#-------------------------------------------------------------------------- # File : ROB011-1 : TPTP v2.1.0. Released v1.0.0. # Domain : Robbins Algebra # Problem : If -(a + -b) = c then -(a + -(b + k(a + c))) = c, k=1 # Version : [Win90] (equality) axioms. # English : This is the base step of an induction proof. # Refs : [Win90] Winker (1990), Robbins Algebra: Conditions that make a # Source : [Win90] # Names : Lemma 3.4 [Win90] # Status : unsatisfiable # Rating : 0.50 v2.1.0, 0.60 v2.0.0 # Syntax : Number of clauses : 9 ( 0 non-Horn; 7 unit; 4 RR) # Number of literals : 11 ( 7 equality) # Maximal clause size : 2 ( 1 average) # Number of predicates : 2 ( 0 propositional; 1-2 arity) # Number of functors : 8 ( 4 constant; 0-2 arity) # Number of variables : 11 ( 0 singleton) # Maximal term depth : 7 ( 2 average) # Comments : # : tptp2X -f setheo:sign -t rm_equality:rstfp ROB011-1.p #-------------------------------------------------------------------------- # commutativity_of_add, axiom. equal(add(X, Y), add(Y, X)) <- . # associativity_of_add, axiom. equal(add(add(X, Y), Z), add(X, add(Y, Z))) <- . # robbins_axiom, axiom. equal(negate(add(negate(add(X, Y)), negate(add(X, negate(Y))))), X) <- . # one_times_x, axiom. equal(multiply(one, X), X) <- . # times_by_adding, axiom. equal(multiply(successor(V), X), add(X, multiply(V, X))) <- positive_integer(X). # one, axiom. positive_integer(one) <- . # next_integer, axiom. positive_integer(successor(X)) <- positive_integer(X). # condition, hypothesis. equal(negate(add(a, negate(b))), c) <- . # prove_base_step, conjecture. <- equal(negate(add(a, negate(add(b, multiply(one, add(a, c)))))), c). #--------------------------------------------------------------------------