. It then performs equality factoring, equality resolution and
superposition between the selected clause and the set of processed clauses. The
generated clauses are added to the set of unprocessed clauses. The process stops
when the empty clause is derived or no further inferences are possible. Fig. 1
shows a (slightly simplified) pseudocode sketch of the procedure.

6This rule can only be implemented approximately, as the problem of recognizing tautolo-
gies is only semi-decidable in equational logic. The latest versions of E

Input: Axioms in U, P is empty
while U # () begin
c := select(U)
U:=U\ ¢
Apply (RN), (RP), (SR), (DR1), (DR2)
simplify(c,P)
Apply (8S1), (ss2), (TD1), (TD2)
if ¢ is trivial or subsumed by P then
delete(c)
else if ¢ is the empty clause then
Success: Proof found
stop
else
T := () # Temporary clause set
foreach p € P do
if c simplifies a term in a maximal literal of p
such that the set of maximal terms or
the set of maximal literals of p potentially changes
then

T :=
done
simplify(p, (P \ p) U {cP)

P:=P\p
TUp

end
T := T U e-resolvents(c) # (ER)
T := T U e-factors(c) # (EF)
T := T U paramodulants(c,P) # (SN), (SP)
foreach p € T do
U := U U simplify(p, P)

end
fi
end
Failure: Initial U is satisfiable, P describes model

Figure 1: Main proof procedure of E

The proof search is controlled by three major parameters: The term ordering
(described in section 4.2), the literal selection function, and the order in which
the select operation selects the next clause to process.

E implements two different classes of term orderings, lexicographic term or-
derings and Knuth-Bendix orderings. A given ordering is determined by instan-
tiating one of the classes with a variety of parameters (described in section 4.2).

Literal selection currently is done according to one of more than 50 prede-
fined functions. Section 4.3 describes this feature.

Clause selection is determined by a heuristic evaluation function, which con-
ceptually sets up a set of priority queues and a weighted round robin scheme
that determines from which queue the next clause is to be picked. The order
within each queue is determined by a priority function (which partitions the
set of unprocessed clauses into one or more subsets) and a heuristic evaluation
function, which assigns a numerical rating to each clause. Section 4.1 describes
the user interface to this mechanism.

4 Usage

4.1 Search Control Heuristics

Search control heuristics define the order in which the prover considers newly
generated clauses. A heuristic is defined by a set of clause evaluation functions
and a selection scheme wich defines how many clauses are selected according
to each evaluation function. A clause evalution function consists of a priority
function and an instance of a generic weight function.

4.1.1 Priority functions

Priority functions define a partition on the set of clauses. A single clause evalu-
ation consists of a priority (which is the first selection criteria) and an evalution.
Priorities are usually not suitable to encode heuristical control knowledge, but
rather are used to express certain elements of a search strategy, or to restrict
the effect of heuristic evaluation functions to certain classes of clauses.

Syntactically, the currently available priority functions are described by the
following rule:

<prio-fun> ::= PreferGroundGoals ||
PreferUnitGroundGoals ||
PreferGround | |
PreferNonGround | |
PreferProcessed ||
PreferNew ||
PreferGoals ||
PreferNonGoals ||
PreferUnits ||
PreferNonUnits ||
PreferHorn | |
PreferNonHorn ||
ConstPrio ||
ByLiteralNumber ||
ByDerivationDepth ||
ByDerivationSize ||
ByNegLitDist ||
ByGoalDifficulty ||

SimulateSOS| |
PreferHorn]| |
PreferNonHorn| |
PreferUnitAndNonEq] |
DeferNonUnitMaxEq| |
ByCreationDate

The priority functions are interpreted as follows:

PreferGroundGoals: Always prefer ground goals (all negative clauses without
variables), do not differentiate between all other clauses.

PreferUnitGroundGoals: Prefer unit ground goals.
PreferGround: Prefer clauses without variables.
PreferNonGround: Prefer clauses with variables.

PreferProcessed: Prefer clauses that have already been processed once and
have been eleminated from the set of processed clauses due to interreduc-
tion (forward contraction).

PreferNew: Prefer new clauses, i.e. clauses that are processed for the first time.
PreferGoals: Prefer goals (all negative clauses).

PreferNonGoals: Prefer non goals, i.e. facts with at least one positive literal.
PreferUnits: Prefer unit clauses (clauses with one literal).

PreferNonUnits: Prefer non-unit clauses.

PreferHorn: Prefer Horn clauses (clauses with no more than one positive liter-
als).

PreferNonHorn: Prefer non-Horn clauses.
ConstPrio: Assign the same priority to all clauses.

ByLiteralNumber: Give a priority according to the number of literals, i.e. al-
ways prefer a clause with fewer literals to one with more literals.

ByDerivationDepth: Prefer clauses which have a short derivation depth, i.e.
give a priority based on the length of the longest path from the clause to
an axiom in the derivation tree. Counts generating inferences only.

ByDerivationSize: Prefer clauses which have been derived with a small num-
ber of (generating) inferences.

ByNegLitDist: Prefer goals to non-goals. Among goals, prefer goals with fewer
literals and goals with ground literals (more exactly: the priority is in-
creased by 1 for a ground literal and by 3 for a non-ground literal. Clauses
with lower values are selected before clauses with higher values).

10

ByGoalDifficulty: Prefer goals to non-goals. Select goals based on a simple
estimate of their difficulty: First unit ground goals, then unit goals, then
ground goals, then other goals.

SimulateS0S: Use the priority system to simulate Set-Of-Support. This prefers
all initial clauses and all Set-Of-Support clauses. Some non-SOS-clauses
will be generated, but not selected for processing. This is neither well
tested nor a particularly good fit with E’s calculus, but can be used as
one among many heuristics. If you try a pure SOS strategy, you also should
set ——restrict-literal-comparisons and run the prover without literal
selection enabled.

PreferHorn: Prefer Horn clauses (note: includes units).
PreferNonHorn: Prefer non-Horn clauses.

PreferUnitAndNonEq: Prefer all unit clauses and all clauses without equational
literal. This was an attempt to model some restricted calculi used e.g. in
Gandalf [Tam97], but did not quite work out.

DeferNonUnitMaxEq: Prefer everything except for non-unit clauses with a max-
imal equational literal (“Don’t paramodulate if its to expensive”). See
above, same result.

ByCreationDate: Return the creation date of the clause as priority. This im-
poses a FIFO equivalence class on clauses. Clauses generated from the
same given clause are grouped together (and can be ordered with any
evaluation function among each other).

Please note that careless use of certain priority functions can make the prover
incomplete for the general case.

4.1.2 Generic Weight Functions

Generic weight functions are templates for functions taking a clause and return-
ing a weight (i.e. an estimate of the usefulness) for it, where a lower weight
means that the corresponding clause should be processed before a clause with
a higher weight. A generic weight function is combined with a priority function
and instanciated with a set of parameters to yield a clause evaluation function.

You can specify an instantiated generic weight function as described in this
rule”:

<weight-fun> ::= Clauseweight ’(’ <prio-fun> ’, <int>, <int>,
<float>)’ I
Refinedweight ’(’ <prio-fun> ’, <int>, <int>,

<float>, <float>, <float> ’)’ ||
Orientweight ’(’ <prio-fun>, <int>, <int>,

"Note that there now are many additional generic weight functions not yet documented.

11

<float>, <float>, <float> ’)’ ||
Simweight ’(’ <prio-fun>, <float>, <float>,
<float>, <float> ’)’ |
FIFOWeight ’(* <prio-fun> ’)’ l
LIFOWeight °>(° <prio-fun> ’)’

Clauseweight (prio, fweight, vweight, posmult): This is the basic sym-
bol counting heuristic. Variables are counted with weight fweight, function
symbols with weight vweight. The weight of positive literals is multiplied by
pos_mult before being added into the final weight.

Refinedweight (prio, fweight, vweight, term_pen, lit_pen, pos_mult):
This weight function is very similar to the first one. It differs only in that it
takes the effect of the term ordering into account. In particular, the weight of
a term that is maximal in its literal is multiplied by term_pen, and the weight
of maximal literals is mutiplied by 1it_pen.

Orientweight(prio, fweight, vweight, term_pen, lit_pen, pos._mult):
This weight function is a slight variation of Refinedweight (). In this case,
the weight of both terms of an unorientable literal is multiplied by a penalty
term_pen.

Simweight (prio, equal_weight, vv_clash, vt_clash, tt_clash): This
weight function is intended to return a low weight for literals in which the
two terms ar very similar. It does not currently work very well even for unit
clauses — RTFS (in <che_simweight.c>) to find out more.

FIFOWeight (prio): This weight function assigns weights that increase in a
stricly monotonic manner, i.e. it realises a first-in/first-out strategy if used all
by itself. This is the most obviously fair strategy.

LIFOWeight (prio): This weight function assigns weights that decrease in a
stricly monotonic manner, i.e. it realises a last-in/first-out strategy if used all
by itself (which, of course, would be unfair and result in an extremely incomplete
prover).

4.1.3 Clause Evaluation Functions

A clause evaluation function is constructed by instantiating a generic weight
function. It can either be specified directly, or specified and given a name for
later reference at once:

<eval-fun> ::= <ident>
<weight-fun>
<eval-fun-def>

<eval-fun-def> ::= <ident> = <weight-fun>

<eval-fun-def-list> ::= <eval-fun-def>x*

12

Of course a single identifier is only a valid evaluation function if it has been
previously defined in a <eval-fun-def>. It is possible to define the value of
an identifier more than once, in which case later definitions take precedence to
former ones.

Clause evaluation functions can be be defined on the command line with the
-D (--define-weight-function) option, followed by a <eval-fun-def-list>.

Ezxample:

eprover -D"exl=Clauseweight(ConstPrio,2,1,1) \
ex2=FIFOWeight (PreferGoals)"

sets up the prover to know about two evaluation function exl and ex2
(wich supposedly will be used later on the command line to define one or
more heuristics). The double quotes are necessary because the brackets
and the commata are special characters for most shells

There are a variety of clause evaluation functions predefined in the variable
DefaultWeightFunctions, which can be found in che_proofcontrol.c.

4.1.4 Heuristics

A heuristic defines how many selections are to be made according to one of
several clause evaluation functions. Syntactically,

<heu-element> c:= <int> ’*’ <eval-fun>

<heuristic> ::= 7 (° <heu-element> (,<heu-element>)* ’)’ ||
<ident>

<heuristic-def> ::= <ident> = <heuristic> ||
<heuristic>

As above, a single identifier is only a valid heuristic if it has been de-
fined in <heuristic-def> previously. A <heuristic-def> which degener-
ates to a simple heuristic defines a heuristic with name Default (which the
prover will automatically choose if no other heuristic is selected with the -x
(--expert-heuristic).

Ezample: To continue the above example,

eprover -D"exl=Clauseweight(ConstPrio,2,1,1) \
ex2=FIFOWeight (PreferGoals)"
-H"new=(3*ex1,1*xex2)" \
-x new LUSK3.lop

will run the prover on a problem file named LUSK3.lop with a heuristic
that chooses 3 out of every 4 clauses according to a simple symbol count-
ing heuristic and the last clause first among goals and then among other
clauses, selecting by order of creation in each of these two classes.

13

4.2 Term Orderings

...exist and are important. Use the default or ~tAuto until either better doc-
umentation turns up or you can pick up the necessary information some other
way.

4.3 Literal Selection Strategies

The superposition calculus allows the selection of arbitrary negative literals
in a clause and only requires generating inferences to be performed on these
literals. E supports this feature and implements it via manipulations of the
literal ordering. Additionally, E implements strategies that allow inferences into
maximal positive literals and selected negative literals. A selection strategy is
selected with the option --literal-selection-strategy. Currently, at least
the following strategies are implemented:

NoSelection: Perform ordinary superposition without selection.

NoGeneration: Do not perform any generating inferences. This strategy is
not complete, but applying it to a formula generates a normal form that
does not contain any tautologies or redundant clauses.

SelectNegativeLiterals: Select all negative literals. For Horn clauses, this
implements the maximal literal positive unit strateg [Der91] previously
realized separately in E.

SelectPureVarNegLiterals: Select the first negative literal of the form X ~
Y.

SelectLargestNegLit: Select the largest negative literal (by symbol counting,
function symbols count as 2, variables as 1).

SelectSmallestNegLit: As above, but select the smallest literal.

SelectDiffNegLit: Select the negative literal in which both terms have the
largest size difference.

SelectGroundNegLit: Select the first negative ground literal for which the
size difference between both terms is maximal.

SelectOptimalLit: If there is a ground negative literal, select as in the case
of SelectGroundNegLit, otherwise as in SelectDiffNegLit.

Each of the strategies that do actually select negative literals has a corre-
sponding counterpart starting with P that additionally allows paramodulation
into maximal positive literals®.

8Except for SelectOptimalLit, where the resulting strategy, PSelectOptimalLit will
allow paramodulation into positive literals only if no ground literal has been selected.

14

Example: Some problems become a lot simpler with the correct strategy. Try
e.g.

eprover --literal-selection-strategy=NoSelection \
GRPOO1-1+rm_eq_rstfp.lop

eprover --literal-selection-strategy=SelectLargestNegLit \
GRPOO1-1+rm_eq_rstfp.lop

You will find the file GRP0OO1-1+rm_eq_rstfp.lop in the E/PROVER direc-
tory.

As we aim at replacing the vast number of individual literal selection func-
tions with a more abstract mechanism, we refrain from describing all of the cur-
rently implemented functions in detail. If you need information about the set
of implemented functions, run eprover -W none. The indiviual functions are
implemented and somewhat described in E/HEURISTICS/che_litselection.h.

4.4 Other Options

5 Input Language

E natively uses E-LOP, a dialect of the LOP languange designed for SETHEO.At
the moment, your best bet is to retrieve the LOP description from the E web
site [Sch99] and/or check out the examples available from it. LOP is very close
to Prolog, and E can usually read many fully declarative Prolog files if they do
not use arithmetic or rely on predefined symbols. Plain SETHEO files usually
also work very well. There are a couple of minor differences, however:

e equal () is an interpreted symbol for E. It normally does not carry any
meaning for SETHEO (unless equality axioms are added).

e SETHEO allows the same identifier to be used as a constant, a non-
constant function symbol and a predicate symbol. E encodes all of these
as ordinary function symbols, and hence will complain if a symbol is used
inconsistently.

e E allows the use of both = and => as infix symbols for equality. a=b is
equivalent to equal(a,b) for E.

e E does not support constraints or SETHEQ build-in symbols. This should
not usually affect pure theorem proving tasks.

e E normally treats procedural clauses exactly as it treats declarative clauses.
Query clauses (clauses with an empty head and starting with 7-, e.g.
7-~p(X), q(X). can optionally be used to define the a set of goal clauses
(by default, all negative clauses are considered to be goals). At the mo-
ment, this information is only used for the initial set of support (with

15

--sos-uses-input-types). Note that you can still specify arbitrary
clauses as query clauses, since LOP supports negated literals.

As an alternative, E also supports TPTP syntax [SS97] (if given the option
--tptp-in or ——tptp-format) without includes and as far as it can be divined
from the TPTP manual. In TPTP format, clauses with TPTP type conjecture
are considered goal clauses for the --sos-uses-input-types option.

6 Output...or how to interpret what you see

E has several different output levels, controlled by the option -1 or -—output-level.
Level 0 prints nearly no output except for the result. Level 1 is intended to give
humans a somewhat readable impression of what is going on inside the infer-
ence engine. Levels 3 to 6 output increasingly more information about the inside
processes in PCL2 format. At level 4 and above, a (large) superset of the proof
inferences is printed. You can use the epclextract utility in E/PROVER/ to
extract a simple proof object.

In Level 0 and 1, everything E prints is either a clause that is implied by the
original axioms, or a comment (or, very often, both).

6.1 The Bare Essentials

In silent mode (--output-level=0, -s or --silent), E will not print any output
during saturation. It will print a one-line comment documenting the state of
the proof search after termination. The following possibilities exist:

e The prover found a proof. This is denoted by the output string
Proof found!

e The problem does not have a proof, i.e. the specification is satisfiable (and
E can detect this):

No proof found!

Ensuring the completeness of a prover is much harder than ensuring cor-
rectness. Moreover, proofs can easily be checked by analysing the output
of the prover, while such a check for the absence of proofs is rarely possible.
I do believe that the current version of E is both correct and complete®
but my belief in the former is stronger than my beliefe in the later.

e A (hard) resource limit was hit. For memory this can be either due to a per
process limit (set with limit or the prover option --memory-1limit), or
due to running out of virtual memory. For cpu time, this case is triggered

9Unless the prover runs out of memory (see below), the user selects an unfair strategy (in
which case the prover may never terminate), or some strange and unexpected things happen.

16

if the per process cpu time limit is reached and signalled to the prover via
a SIGXCPU signal. This limit can be set with 1imit or, more reliable, with
the option --cpu-limit. The output string is one of the following two,
depending on the exact reason for termination:

Failure: Resource limit exceeded (memory)
Failure: Resource limit exceeded (time)

e A user-defined limit was reached during saturation, and the saturation pro-
cess was stopped gracefully. Limits include number of processed clauses,
number of total clauses, and cpu time (as set with --soft-cpu-limit.
The output string is

Faiure: User resource limit exceeded!

...and the user is expected to know which limit he selected.

e Normally, E is complete. However, if the option --delete-bad-1limit is
given or if automatic mode in connection with a memory limit is used, E
will periodically delete clauses it deems unlikely to be processed to avoid
running out of memory. In this case, completeness cannot be ensured any
more. This effect manifests itself extremely rarely. If it does, E will print
the following string:

Failure: Out of unprocessed clauses!

This is roughtly equivalent to Otter’s SOS empty message.

e Finally, it is possible to chose restricted calculi when starting E. This is
useful if E is used as a normalization tool or as a preprocessor or lemma
generator. In this case, E will print a corresponding message:

Clause set closed under restricted calculus!

6.2 Impressing your Friends

If you run E without selection an output level (or by setting it explicitly to
1), E will print each non-tautological, non-subsumed clause it processes as a
comment. It will also print a hash (#’) for each clause it tries to process but
can prove to be superfluous.

This mode gives some indication of progress, and as the output is fairly
restricted, does not slow the prover down too much.

For any output level greater than 0, E will also print statistical information
about the proof search and final clause sets. The data should be fairly self-
explaining.

17

6.3 Detailed Reporting

At output levels greater that 1, E prints certain inferences in PCL2 format!?.
At level 2, it only prints generating inferences. At level 4, it prints all generating
and modifying inferences, and at level 6 it also prints PCL steps giving a lot of
insight into the interal operation of the inference engine. This protocol is fairly
readable and, from level 4 on can be used to check the proof with the utility

checkproof provided with the distribution.

6.4 Requesting Specific Results

There are two additional kinds of information E can provide beyond the normal
output during proof search: Statistical information and final clause sets (with
additional information).

First, E can give you some technical information about the conditions it runs
under.

The option —-print-pid will make E printing its process id as a comment,
in the format # Pid: XXX, where XXX is an integer number. This is useful if
you want to send signals to the prover (in particular, if you want to terminate
the prover) to control it from the outside.

The option -R (--resources-info) will make E print a summary of used
system resources after graceful termination:

User time : 0.010 s
System time : 0.020 s
Total time : 0.030 s

Maximum resident set size: O pages

Most operating systems do not provide a valid value for the resident set size
and other memory-related resources, so you should probably not depend on the
last value to carry any meaningful information. The time information is required
by most standards and should be useful for all tested operating systems.

E can be used not only as a prover, but as a normalizer for formulae or as
a lemma generator. In this cases, you will not only want to know if E found a
proof, but also need some or all of the derived clauses, possibly with statistical
information for filtering. This is supported with the —-print-saturated and
--print-sat-info options for E.

The option --print-saturated takes as it’s argument a string of letters,
each of which represents a part of the total set of clauses E knows about. The
following table contains the meaning of the individual letters:

10PCL2 is a proof output protocol language currently being designed by me as a successor
to PCL [DS94a, DS94b, DS96].

18

SR

H

A

Processed positive unit clauses (Equations).

Processed negative unit clauses (Inequations).

Processed non-unit clauses (except for the empty clause,
which, if present, is printed separatly). The above three
sets are interreduced and all selected inferences between
them have been computed.

Unprocessed positive unit clauses.

Unprocessed negative unit clauses.

Unprocessed non-unit clause (this set may contain the
empty clause in very rare cases).

Print equality axioms (if equality is present in the prob-
lem). This letter prints axioms for refelxivity, symmetry,
and transitivity, and a set of substitutivity axioms, one for
each argument position of every function symbol and pred-
icate symbol.

As a, but print a single substitutivity axiom covering all
positions for each symbol.

The short form, -S, is equivalent to --print-saturated=eigEIG. If the
option —--print-sat-info is set, then each of the clauses is followed by a com-
ment of the form # info(id, pd, pl, sc, cd, nl, no, nv). The followig
table explains the meaning of these values:

id
pd
pl
sc
cd
nl
no
nv

Clause ident (probably only useful internally)
Depth of the derivation graph for this clause
Number of nodes in the derivation grap
Symbol count (function symbols and variables)
Depth of the deepest term in the clause
Number of literals in the clause

Number of variable occurences

Number of different variables

19

A License

The standard distribution of E is free software. You can use, modify and copy it
under the terms of the GNU General Public License. You may also have bought
a commercial version of E from Safelogic A.B. in Gothenburg, Sweden. In this
case, you are bound by whatever license you agreed to. If you are in doubt
about which version of E you have, run eprover -V or eprover -h.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. 0Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and

(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

20

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and

21

distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based

on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections

1 and 2 above on a medium customarily used for software interchange; or,

22

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the

Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to

23

these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

24

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it

free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively

25

convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate
parts of the General Public License. O0f course, the commands you use may
be called something other than ‘show w’ and ‘show c’; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

26

References

[Bac98|

[BDPS9)

[BGY4]

[CL73]

[Der91]

[DKS97]

[DS94a)

[DS94b)

[DS96]

[HBF96]

L. Bachmair. Personal communication at CADE-15, Lindau. Un-
published, 1998.

L. Bachmair, N. Dershowitz, and D.A. Plaisted. Completion With-
out Failure. In H. Ait-Kaci and M. Nivat, editors, Resolution of
Equations in Algebraic Structures, volume 2, pages 1-30. Academic
Press, 1989.

L. Bachmair and H. Ganzinger. Rewrite-Based Equational Theorem
Proving with Selection and Simplification. Journal of Logic and
Computation, 3(4):217-247, 1994.

C. Chang and R.C. Lee. Symbolic Logic and Mechanical Theorem
Proving. Computer Science and Applied Mathematics. Academic
Press, 1973.

N. Dershowitz. Ordering-Based Strategies for Horn Clauses. In
J. Mylopoulos, editor, Proc. of the 12th IJCAI, Sydney, volume 1,
pages 118-124. Morgan Kaufmann, 1991.

J. Denzinger, M. Kronenburg, and S. Schulz. DISCOUNT: A Dis-
tributed and Learning Equational Prover. Journal of Automated
Reasoning, 18(2):189-198, 1997. Special Issue on the CADE 13 ATP
System Competition.

J. Denzinger and S. Schulz. Analysis and Representation of Equa-
tional Proofs Generated by a Distributed Completion Based Proof
System. Seki-Report SR-94-05, Universitdt Kaiserslautern, 1994.

J. Denzinger and S. Schulz. Recording, Analyzing and Present-
ing Distributed Deduction Processes. In H. Hong, editor, Proc. 1st
PASCO, Hagenberg/Linz, volume 5 of Lecture Notes Series in Com-
puting, pages 114-123, Singapore, 1994. World Scientific Publishing.

J. Denzinger and S. Schulz. Recording and Analysing Knowledge-
Based Distributed Deduction Processes. Journal of Symbolic Com-
putation, 21(4/5):523-541, 1996.

T. Hillenbrand, A. Buch, and R. Fettig. On Gaining Efficiency in
Completion-Based Theorem Proving. In H. Ganzinger, editor, Proc.
of the Tth RTA, New Brunswick, volume 1103 of LNCS, pages 432—
435. Springer, 1996.

27

[HJL99)

[McC94]

[MIL*97]

[MW97]

[NN93]

[RVO01]

[RV02]

[Sch99]

[Sch01]

[Sch02]

[$S97]

[Tam97]

T. Hillenbrand, A. Jaeger, and B. Lochner. System Abstract:
Waldmeister — Improvements in Performance and Ease of Use. In
H. Ganzinger, editor, Proc. of the 16th CADE, Trento, volume 1632
of LNAI pages 232-236. Springer, 1999.

W.W. McCune. Otter 3.0 Reference Manual and Guide. Technical
Report ANL-94/6, Argonne National Laboratory, 1994.

M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann,
and K. Mayr. SETHEO and E-SETHEO — The CADE-13 Systems.
Journal of Automated Reasoning, 18(2):237-246, 1997. Special Issue
on the CADE 13 ATP System Competition.

W.W. McCune and L. Wos. Otter: The CADE-13 Competition
Incarnations. Journal of Autommated Reasoning, 18(2):211-220, 1997.
Special Issue on the CADE 13 ATP System Competition.

P. Nivela and R. Nieuwenhuis. Saturation of First-Order (Con-
strained) Clauses with the Saturate System. In C. Kirchner, edi-
tor, Proc. of the 5th RTA, Montreal, volume 690 of LNCS, pages
436-440. Springer, 1993.

A. Riazanov and A. Voronkov. Vampire 1.1 (System Description). In
R. Goré, A. Leitsch, and T. Nipkow, editors, Proc. of the 1st IJCAR,
Siena, volume 2083 of LNAI, pages 376-380. Springer, 2001.

A. Riazanov and A. Voronkov. The Design and Implementation of
VAMPIRE. Journal of AI Communications, 15(2/3):91-110, 2002.

S. Schulz. The E Web Site. http://wwwé.informatik.
tu-muenchen.de/\-\simschulz/\-WORK/\-eprover.h¥tml,
1999.

S. Schulz. System Abstract: E 0.61. In R. Goré, A. Leitsch, and
T. Nipkow, editors, Proc. of the 1st IJICAR, Siena, volume 2083 of
LNAI pages 370-375. Springer, 2001.

S. Schulz. E — A Brainiac Theorem Prover. Journal of AI Commu-
nications, 15(2/3):111-126, 2002.

C.B. Suttner and G. Sutcliffe. The TPTP Problem Library (TPTP
v2.1.0). Technical Report AR-97-01 (TUM), 97/04 (JCU), Insti-
tut fiir Informatik, Technische Universitdt Miinchen, Munich, Ger-
many/Department of Computer Science, James Cook University,
Townsville, Australia, 1997. Jointly published.

T. Tammet. Gandalf. Journal of Automated Reasoning, 18(2):199—
204, 1997. Special Issue on the CADE 13 ATP System Competition.

28

[WAB*T99] C. Weidenbach, B. Afshordel, U. Brahm, C. Cohrs, T. Engel,

[Wei99]

[WGRYG]

G. Jung, E. Keen, C. Theobalt, and D. Topic. System Abstract:
SPASS Version 1.0.0. In H. Ganzinger, editor, Proc. of the 16th
CADE, Trento, volume 1632 of LNAI pages 378-382. Springer,
1999.

C. Weidenbach. Personal communication at CADE-16, Trento. Un-
published, 1999.

C. Weidenbach, B. Gaede, and G. Rock. SPASS & FLOTTER Ver-
sion 0.42. In M.A. McRobbie and J.K. Slaney, editors, Proc. of the
18th CADE, New Brunswick, volume 1104 of LNAI pages 141-145.
Springer, 1996.

29

