#-------------------------------------------------------------------------- # File : RNG019-6 : TPTP v2.1.0. Released v1.0.0. # Domain : Ring Theory (Alternative) # Problem : First part of the linearised form of the associator # Version : [Ste87] (equality) axioms. # English : The associator can be expressed in another form called # a linearised form. There are three clauses to be proved # to establish the equivalence of the two forms. # Refs : [Ste87] Stevens (1987), Some Experiments in Nonassociative Rin # Source : [Ste87] # Names : c24 [Ste87] # Status : unsatisfiable # Rating : 0.50 v2.0.0 # Syntax : Number of clauses : 16 ( 0 non-Horn; 16 unit; 1 RR) # Number of literals : 16 ( 16 equality) # Maximal clause size : 1 ( 1 average) # Number of predicates : 1 ( 0 propositional; 2-2 arity) # Number of functors : 10 ( 5 constant; 0-3 arity) # Number of variables : 27 ( 2 singleton) # Maximal term depth : 5 ( 2 average) # Comments : # : tptp2X -f setheo:sign -t rm_equality:rstfp RNG019-6.p #-------------------------------------------------------------------------- # commutativity_for_addition, axiom. equal(add(X, Y), add(Y, X)) <- . # associativity_for_addition, axiom. equal(add(X, add(Y, Z)), add(add(X, Y), Z)) <- . # left_additive_identity, axiom. equal(add(additive_identity, X), X) <- . # right_additive_identity, axiom. equal(add(X, additive_identity), X) <- . # left_multiplicative_zero, axiom. equal(multiply(additive_identity, X), additive_identity) <- . # right_multiplicative_zero, axiom. equal(multiply(X, additive_identity), additive_identity) <- . # left_additive_inverse, axiom. equal(add(additive_inverse(X), X), additive_identity) <- . # right_additive_inverse, axiom. equal(add(X, additive_inverse(X)), additive_identity) <- . # distribute1, axiom. equal(multiply(X, add(Y, Z)), add(multiply(X, Y), multiply(X, Z))) <- . # distribute2, axiom. equal(multiply(add(X, Y), Z), add(multiply(X, Z), multiply(Y, Z))) <- . # additive_inverse_additive_inverse, axiom. equal(additive_inverse(additive_inverse(X)), X) <- . # right_alternative, axiom. equal(multiply(multiply(X, Y), Y), multiply(X, multiply(Y, Y))) <- . # left_alternative, axiom. equal(multiply(multiply(X, X), Y), multiply(X, multiply(X, Y))) <- . # associator, axiom. equal(associator(X, Y, Z), add(multiply(multiply(X, Y), Z), additive_inverse(multiply(X, multiply(Y, Z))))) <- . # commutator, axiom. equal(commutator(X, Y), add(multiply(Y, X), additive_inverse(multiply(X, Y)))) <- . # prove_linearised_form1, conjecture. <- equal(associator(x, y, add(u, v)), add(associator(x, y, u), associator(x, y, v))). #--------------------------------------------------------------------------