
Introduction to Linux

Karl Stroetmann

Version of December 10, 2003

Contents
1 Introduction 3

1.1 Why bother learning Linux? . 3
1.2 Overview . 4

2 The XEmacs Editor 5
2.1 Why Use XEmacs? . 5
2.2 Getting Started . 6
2.3 The Fundamentals . 12
2.4 Cursor Movement . 13
2.5 Basic Editing . 14
2.6 Searching and Replacing . 16
2.7 Editing Multiple Files . 20
2.8 Completion . 21
2.9 Abbreviations . 26
2.10Customizing XEmacs . 27

2.10.1Customizing Key Bindings and Variables 27
2.10.2Invoking Commands on Startup . 28
2.10.3Writing Keyboard Macros . 28
2.10.4Traps and Pitfalls When Writing Keyboard Macros 30
2.10.5Editing Keyboard Macros . 33

2.11Getting Help . 34
2.12The Info System in XEmacs . 36
2.13Miscellaneous Commands . 42
2.14What Else is There . 44

3 The File System 45
3.1 Copying Files . 49
3.2 Deleting Files and Directories . 49
3.3 Listing Files and Directories . 50
3.4 Maintaining Access and Ownership . 51

3.4.1 Changing Permissions . 52
3.4.2 Changing Ownership . 54
3.4.3 Changing the Group . 54

3.5 Wildcards . 54
3.6 Links . 56
3.7 Adding Devices to the File System . 57
3.8 dired Mode in XEmacs . 60

4 Compiling and Debugging C Programs with Linux 62
4.1 A Small Example . 62
4.2 Additional Commands in gdb . 67

1

5 Getting Help 70

6 Input and Output Redirection and Pipes 71
6.1 Input and Output Redirection . 71
6.2 Pipes . 74

6.2.1 The “cat” command . 74
6.2.2 The “cut” command . 74
6.2.3 The “paste” Command . 75
6.2.4 The “tr” command . 76
6.2.5 The “sed” Command . 77
6.2.6 The “tee” Command . 78
6.2.7 The “fgrep” Command . 78
6.2.8 The “head” Command . 78
6.2.9 The “tail” Command . 78
6.2.10Putting it All Together . 79

7 The Shell 80
7.1 Shell Variables . 80
7.2 Job Control . 82
7.3 Quoting and Command Expansion . 84
7.4 Shell Scripts . 85

8 Regular Expressions 89

9 The find command 92

10 Conclusion 94

References . 94

Index . 96

2

Warning: This script is only a draft and contains a number of errors. If you find
errors, please mail them to stroetmann@ba-stuttgart.de.

1 Introduction
Any sufficiently advanced technology is indistinguishable from magic.

Arthur C. Clarke

This script is meant as a first introduction to the operating system Linux. It at-
tempts to teach the basic skills needed to work productively in the Linux environment.
The approach is text based, i.e. we do not discuss the various graphical user interfaces
like KDE and GNOME that try to resemble more or less the Microsoft WindowsTM en-
vironment. The fact is that, for a power user, the text based approach yields a much
greater productivity than can be gained by using graphical user interfaces.

1.1 Why bother learning Linux?
When selecting an operating system, there are a number of points that need to be
considered.

1. How long does it take to learn the operating system?

You do not learn Linux in a day. Linux is a very powerful tool and if you know
what you are doing, it is like magic. You simply can not expect to learn magic in a
day.

Let us compare Linux to the Microsoft WindowsTM operating systems. The latter
has been designed for the typical American user. If you want to get a rough idea
about the intellectual level of these users, watch the Teletubbies. Some of them
are even worse, they are in the same category as their president. Users who are
more advanced and more demanding are well advised to invest into learning an
operating system that is, on one side, much more powerful but, as a consequence,
also more challenging.

2. Will my favorite software run on the operating system?

As Linux is constantly growing, more and more software gets ported to Linux.
Even better, most of this software is free.

Furthermore, even some of the software produced by Microsoft is now running un-
der Linux. A prominent example is Microsoft OfficeTM . This can now be installed
on a Linux system with the help of Crossover OfficeTM .

3. Is support readily available?

For Linux, there are hundreds of newsgroups offering support for various aspects.
Also, Linux is open software meaning the source code for Linux is freely available.
This has a very important consequence: If you discover a bug that really hurts,
then you are able to fix it yourself. If you do not have the necessary skills to do
this, you can still hire someone to fix the problem.

The above point should not be underestimated. Imagine running some variant
of Microsoft WindowsTM in a business critical application. Further, imagine you
stumble over a serious bug that cripples the application you are developing. All
you can do then is report this bug to Microsoft. After that you have to wait. If you
are really lucky, the bug is fixed in the next version which may be available in a
year or something.

3

4. Is it stable?

The Linux operating system is definitely much more stable than the Microsoft
WindowsTM operating systems. Especially Windows 95TM and Windows 98TM are
horrible when it comes to stability. If you are developing your own software you
simply can not afford a system that crashes every other hour. Although Windows
XPTM is better than its predecessors, it still isn’t in the same league as Linux.
Furthermore, the past has shown that the Microsoft operating systems is quite
vulnerable to viruses, worms, Trojan horses, and the like.

To summarize, Linux is a very powerful operating system that is stable, open software,
and a platform for lots of high quality free software. It is a variant of Unix which is the
operating system in use for most workstations. Therefore, Linux is an affordable way
to bring the power of a workstation to a desktop computer.

There is one final argument for learning Linux that should not be underestimated:
Linux is part of your curriculum! So if you intent to get your diploma, you are required
to learn Linux. Also, lots of the software that is used for teaching in various courses
at this university is based on Linux: Therefore, if you are not sufficiently familiar with
Linux you will have trouble mastering those courses.

1.2 Overview
Below is an overview of the topics covered in this script.

1. The XEmacs editor.

The most basic tool is a text editor. Whether you are developing software, main-
taining a server, or just writing email, you always need an editor. This is the reason
we start our tour of Linux with the description of an editor.

For Linux, there are more than a dozen editors available. By far the most powerful
editor is XEmacs, a variant of Emacs. The most distinguishing feature of XEmacs
is the fact that it is very customizable: XEmacs has its own programming language
that can be used to add new features as required.

2. The file system.

An editor enables us to create files. In order to manage these files, Linux has a file
system. We discuss the various commands that are used for copying, renaming,
moving, etc., of files.

3. Getting help.

Most Linux commands take a large number of options and several different ser-
vices. There is no way to remember them all. Instead, one constantly has to
look thinks up. Linux offers various ways to get all kinds of information about a
particular command.

4. Pipes and little programs.

Linux offers a bunch of little programs that are not very impressive on their own.
But Linux also offers the possibility to combine these little programs with the help
of pipes. The resulting programs are both short and powerful. In fact, understand-
ing pipes is one of the keys to unleash the power of Linux.

5. Job control.

Like all modern operating systems, Linux is a multitasking operating system. This
means that several processes are running virtually simultaneously. We will dis-
cuss how the user can control these processes.

4

6. The bash shell.

A shell can be considered as the interface of the user to the operating system.
Modern shells offer a programming language of their own. We discuss the bash,
which is the most popular shell for Linux.

7. Regular expressions.

A number of Unix commands make extensive use of regular expressions. Basically,
regular expressions are a very powerful way to describe sets of strings. Further-
more, regular expressions are the foundation of modern scripting languages like
Tcl, Perl, or Python.

8. Various utilities. We finish this script by discussing various utilities that did not
fit into any of the other sections.

2 The XEmacs Editor
XEmacs is one of the most powerful editors that are available. This implies that XEmacs
is a very complex editor. For lack of space, this section can only discuss the basic
concepts of XEmacs. For those that want to learn more about XEmacs there are several
good books available: First, there is a tutorial book by Cameron et. al. [2]. Second, there
is the Emacs manual by Stallman [10]. Although Emacs and XEmacs are different
programs, XEmacs is an offspring of Emacs and most of what is true for Emacs is also
true for XEmacs. Finally, there is a nice book by Glickstein [4] showing how Emacs can
be customized.

The remainder of this section is organized as follows. The next subsection explains
why we have chosen XEmacs as an editor. The next two subsections describe how to
start XEmacs and how to perform the most basic editing tasks. The following sub-
sections describe XEmacs in more depth: We describe cursor movement, basic editing
like deleting or moving large chunks of text, searching and replacing, editing several
files, the help system, and various ways to customize XEmacs in separate subsections.
Finally, there is a subsection that points to those features that, for lack of space and
time, can not be described in this script.

2.1 Why Use XEmacs?
Since XEmacs is a complex editor, you might justifiably ask: Why bother learning
XEmacs? After all, most modern programming environments offer their own editor.
However, during your professional career you will most likely work with several different
programming languages. Even for a single programming language there are several
programming environments. Does is make sense to learn a new editor each time?
Furthermore, there are other activities than just programming. If you have to maintain
a system, then there are several configuration files that need to be edited. If you write a
mail, you need an editor. The enumeration of activities that involve an editor could be
continued for pages, but you should have gotten the point by now: Rather than learning
to use a different editor each time it does make sense to get familiar with one editor that
can handle all of these tasks.

You might object that you dislike XEmacs because you have already been accus-
tomed to a different editor. Do not despair, XEmacs is highly customizable: You can
change the key binding to match your taste. You can even write your own XEmacs
commands and in this way you can extend the editor according to your needs. Writing
your own XEmacs commands can be done in three different ways:

1. Via keyboard macros.

5

This is in fact rather easy. If there is a long sequence of commands that you
have to type repeatedly the same way, then XEmacs can record this sequence as
a keyboard macro. You can bind this macro to some key and instead of typing the
whole sequence of keys again and again you just press this key.

2. Via functions written in Emacs Lisp.

In case you need some functionality that is too complex to be handled by a macro,
you can implement this functionality in Emacs Lisp. This is a full–fledged pro-
gramming language and, actually, you can do almost everything in this language.
For example, people even have implemented a web browser in Emacs Lisp!

Emacs Lisp has one drawback: Since it is a full–fledged programming language it
is quite complex. Therefore, there is a third option described next.

3. Via commands external to XEmacs.

XEmacs offers the possibility to execute arbitrary shell commands on regions of
text. So to add a new functionality to XEmacs you can implement this functionality
in a programming language of your choice. XEmacs can then apply the program
you have written to a given region of text.

Since this script deals mostly with Linux we will not have the time to discuss Emacs
Lisp in this script. If you are interested, the web page

http://www.gnu.org/manual/emacs-lisp-intro/emacs-lisp-intro.html

contains an excellent tutorial describing Emacs Lisp.

2.2 Getting Started
First, we have to start the XEmacs editor. This done by typing

xemacs

at the prompt of a shell. OK, the notion of a shell has not been introduced yet. Let us
assume that you are working with some graphical desktop like KDE. Look for an icon
that has a form similar to the ones depicted in Figure 1 on page 6. Move the mouse

Figure 1: Shell icons.

pointer over this icon and click the left mouse button.
After clicking this icon, a window of the form shown in Figure 2 on page 6 should
appear. Of course, the text stroetma@stroetmannpc will be different on your screen.
After all, stroetma is my user account and stroetmannpc is the name of my computer.
Your screen will presumable display the name of your user account and the PC you are
currently working on. Following the name stroetmannpc is the text “:˜>” and after
that you see a black rectangle. The black rectangle in this window is known as the
cursor. Let us type the word “xemacs” on the keyboard. The screen should now look
as shown in Figure 3 on page 7. Press the Return key. Next, you will be greeted by a
screen similar to the one shown in Figure 4 on page 8. Let us edit our first file. There

6

Figure 2: A shell with a prompt.

Figure 3: The shell after you have typed xemacs.

are two ways to do this. We could use the graphical user interface by moving the mouse
over the icon labeled “Open”. Then a new window would appear asking us to either type
the name of a file or just click on the name of an existing file. But do not do this.
Using the graphical user interface (GUI) is for morons, not for power users. Using a
text editor via its GUI is far to slow to be competitive. So we use a different approach
by typing “Ctrl-x Ctrl-f”. If you are totally new to this you might ask “What is this
funny Ctrl-x stuff?” Well, this is a key combination: You hold down the Ctrl key and
then you press the x key. You release the Ctrl key only after you have released the
x key. 1

In the same way, Ctrl-f means first pressing the Ctrl key and then pressing the

f key. Once we have pressed these keys we will see the screen shown in Figure 5 on
page 9.

In Figure 5 the cursor is on the bottom line of the screen. In front of the cursor, we
see the prompt

Find file: ˜/

This means the XEmacs is asking us for the name of a file that is to be edited. Let us
call our first file “story.txt”. So we type story.txt and hit the return key. Now, the
screen should look as shown in Figure 6 shown on page 10: The cursor is located on

1 For the absolute novice: The Ctrl key is the key in the lower left hand corner of your keyboard. On a
German keyboard this key might have the label Strg. Of course, the x key is the key that has the letter “x”
printed on it. Pressing Ctrl-x involves 4 steps:

1. Press the Ctrl key down and do not release it.

2. While you are holding the Ctrl key down, press the x key down.

3. Release the x key, but continue to press the Ctrl key down.

4. Release the Ctrl key.

7

Figure 4: XEmacs startup screen.

the upper left hand corner of the screen that is otherwise empty. Let us start to write
a short story now. After all, when discussing an editor we need some bulk of text that
can be used to exercise the various functions of the editor. During typing, we can use
the arrow keys to navigate. The arrow keys are the keys ← , ↑ , ↓ , and → . To delete

typing mistakes, we can use the BS key also known as backspace. This is the key
above the Return key. Usually, it is labeled with the symbol “←−”. We can also use

the Del key also known as delete. On a German keyboard this key is labeled “Entf”,
while on an American keyboard the label would be “Del”. The difference between the
BS key and the Del key is that the BS key deletes the character that is left to the

cursor while the Del key deletes the character under the cursor.
Once we have finished typing, the screen may look as shown in Figure 7 on page 11.

8

Figure 5: Screen after pressing Ctrl-x Ctrl-f.

Let us investigate this screen in more detail. The last line, that is the line at the
bottom, is called the command line. It is also know as the echo area or the mini buffer.
In the screen in Figure 7 it is empty. It was not empty in the screen shown in Figure 5
on page 9. The cursor is placed in the command line when XEmacs prompts the user
for information like the name of a file. The command line is also used for messages.
For example, in Figure 6 on page 10 the echo area displays the message

(New file)

informing us that we are starting to edit a new file.
The line above the command line is the mode line. It holds information regarding the

status of XEmacs. The general form of the mode line is as follows:
encoding--change–info-XEmacs: file (mode)----position------

Here the various terms set in italics have the following semantics:

9

Figure 6: Screen after entering story.txt.

1. The encoding specifies the character encoding that is used. In our example encod-
ing has the value “ISO8”. XEmacs is capable of editing Chinese or Japanese text.
These texts are transformed using special encodings. “ISO8” is just one of these
encodings. For the moment, the encoding information is of no interest to us. It is
included here to make this description complete.

2. The change–info gives the information whether the file has been changed since it
has last been saved. Since we have not yet saved the file the change–info has the
value “**”. Let us safe the file now. This is done by pressing the keys “Ctrl-x
Ctrl-s”. Notice how the change–info changes to “--”, informing us that the file
has been saved. There is another value that change–info can have: It is “%%”. This
value is used to inform the user that the file loaded into the current buffer is write
protected.

10

Figure 7: Screen after typing our story.

3. The file gives the name of the file we are currently editing. In our example, the
value of file is “story.txt”.

4. The mode gives information about the editing mode that is active. In our example,
the mode is given as “Text”. This is the default mode for editing text files.

5. The position gives us the position of the current location of the cursor. As long as
the file fits onto the screen, the value is “All”. Later, when the file grows it will
be something like “75%”. This would inform us that 75% of the file are above the
top of the screen. Other values for position are “Top”, informing us that the screen
displays the top of the file, or “Bot”, when we are at the bottom of a file.

Next, we take a look at the top line of the window in Figure 7 on page 11. When
invoking a German version of XEmacs, this line looks as follows:

Datei Bearbeiten View Cmds Optionen Buffers Hilfe

By clicking on any of these words, a pull down menu will open and offer various options.
However, in order to make full use of the menu bar, it is best to control it via the
keyboard. To enable this feature, add the following lines at the end of either the file
“˜/.emacs” or the file “˜/.xemacs/init.el”

(define-key global-map ’f10 ’accelerate-menu)
(setq menu-accelerator-enabled ’menu-fallback)
(setq menu-accelerator-modifiers ’(super control))

11

Normally, the file “˜/.emacs” is loaded when XEmacs is started. In turn, this file causes
the file
“˜/.xemacs/init.el” to be loaded. So if the lines above are added to either of these
files, the next time you start XEmacs you will be able to activate the menu bar by press-
ing the function key f10 . Then, pressing f10 causes the first entry of the menu to be
highligted. To open this entry, press return . Use the arrow keys to move to a different
menu entry. To close an opened menu entry, press escape . To return from the menu
bar, press escape again. k

When a menu entry is opened, it shows several lines. To the left of every line there
is an informative string describing the function that is invoked when the corresponding
entry is chosen. For some entries there is also a keyboard shortcut available. In this
case, this shortcut is written at the end of the line. In general, it is advantageous to
remember these shortcuts and invoke the commands via these shortcuts since this is
much quicker than using the menu bar.

2.3 The Fundamentals
Now that we know how to create and save a file, it is time to discuss the basic concepts
of XEmacs. First, XEmacs has a number of commands that do various things. For
example, there is a command for opening a file and another command for saving a file.
Every command has a name. For example, the name of the command for saving a file
is “save-buffer”. A command can be issued via its name. This is done via the Meta-x
key combination. Meta-x means pressing the Meta key and then pressing the x key.
The Meta key is the key left to the space bar. On a German keyboard it is labeled
“Alt”. If you press Meta-x the command line looks as follows

M-x

Here the box “ ” represents the cursor. We can now enter any command. For exam-
ple, we can enter the command “save-buffer” and press return to execute it. The
commands that are used frequently have been bound to key sequences. A key se-
quence is just a sequence of different keys that are pressed. For example, the command
“save-buffer” is bound to the key sequence “Ctrl-x Ctrl-s”. If a command requires
an argument like the name of a file, a number, or something else, it will prompt for this
information in the echo area.

There are two more fundamental commands we need to know. The first is keyboard-quit.
Suppose that, in order to visit a file, you have typed Ctrl-x Ctrl-f and XEmacs now
prompts you for the name of a file that is to be edited. At this point, you realize that
you do not want to open a new file. What can you do now? The answer is the command
keyboard-quit which is bound to the key Ctrl-g. Just hit this key and the prompt
disappears from the command line.

Finally, you need to know how to exit XEmacs. This is done via the command

save-buffers-kill-emacs

which is bound to the key sequence Ctrl-x Ctrl-c. Table 1 on page 12 summarizes
the most fundamental commands together with their key bindings. The commands
shown this far are sufficient for the most fundamental editing tasks. However, if we
would stop our treatment of XEmacs here, we would be missing all the goodies. The
following subsections will familiarize us with some of these.

2.4 Cursor Movement
Using just the arrow keys for cursor movement is rather dull. Table 13 on page 13 lists
the additional commands available for cursor movement. Looking at the first lines of

12

command key sequence short description
previous-line ↑ move the cursor one line up

next-line ↓ move the cursor one line down

forward-char-command → move the cursor one character to
the right

backward-char-command ← move the cursor one character to
the left

delete-backward-char BS delete the character left from the
cursor

delete-char Del delete the character under the cur-
sor

save-buffer Ctrl-x Ctrl-s save the current buffer
find-file Ctrl-x Ctrl-f prompt for a file and edit it
keyboard-quit Ctrl-g abort a pending command
save-buffers-kill-emacs Ctrl-x Ctrl-c exit XEmacs

Table 1: Fundamental commands and their key sequences.

this table you discover commands that move the cursor by just one character. This
might seem redundant as the arrow keys achieve the same effect. However, to use the
arrow keys you have to move your right hand away from the alpha–numeric keys of
the keyboard. The idea behind offering the keys Ctrl-f and Ctrl-b is that you can
keep your hands over the alpha–numeric part of the keyboard where most of the work
is done.

A nice feature is the command universal-argument which is bound to the key
Ctrl-u. Using this command you can repeat any other command a specified number
of times. For example, if you want to move the cursor 123 lines down you can achieve
this via the following key sequence:

Ctrl u 1 2 3 Ctrl n

If you just press Ctrl u and do not enter a number but instead enter a command, then
a default value of 4 is assumed. Therefore,

Ctrl u Ctrl n

would move the cursor down by 4 lines.
There is one additional point that has to be discussed. Look at the last two lines of

Table 2. These mention a buffer. What exactly is a buffer? To understand this concept,
consider what happens when you edit a file with XEmacs: After issuing the find-file
command you are prompted for the name of a file. If you choose the name of an already
existing file, XEmacs loads this file into its internal memory. This internal working area
is called a buffer. A visual representation of the buffer is what gets displayed on the
screen. Now, when you start typing text, what is actually changed is the buffer. The file
itself is not changed. It will only be changed once you issue the save-file command.
Until this point, the buffer’s content only exist in the internal memory of XEmacs.

2.5 Basic Editing
Suppose you have written a large chunk of text that you have to get rid of. Deleting
this text one character at a time is rather dull. Therefore, XEmacs offers a number of
functions for killing words, lines, sentences, or even a complete region. A region is a

13

command key sequence short description
forward-char-command Ctrl-f move the cursor forward one char-

acter
backward-char-command Ctrl-b move the cursor backward one

character
forward-word Meta-f move the cursor forward one word
backward-word Meta-b move the cursor backward one

word
next-line Ctrl-n move the cursor down one line
previous-line Ctrl-p move the cursor up one line
backward-sentence Meta-a move the cursor backward one

sentence
forward-sentence Meta-e move the cursor forward one sen-

tence
beginning-of-line Ctrl-a move the cursor to the beginning of

the line
end-of-line Ctrl-e move the cursor to the end of the

line
scroll-up-command Ctrl-v scroll current window upward
scroll-down-command Meta-e scroll current window downward
forward-paragraph Meta-} move the cursor forward one para-

graph
backward-paragraph Meta-{ move the cursor backward one

paragraph
universal argument Ctrl-u repeat the following command
goto-line Meta-g move the cursor to a given line
beginning-of-buffer Meta-< move the cursor to the beginning of

the buffer
end-of-buffer Meta-> move the cursor to the end of the

buffer

Table 2: Cursor movement commands.

chunk of text that is delineated by two locations known as mark and point. Now point
is easy: This is just the position of the cursor. You can set the mark at any place in
the text via the set-mark-command bound to the key Ctrl-w. It is also bound to the
key Ctrl- . Here, the symbol “ ” denotes the space bar. Let us try this with our short
story about Linux. If we place the cursor at the beginning of the first sentence and
then move the cursor down we will see that the area between the mark we have set and
the cursor is shaded grey. Figure 8 on page 15 shows this effect. Now we could issue
the command kill-region which is bound to the key sequence Ctrl-w (and also to
Ctrl-x c) and the shaded area would disappear. Furthermore, the killed text is saved
in a special location in internal memory. This location is known as the kill–ring.

Sometimes, just being able to kill a region is not what is needed. More often a region
of text needs to be moved around, that is we want to kill the region and insert it at a
different place. Here the yank command comes to our help. It retrieves the last chunk
of text that has been killed from the kill–ring and insert it at the cursor position. This
command is bound to the key combination Ctrl-y.

If instead of moving a chunk of text we want to copy it, then killing is not the solu-
tion. Therefore, XEmacs offers the command kill-ring-save which is bound to the
key combination Meta-w. This command copies the region to the kill–ring just as the
command kill-region would do. However, in contrast to kill-region the marked

14

Figure 8: Effect of the set-mark-command.

text is not removed. So, if you want to copy a piece of text, mark it as a region and issue
the command kill-ring-save. Then insert the text at the desired destination via the
yank command.

Table 3 on page 14 lists the basic commands for killing and yanking text. If you
look at it you realize that there two groups of commands that remove text. They either
have the word “kill” or “delete” as part of their name. If they have “kill” as part of
their name, then they store the text that they remove in the kill–ring. Those that have
“delete” as part of their name just erase text, they do not store anything.

Let us discuss the structure of the kill–ring in more detail. Actually, the kill ring
can be viewed as a stack. Every time you kill new text this new text will be put on top
of this stack. The string that has been killed most recently is is on top of the stack.
This string can be retrieved with the “yank” command. Let us visualize this. Assume
you have killed the words “first”, “second”, and “third” using separate invocations of

15

command key sequence short description
set-mark-command Ctrl-w, Ctrl- set the mark
delete-char Ctrl-d delete the character under the cur-

sor
delete-backward-char backspace delete the character left from the

cursor
kill-word Meta-d kill the word following the cursor
backward-kill-word Meta-backspace kill the word left to the cursor
kill-line Ctrl-k kill the rest of the current line
kill-sentence Meta-k kill the rest of the current sentence
kill-region Ctrl-w kill the region
kill-ring-save Meta-w copy the region to the kill ring
yank Ctrl-y reinsert the last stretch of killed

text
yank-pop Meta-y replace just–yanked stretch of

killed text with a different stretch
undo Ctrl-/ undo last change

Table 3: Basic commands and their key sequences.

kill–commands. Assume further that “first” has been killed first, “second” has been
killed second, and “third” has been killed last. Then the kill-ring looks as is shown in
Figure 9 on page 16. The word “third” is on top of the kill–ring and the yank–pointer
points to this word. This word is retrieved when you issue the yank command.

yank–pointer kill–ring
−→ third

second
first

Figure 9: Structure of the kill–ring.

Now suppose you want to retrieve the second string. This string is already buried
in the stack, but we can uncover it by first issuing the “yank” command. This gives us
the string “third”. Now, invoke the “yank-pop” command which is bound to the key
combination Meta-y. The string “third” vanishes and in its place the string “second”
appears. Furthermore, this command will rotate the kill–ring, so the kill–ring will now
look as shown in Figure 10 on page 16. Observe that the yank–pointer now points to
the word “second”. If we would have wanted to retrieve the string “first”, then another
invocation of the command yank-pop would have moved the yank–pointer down in the
kill–ring to point to the word “first”. If we would then issue the yank-pop command
a third time then, since the stack has reached its bottom, the yank pointer would move
back to the top of the stack i.e., we would be back with the situation shown in Figure
9. This is the reason the kill-ring is called a ring as opposed to a stack.

yank–pointer kill–ring
third

−→ second
first

Figure 10: Structure of the kill–ring after yank-pop.

To summarize, the yank command retrieves the string pointed to by the yank–

16

pointer. The yank-pop command moves the yank–pointer down in the kill–ring. If
the yank–pointer points to the element at the bottom of the kill ring, then the next
invocation of the yank-pop command moves the yank–pointer back to the top of the
kill–ring. Note that a yank-pop command can only be issued following a yank com-
mand or another yank-pop command.

2.6 Searching and Replacing

Figure 11: Effect of typing “f” in incremental search.

There are several ways to search for strings in XEmacs. The easiest is the command
isearch, which is bound to the key Ctrl-s. The command name “isearch” is short
for “incremental search”. Assume that we are working with a buffer containing the text
shown in Figure 7. Suppose that we want to search for the string “field”. Assume
further that the cursor is located at the upper left corner of the screen. After typing the
key Ctrl-s to invoke isearch the cursor moves to the command line which now looks
as follows:

I-search:

Let us type the letter “f” next. At this moment, the cursor will jump to the first occur-
rence of this letter in the text. This is the occurrence of “f” in the word “of”. The screen
will now look as shown in Figure 11 on page 17. Furthermore, notice that all other
occurrences of the letter “f” have also been highlighted. Unfortunately, you can not
observe this effect in the black–and–white printout of this script since the highlighting

17

uses colors. However, you can observe the highlighting if you read this script online
on a color monitor. We can move to the next occurrence of “f” by typing Ctrl-s an-
other time. The cursor then moves to the occurrence of “f” in the word “of” in the third
non–blank line of our text. Next, let us type the letter “i”, which is the second letter in
the word “field” that we are searching: The cursor moves to the word “field”. Further,
notice that all the occurrences of “f” that had been highlighted previously are no longer
highlighted. There is one exception: The word “satisfied” contains the letter sequence
“fi” and therefore this letter sequence is highlighted also. The screen now looks as in
Figure 12 on page 18. Now that we have found the word “field” our search is done. To

Figure 12: Effect of typing “fi” in incremental search.

quit the search we press the return key.
There is a another way to quit incremental search. If we issue any of the commands

for cursor movement described previously, then the incremental search is also termi-
nated.

Let us take another look at the story in Figure 12. With a deep shock we realize
that the account given in this short story is not politically correct! We have to exchange
the masculine pronoun “he” with the feminine pronoun “she”. At least, as the bare
minimum, this change has to be done for the occurrence of “he” that refers to the devil.
Here, the command query-replace comes to our rescue. This command is bound to
the key Meta-%. So we hit this key next. As a result, the cursor moves to the command
line where the following prompt appears:

Query replace:

18

Let us type “he” and press the return key. Now the command line looks as follows:
Query replace he with:

so we type “she” next and press return again. Now the screen will look as shown in
Figure 13 on page 19. The first occurrence of the string “he” is highlighted and the

Figure 13: Effect of typing “fi” in incremental search.

cursor is placed right after this occurrence. Unfortunately, this occurrence is in the
string “The” and we certainly do not want to change this string into a “Tshe”. Therefore
we press the Del key now. This will move the cursor into the word “Theological”
because there is another occurrence of “he”. We continue to press the Del key until
we arrive at the first occurrence of “he” that is not buried in a word. To change this
occurrence we press the space bar. Now the “he” is changed to a “she” and we move
to the next occurrence of “he”. We continue pressing the space bar or the Del key
as required. Occasionally, we might press the Del key one time to many and thereby
miss an occurrence of “he”. To recover, we can press the key ˆ . (On a German
keyboard, the key “ˆ” is located below the Esc key.) The query-replace command
finishes automatically after visiting all occurrences of “he”. Upon termination it informs
us about the number of occurrences of “he” that have been replaced by “she”.

Table 4 on page 18 lists the commands for searching and replacing. This ta-
ble contains two commands not covered so far: search-forward and its pendant
search-backward. These act more or less like isearch-forward and isearch-backward,

19

command key sequence short description
isearch-forward Ctrl-s search forward for a given string
isearch-backward Ctrl-r search backward for a given string
query-replace Meta-% search for a given string and re-

place it with another string
search-forward search for a given string, not incre-

mental
search-backward search for a given string, not incre-

mental

Table 4: Searching and Replacing.

but they are not incremental. Therefore, if you use these commands you have to type
the entire search string in answer to the prompt of these commands. Then press re-
turn. The cursor moves to the first occurrence of the search string. If the search fails,
the cursor does not move and the echo area displays the message

Search failed: (search-string)

where search–string is the string that you searched for. The commands search-forward
and its pendant search-backward are needed when defining keyboard macros since
isearch-forward and isearch-backward do not work for keyboard macros.

Table 5 on page 20 lists the keys that have a special semantics while executing a
query-replace command. We see that instead of pressing the space to replace an

key sequence short description
space bar replace one occurrence
y replace one occurrence
, replace one occurrence but do not move

cursor

Del skip to the next occurrence
n skip to the next occurrence
ˆ move back to the previous occurrence
! replace all remaining occurrences with-

out further questions
q quit query-replace
Return quit query-replace
Ctrl-r enter recursive edit level
Meta-Ctrl-c exit recursive edit level

Table 5: Special keys active during query-replace.

occurrence we can also press the key y . Similarly, instead of pressing Del we can

press the key n . The key , is quite handy: If we press it, the occurrence which is
current will be replaced. However, the cursor will not be moved. If we discover that
we have made a mistake we can press q to abort the query-replace command and
correct the error. Normally, this will be done by issuing the undo command bound to
Ctrl-/. Another possibility to correct any error is provided by recursive editing. While
executing a query-replace command, pressing Ctrl-r brings us to a recursive level
of editing where we can correct any problems that we have spotted during execution of
query-replace. Once we have corrected these problems we finish recursive editing by
pressing Meta-Ctrl-c. This brings us back to our query-replace session. The cursor

20

is then at the exact position where we left for recursive editing. Finally, a word of
warning is in order regarding pressing ! to replace any further matches. This should
only be used with extreme care: If you have a large text file, chances are good that you
replace some occurrences that you did not intend to have replaced.

2.7 Editing Multiple Files
When you edit a file with XEmacs the contents of this file are read from disk and put into
a special place which is called a buffer. What you really edit is this buffer. The file which
resides on disk is only updated when you safe the buffer via the “save-file” command.
XEmacs allows you to edit several files simultaneously. This happens automatically if
you issue the command “find-file” several times for different files. You can list the
buffers that are currently available via the command “list-buffers”. This will create a
new buffer listing all available buffers. Every buffer is listed on a separate line together
with information concerning it. In this list, you can search for the buffer you want
to visit. Once you have found it, simply place the cursor on the line associated with
the buffer and press return. If you know the name of the buffer in advance, use the
“switch-to-buffer” command. This command prompts for the name of the buffer
that is to be visited.

If multiple files have to be edited simultaneously, it is convenient to have two or more
buffers visible at the same time. This can be achieved by splitting the window either
vertically or horizontally using either of the commands “split-window-vertically”
or “split-window-horizontally”. The cursor can then be moved between these win-
dows using the command “other-window”. You can also scroll the other window up or
down using the command scroll-other-window or
scroll-other-window-down. These commands are bound to the keys Meta-Ctrl-v
and Meta-V , respectively. Additionally, the functions are bound to the keys Meta-Bild ↑

and Meta-Bild ↓ .

command key sequence short description
write-file Ctrl-x Ctrl-w write buffer to a different file
switch-to-buffer Ctrl-x b switch to a different buffer
switch-to-buffer-other-window Ctrl-x 4 b switch to a different buffer,

but display this buffer in a
separate window

list-buffers Ctrl-x Ctrl-b display a list of existing
buffers

kill-buffer Ctrl-x k kill a buffer
other-window Ctrl-x o move cursor to the next win-

dow
split-window-vertically Ctrl-x 2 splits the window vertically
split-window-horizontally Ctrl-x 3 splits the window horizon-

tally
delete-other-windows Ctrl-x 1 un-split the screen
scroll-other-window Meta-PgUp scroll the other window up
scroll-other-window-down Meta-PgDn scroll the other window down

Table 6: Editing several files simultaneously.

Table 6 on page 21 lists the command available for editing several files simultane-
ously. We proceed to describe those commands that have not yet been discussed. We
start with the command write-file. Assume that we have changed our short story

21

along the lines discussed in the previous subsection. Now we want to save this story,
but we would like the original version of this story to be undisturbed. Therefore, we
need to save the new version under a different file name. To do this, we issue the com-
mand write-file. This command prompts us for the new file name. After entering
the name “story-correct.txt” and pressing return the new version is saved under
this new name. Notice that also the mode line changes: It now displays the name
“story-correct.txt”.

Let us start editing two files simultaneously by issuing the find-file command. In
return to the prompt

Find file: /˜

we type “story.txt” and press return. Now the screen changes again and we are back
with our old version. In order to compare it to our new version we issue the command
split-window-vertically, which is bound to Ctrl-x 2. Then the screen will look as
depicted in Figure 14 on page 22. There are two windows, but both display the same

Figure 14: Effect of splitting the screen.

buffer. To get back to the buffer containing the politically correct version we issue the
command switch-to-buffer. This will prompt us for the name of a buffer to switch
to. This prompt looks as follows:

Switch to buffer: (default story-correct.txt)

The prompt already suggests the name of the buffer that we want to visit by displaying

22

this name in parentheses. So instead of typing the name “story-correct.txt” we can
just type return. Now the screen will look as shown in Figure 15 on page 23.

Figure 15: Effect of switching to story-correct.txt.

Now this is what we want: The upper half of the screen displays our original story,
while the lower half displays the politically correct version. We can switch between
these different versions using the command other-window. This command is bound to
the key Ctrl-x o. Finally, if we decide to kill the old version, this can be done via the
command kill-buffer. This command is bound the key Ctrl-x k. This command
prompts us for the buffer to kill and offers a default buffer:

Switch to buffer: (default story.txt)

However, this time we decide to kill the buffer story-correct.txt, type this name,
and press return. Then, this buffer vanishes but the screen is still split. It looks now
as shown in Figure 16 on page 24. The lower half of the screen displays a buffer with
the strange name “*scratch*”. We can remove this buffer from our screen by issuing
the command delete-other-windows, which is bound to the key sequence Ctrl-x 1.
After typing this key sequence, the screen is un-split.

2.8 Completion
On of the features of XEmacs that really excited me when I first saw them is the com-
pletion facility. This feature is best introduced via an example. Suppose I have already

23

Figure 16: Effect of switching to story-correct.txt.

typed the following text into a buffer:

Getting Started With the Microsoft Windows Operating System

Ok, you have bought this new computer and it says that is has the

At this point I have to write the text “Microsoft Windows operating system”. Typing
it again is rather dull. Copying it by placing its first occurrence into a region and then
yanking it back is probably not worth the effort. But there is a third option. Let us
write the first two character “Mi” and then press Meta-/. Like magic, the “Mi” has
been changed to “Microsoft”. So far, so good. Lets us insert a space symbol and
press Meta-/ again: Lo and behold, the word “Windows” appears next. Repeating the
sequence of pressing the space bar and the Meta-/ key two more times the words
“operating” and “system” surface like magic. XEmacs has found these words by
comparing the string before the cursor with similar strings in the buffer. In the case
that XEmacs guesses wrong there is no need to worry: Simply press Meta-/ again to
give XEmacs another chance to guess right. You can do this several times. If XEmacs
can not find any further guesses it will beep and leave you with the string that you have
typed initially.

The key Meta-/ invokes the command dabbrev-expand. This command uses a sub-
string and searches for words starting with this substring. This search is done in those

24

buffers that are currently loaded into XEmacs. There is another command that uses a
dictionary for expansion. This command is called ispell-complete-word. To see it
work, assume that you have to type the word

“antidisestablishmentarianism”
which is quite a mouthful. After typing “antid ” you can issue the command ispell-complete-word.
Then, the screen will split as shown in Figure 17 on page 24. At the top, there will be a
small window showing three choices:

(0) antidisestablishmentarianism (1) antidote (2) antidotes

In front of each choice is a number. Pressing the number “0” will now complete the
word “antid” to “antidisestablishmentarianism”. If you had pressed “1” instead,
you would have gotten “antidote”. Of course, for the function ispell-complete-word
to be really useful we need to bind it to a key. The subsection on customizing XEmacs
below will show how this is done.

Figure 17: Effect of switching to story-correct.txt.

Table 7 on page 25 shows the commands available for completion.

command key sequence short description
dabbrev-expand Meta-/ expand to the most recent word
ispell-complete-word try to complete the word before the

cursor using the ispell dictionary

minibuffer-complete Tab complete minibuffer

minibuffer-complete-word space complete at most one word

minibuffer-complete-and-exit Return complete and exit

minibuffer-list-completions ? list all completions

Table 7: Commands for getting completion.

Of course, XEmacs has also things like file name completion and buffer completion.
For example, when you issue the command find-file and are prompted for a file
name, then, in case you want to edit an existing file you can get by via entering the first

25

two or three letters of this name and then hitting the Tab key. A similar mechanism
exists when you are prompted for the name of a buffer.

There is one additional completion mechanism that is very useful: the command
completion mode. To invoke this type of completion, we issue the command

icomplete-mode

At first, issuing this command does not produce any visible effect. However, as soon
as we enter another command, we see the benefit. To illustrate command completion,
let us test it with a simple command. Assume that we want to start a search using the
command search-forward. So we type

Meta-x sea

and pause after typing the “sea”. Now the minibuffer looks as follows:

M-x sea(rch-){backward,backward-regexp,forward,forward-regexp}

This information can be interpreted as follows:

1. M-x sea is the string that we have typed so far.

2. Following this are characters enclosed in parentheses, in our case we have (rch-).
The interpretation of these characters is that any completion of the characters sea
that form a valid XEmacs commands has the characters rch following the already
typed characters sea. We can complete our command to search by pressing the
space bar. This changes the command line to

M-x search-{backward,backward-regexp,forward,forward-regexp}

3. At the end of the command line we have a set of alternatives. The elements of this
set are enclosed in the curly braces “{” and “}” and are separated by commas. In
our case these elements are

(a) backward

(b) backward-regexp

(c) forward

(d) forward-regexp

To continue our example, let us type the letter “b” next. The command-line
changes to

M-x search-b(ackward){,-regexp}

showing that now there are only two remaining choices, one is search-backward
and the other one is search-backward-regexp. Pressing the space bar changes
the minibuffer to

M-x search-backward{,-regexp}

Finally, pressing enter invokes the command search-backward.

The completion facility of the minibuffer is not restricted to command completion. File
names and buffers can be completed in essentially the same way. For example, if
you want to visit the file story.txt and enter the keys Ctrl-x Ctrl-f to invoke the
command find-file, you are prompted for the name of a file to visit. Instead of
entering the complete file name, you can restrict yourself to typing the first few letters
and then pressing the space bar. This will complete the file name as much as possible.
If you then press the space bar again, the screen is split horizontally and the lower half
lists the alternatives for completion.

26

2.9 Abbreviations
Abbreviations are yet another way to reduce typing. In the following, in order to show
the usefulness of the concept, the word abbreviation will be abbreviated as abbrev. To
understand how abbrevs are used in XEmacs, assume that you have typed the word
“Microsoft”. At this point you realize that you will need to type this words quite fre-
quently. Therefore, you decide to to define an abbrev for it. This is done by pressing
Ctrl-x a g immediately after you have typed “Microsoft”. You are then prompted for
an abbreviation as follows

Global abbrev for "Microsoft":

Type “ms” in respond to this prompt and press return. This installs “ms” as a global
abbreviation for “Microsoft”. The next time you need to type the word “Microsoft”,
type “ms” instead and invoke the command expand-abbrev, which is bound to the key
Ctrl-x a e. This will change the string “ms” into “Microsoft”. But you can do bet-
ter. Activate automatic expansion of abbrevs via the command “Meta-x abbrev-mode”.
Now every time that you type “ms” followed by a non-alphanumeric character, the “ms” is
expanded into “Microsoft”. So far, so good. But assume that the text to be abbreviated
consists of multiple words. For example, assume that the text “Microsoft Windows
Operating System” has to be abbreviated by “mwos”. How can this be done? Pressing
Ctrl-x a g after the last word of this text would only define an abbrev for the last word,
that is for “System”. This problem is solved by the function universal-argument,
which is bound to Ctrl-u: Just press “Ctrl-u 4 Ctrl-x a g”. Then XEmacs uses
the last 4 words as the text that is to be abbreviated and therefore prompts you as
follows:

Global abbrev for "Microsoft Windows Operating System":

Typing “mwos” in response installs the required abbreviation.
There are some additional commands that deal with abbreviations. They are listed in

Table 8 on page 26 together with those commands that have been discussed. Observe
that you can edit the abbrevs via the command edit-abbrevs and then activate your
changes to these abbrevs by pressing Ctrl-c Ctrl-c.

command key sequence short description
add-global-abbrev Ctrl-x a g define a new abbrevs
expand-abbrev Ctrl-x a e expand an abbrevs
edit-abbrevs-redefine Ctrl-c Ctrl-c activate changed abbrevs
abbrev-mode activate automatic expansion of

abbrevs
kill-all-abbrevs delete all defined abbrevs
expand-region-abbrevs expand all abbrevs in region
list-abbrevs list all abbrevs
edit-abbrevs edit abbrevs
write-abbrev-file write all defined abbrevs to file
read-abbrev-file read abbrevs from file

Table 8: Commands for abbreviations.

We have only discussed global abbreviations. These are those abbreviations that
are defined independent of the mode of XEmacs. Abbreviations can also be defined
specifically for one mode, i.e., it is possible to write abbreviations that are only active
when editing, for example, Html files. However, this feature is beyond the scope of this
script.

27

2.10 Customizing XEmacs
2.10.1 Customizing Key Bindings and Variables

XEmacs can be customized in various ways. First, and most importantly we can bind
commands to different keys. There is a special file called “.emacs”. It is read when
XEmacs is started up. Let us edit this file and put the following line at its end:

(global-set-key [(f2)] ’ispell-complete-word)

Next time, when we start XEmacs and this file is loaded the command ispell-complete-word
will be bound to the key f2 . But we do not have to wait this long. If we place the cursor
at the end of this line after the closing parenthesis “)” we can then issue the command
eval-last-sexp. This will install the new key binding immediately. We proceed by
giving some examples for key bindings.

(global-set-key [(control x) (v)] ’version)
(global-set-key [(control v)] ’version)
(global-set-key [(meta v)] ’version)
(global-set-key [(super v)] ’version)
(global-set-key [(meta control v)] ’version)

These examples are only used to clarify the syntax of global-set-key, they do not
serve any other purpose. The command version is not very significant, it just displays
the version of XEmacs that you are using in the echo area. On my system it displays
the message

XEmacs 21.4 (patch 12) "Portable Code" [Lucid] (i386-suse-linux, Mule)

When looking at the key bindings above you may be puzzled by the Super . This key
is also known as the Microsoft WindowsTM key. It is not available on every keyboard.
On those keyboards where it is available it is located between then Ctrl key and the
Meta key. Since it is not present on all keyboards, by default no commands have been

bound to this key. Therefore, this key is the ideal place for new commands.
Besides key bindings, XEmacs offers various other ways of being customized. The

most important are variables. Many features of XEmacs are controlled via variables.
For example, I am very annoyed by the beeping of XEmacs that occurs when I issue
the keyboard-quit command. Fortunately, this can be changed. Issue the command
set-variable. XEmacs will prompt you for the name of a variable:

Set variable:

Answer this prompt with visible-bell and press return. Now XEmacs prompt for a
value for this variable:

Set visible-bell to value:

To this question just type “t”. In XEmacs “t” is short for “true”. (The value for “false”
is “nil”.) After pressing return you can try to issue the keyboard-quit command.
Instead of an annoying beep, the screen will flash now. We can make this change
permanent by putting the line

(setq-default visible-bell t)

into our “.emacs” file. Table 9 on page 27 list the commands covered so far in this
subsection.

2.10.2 Invoking Commands on Startup

Chances are that you consider the command icomplete-mode handy. Instead of in-
voking it yourself, you can have this command executed automatically by placing a line
of the form

28

command key sequence short description
eval-last-sexp Ctrl-x Ctrl-e evaluate expression before the cur-

sor
set-variable set variable to a given value

Table 9: Commands for keyboard macros.

(icomplete-mode)

at the end of your “.emacs” file. Of course, this works for all commands that should be
activated on startup.

2.10.3 Writing Keyboard Macros

Let us introduce the idea of keyboard macros via an example. Assume you have a list
of data that each consist of a name, a birth date, and an email address. The data might
look as follows:

(’Karl Stroetmann’ ’7. 4. 1961’ ’stroetmann@ba-stuttgart.de’)
(’Willi Winzig’ ’3. 11. 1981’ ’winzig@web.de’)
(’Daniel Dumpfbacke’ ’22. 5. 1945’ ’Daniel.Dumpfbacke@aol.com’)
(’Peter Hecht’ ’6. 8. 1967’ ’phecht@freenet.de)

Let us assume that for some reason we need to reformat this list: We need to put the
name in the last position. For example, the first line should be reformatted to read:

(’7. 4. 1961’ ’stroetmann@ba-stuttgart.de’ ’Karl Stroetmann’)

Of course, if there are just four entries in this list we can easily do this reformatting by
hand. But, for the arguments sake, assume that the list is much longer. Then editing
it by hand would be rather boring. Therefore, let us write a macro to do the work. Now
recording a macro is like writing a small program and hence is not trivial. Therefore, let
us first make a plan for our macro:

1. The macro always has to start at a well–defined position. In our example, such
a position is the opening parenthesis “(”. So, our first step will be to move the
cursor to this position via the search-forward command.

2. Now that the cursor is positioned at the opening parenthesis, we should delete the
blank following this parenthesis using the Del key.

3. Next, we kill the following two words using the kill-word command that is bound
to Meta-d.

4. At this point, the cursor needs to be moved to the end of the line. In order to move
it to a well–defined position we search for the closing parenthesis “)” again using
the command search-forward.

5. Having the cursor positioned after the closing parenthesis, we move back one
character using the command backward-char-command. This command is bound
to the key combination Ctrl-b.

6. Now that the cursor is under the opening parenthesis we can insert the text just
killed via the yank command bound to Ctrl-y. This inserts the name we have
previously killed right before the closing parenthesis.

7. Finally, we insert one space.

29

step keys pressed explanation
0. Ctrl-x (start recording the macro

1.(a) Meta-x search-forward Return invoke search command
1.(b) (Return search for “(”

2. Del delete blank
3. Meta-d Meta-d kill name

4.(a) Meta-x search-forward Return invoke search command
4.(b)) Return search for “)”
5. Ctrl-b move backward one character
6. Ctrl-y insert killed name
7. insert space
8. Ctrl-x) finish recording the macro

Table 10: Key strokes for recording the keyboard macro.

Now, let us record this macro. This is done as shown in Table 10. While recording this
macro, we have also reformatted the first line of our data. Reformatting the rest of the
lines is now easy. Just invoke the command call-last-kbd-macro which is bound to
the key sequence Ctrl-x e. Every time you invoke this command, one line is changed.
Cute, isn’t it? But we can go further: Assume that there are 100 hundred lines that
require reformatting. Then, the universal-argument command can speed up things
considerably. Press the following keystrokes:

Ctrl-u 1 0 0 Ctrl-x e

This will invoke the macro a 100 times and thus finish our work in one sweep.
Sometimes, you write a macro that is so useful so that you want to save it. This

can be done in two steps. First, we have to name the macro using the command
name-last-kbd-macro. This command will prompt us for a name. To continue our
example, let us choose the name “reformat”. Then, we visit the “.emacs” file and issue
the command insert-kbd-macro. This command prompts for the name of the macro
that is to be inserted. After choosing “reformat”the following lines are inserted into the
buffer:

(defalias ’reformat (read-kbd-macro
"M-x search- forward RET (RET DEL 2*<M-d> M-x search- forward RET)

RET C-b C-y SPC"))

We proceed to bind this macro to a key. This is achieved by adding the following line to
our “.emacs” file:

(global-set-key [(super r)] ’reformat)

At this point the macro we have defined is a first class citizen of the set of commands
available in XEmacs. It can now be invoked by pressing the key Super-r.

Occasionally, a macro needs to interact with the user. Consider the case where our
database has the following form:

(’Karl Stroetmann’ ’7. 4. 1961’ ’stroetmann@ba-stuttgart.de’)
(’0711/1234567’ ’Willi Winzig’ ’3. 11. 1981’ ’winzig@web.de’)
(’Daniel Dumpfbacke’ ’22. 5. 1945’ ’Daniel.Dumpfbacke@aol.com’)
(’Peter Hecht’ ’6. 8. 1967’ ’phecht@freenet.de)

Here, the second line has an additional telephone number included. Obviously, this line
is to be treated differently because now the name is the second item, while our macro for

30

reformatting assumes that it is the first item. Here, the command kbd-macro-query
comes to our rescue. Inserting it into our macro will query the user at the specified
point. The user can then decide whether he wants to continue the macro or whether the
macro should be aborted. Table 11 on page 30 shows the new sequence of keys needed
to define this macro. Observe step 1.(c), which is new. When this macro is executed,

step keys pressed explanation
0. Ctrl-x (start recording the macro

1.(a) Meta-x search-forward Return invoke search command
1.(b) (Return search for “(”
1.(c) Ctrl-x q query user

2. Del delete blank
3.(a) Meta-d Meta-d kill name

4.(a) Meta-x search-forward Return invoke search command

4.(b)) Return search for “)”
5. Ctrl-b move backward one character
6. Ctrl-y insert killed name
7. insert space
8. Ctrl-x) finish recording the macro

Table 11: Key strokes for recording the 2nd keyboard macro.

it will first search for an opening parenthesis. At this point it will stop, prompting the
user as follows:

Proceed with macro? (space, delete, q, C-l, C-r)

Now, the user has the same options as when doing a query replace. These options have
been listed in Table 5 on page 20. Most importantly, pressing the space bar will execute
the macro, pressing Del skips over one occurrence and q aborts execution of the
macro. 2 Finally Table 12 on page 30 lists the commands that deal with macros.

2.10.4 Traps and Pitfalls When Writing Keyboard Macros

Maybe the previous paragraph sounds to good to be true. To be honest, things seldom
work as smooth as described in the previous examples. Consider our first set of data to
be changed again and assume now that it contains the following variation

(’Karl Stroetmann’ ’7. 4. 1961’ ’stroetmann@ba-stuttgart.de’)
(’Willi Winzig’ ’3. 11. 1981’ ’winzig@web.de’)
(’Daniel Dumpfbacke’ ’22. 5. 1945’ ’Daniel.Dumpfbacke@aol.com’)
(’Hans Peter Hecht’ ’6. 8. 1967’ ’phecht@freenet.de)

Here, the problem is that the name of the fourth line consists of three words. However,
our macro starts by killing two words. Therefore, it would change the fourth line to

2When a keyboard macro is invoked together with the universal-argument command, then there is a
difference between aborting a macro and skipping to the next occurrence. If you have pressed Ctrl-u 1 0

0 Ctrl-x e to invoke an interactive keyboard macro a hundred times and press Del at the first execution
of the macro, then the macro is still executed 99 times. However, if you press q , execution of the macro is
aborted and there is no further invocation of the macro.

In a single invocation of a keyboard macro, i.e. in an invocation without ctrl-u, the keys Del and q

have the same effect.

31

command key sequence short description
start-kbd-macro Ctrl-x (start to record a keyboard macro
end-kbd-macro Ctrl-x) finish to record a keyboard macro
call-last-kbd-macro Ctrl-x e execute the last keyboard macro

that has been defined
name-last-kbd-macro associate a name with the last key-

board macro
insert-kbd-macro insert a keyboard macro into a file
kbd-macro-query Ctrl-x q suspend execution of a keyboard

macro and query whether to con-
tinue

edit-kbd-macro Ctrl-x Ctrl-k edit keyboard macro
edmacro-finish-edit Ctrl-c Ctrl-c save edited keyboard macro

Table 12: Commands for keyboard macros.

(Hecht’ ’6. 8. 1967’ ’phecht@freenet.de ’Hans Peter)

which is wrong. There are two ways to fix this. First, we can make the macro interactive.
This approach has been described above. Secondly, we can try to generalize our macro
so that it will work in the more general case also. The way to do this is that we kill all
the text between the apostrophe characters “´” and later yank them at the end of the
line. In order to do this, we first set a mark at the first apostrophe and then search for
the second apostrophe. Once we found it, the complete text between both apostrophes
is marked. The text can then be killed using the function kill-region. The complete
macro is given in table 13.

step keys pressed explanation
0. Ctrl-x (start recording the macro

1.(a) Meta-x search-forward Return invoke search command
1.(b) (Return search for “(”

2. Del delete blank

3. Ctrl-space set mark

4. Ctrl-f move forward one character

5.(a) Meta-x search-forward Return invoke search command
5.(b) ’ Return search for second apostrophe
6. Ctrl-w kill region

7.(a) Meta-x search-forward Return invoke search command

7.(b)) Return search for “)”
8. Ctrl-b move backward one character
9. Ctrl-y insert killed name

10. insert space
11. Ctrl-x) finish recording the macro

Table 13: Key strokes for recording the 3rd keyboard macro.

Unfortunately, as soon as we invoke the command kill-region the screen flashes
and we are informed in the echo area that

The region is not active now

32

We did set the mark command with Ctrl-space, so the region should be active, but
appareantly it isn’t. What happened? The answer is that the search command that
was invoked later deactivated the mark. Therefore, we have to reactivate the mark.
This is done with the command exchange-point-and-mark which is bound to Ctrl-x
Ctrl-x. This command does two things:

1. As its name states, it exchange the position of the cursor and the position of the
mark. In our case, the cursor is set back to the first apostrophe, because this is
the place where the old mark was located. Further, the mark is set to the position
of the second apostrophe because this is the place where the cursor has been.

2. More importantly, the mark and therefore also the region, is reactivated. .

Using exchange-point-and-mark, we can write our macro as shown in Table 14. This
macro solves our problem.

step keys pressed explanation
0. Ctrl-x (start recording the macro

1.(a) Meta-x search-forward Return invoke search command
1.(b) (Return search for “(”

2. Del delete blank

3. Ctrl-space set mark

4. Ctrl-f move forward one character

5.(a) Meta-x search-forward Return invoke search command
5.(b) ’ Return search for second apostrophe
6. Ctrl-x Ctrl-x reactivate the mark
7. Ctrl-w kill region

8.(a) Meta-x search-forward Return invoke search command

8.(b)) Return search for “)”
9. Ctrl-b move backward one character

10. Ctrl-y insert killed name
11. insert space
12. Ctrl-x) finish recording the macro

Table 14: Key strokes for recording the 4th keyboard macro.

The above example illustrates, that getting macros right can be tricky. In practice,
when a macro fails, this is often due to one of the following reasons:

1. The macro is not general enough. This was illustrated by the previous macros.
There are two simple rules for making a macro more general.

(a) Avoid making assumption about the number of characters that make up a
particular field. Therefore, avoid movement of the cursor using simple cursor
movement commands like

forward-char-command or backward-char-command.
Instead, use search commands to position the cursor.

In our first macro, we have already followed this advice. If we had used
the cursor keys to get to the second apostrophe, then we would have moved
the cursor by 16 characters to the right. This would have worked for the first
line, but it would have failed on the second line because there the name has
a different length.

33

(b) Avoid making assumption about the number of words that make up a partic-
ular field. Again, try to use search commands.
This point has been illustrated by the previous example.

When using search commands, remember to reactivate the mark afterwards.

2. The macro is intended to edit a text on a line by line basis and assumes that the
cursor is positioned at the beginning of the line. In this case, after performing its
work, the macro has to take care to position the cursor to the beginning of the
next line so that its subsequent invocation is able to work.

2.10.5 Editing Keyboard Macros

The previous subsection shows that it is quite easy to introduce a bug into a keyboard
macro. The good news is that it is not always necessary to start form scratch when a
keyboard macro has been found to be buggy. We illustrate this with our first macro and
show how this macro can be made interactive without rewriting it from scratch. The
command that comes to our help is edit-kbd-macro. According to Table 12 on page 30
it is bound to the key Ctrl-x Ctrl-k. After pressing Ctrl-x Ctrl-k the minibuffer
prompts us as follows:

Keyboard macro to edit (C-x e, M-x, C-h l, or keys):

To edit the recently recorded keyboard macro, we respond with Ctrl-x e. This displays
a screen as in Figure 18 on page 33.

Figure 18: Editing a keyboard macro with Ctrl-x Ctrl-k.

Next, we enter the three lines shown below next to the RET statement that finishes
our search for the opening parenthesis:

34

M-x
kbd-macro-query
RET

The screen now looks as displayed in Figure 19 on page 34. To finish recording of the

Figure 19: Macro after inserting three lines.

macro, we press Ctrl-c Ctrl-c. This key executes the command edmacro-finish-edit
and saves our changes to the macro. We can now test this macro. If it works, we are
done. Otherwise, we can edit the macro again until we get it right.

Keyboard macros are both powerful and complex. For the most times, these two
properties go hand in hand in computer science. Therefore, it is necessary to spend
some time to master keyboard macros. Given the power of keyboard macros this time
is well invested.

2.11 Getting Help
Since XEmacs offers such a wealth of commands it is quite easy to forget either the
name of a command or its key binding. Then the function “describe-bindings” comes
to help. It describes the bindings of all keys in a separate buffer. If you are just
curious which function is invoked by a particular key, the function “describe-key”
is useful. Simply press “Ctrl-h k”. You are then prompted for a key. Press the key
you are curious in. Next, the function invoked by this key is described in a separate
buffer. For example, when pressing Ctrl-h k Meta-% a buffer of the form shown in
Figure 20 on page 35 will appear. The text first says that the key Meta-% invokes the
command query-replace. Furthermore, it gives a detailed account of the command
query-replace. In particular, the description mentions a number of variables:

35

Figure 20: Effect of pressing Ctrl-h k Meta-%.

1. query-replace-interactive,

2. case-replace,

3. case-fold-search,

4. query-replace-map.

On a color printout of this script you will notice that these variables are high-
lighted. The command query-replace can be customized via these variables. If we
want to get more information on any of these variables we can use the command
describe-variable, which is bound to the key Ctrl-h v. Let us try this command
with the variable query-replace-interactive. This will bring up the screen shown
in Figure 21 on page 35. This screen informs us that if we change the value of the
variable query-replace-interactive to “t” then the command query-replace will
be changed. It will no longer prompt for a string to replace. Rather, it will use the last
search string as the string to replace. To test it, add the following line at the end of your
“.emacs” file and issue the command eval-last-sexp at the end of this line:

(setq-default query-replace-interactive t)

Now you can try first to do an incremental search using the isearch-forward com-
mand followed by a query-replace command. You will notice how the behavior of the
query-replace command has changed. OK, I think this change is not very beneficial.
So let us change the line setting the variable query-replace-interactive to “t” back
as follows:

36

Figure 21: Effect of pressing Ctrl-h k Meta-%.

(setq-default query-replace-interactive nil)

and invoke the command eval-last-sexp at the end of it. Now we have reset the
variable
query-replace-interactive to “nil” which is the default value.

Table 15 on page 36 list the various commands available for help in XEmacs. We

command key sequence short description
describe-bindings Ctrl-h b show a list of all defined keys and their def-

initions
describe-key Ctrl-h k display documentation of the function in-

voked by a particular key.
describe-function Ctrl-h f display the full documentation of a function
describe-variable Ctrl-h v display the full documentation of a variable
apropos-command Ctrl-h A display list of functions matching a given

string
describe-mode Ctrl-h m describe the current mode
where-is Ctrl-h w print all key sequences that invoke a given

command
help-with-tutorial Ctrl-h t present a tutorial

Table 15: Commands for getting help.

have not yet mentioned the command apropos-command bound to the key Ctrl-h A. It
prompts for a string and lists all commands that have this string as part of their name.
Let us try this command using the string “macro”. This will bring up the screen shown
in Figure 22 on page 37. This screen lists all commands that have the string “macro”
as part of their name. For each command, a short description is given. We can get the
full documentation via the describe-function command.

Then, there is the command describe-mode. An editor for editing a Java program
needs to be different from an editor editing a text file. Therefore XEmacs has the concept
of different modes: When you edit a Java program the editor will be in java-mode,
while it will be in text mode when editing a text file. The main point about modes is that
different modes have different key bindings. Furthermore, many of XEmacs internal
variables have different values for different modes. This allows XEmacs to be very

37

Figure 22: Running apropos-command with argument “macro”.

flexible. The command describe-mode describes the mode that is active in the current
buffer.

2.12 The Info System in XEmacs
Finally, the most powerful help function is the “Info” system. To invoke it from
XEmacs, issue the command info. This command is also bound to the key sequence
Ctrl-h i. To get started, type the key h after invoking Info. This causes a screen of
the form shown in Figure 23 on page 38 to appear. I recommend to exercise this tutorial
in front of a computer. Nevertheless, the most important concepts and commands are
discussed in the following.

The Info system is a system to enable efficient browsing of a certain kind of manual
pages. The manual pages that can be browsed are the so called info pages. These

38

Figure 23: Invoking the Info tutorial.

pages have some resemblance to Html pages: They also contain links. However, to
distinguish these links from Html links, they are called cross references. When viewing
an Info page via XEmacs, the cross references are highlighted. Figure 24 on page 39
displays a typical Info page. The Info pages are also known as nodes. The first line of
the node displayed contains three cross references.

1. “Next: Buffers” is the first cross reference. It points to a page named Buffers.
This cross reference is marked with the label Next.

2. “Prev: Fixit” is the second cross reference. It points to a page named Fixit.
This cross reference is marked with the label Prev.

3. “Up: Top” is the third cross reference. It points to a page named Top. This cross
reference is marked with the label Up.

Next, the name of the node is given as “File Handling”. This name is underlined with
“*” characters and can be used to jump to this node directly. Then, there are two cross
references in the text of the node:

1. *Note EFS: (efs)Top and

2. *Note TRAMP: (tramp)Top.

Finally, there is a menu containing cross references to various other sections.

39

Figure 24: Viewing an info page under XEmacs.

This Info node shown in Figure 24 on page 39 is typical. The first line of most
Info pages contains three cross references that are marked with the labels Next, Prev,
and Up. These labels reflect the structure of an Info document: Conceptually, every Info
document can be viewed as a book that is structured in chapters, sections, subsections,
subsubsection, and so on. To make this concrete, let us assume that a book with the
following table of contents is given:

Chapter 1: Introduction to Something.

Chapter 2: More on Something.

Section (a): The History of Something.

Section (b): The Future of Something.

Chapter 3: Something Else.

40

When this book is cast into an Info document, it is split up into 6 nodes. The first
node, also known as the top node, will contain a menu with an entry for each of the
three chapters. There will be a node for every chapter. The node corresponding to the
second chapter will have a menu that has entries for the two sections of this Chapter.
Then there will be nodes for each of these sections. Let us label these 6 nodes as top,
chap-1, chap-2, chap-3, sec-1, and sec-2, respectively. If somebody wants to read these
nodes in the same way as he would read the corresponding book, he would read them
in the sequence top, chap-1, chap-2, sec-1, and sec-2, chap-3. In order to read an Info
document as a book, XEmacs makes the following commands available.

1. Info-scroll-next scrolls the screen of the currently displayed node down. If the
screen already displays the end of the node, then the command Info-scroll-next
switches to the following node. For example, if the screen displays the end of node
chap-2, then the node sec-1 is displayed next.

The command Info-scroll-next is bound to the key space .

2. Info-scroll-prev is the opposite of Info-scroll-next. It scrolls the screen
back. If the screen already displays the beginning of the node, then the command
Info-scroll-prev switches to the preceding node. For example, if the screen
displays the top of node sec-1, then the node chap-2 is displayed next.

The command Info-scroll-prev is bound to the key backspace .

Instead of reading a book cover to cover you might want to skim through it and just look
at the beginning of each chapter. Of course, this is also possible with an Info document.
The Info system offers several commands that deal with this approach:

1. Info-next moves to the next node that is on the same level as the node you are
currently visiting. For example, when visiting node chap-2, the next node on the
same level is chap-3, while when visiting node sec-1 the next node on the same
level is sec-2. The name of this node is also shown on the first line of the current
node. It is marked with the label “Next:”. In Figure 24 on page 39 this name is
“Buffers”.

The command Info-next is bound to the key n .

2. Info-prev moves to the previous node that is on the same level as the node you
are currently visiting. For example, when visiting node chap-3, the previous node
on the same level is chap-2, while when visiting node sec-2 the previous node on
the same level is sec-1. The name of this node is also shown on the first line of the
current node. It is marked with the label “Prev:”. In Figure 24 on page 39 this
name is “Fixit”.

The command Info-prev is bound to the key p .

3. Info-up moves to the node that is one level above the node you are currently
visiting. For example, when visiting node sec-2, the node one level above is the
node chap-2, while when visiting node chap-2 the node one level above is the node
top. The name of this node is also shown on the first line of the current node. It is
marked with the label “Up:”. In Figure 24 on page 39 this name is “Top”.

The command Info-up is bound to the key u .

4. Info-top-node moves to the topmost node in the hierachy. In the example, this
is the node top.

The command Info-top is bound to the key t .

41

5. Info-directory moves to a node showing a menu that has entries for all Info
documents installed on the system.

The command Info-directory is bound to the key d .

The Info system offers some more commands that are useful but that did not fit above.
These are listed below.

1. Info-follow-nearest-node is the function that can be used to visit a cross ref-
erence. Conceptually, invoking this function is the same as clicking the mouse on
a hyperlink in an HTML document. To use this command, move the cursor to a
highlighted cross reference and invoke the command by pressing return.

The command Info-follow-nearest-node is bound to the return key.

2. Info-last moves you back to the last node you have visited. It is useful when
you have followed a cross reference and you want to go back to the place where
you came from. If you have followed a chain of several cross references, invoking
Info-last repeatedly takes you back to the start of your journey. Conceptually,
it is similar to the back button of a web browser.

The command Info-last is bound to the key l .

3. Info-search searches the whole Info document for a string you specify. It is
important to understand that the search is not confined to the current node but
rather extends to all the nodes that make up the document.

The command Info-search is bound to the key s .

4. Info-index searches the index of an Info document for a string you specify. In an
Info document, certain nodes can be specified as index nodes. The search invoked
by this function is confined to these nodes.

The command Info-index is bound to the key i .

5. Info-menu

When a node contains a menu, there is a shortcut to visit the nodes associated
with the menu entries. The function Info-menu asks for the name of a menu
entry and then visits the corresponding node. When entering the name of the
node, the completion facility of the minibuffer is available, i.e. pressing the space
bar completes the name as far as possible.

The command Info-menu is bound to the key m .

6. Info-follow-reference is similar to Info-menu, but asks for the name of a
cross reference instead of a menu entry. When entering the name, the completion
facility of the minibuffer is available.

The command Info-follow-reference is bound to the key f .

7. Info-next-reference moves the cursor to the next cross reference. When the
last cross reference is reached, the command Info-next-reference moves the
cursor back to the first cross reference in the node. This way, you can easily scroll
to all cross references in a node.

The command Info-next-reference is bound to the tab key.

8. Info-prev-reference is the opposite of Info-next-reference. It is bound
to the key Meta-tab . However, depending on your window manager, this key
might not be available for XEmacs. In this case you should rebind the command
Info-prev-reference to a different key. A convenient key is Ctrl-tab .

42

9. Info-bookmark allows to set a bookmark. The command asks for a name which
can later be used to reference the bookmark. The bookmarks set are saved to
the file “˜/.xemacs/info.notes”. Therefore, bookmarks are persistent: if you
terminate your XEmacs session and later start XEmacs again, the bookmarks
that you have set in the first session will still be available.

Bookmarks are not confined to a single word, you can enter more or less arbitrary
text. However, this text may not contain newlines. This way, bookmarks can be
used to annotate an Info document. If there really is a need to write multi-line
annotations, annotate the same place with several bookmarks.

The command Info-bookmark is bound to the key x .

10. Info-goto-bookmark asks for the name of a bookmark and then moves to the
specified bookmark. When the name of the bookmark is entered, the completion
facility of the minibuffer can be used.

The command Info-goto-bookmark is bound to the key j .

11. Info-visit-file asks for the name of a file containing an Info document and
loads the nodes associated with the specified document.

The command Info-visit-file is bound to the key v .

12. Info-quit exits the Info system.

Table 16 on page 42 summarizes the commands available when using the Info system.
The info system offers help on various topics, not only on XEmacs.

2.13 Miscellaneous Commands
Finally, there are some commands that did not quite fit into any of the other sections
but that are nevertheless quite useful. These are listed in Table 17 on page 43. Let
us discuss these commands one by one. I frequently make typos of the form “taht”
instead of “that”, i.e. I exchange the order of letters. In the example, I have exchanged
the letters “a” and “h”. If I realize this error after typing the “h” I can then press Ctrl-t,
which invokes the command transpose-chars and the typo is corrected. There is a
similar command for transposing word: It is called transpose-words and is bound to
the key Meta-t. As an aside, note that the following is a principle in XEmacs: If there
is a command that is used for characters and that is bound to Ctrl-char, where char

stands for some character, and if, furthermore, there is a similar command that works
on words instead of characters, then the command working on words is bound to the
key Meta-char. Table 2 on page 13 shows many examples of this principle.

Invoking the command display-time displays the current date and time in the
mode line. Similarly, the command line-number-mode displays the number of the line
of the cursor in the mode line.

If you want to format a text paragraph, this can be done using the command
fill-paragraph. However, this command needs to be given a prefix argument via
Ctrl-u. It adjusts the current paragraph. The length of the line is controlled by the
variable fill-column. Let us use this command to add a finishing touch to our short
story. The result will then look as shown in Figure 25 on page 43.

Sometimes, you have to add control characters into a buffer. For example, you
want to add Ctrl-c. This character is displayed as “ˆC”. But how do we enter this
character? The answer is the command quoted-insert, which is bound to the key
Ctrl-q. Pressing Ctrl-q will enter the next key that is pressed next literally into the
buffer.

Finally, the command just-one-space swallows redundant spaces. It is bound to
the key Meta- .

43

command key sequence short description
info Ctrl-h i start the Info system

Info-follow-nearest-node return follow a node reference near point

Info-scroll-next space scroll screen down
visit following node if at end of page

Info-scroll-prev backspace scroll screen up

visit preceeding node if at end of
page

Info-next n visit next node

Info-prev p visit previous

Info-up u visit the superior node

Info-top-node t move to top node of current man-
ual

Info-directory d move to Info directory

Info-last l go back to node last visited visit the

Info-search s search for a string

Info-index i search the index

beginning-of-buffer b move to beginning of buffer

Info-next-reference tab move cursor to next cross reference

Info-prev-reference Meta-tab move cursor to previous cross ref-
erence

Info-menu m ask for name of menu entry
move to given entry

Info-follow-reference f ask for name of cross reference
move to cross reference

Info-bookmark x set a bookmark

Info-visit-file v load an Info document

Info-quit q quit the Info system

Table 16: The Info System.

2.14 What Else is There
Plenty. Really. The manual describing Emacs has over 600 pages. And then there is
the manual covering the programming language Emacs Lisp. This language is needed
if you want to create serious extensions of XEmacs. This manual has about 900 pages.
Of course, these manuals are written in a very condensed style, so they cover much
more material per page than I have covered in the few pages that I have dedicated to
XEmacs. Furthermore, there are hundreds of extensions of XEmacs that are described
in separate manuals. Some of these extensions are described in a few pages, others
require more than 100 pages. This should give you a rough estimate about the wealth
of features available in XEmacs. I can not resist to showing of some of the more cool
stuff that there is. Figure 26 on page 44 shows that XEmacs can edit Japanese text.

While in XEmacs, some games are available. You should definitely try the command

44

command key sequence short description
transpose-chars Ctrl-t interchange characters around the

cursor
transpose-words Meta-t interchange words around the cur-

sor
display-time display the current time and date

in the mode line
line-number-mode show the line number of the cursor

in the mode line
fill-paragraph justify paragraph
quoted-insert Ctrl-q read next character and insert it

verbatim
just-one-space Meta- remove redundant spaces

Table 17: Various useful commands.

Figure 25: Short story after formatting with fill-paragraph.

hanoi showing how to solve the famous “towers of Hanoi” puzzle. By using Ctrl-u
to provide a prefix argument you can run it for an arbitrary number of disks. Did I
mention tetris? This game is shown in Figure 27 on page 45. Finally, when you
think that all this is more than you can take, try the doctor command.

45

Figure 26: Editing Japanese text with XEmacs.

3 The File System
It is time to discuss the file system of Linux. To begin with, what precisely is a file sys-
tem? This question is best answered via an analogy. Consider an office of a company.
This office needs to store various contracts, letters, the addresses of customers, etc.
The storage of these items needs to be organized for otherwise it would be impossible
to find something. All contracts with a given customer may be collected in a folder. All
folders with contracts may be stored in a cabinet, while another cabinet might holds
the folders containing the employment contracts.

With a computer, things are somewhat similar. There are lots of data around. On a
first level, this data is organized in files. In turn, files are organized in directories and
these directories may themselves be part of their parent directories. The analogy with
the office can be roughly sketched as follows:

letter, contract, address list ≈ file
folder ≈ subdirectory
cabinet ≈ directory

In Linux, directories can be nested arbitrarily. That is, you can create a directory and
in this directory you can create a number of files and subdirectories. Then in each of

46

Figure 27: Tetris

the subdirectories you can again create files and subdirectories. And so on. Therefore,
you can structure your data in any way that you consider convenient. Let us take a
look at a typical file system as it is shown in Figure 28 on page 46. First, there is the
so called root directory. This directory has the name “/”. This is the only directory that
has no parent directory. Here a directory A is the parent directory of a directory B if B is
a subdirectory of A. In our example, the root directory has the following subdirectories:

bin, dev, etc, home, lib, tmp, usr, var

The directory home is somewhat special. It contains the home directories of the users.
In our example, there are two user: “anja” and “bernd”. Normally, the user “anja” will
own all the files that are in the directory “anja” or in any of its subdirectories. Similar
for the user “bernd”. When the user “anja” first logs in, she will start her session in
her home directory. In our example, the directory “anja” has two subdirectories: Prog
and Texte. The directory Texte contains two files: Kap1.tex and Kap2.tex.

Every file can be identified by its path name. This name consists of a list of all
directories leading to the file, separated by the “/” symbol. For example, the path name
of the file Kap2.tex is

/home/anja/Texte/Kap2.tex

A path name that starts with a “/” is called an absolute path name. An absolute path
name always starts from the root directory “/”. This is in contrast to a relative path

47

bin cp

dev

etc

home anja

bernd

Prog MyEd

a.out

Texte Kap1.tex

Kap2.tex

Briefe Brief1.txt

brief2

Klausur

lib

tmp

usr bin

local bin

lib

man

man

var adm

spool lpd

mail

/

Figure 28: A typical File System.

name. To give an example, if the user “anja” is working in her home directory, then the
relative path name of the file Kap2.tex would be

Texte/Kap2.tex

As the name suggests, a relative path name is always relative to the current working
directory. Therefore, if the current working directory changes, the relative path name
to a given file changes, too. For example, if the user “bernd” is working in his home
directory, the relative path to the file Kap2.tex will be

../anja/Texte/Kap2.tex

This example introduces the notation “..”, which is short for the parent directory of
the working directory. Therefore, if the working directory is /home/bernd, then “..”
denotes the directory “/home”. This notation can be repeated, e.g. if the working direc-
tory is “/home/bernd/Briefe”, then the file “Kap2.tex” is denoted by the relative path
name “../../anja/Texte/Kap2.tex”.

When writing directory names, there are three more shorthands available:

1. “˜” is short for your home directory. In the example above, if “anja” is working in
the directory “Prog” and she wants to refer to the file “Kap2.tex”, then the relative
path name

˜/Texte/Kap2.tex

48

would do the job.

2. “˜user” is short for the home directory of user. For example, if “bernd” wants to
refer to the file “Kap2.tex”, he could do so via the relative path name

˜anja/Texte/Kap2.tex

3. “.” is short for the current working directory. For example, if “anja” is working in
the directory Texte, then both “./Kap2.tex” and “Kap2.tex” would refer to the
same file.

Above, we have repeatedly referred to the so called working directory. Basically, this is
the directory where you are currently working. When you log in, the working directory
is your home directory. You can change the working directory using the command
“cd” that is described later. All the commands that you invoke will be relative to your
working directory. That is, if you execute a command that reads a file and you specify
just the file name but no directory information, then most commands will search for
the specified file in the current working directory. Similarly, if a command creates a
file and you do not specify a directory where the newly created file should be written to,
then most commands will create this file in the current working directory. Sometimes,
files are also created in the special directory /tmp. This directory stores temporary files
that are only needed during a computation and can be discarded afterwards.

It is time to discuss some of the basic commands to copy, move, and remove files and
directories. We give a short overview now and will discuss some of the more complex
commands in greater detail later in separate subsections.

1. mkdir dir

creates a subdirectory with the name dir in the current working directory. For
example, the command

mkdir Test

would create a subdirectory with the name “Test” in the current working directory.

2. cp src dst

copies the file src into the file dst. If a file with this name existed before, it is
overwritten. For example, the command

cp Kap2.tex Kap3.tex

copies “Kap2.tex” into a new file with the name “Kap3.tex”

3. ls

lists the files and subdirectories of the current working directory.

4. mv src dst

renames the file “src” to “dst”. For example, the command

mv Kap2.tex Kap2a.tex

renames the file “Kap2.tex” to “Kap2a.tex”.

5. rm file

removes “file”. For example, the command

49

rm Kap2.tex

would remove the file “Kap2a.tex”.

Attention: In contrast to other operating systems, the remove command will re-
move the specified file immediately. It is not moved to some form of waste basket
from where it might be retrieved.

6. rmdir dir

removes the directory dir. However, for rmdir to succeed, this directory must be
empty! If you want to remove non–empty directories, you can do this via the “rm”
command and its “-r” flag, which removes directories recursively.

7. pwd

reports the name of the current directory. For example, if the user “anja” issues
this command right after logging in, this command would report

/home/anja

8. cd dir

changes the current working directory to become dir. For example, the command

cd /home/bernd

would change the current working directory to become “/home/bernd”

9. touch file

will create an empty file of the given name. For example, the command

touch Kap42.tex

creates an empty file with the name “Kap42.tex”.

10. cat file

dumps the content of the file file to the screen. For example, assume that the file
“greeting” contains the text “Hello, World!”. Then issuing the command

cat greeting

would write the string “Hello, World” to the screen.

Most of the commands given above take additional arguments known as options. Using
these options the behaviour of these commands can be fine tuned. We discuss a subset
of these commands in the following subsections.

3.1 Copying Files
Basically, there are three ways to invoke the cp command.

1. cp src dst

where src is the name of a file and dst is the name of a new file. This command will
copy src into the file dst. If dst already exists, it is overwritten without warning.

50

2. cp src1 · · · srcn dst

where src1 to srcn are files or directories while dst is the name of an existing di-
rectory. This command will copy the given files and directories into the specified
directory. If this directory already contains files with this name, they are overwrit-
ten.

The command cp supports a number of options. We list the most important ones.

1. cp -i src dst

will ask before overwriting existing files.

2. cp -r src dst

where src and dst are directories will copy the directory src recursively into the
destination directory dst. Here, copying recursively means that any subdirectories
of src will also be copied.

3.2 Deleting Files and Directories
The command rm is more powerful than discussed in the introduction of this section.
It can remove directories and can even do this recursively using the “-r” flag. For
example, if “Test” is a directory, possibly containing some non–empty subdirectories,
then the command invocation

rm -r Test

would remove “Test” and all of its subdirectories and the files contained therein.
Normally, the rm command will not ask for confirmation before the removal of any

file. This can be changed via the “-i” flag which makes the rm command interactive.
This flag is often used in conjunction with the “-r” flag. For example, the command

rm -r -i Test

will ask for every file and subdirectory of the directory “Test” whether it should be
removed.

3.3 Listing Files and Directories
The command “ls” lists the contents of a directory. We view a directory as a list of
directory entries. Each of these entries is either a file, a subdirectory, or a link. (The
notion of a link is discussed in a separate subsection below.) The command “ls” has a
number of useful options that are discussed in the following:

1. ls -a

lists the hidden files and directories, too. A file or directory is hidden if it starts
with a “.”. For example, the file “.emacs” is a hidden file.

2. ls -l

returns a long form of the directory listing with considerably more information.
For example, the following is a possible output produced by “ls -l”:

total 11
drwxr-xr-x 4 karl users 6272 2003-01-17 14:18 GRT
drwxr-xr-x 5 karl users 1512 2003-01-16 12:32 Informatik-I
drwxr-xr-x 3 karl users 3144 2003-01-17 14:23 PDV
-rw-r--r-- 1 karl users 976 2002-12-10 21:15 pipeline.tex

51

The general form of each line is as follows
type mode linkno owner group size date time name

Here, the meaning of each of these items is as follows.

(a) type mode specifies the type of each file. There are three types:

“-” Normal files are specified by the character “-”. In the example above,
“pipeline.tex” is a normal file.

“d” Directories are specified by the character “d”. In the example above, “GRT”
is a directory.

“l” Soft links are specified by the character “l”. We discuss links in a separate
subsection.

“b” Block devices are specified by the character “b”. Usually, they refer to
hardware that is read or written a block of character at a time. For exam-
ple, a hard disk is associated with a block device.

“c” Character devices are specified by the character “c”. Usually, they refer
to hardware that is read or written one byte at a time. For example, a
keyboard is read a character at a time.

“p” Named pipes (a.k.a. fifos) are used for interprocess communication. We
discuss them in a separate subsection.

“s” Sockets are a facility that is needed when programs communicate over a
network.

(b) mode specifies the mode of each file. The mode of a directory entry codes
certain access rights. This is discussed in the next subsection.

(c) linkno is the number of (hard) links to this file. For directories, the link
counter is always at least 2 since every directory has the entry “.” which
is a link to itself. If a directory has subdirectories, then the link counter
is increased by one for every subdirectory, since every subdirectory has the
entry “..” which is a link pointing to its parent directory.
Therefore, for directories linkno usually gives the number of subdirectories
plus 2.

(d) owner is the owner of the file. In the example above, this owner is always the
user karl.

(e) group is the group associated with the file. In the example above, all files are
associated with the group users.

(f) size is the size of the file in bytes.

(g) date is the date of the last modification of the entry.

(h) time is the time of the last modification of the entry.

(i) name is the name of the entry.

3. ls -l d1 · · · dn

lists exclusively the given files and directories. This feature is often used in con-
junction with wildcards. These are discussed in a separate subsection.

4. ls -R

lists subdirectories recursively.

5. -S

lists entries sorted according to their file size. The default is to list files alphabeti-
cally.

52

6. -t

lists entries sorted according to their modification time.

There are lots of other option available that can be used to control the data that is
displayed. These options are described in the info pages that document the “ls” com-
mand.

3.4 Maintaining Access and Ownership
Since Linux is a multiuser system it needs concepts that allow to control the access to
files. With Linux, there are three levels of access.

1. The level of the owner.

2. The level of the group.

3. The level of the rest of the world.

While the concept of the owner of a file is clear, the concept of a group needs expla-
nation. Consider a software project involving several developers. These developers will
work jointly on a number of files. Therefore, these developers will make up a group
and the files that they use jointly will have access rights that enable the members of
the group to work jointly on these files while still preventing others from viewing or
modifying these files.

Therefore, the access mode of a directory entry has the following general format:
op gp wp

Here, op, gp, and wp have the following meaning:

1. op is the access permission of the owner.

2. gp is the access permission of the group.

3. wp is the access permission of the rest of the world.

In Linux, there are three different ways to access a file.

1. A file can be read.

2. A file can be written.

3. A file can be executed.

Therefore, a permission has the following form:
rd-pr wr-pr ex-pr

Here, rd-pr, wr-pr, and ex-pr have the following meaning.

1. rd-pr controls the read permission. If it is set, it has the value “r”, otherwise it has
the value “-”.

2. wr-pr controls the write permission. If it is set, it has the value “w”, otherwise it
has the value “-”.

3. ex-pr controls the execute permission. If it is set, it has the value “x”, otherwise it
has the value “-”.

For a directory, execute permission is needed to list the contents of the directory.

Using this information, we can make more sense from the directory listing produced by
“ls -l”. Consider the following line:

53

-rwxr-x--x 1 karl users 976 2002-12-10 21:15 w3fetch

In this case, the permission of the file “w3fetch” has the vale “rwxr-x--x”. To under-
stand it, we have to split it into the three parts op, gp, and wp describing the permis-
sions of owner, group. and world. We have

op = “rwx”, gp = “r-x”, wp = “--x”
We discuss these permissions in turn.

1. op = “rwx”.

This show that the user has the right to read, write, and execute the file “w3fetch”.

2. gp = “r-x”

Since the string “r-x” does not contain the letter “w”, the members of the group
users have the right to read and execute the file “w3fetch”, but they are nor
permitted to change the contents of the file.

3. wp = “--x”

Since the string “--x” contains only the letter “x”, the rest of the world has only
the permission to execute the file “w3fetch”, but may neither read nor change the
file.

3.4.1 Changing Permissions

Having understood the basic theory of permissions we next need to know how to manage
these permissions. This is done with the command “chmod”. Let us start with an
example:

chmod a+r w3fetch

Successful execution of this command would grant read permission (this is what the
“r” stands for) to all users (this is what the “a” stands for). The general format is

chmod category access-or-denial permissions file-or-dir
Here, category can be one or more of the following characters:

1. “u” specifies that the permissions of the owner are to be changed.

2. “g” specifies that the permissions of the group are to be changed.

3. “o” specifies that the permissions of the rest of the world are to be changed. The
letter “o” is short for others.

4. “a” specifies that the permissions of the owner, the group, and the rest of the world
are to be changed. Here, the letter “a” is short for “all”.

Next, access-or-denial can be one of the following characters:

1. “+” grants permissions.

2. “-” revokes permissions.

3. “=” sets permissions.

This last item needs further explanation. Consider the command

chmod o=r w3fetch

54

Successful execution of this command would set the permission of the rest of the
world to “r--” for the file “w3fetch”. That is, it does not only grant read permission
to the rest of the world, it also retracts execute and write permission in the case
that these had been set before.

Then, permissions can be any collection of the following letters:

1. “r” specifies read permission.

2. “w” specifies write permission.

3. “x” specifies execute permission.

Finally, file-or-dir specifies the file or directory for which the permissions should be
changed. Note that in the invocation

chmod category access-or-denial permissions file-or-dir
there may be no spaces between category, access-or-denial, and permissions. That is,
you can not write something like “chmod o - r w3fetch”. You have to write “chmod
o-r w3fetch” instead. (Above, we added a little space between these words just to
make things readable.) To get used to “chmod”, let us consider some examples.

1. chmod g-r w3fetch

This would retract the read permission for the group for the file “w3fetch”.

2. chmod o+rx w3fetch

This would grant both read and execute permission to the rest of the world.

3. chmod ug+rw w3fetch

This would add read and write permissions for both the owner and the group.

Finally, the “chmod” command is not restricted to a single file. You can specify several
files. For example, if the current working directory contains the files

hello1.c hello2.c hello3.c

then the command

chmod a+r hello1.c hello2.c hello3.c

makes these three files readable for everyone.

3.4.2 Changing Ownership

The command “chown” is used to change the ownership of a file. It is called as
chown new-owner file

Here new-owner is the new owner and file is the file whose owner is to be changed. The
command can change the ownership of several files simultaneously, the invocation

chown new-owner file1 · · · filen

would change the ownership for file1 to filen. Finally, the command “chown” can also
change the ownership of a directory. It can even do this recursively. For example, if
“Test” is a directory containing several subdirectories and lots of files and the own-
ership for all these files and subdirectories has to be changed simultaneously to new-
owner, then this can be achieved via the following command:

chown -R new-owner Test

Only the system administrator, who is also known as super user or root, is allowed to
use the command “chown”.

55

3.4.3 Changing the Group

The command “chgrp” is used to change the group associated with a file. It is called as
chgrp new-group file

Here new-group is the new group that is to be associated with file. The command can
change the group associated with several files simultaneously, the invocation

chgrp new-group file1 · · · filen

would change the group associated with file1 to filen. Finally, the command “chgrp”
can also change the group associated with a directory. It can even do this recursively.
For example, if “Test” is a directory containing several subdirectories and lots of files
and the group associated with these files and subdirectories has to be changed simul-
taneously to new-group, then this can be achieved via the following command:

chgrp -R new-group Test Only the system administrator, who is also known
as super user or root, is allowed to use the command “chgrp”.

3.5 Wildcards
Some of the commands described above can deal with an arbitrary number of param-
eters. For instance, the command “mv” can deal with an arbitrary number of files. The
invocation

mv date1.c date2.c date3 date4.c date5.c Test

would move the files “date1.c”, “date2.c”, “date3.c”, “date4.c”, and “date5.c” into
the directory Test. However, it would be quite tedious to type all these file names on
the command line. Therefore, there is an easier way to do this. The shell, which pre-
processes every command, expands certain expression known as wildcards in a special
way. A wildcard is an expression that denotes a set of strings. For example, the wild-
card expression “[1-5]” denotes the strings “1”, “2”, “3”, “4”, and “5”. Therefore, the
expression “date[1-5].c” is a shorthand for the following set of strings:

{ “date1.c”, “date2.c”, “date3.c”, “date4.c”, “date5.c” }.
As a result, the “mv” command above can be written shorter:

mv date[1-5].c Test

The above explanation assumes, that the directory where the command is issued does
contain the files datei for i = 1, · · · , 5. If, for example, there is no file with name date4.c,
then the command would be expanded to the command

mv date1.c date2.c date3.c date5.c Test

The general rule here is that wildcards are expanded into the names of matching files.
Next, we list all wildcard expressions that are supported by the shell. In order to clarify
the semantics of these expressions, we provide examples. All these examples assume
that we are working in a directory that contains the following files:

abc.x abc.y date2.c date4.c uvw.xy
abc.xy date1.c date3.c date5.c uvw.x uvw.y

In order to test our wildcard expressions we use the “echo” command. The sole purpose
of the “echo” command is to list its arguments, for example

echo "Hello, world."

would produce the familiar greeting
Hello, world.

on the screen. The “echo” command is especially well–suited to test wildcard expres-
sions since it can not do any damage to the file system.

56

1. “?” matches an arbitrary character. Therefore, the command
echo abc.?

produces the result
abc.x abc.y

when issued in our test directory.

2. “*” matches an arbitrary string. Therefore, the command
echo abc.*

produces the result
abc.x abc.xy abc.y

when issued in our test directory. The same result is produced by
echo ab*

This shows that the “*” also matches a string containing a “.” character.

I have included this example because this behaviour differs from the behaviour
of wildcard expressions in the MS/DOS environment. However, there is one ex-
ception to the rule that a “*” matches any string. Assume the working directory
contains a file starting with a dot. For example, assume that it contains the file
“.emacs”. A file of this form is called hidden. Then, if we would type the command

echo *

all files would be listed with the exception of the hidden files.

3. “[c1 · · · cn]” where the ci are characters. This expression matches one of the char-
acters in the set {c1, · · · , cn}. For example, the command

echo uvw.[xy]

produces the output
uvw.x uvw.y

To give another example, the command
echo date[12345].c

produces the output
date1.c date2.c date3.c date4.c date5.c

4. “[a − b] where a and b are characters. This expression matches one of the char-
acters in the set {c | a ≤ c ≤ b}, where the ASCII ordering of the characters is used.
Using this form, we can write the previous example more concisely:

echo date[1-5].c

This would produce the output
date1.c date2.c date3.c date4.c date5.c

5. “[!c1 · · · cn] where the ci are characters. This expression matches any character
that is not in the set {c1, · · · , cn}. For example, the command

echo date[!351].c

produces the output
date2.c date4.c

6. “[!a − b] where a and b are characters. This expression matches any character
that is not in the set {c | a ≤ c ≤ b}, where the ASCII ordering of the characters is
used. For example, the command

echo date[!2-4].c

57

produces the output
date1.c date5.c

3.6 Links
Sometimes it may be useful to have two different names that refer to the same program,
file, or directory. For example, assume that you have written a script that assumes
that the C–compiler is called “cc” and is located in the directory “/usr/bin”. Assume
further that this directory does contain a C–compiler that works the same way as “cc”,
but, unfortunately this compiler is called “gcc”. You can not rename “gcc” to “cc”
because other users expect “gcc” to be available in the directory “/usr/bin”. One way
to make your script works would be to copy the file “gcc” to “cc”. This would do the
job. However, this approach would waste lots of disk space because the same file is
stored twice. There is another problem associated with this approach: Assume that
“gcc” contains a bug that is later fixed. If the file “gcc” is then replaced by the corrected
version, the file “cc” still contains the bug and needs replacement, too. Therefore,
instead of copying “gcc”, the better way is to create a link with the name “cc” that
points to the file “gcc”. Assuming that “/usr/bin” is the current working directory,
this can be done with the command

ln gcc cc

This command seemingly produces a file with the name “cc”. You can check this via
the command “ls -l cc” which will produce the following output

-rwxrwxrwx 2 root root 3 2002-11-22 11:16 cc

When the directory entry is listed this looks just like a normal file. The only hint that
there is something special about this file is the fact that its link counter is 2 and not
1. (The link counter is the number that is displayed between the access mode and the
name of the user.) The directory entry “cc” is a pointer to the program “gcc”. When the
file “gcc” is changed, the file “cc” will reflect these changes automatically. Similarly,
when “cc” is changed, in the file “gcc” changes, too. In effect, there is no difference
between “cc” and “gcc”. Both are pointers pointing to an internal table of so called
inodes. These inodes in turn point to the real location of the file on the hard disk.

The general form of the “link” command is
ln target name

This creates a new link with name name that point to target. Here, target can be either
a file or a directory.

The links described above are so called hard links. These work only on the same
device, that is you can not have a hard link on a hard disk drive that points to a CD-
ROM drive or to another hard disk. In these cases, you need so called soft links. They
are also known as symbolic links. The general command to create a soft link is

ln -s target name
In the invocation of the command, the only difference to the creation of a hard link
is the parameter “-s”. The display of soft links by the “ls” command differs from the
display of hard links: Assume that you have some directory containing a file with the
name “abc”. Issuing the command

ln -s abc xyz

produces the soft link “xyz”. Using the command “ls -l xyz” this link is displayed as

lrwxrwxrwx 1 stroetma users 5 2003-02-24 23:34 xyz -> abc

Here, the first letter in the line that is displayed is the letter “l” which is short for link
and signifies that this directory entry is a soft link.

58

There is another subtle difference between hard links and soft links. Assume that,
initially, you have a file abc in your directory containing the greeting “Hello, World!”
and you issue the following commands:

ln abc xyz
rm abc
cat xyz

The result of all these commands would be that the text “Hello, World!” is printed to
the screen. The reason is that internally every file has a count of the number of links
that point to it. This counter is known as the link counter. Initially, this count is 1.
When the first “ln” command is executed, this count is incremented to 2. When the file
“abc” is removed via the “rm” command, then what actually happens is the following:
The link counter gets decreased by 1. Next, it is checked whether the link counter has
reached 0. In our example, this is not the case. Therefore, the data will remain on disk.
They would only be purged when we remove the file xyz.

Now with a soft link the situation is different. Assume that we start initially with the
file abc and next issue the command sequence

ln -s abc xyz
rm abc
cat xyz

Now the result would be an error message of the form
File not found!

The reason is that setting a soft link does not change the link counter. So when we
remove “abc”, the file and its data are both sent into the Nirvana. On the other hand,
the link “xyz” does not notice that the file it is pointing to has been removed. It is
a symbolic link and contains only the name of the file. This name can be seen as an
address where to look for the data. There is no check that this address is actually valid.
In our case, the address is the file name “abc”. Since there is no longer a file with this
name, the cat command will produce an error message.

3.7 Adding Devices to the File System
Most of the file system is set up when Linux is booted. However, sometimes devices
have to be added to the file system. For example, when a floppy is put into the floppy
disk drive, the data of the floppy has to find a place in the directory hierachy. This goal
is achieved by mounting the floppy to the file system. On my computer, I achieve this
via the following command:

mount -t msdos /dev/fd0 /media/floppy

Then, the data on the floppy can be found in the directory “/media/floppy”. The
general format of the mount command is

mount -t type device directory

where

1. type is the type of the file system to mount. For example, when mounting a floppy
disk that has been formated with MS-DOS, the mount command would be

mount -t msdos /dev/fd0 /media/floppy

If a data CD is to be mounted, the appropriate type of the file system is iso9660.

2. device is the device that is to be mounted. It is a path name of the form /dev/xyz.
The value for xyz depends on the device to mount.

59

3. directory is the mount point under which the data will be available in the file
system.

If the command mount is invoked with no arguments, then it lists all devices that are
mounted. My system outputs the following:

1. /dev/hdb2 on / type reiserfs (rw)
2. proc on /proc type proc (rw)
3. devpts on /dev/pts type devpts (rw,mode=0620,gid=5)
4. /dev/hda1 on /windows/C type ntfs \

(ro,noexec,nosuid,nodev,gid=100,umask=0002,nls=iso8859-15)
5. tmpfs on /dev/shm type tmpfs (rw)
6. usbdevfs on /proc/bus/usb type usbdevfs (rw)
7. //blackhole/stroetma on /home/stroetma/AMADEUS type smbfs (0)
8. /dev/hdc on /media/dvd type iso9660 (ro,nosuid,nodev,unhide,user=stroetma)

Let us go through this output line by line.

1. The first line shows that my disk containing the Linux file system is device /dev/hdb2.
The file system used is of type reiserfs and the file system is mounted (rw)
meaning that I can both read and write.

2. The second line shows the so called proc file system. This is a virtual file sys-
tem containing entries for all processes running on the system. It is discussed
elsewhere.

3. The third line shows that the terminals are available under /dev/pts. Like proc,
this is a virtual file system.

4. Line four shows that I have mounted a second hard disk containing my Microsoft
WindowsTM file system as /windows/C. This disk uses the ntfs file system. I have
mounted it read only (ro) since I do not want to crash it. After all, it crashes
on its own often enough. Further, this file system is marked as (noexec). This
means that files residing on this file system can not be executed, even if they are
executable. The reason is that a Microsoft WindowsTM executable can not run
under Linux.

5. The temporary file system tmpfs is a file system that actually resides in memory.
Therefore, access to the files on this system is very fast.

6. The next line is concerned with the USB devices.

7. Line seven shows that I have mounted the directory stroetma on the server
blackhole via the network using the samba protocol smbfs.

8. The last line shows that the DVD is mounted read only (ro).

Most of the devices shown above have been mounted automatically by the system on
startup. Only the DVD has been mounted manually. The mounting of devices during
startup of the system is controlled by the file “/etc/fstab”. This file contains a list
of lines where each line specifies a device, a mount point, the type of the file system
and some options used when mounting the device. On my computer, this file reads as
shown in Figure 29 on page 59. Each line in this file describes one device. The format
of these lines is given as shown below:

device path type options dump-frequency check
The meaning of these parameters is as follows:

1. device specifies the block special device or remote filesystem to be mounted.

60

/dev/hdb2 / reiserfs defaults 1 1
/dev/hda1 /windows/C ntfs \

ro,users,gid=users,umask=0002,nls=iso8859-15 0 0
/dev/hdb1 swap swap pri=42 0 0
devpts /dev/pts devpts mode=0620,gid=5 0 0
proc /proc proc defaults 0 0
usbdevfs /proc/bus/usb usbdevfs noauto 0 0
/dev/cdrecorder /media/cdrecorder auto ro,noauto,user,exec,unhide 0 0
/dev/cdrom /media/cdrom auto ro,noauto,user,exec,unhide 0 0
/dev/dvd /media/dvd auto ro,noauto,user,exec,unhide 0 0
/dev/fd0 /media/floppy auto noauto,user,sync 0 0
/dev/sdc1 /media/camera vfat ro,noauto,user 0 0

//basys2002/public-it /home/stroetma/PUBLIC-IT smbfs rw,noauto,user 0 0

Figure 29: The file /etc/fstab.

2. path specifies the mount point for the filesystem.

3. type specifies the type of the file system. If “auto” is specified, then the type is
detected automatically when the file system is mounted.

4. options is a comma seperated list of options that are used when the mount com-
mand is executed. If this list contains the string “noauto”, then the associated
device is not mounted automatically when the system is booted. The most com-
mon options are the following:

(a) defaults specifies that the mount should use the default options when mount-
ing the device.

(b) ro specifies that the device is mounted read only.

(c) user specifies that any user is allowed to mount the device.

(d) users specifies that any user is allowed to mount and unmount the device.
Normally, only the user who has mounted a device is allowed to unmount it.

(e) uid=number specifies the given number as user identifier for all files in the
associated file system.

(f) gid=number specifies the given number as group identifier for all files in the
associated file system.

(g) uid=users specifies that the uid for all files in the associated file system is
the identifier of the user who mounted the file system. The option gid=users
works analogously for the gid.

(h) sync specifies that the file system should be mounted synchronously, i.e. all
changes to the file system take effect immediately. This makes the file system
a little bit slower but is safer in case the system crashes.

(i) exec permits execution of binary files.

(j) noexec prohibits execution of binary files.

It should be noted that the options that are actually available depend on the type
of the file system that is used. Furthermore, the default options are different for
different type of file systems. For the file system type reiserfs “exec” is a default
option, but for the file system type ntfs “noexec” is a default option, since it does
not make sense to run Microsoft WindowsTM “.exe” files on the Linux operating
system.

61

5. dump-frequency specifies the frequency of backups of the associated file system.
A frequency of 0 specifies that this file system does not need to be dumped.

6. check is a flag that specifies whether a file system check needs to be done on
rebooting.

Of course, the same options that are given in the file “/etc/fstab” can also used
when a system is mounted manually. For example, to mount a USB memory stick
manually as a read only device such that the files on it can be executed, write

mount -t auto /dev/sda1 /media/sda1 -O ro,exec

In general, on the super user root is allowed to mount a device. Normal users are
permitted to mount the device only if the device is specified in the /etc/fstab with the
option of either “user” or “users”. In this case, the mounting is done by just specifying
the mount point. For example, given the /etc/fstab file shown in Figure 29 on page
59, any user can mount the DVD via the command

mount /media/dvd

Unmounting a Device The opposite of the mount command is the umount command.
It is used to detach a device from the file system. This is especially important if a device
is mounted asynchronously, i.e. if the data that is written to it is kept in memory for
some time before it is actually written. For example, for performance reasons USB
sticks are often mounted asynchronously. If you just unplug the stick without prior
unmounting, data might be lost.

Hot-Plugging When examining the file /etc/fstab you might notice that sometimes
this file changes apparently on its own without your intervention. For example, when
attaching an USB memory stick to an USB port on my desktop, the following line is
added to the file /etc/fstab:
/dev/sda1 /media/sda1 auto sync,noauto,user,exec 0 0 #HOTPLUG ...

This is done by the hotplug daemon that watches for changes in the attached hardware.

3.8 dired Mode in XEmacs
Normally, rather than using the commands sketched in the previous subsection, it is
easier to manipulate files and directories via the dired mode in XEmacs. This mode
is invoked via the command dired which is bound to the key “Ctrl-x d”. This mode
offers the following features.

1. “dired-next-line” moves the cursor to the next line.

2. “dired-previous-line” moves the cursor to the previous line.

3. “dired-flag-file-deletion” flags a directory entry for deletion.

4. “dired-expunge-deletions” deletes all flagged directory entries.

5. “dired-unmark” unmarks a marked directory entry.

6. “dired-do-copy” copies a directory entry.

7. “dired-create-directory” creates a subdirectory.

8. “dired-do-rename” renames or moves a directory entry.

62

9. “dired-do-chmod” changes the access bits of a directory entry.

10. “dired-do-chown” changes the ownership of a directory entry.

11. “dired-do-chgrp” changes the group of a directory entry.

12. “dired-do-symlink” creates a symbolic link.

13. “dired-do-hardlink” creates a hard link.

14. “dired-quit” quits directory mode.

These commands are bound to the keys shown in Table 3.8.

command key sequence

dired-next-line n , Ctrl-n , Space

dired-next-line p , Ctrl-p , Del

dired-flag-file-deletion d

dired-expunge-deletions x

dired-unmark u

dired-do-copy C

dired-create-directory +

dired-do-rename R

dired-quit q

dired-do-chmod M

dired-do-chown O

dired-do-chgrp G

dired-do-symlink S

dired-do-hardlink H

The behaviour of “dired” can be customized by setting the variable “dired-listing-switches”.
Often, you want to have a recursive directory listing, that is you want to list the con-
tents of the directory together with the content of its subdirectories. To achieve this,
issue the following command in XEmacs

set-variable

You are then prompted for the variable to set. This prompt looks as follows:
Set variable:

In response to this question, type
dired-listing-switches

and finish with a Return . Then, you are prompted for the new value of this variable:
Set dired-listing-switches to value:

In response, type
Set dired-listing-switches to value: "-lR"

and finish with a Return . Here, the letter “R” requests the directory listing to be re-
cursive. The next time that you invoke “dired” for a directory, the listing is produced

63

recursively.
Attention: The procedure sketched above to create a recursive listing does not work
if there is already a buffer containing a listing for the directory that is specified as the
argument of “dired”. In this case, this buffer needs to be killed first! Otherwise, “dired”
just displays this buffer without rereading the directory. Even when you explicitely
request rereading of the directory via the revert-buffer function that is invoked by
typing the character “g” in directory mode, the subdirectories will not be listed. To solve
the problem, you need to kill the buffer containing the old directory listing. This can be
done via the function kill-buffer which is invoked by typing Ctrl-x k .

4 Compiling and Debugging C Programs with Linux
There are many reasons for using a computer. One is to execute programs, another is to
write programs. In this short section we discuss how to compile and debug C programs.
We start with a simple example that shows the most basic facilities of the Gnu debugger
gdb. After that, we give a short overview of those features of gdb that are used more
frequently.

4.1 A Small Example
We discuss a small program that reverses a given string: For example, the string
“Hello, World!” would be turned into “!dlroW ,olleH”. Let us assume that, as a
first shot, we have written a file containing the following C code:

As it stands, this program is not correct. We will soon find out about its problems.
To begin with, we need to compile this program. This is done with a C compiler. The C
compiler can be started from XEmacs. In order to do this, we issue the command

Meta-x compile

After pressing Return the command line prompts us for the compile command as
follows:

Compile command: make -k

Here, the text “Compile command: ” is the prompt string, while the string “make -k” is
the default option. This default option is always offered when the compile command
is executed the first time. Since we want to run the C compiler rather than the make
command we edit this line until it reads as follows:

Compile command: cc -Wall -g -o strreverse strreverse.c

Here, we have called the C compiler, whose name is “cc”. We have added a number of
options that we discuss below:

1. The option “-Wall” switches all warnings on. You should always use this option,
since it often gives a number of useful hints about possible problems. In fact, there
is only one case I can think of where using this option is not a good idea: Imagine
you have to maintain some large program that has been written by somebody else.
If this somebody else was too stupid to use the “-Wall” option, then there is no
point for you to use this option either because if you would use it, you would first
have to correct all the problems the original programmer had introduced.

2. The option “-g” adds debug information to the code that is produced. As long
as you are still developing your program, you should use this option. Later, when
your program is running, then you can remove the “-g” option since this will make
your program a little bit faster and somewhat smaller.

64

01 #include <string.h>
02 #include <stdio.h>
03 #include <stdlib.h>
04
05 char* strreverse(char* str)
06 {
07 unsigned i;
08 char* reverse;
09 length = strlen(str);
10 reverse = (char*) malloc(length + 1);
11 for (i = 0; i <= length; ++i)
12 {
13 reverse[i] = str[length - i - 1];
14 }
15 reverse[length] = 0;
16 return reverse;
17 }
18
19 int main()
20 {
21 char* prompt = "String eingeben: ";
22 char* text;
23 printf("%s", prompt);
24 scanf("%[a-zA-Z0-9 ,.!?:;]", text);
25 printf("%s\n", strreverse(text));
26 return 0;
27 }

Figure 30: The file strreverse.c.

3. The option “-o strreverse” has been added to produce the executable file “strreverse”.
If we had not added this option, a successful compilation would have produced a
file with the name “a.out”.

When we submit the compilation command shown above by pressing Return , we see
a screen that looks similar to the one shown in Figure 31 on page 64. The screen is
split into two halves: The upper half shows the program, while the lower half shows the
output of the C compiler. On a color display, you will see that certain keywords in the
program text have been colored. This does not happen by default. In order to activate
coloring of keywords the command “Meta-x font-lock-mode” has to be issued.

Let us focus our attention on the lower half of the XEmacs window, which contains
the error messages. It informs us that the variable “length” in line number 9 is unde-
clared. We can jump right to this variable by issuing the command

next-error

which is bound to the key “Ctrl-x `”. (The funny symbol after “Ctrl-x” is a backquote.
On a German keyboard you get it by pressing the shift key and hitting the key left to

the backspace key.) Then we realize that we have forgotten to declare the variable
“length”. Therefore, we edit line 7 reading

unsigned i;

and change it to
unsigned i, length;

65

Figure 31: Result of compiling “strreverse.c”.

After that we can again invoke the compile command. This time, the compilation suc-
ceeds and we see a screen similar to the one shown in Figure 32 on page 65.

In order to short circuit the process of compiling a program and then running it, we
can write an Emacs-Lisp function that automatically compiles and runs a program. To
do this, we add the following code to our “.emacs”file:

(defun my-compile()
"compile with gcc using buffer-name"
(interactive)
(let ((name (buffer-name))

(short-name (substring (buffer-name) 0 -2)))
(compile (concat "gcc -Wall -g -o " short-name " " name

"; " short-name))
)

)
(define-key c-mode-map [(super c)] ’my-compile)

We do not have the time to discuss the mechanics of this code, but the effect is as
follows: If you are editing a C program with XEmacs and you want to compile and test
this program, you just type the key Super c , that is the Windows key together with the
letter c. This will compile the program you are editing. The executable file produced by
the compiler will have the name of the buffer you are editing without the “.c” extension
and, furthermore, this executable file is then started.

66

Figure 32: Result of compiling “strreverse.c” after declaring “length”.

To continue our demonstration from above, let us try to run the program strreverse.
So we start a shell in XEmacs with “Meta-x shell” and, at the prompt, type the name
of the program we have just generated: “strreverse”. After hitting Return , we are
prompted for a string. We enter “Hello, World!” and press Return . To our dismay,
the screen now looks as follows:

stroetma@stroetmannpc:˜/Kurse/PDV> strreverse
String eingeben: Hello, World!
Speicherzugriffsfehler
stroetma@stroetmannpc:˜/Kurse/PDV>

So there is a bug. In order to find this bug, we start the Gnu debugger via the XEmacs
command “Meta-x gdb”. We are the prompted for a file name. The file we have compiled
is called “strreverse”, so we enter this name and press Return . After that, we see a
screen similar to the one shown in Figure 33 on page 66.

Next, we type “run” followed by a Return . This time, our program prompts for a
string. After entering it and pressing Return , gdb displays the following error message
on the screen:

Program received signal SIGSEGV, Segmentation fault.
0x40073105 in _IO_vfscanf () from /lib/libc.so.6

67

Figure 33: The Gnu debugger.

This message informs us that a segmentation fault3 has occurred in the function “ IO vfscanf”,
which has been loaded from the library “/lib/libc.so.6”. Since this function is a li-
brary function and the error is most probably not in this library function but in the code
that called this library function, we issue the gdb command “up” and press Return .
This time the message from gdb reads

#1 0x40076f9a in scanf () from /lib/libc.so.6

This message informs us that the function “ IO vfscanf” has been called by the func-
tion “scanf()”. Since this is again a library function we repeat the “up” command to
figure out how “scanf” has been called. This time the screen splits and we see a screen
similar to the one shown in Figure 34 on page 67.

In the lower half of the screen we see our original program. The line that invoked
the function “scanf()” is highlighted. There is just one pointer that is used in this line,
the pointer “text”. This pointer has been declared two lines above the highlighted line.
Unfortunately, this pointer has never been initialized, so it points to some arbitrary
location. We can check this via the gdb print command: Entering

print text

at the gdb prompt and pressing Return yields

(gdb) p text
$1 = 0x4004e6b0 "U\211\203\b\211]"u0\001"
(gdb)

confirming out theory that “text” is the culprit. To correct the error, we change the line
char* text;

to become
char* text = (char*) malloc(81);

This will reserve some memory and make text point to this memory. After recompiling

3A segmentation fault occurs if memory is accessed via a pointer that points to an area of memory that is
not accessible. Normally this happens when a pointer is used that has not been properly initialized.

68

Figure 34: The Gnu debugger showing the offensive line of code.

the program, we start it again in the debugger by typing “run” at the gdb prompt and
pressing Return . Then gdb displays the following message on the screen:

(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n)

We answer “y” and press Return . Again, we are prompted for a string. This time, we
enter the string “abcd”, press Return and the program answers:

dcba

Program exited normally.
(gdb)

So finally, the program seems to work, at least for this example.

4.2 Additional Commands in gdb
Table 4.2 on page 70 shows a list of the most important gdb commands. The tables has
three columns.

1. The first column gives the name of the gdb command. You have to use this name
if you enter the commands in gdb at the prompt. (The gdb prompt is the string
“(gdb)”.)

69

2. The second column gives the name of an XEmacs command that invokes the as-
sociated “gdb ” command. For example, the XEmacs command that invokes the
gdb command “run” is “gdb-run”. So instead of typing “run” at the gdb prompt
you can also type “Meta-x gdb-run”.

Note that some gdb commands do not have an equivalent XEmacs command.

3. The last column gives the name of the key sequence that can be used to invoke
the XEmacs command.

Some of these commands are not bound to any key. Of course, if you feel that you
need these commands often, then you can bind them to a suitable key yourself.

Of course, gdb can be called stand alone without invoking XEmacs. To do this, just
type

gdb file
at the prompt of a shell. This will start gdb for the specified file. If gdb is invoked this
way, only the commands given in the first column of Table 4.2 can be used. However,
XEmacs provides a very convenient interface to gdb, which is easier to use than the
raw gdb.

We proceed to discuss the gdb commands in table 4.2.

1. run: Starts the program.

2. break: Sets a break point. Normally, if you issue the “run” command, the program
loaded by gdb will run until its end. To have the program stop at specified places
you can set break points. There are two ways a break point can be set:

(a) A break point can be set at a specified source line. The syntax to do this is
break file:lineno

Here file is the name of the file in which the break point is to be set and lineno
specifies the line number at which the program should stop. For example, the
gdb command

break strreverse.c:22

would set a break point at line 22 in the file strreverse.c.
If a break point has to be set at a specified source line, this is easier to achieve
via the XEmacs interface. Just move the cursor to the line number where
the new break point should be set and issue the XEmacs command “Meta-x
gdb-break”, which is bound to “Ctrl-x space ”.

(b) Another way to set a break point is by specifying the name of a function. The
syntax is

break function
where function is the name of a function. The debugger will then stop every
time this function is called.

Every break point that is set has a unique number associated with it. This number
is needed if the break has to be deleted later. The number is shown by gdb at the
moment the break point is set. For example, after typing

break main

gdb might respond as follows:

Breakpoint 1 at 0x8048454: file strreverse.c, line 21.

This would inform us that this is break point number 1 and that it is set in the file
“strreverse.c” at line 22.

70

3. delete: This command is used to remove a given break point. The syntax is
delete number

where number is the number of the break point that has to be removed.

4. step: This command can be used to execute the statements of a given program
one by one. This is often the best way to understand a program.

5. next: This is similar to the “step” command. The important difference comes
when a function is called. The “step” command would step into the function,
while the “next” steps over the function, that is the function is executed in one
sweep.

This is especially useful when library function are called, since usually there is no
point in debugging these functions. After all, most of the time the bugs are to be
found in the code you have written yourself.

6. finish: Finishes execution of the current function.

Suppose that during debugging you have stepped down into a function and after
some time discover that this function seems to work correct. Therefore, you want
to finish stepping through this function. The “finish” command achieves this.
This will cause the execution of the function to be finished.

7. continue: Proceeds until the next break point is hit.

8. up: Move to the function that called the function you are currently inspecting.
Use this command to check how the function currently being executed has been
called. This is especially useful after the debugger stops in some function because
a breakpoint has been hit.

9. down: The opposite of “up”.

10. until: Executes commands until a given line number is reached. The syntax is
until line

where line is the number of the line at which the execution should stop.

Imagine you have just entered a loop that is to be executed 1000 times. Stepping
through this loop one by one would be too tedious. If you want to step over this
loop and the first command following the loop is in line 45, the command “until
45” will achieve this.

11. print: Print the value of a given expression. The syntax is
print expr

where expr is a C expression. Most often, this will just be the name of a variable
so you would type something like

print x

If the variable “x” is of type pointer to type T , then you might also use
print *x

in order to get the value to which “x” points.

12. watch: Set a watch point for a given expression. The syntax is
watch expr

The most common case is to watch a variable. After issuing the command
watch c

the program will stop every time the variable “c” is changed.

71

13. help: Prints the documentation of a given command. For example,
help print

provides documentation about the gdb “print” command.

14. display: Print the value of a given expression every time the debugger stops. The
syntax is

display expr
where expr is a C expression. This function is useful for tracing.

15. define: gdb offers the possibility for users to define their own commands. This is
a very advanced feature and is described in the info pages documenting gdb.

gdb command XEmacs command key sequence
run gdb-run

break gdb-break Ctrl-x space

delete
step gdb-step Meta-s
next gdb-next Ctrl-c Ctrl-n
finish gdb-finish Ctrl-c Ctrl-f
continue gdb-cont Ctrl-c Meta-c
up gdb-up Ctrl-c <
down gdb-down Ctrl-c >
until
watch
print
help
display
define

5 Getting Help
In XEmacs there are four ways to get help:

1. The manual pages describe various commands and files. To view a manual page,
use the command

man topic
where topic is the topic you want to get information about. For example

man cp

provides information concerning the command “cp”. XEmacs provides an interface
to the “man” command: just type

Meta-x manual-entry

You are then prompted for a topic on which to get help. Viewing manual pages in
XEmacs is more convenient than viewing these pages in a shell since it is easier
to navigate when the manual page does not fit on a single screen. Also, you can
use the search facility of XEmacs to quickly find some topic in a manual page.

2. The info system is similar to the manual pages. It is invoked by typing
info

72

In XEmacs the info system is started via the command
Meta-x info

You should definitely make yourself acquainted with the info system. If you start
the info system, typing “h” provides a short tutorial on using this system.

3. The “apropos” command searches through the brief description of the manual
pages for a given keyword. For example, assume you want to record a CD. In or-
der to find out which programs are available, type

apropos record

Then the “apropos” command produces output similar to the one shown in Figure
35 on page 71. After carefully reading through this list you finally spot the com-
mand “cdrecord”. Next, you can look at the manual entry for this command to
discover how it works.

4. Furthermore, the is the command susehelp which presents a help system with a
graphical user interface.

5. If you have the name of a command and want to know what the command is about,
try the whatis command. For example,

whatis xemacs

yields the following response from my system:
xemacs (1) - Emacs: The Next Generation

6. Finally, the most effective source to get information is to ask a local wizard.

stroetma@stroetmannpc:˜/Kurse/PDV> apropos record
recno (3) - record number database access method
pppdump (8) - convert PPP record file to readable format
perlhist (1) - the Perl history records
AddErrInfo (3) - record information about errors
utmp (5) - login records
wtmp (5) - login records
RecordEval (3) - save command on history list before evaluating
cdrecord (1) - record audio or data Compact Discs from a master
wmrecord (1) - General Purpose Recording Utility for Linux

Figure 35: Output of the command “apropos record”.

6 Input and Output Redirection and Pipes

6.1 Input and Output Redirection
A lot of programs work as follows: They read their input from the keyboard, process it
and then write the results that have been computed to the screen4. Programs of this
kind are traditionally known as filters. As an example, consider the “sort” program.
This program considers its input line by line and outputs the lines in a sorted order.
We show the working of “sort” by giving an example:

4Technically, this is not the whole story. Programs read their input from the so called standard input and
write their output to the so called standard output. Normally, standard input is connected to the keyboard
and standard output is connected to the screen. We will soon see how standard input and standard output
can be reconnected to other places.

73

• To begin with, we type “sort” at the prompt of the shell and hit the return key
to invoke the command.

Figure 36: The screen after “sort” has been started.

• Then, the screen looks as shown in Figure 36 on page 72. Nothing seems to have
happened. The reason is that “sort” is waiting for input. So, let us enter some
input. We enter the following lines, ending each with a return .

xyz
efg
uvw
abc

• After entering the last line, we press the key “Ctrl-D” to signal that the input is
complete. This key is equivalent to an end-of-file character and signals to the shell
that the input is complete. Once we have pressed this key, the sort command
starts working and outputs the four lines that we have input in sorted order im-
mediately below our input. The terminal window now looks as shown in Figure 37
on page 72.

Figure 37: The screen after “sort” has finished its work.

If we really want to sort a large number of items stored in a file, we hardly want to
type those items at the prompt of a shell. But we can advise “sort” to take its input
from a file rather than from the keyboard be redirecting its standard input to a file.
We show this via an example. Assume that “data.log” is a file containing data to be
sorted. Then the shell command

sort < data.html

sorts these data. The output is still printed to the screen. Above, the character “<” was
used to ask the shell to reconnect the standard input of “sort” to the file “data.html”.
The general form of input redirection is as follows:

cmd-with-opts-and-args < in-file

74

Here, cmd-with-opts-and-args is a command together with its options and arguments.
This command has to read its input from standard input. The input redirection charac-
ter “<” orders the shell to supply the content of the file in-file as input to this command.

In the same way as the standard input can be taken from a file instead of the key-
board, the standard output can be written to a file instead of being written to the screen.
For example, executing the command

echo Hello, World > echo.out

executes the command “echo Hello, World” and writes the output that is created to
the file
“echo.out”. If this file does not exist, it is created. If it exists, its old content is dis-
carded and replaced by the output of the “echo” command. The general form of output
redirection is as follows:

cmd-with-opts-and-args > out-file
Here, cmd-with-opts-and-args is a command together with its options and arguments.
This command has to write its output to standard output. The output redirection com-
mand “>” advises the shell to put the output produced by this command into the file
out-file.

If out-file does already exists, then its former content will be lost. Sometimes, this
is not desired. Instead, the output should be appended to the out-file. Therefore, there
is another way of output redirection. If we use the redirection characters “>>” instead
of the redirection character “>”, then the output is appended to the content of out-file.
For example, assume that the file “times.log” contains a number of dates and times.
Issuing the command

date >> times.log

would append a line containing the current date and time to this file.
Input and output redirection can be combined. Consider the case that “unsorted.data”

is a file containing data that need to be sorted. Then issuing the command
sort < unsorted.data > sorted.data

provides the content of the file “unsorted.data” as input to the “sort” command. The
output of the “sort” command is then written to the file “sorted.data”.

Often, error messages produced by a program are not written to standard output.
Rather, they are written to standard error. Since both standard output and standard
error are connected to the screen, the user does not notice that there is a difference.
The difference becomes visible when standard output is reconnected to a file. Then,
standard error is still connected to the screen. Let us give an example: Issuing the
command

date --quark > data.out

produces the output

date: unknown option --quark
You get more information with ‘date --help’.

The file “data.out” is created, but it is empty. Often, this behaviour of output redirec-
tion is just what is needed because otherwise problems would just go unnoticed. For
those rare cases where also the standard error should be redirected to a file, there are
two options:

1. The redirection characters “2>” redirects all error messages to the specified file.
For example, the command
date --quark > data.out 2> error.msg

puts the error message into the file “error.msg”, while the output is written into
the file “data.out”. So, after this command is executed, the file “data.out” will
be empty and the file “error.msg” will contain an error message.

75

2. The redirection characters “&>” redirects both standard error and standard output
to the specified file. For example, the command
date --quark &> data.out

puts both the error message and the output into the file “data.out”.

The first redirection command for standard error can also be used with two “>” charac-
ters instead of one. Then this command read “2>>”. In this case, the error messages are
appended to the specified file instead of overwriting it. Finally, if both standard output
and standard error have to be appended to a single file, then this can be achieved as
shown below:

cmd-with-opts-and-args >> file 2>&1

The description given above is not the whole story. Further details can be found in the
manual page describing the bash.

6.2 Pipes
The last section has shown that the standard input of a program can be taken from
a file and the standard output can be redirected to a file. In this section, we will see
that the standard output of one program can be connected to the standard input of
another program. This way, an arbitrary number of programs can be made to work
together on a single task. Although each of the programs involved may be quite simple,
the combination of several simple programs can result in a very powerful command.

The syntax for connecting the standard output of one program with the standard
input of another program is

cmd1 | cmd2
Here, cmd1 and cmd2 are commands and the output produced by cmd1 is taken as
input of cmd2. A construction of the form “cmd1 | cmd2 ” is known as a pipe. Let us
look at a simple example: The pipe

ls -l | sort

lists the directory entries of the current directory and sorts them. Admittedly, as it
stands this pipe is not that useful since the directory entries will be listed according to
their type and permission, which is rarely needed. We will see later a variant of this
pipe that is more useful.

In order to show the power of pipes, we first need to discuss a number of small
programs that are found in pipes. This is done in the following subsections.

6.2.1 The “cat” command

The basic purpose of the “cat” command is to write the contents of a file to the standard
output. It is invoked as

cat opts file
This will print the contents of file to the standard output. The precise way this is done
is controlled via the option opts. We list a few of the available options below:

1. “-n” numbers all lines.

2. “-T” displays tab characters as “ˆI”.

3. “-E” displays line feed characters as “$”.

4. “-v” displays non–printing characters. Control characters are displayed using the
“ˆ” notation and meta characters are displayed using “M-” notation. However, line
feeds and tab characters are printed literally.

76

The cat command can also be invoked with multiple file arguments. Then its invocation
has the form

cat opts file1 . . . filen

In this case, it concatenates (hence the command name) all these files and writes the
resulting data to standard output.

If the “cat” command is invoked without a file argument, then it reads its input from
standard input, that is it acts as a filter.

Often, the cat command is the source of the data of a pipe. The pipe might then have
the form

cat file | filter1 | . . . filtern

In this pipe, the content of file is transformed by filter1 to filtern.

6.2.2 The “cut” command

The “cut” command views its input as a table consisting of different columns. It is
used to select a specified subset of these columns. Let us illustrate this via an example.
Consider the following passwd file containing information regarding various users:

stroetma:x:4678:100:Karl Stroetmann:/home/stroetma:/bin/bash
louis:x:666:100:Louis Cypher:/home/louis:/bin/cash
gates:x:5678:100:Bill Gates:/home/gates:/bin/crash
death:x:4677:100:Dr. Death:/home/death:/bin/ash

Now in the passwd file shown above, the data is organized in columns that are separated
by the character “:”. We would like to list the user ids followed by the names of the
users. The name can be found in the 5th column, while the numerical user id is given
in the 3rd column. The “cat command can select these columns. Assuming that the
file whose contents are shown above has the name “passwd”, we can achieve our goal
by issuing the command

cut -d":" -f3,5 passwd

Here, the option “-d” specifies that the columns are delimited via the “:” character,
while the option “-f3,5” specifies that the 3rd and 5th column should be listed. Given
the file shown above, this command produces the output shown below:

666:Louis Cypher
5678:Daniel Dumpfbacke
4678:Karl Stroetmann
4677:Gott Vater

If the “cut” command is invoked without a file argument, then it reads its input from
standard input.

6.2.3 The “paste” Command

The “paste” command merges data of different files. It does so by interpreting the
content of its argument files as different columns that should be joined into a table. In
this respect, it is just opposite to the cut command. For example, assume that the file
“numbers” looks as follows:

1
2
3

Assume further that the file “data” has the form

77

a
b
c

Then the command
paste numbers data

produces the following output:

1 a
2 b
3 c

By default the different columns are separated by a tab character. This can be changed
via the “-d” option. If we had issued the command

paste -d":" numbers data

Then the output would have been

1:a
2:b
3:c

6.2.4 The “tr” command

The “tr” command is used to translate or delete characters. It always reads from stan-
dard input and writes to standard output. To translate characters, the command is
invoked as follows

tr set1 set2
Here, set1 and set2 must be sets of characters. The effect of the command is that every
character of set1 is translated into the corresponding character of set2. For example,
the invocation

tr abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ

translates every lower case character into its corresponding upper case character. A
variant of this command can be used to implement a trivial ciphering method: The
command

tr abcdefghijklmnopqrstuvwxyz zabcdefghijklmnopqrstuvwxy

will replace every character by the character preceding it in alphabetical order. Figure
38 on page 76 shows what happens when this ciphering is applied to the input string
“ibm”. There is a shorter way to specify this ciphering method using range specification.

Figure 38: Using the “tr” command for ciphering.

The previous command could have been written as
tr a-z za-y

Here the notation “a-z” is short for all characters with ASCII code between and includ-
ing the ASCII codes of “a” and “z”.

78

Besides translating, the “tr” command is often used for deleting multiple characters.
This is done with its squeeze option: The command

tr -s ’ ’

will squeeze multiple occurrences of blanks characters to a single occurrence. For
example, different columns in the output of the “ls” command are separated by blanks.
Assume that “ls -l” produces the output shown in Figure 39.

-rw-r--r-- 1 stroetma users 2628 2003-02-07 14:56 daten.html
-rw-r--r-- 1 stroetma users 224 2003-02-06 19:37 macro.el
-rw-r--r-- 1 stroetma users 3028 2003-02-06 21:15 uebung2.dvi
-rw-r--r-- 1 stroetma users 2948 2003-02-06 21:16 uebung2.tex

Figure 39: Output of the “ls” command.

Piping this output into the command “tr -s ’ ’” would squeeze the blanks. The
output of

ls -l | tr -s ’ ’

will therefore be as follows:

-rw-r--r-- 1 stroetma users 2628 2003-02-07 14:56 daten.html
-rw-r--r-- 1 stroetma users 224 2003-02-06 19:37 macro.el
-rw-r--r-- 1 stroetma users 3028 2003-02-06 21:15 uebung2.dvi
-rw-r--r-- 1 stroetma users 2948 2003-02-06 21:16 uebung2.tex

Getting rid of excessive blanks is sometimes necessary when the data is needed as input
of the “cut” command discussed above: If different columns are separated by blanks,
then we must always have exactly one blank as a separator.

Sometimes, the command tr is used to delete newlines. To do this, invoke tr as
follows

tr -d "\n"

If tr is invoked with the option “-d”, then all characters from the set of characters
given as first argument are deleted. Special characters, like the newline character, are
denoted via escape sequences, for example, the string “\n” denotes a newline character.
The complete list of backslash escape sequences for the tr command is shown in Table
18 on page 77. Note that it is also possible to specifiy an octal character in the form
\o3o2o1, where o3, o2, and o1 are the octal digits, that is they are digits from the set
{0, 1, 2, 3, 4, 5, 6, 7}. Therefore “\o3o2o1” specifies the character o3 ∗ 82 + o2 ∗ 8 + o1. The
escape sequences shown in Table 18 are the same escape sequences that are used with
the function “printf()” in the programming language C. Finally, note that in order to
include a literal backslash character “\” you have to escape it with a second backslash,
that is you have to write “\”.

The option “-s” for squeezing characters and the option “-d” for deleting characters
can be combined. The general syntax for this combination is

tr -d -s set1 set2.
This invocation of tr will first remove any characters from set1 and will squeeze mul-
tiple occurrences of characters in set2. To give an example, the command

tr -d -s "0-9" " "

first removes all digits. Then, repeated occurrences of blanks are squeezed into one
blank.

79

escape sequence control character ASCII value meaning
\a control g 7 bell
\b control h 8 backspace
\f control l 12 form feed
\n control j 10 newline
\r control m 13 carriage return
\t control i 9 horizontal tabulator
\v control k 11 vertical tabulator
\\ 92 literal backslash
\o3o2o1 o3 ∗ 64 + o2 ∗ 8 + o1 octal character

Table 18: Escape sequences for tr

6.2.5 The “sed” Command

The command name “sed” is short for stream editor. The invocation of “sed ” that is
most often seen in practice is

sed s/str1/str2/g

The effect of this command is that every occurrence of the string str1 is replaced by
str2. In this way, “sed” is a generalization of “tr”.

The real power of sed comes from the fact that we can use a regular expression for
str1. Since we have not introduced regular expressions yet, we defer a discussion of this
feature. The program sed is very powerful, entire books have been written discussing
it [3]. If you have some spare time, you should read the info pages describing sed.

6.2.6 The “tee” Command

This command copies its standard input unchanged to standard output and also saves
this input into a file specified as its argument. To see that this is useful, consider the
following example: The file “screen.xwd” contains a screen dump in a certain format
known as X Window Dump File format. The command “xwdtopnm” can be used to
convert this format into a portable bitmap graphic. And then the command “ppmtogif”
converts this into the gif format. Suppose that we need both the portable bitmap
graphic and the gif file. The following pipe would achieve this:
cat screen.xwd | xwdtopnm | tee screen.ppm | ppmtogif > screen.gif

This command creates the files “screen.ppm” and “screen.gif” both in one sweep.
The trick is that “tee” is used to save the intermediate file “screen.ppm” and at the
same time passes the data over to the command “ppmtogif”. Using tee we can tap into
a pipe and extract data from.

6.2.7 The “fgrep” Command

The “fgrep” command is used to search for strings in files. It is invoked as follows:
fgrep opts string file1 · · · filen

The effect is, that the given files file1 to filen are searched for the specified string. For
example, the command

fgrep stroetma *

would search all files in the current working directory for the string “stroetma”. Among
the options most often used are “-R” to traverse directories recursively and “-I” to
exclude binary files from the search.

80

We should note that “fgrep” is a restriction of the much more powerful “grep” com-
mand. Instead of simply searching for strings, this command accepts regular expres-
sions as search patterns. However, the letter “f” in fgrep is short for fast, so fgrep is
really fast grep. It can be faster because it is less general.

6.2.8 The “head” Command

The command head displays the first 10 lines of the file given as argument, that is the
invocation

head file
displays the first 10 lines from file. The option -n can be used to display a different
number of lines:

head -n count file
displays the first count lines from file. If no file is given as argument, head reads
from standard input. This command is useful for computing the maximum of a list of
numbers. Assume that the file data contains lots of numbers, each on one line. Then
the pipe

cat data | sort -n -r | head -n 1

computes the maximum of all numbers in data.
The command can also be used to print the first count bytes of a file. This is achieved

with the “-c” option :
head -c count file

displays the first count characters from file.

6.2.9 The “tail” Command

The command tail displays the last 10 lines of the file given as argument, that is the
invocation

tail file
displays the last 10 lines from file. The option -n can be used to display a different
number of lines:

tail -n count file
displays the last count lines from file. If no file is given as argument, tail reads
from standard input. This command can be used to compute the maximum of a list of
numbers. Assume that the file data contains lots of numbers, each on one line. Then
the pipe

cat data | sort -n | tail -n 1

computes the maximum of all numbers in data.
The command can also be used to print the last count bytes of a file. This is achieved

with the “-c” option :
tail -c count file

displays the last count characters from file.
The tail command has another important option. This option is “-f” where the

letter ‘f’ is for following a file. If tail is invoked as
tail -f file

and file is a file that is constantly growing, for example some log file, then every time
that new lines are added to file these new lines are written to standard output. There
are a number of additional options for tail that can be used to specify how often
tail should check whether file has grown or the action that should be taken when file
disappears. Consult the info pages for the full story.

81

6.2.10 Putting it All Together

Finally, we show how little programs like the ones shown above can be made to work
together. Consider the directory listing shown in Figure 39 on page 76. Assume that all
we are really interested in is the size of the file and its name and that we would like to
have the files sorted by their name. The following commands achieve this goal:

1. ls -l | tr -s ’ ’ | cut -d’ ’ -f5,8 | tr ’ ’ ’\t’ > inter

2. cat inter | cut -f1 > size

3. cat inter | cut -f2 > names

4. paste names size | sort

5. rm inter names size

The output of this command is shown below:

daten.html 2628
macro.el 224
uebung2.dvi 3028
uebung2.tex 2948

Let us discuss these commands one by one.

1. “ls -l | tr -s ’ ’ | cut -d’ ’ -f5,8 | tr ’ ’ ’\t’ > inter”

(a) “ls -l” produces the directory listing shown in Figure 39 on page 76 and
pipes it into “tr -s ’ ’”.

(b) “tr -s ’ ’” squeezes multiple blanks into a single blank and handles that
output over to “cut -d’ ’ -f5,8”.

(c) “cut -d’ ’ -f5,8” selects the 5th and 8th column of this output. This are
the size of the file and the name of the file, respectively.

(d) “tr ’ ’ ’\t’” replaces blanks by tab characters, thereby adjusting the out-
put.

Finally, the output of this first command is written into the file “inter”.

2. “cat inter | cut -f1 > size”

This takes the first column of the file inter and puts it into the file size. The first
column is the column containing the file sizes.

3. “cat inter | cut -f2 > names”

This takes the second column of the file inter and puts it into the file names. The
second column is the column containing the file names.

4. “paste names size | sort”

pastes the lines form the files “names” and “sizes” together and pipes the result to
the “sort” command which then sorts its input and writes it to standard output.

5. “rm inter names sizes;”

has been added for cleaning up.

82

The example given should convince you that the combination of several small programs
via pipes can produce commands that solve quite sophisticated problems.

When discussing the previous example, there is one point that should not be missed.
It is tempting to think that the commands given above could be shortened to

ls -l | tr -s ’ ’ | cut -d’ ’ -f8,5 | tr ’ ’ ’\t’ | sort

Here the cut command has been changed from cut -d’ ’ -f5,8 to cut -d’ ’ -f8,5.
Unfortunately, this does not work as intended because the order in which the columns
are output is always the same as in the input data. Therefore, although we have spec-
ified the columns as “-f8,5”, the 5th column is output before the 8th column. If we
want them in a different order, we have to store them in different files which can then
be pasted together.

7 The Shell
The shell is the interface5 between the user and the operating system. The commands
that you type are first interpreted by the shell. The shell then invokes the appropriate
programs. Actually, there are a number of different shells available. Nowadays, the two
most prominent are the bash and the tcsh. We will only discuss the bash since this
is the default shell but in case you want to change you shell you can do this via the
command

chsh -l new-sh user
where user is your user name and new-sh specifies the new shell that you want to use.

The shell can do much more than just execute programs. For example, the input
and output redirection discussed in the previous chapter are features provided by the
shell. The following subsections discuss additional features of the shell.

7.1 Shell Variables
The shell provides variables that can be used to control both the shell itself and the
programs that are started from the shell. Now, what exactly is a variable? A variable
has two properties: It has a name and a value. The name consists of alphanumeric
characters and underscores and has to start with an alphanumeric variable. The value
can be accessed by prefixing the name of the variable with a “$” character. A variable is
set to a value using the assignment operator “=”. The easiest way to access the value is
via the “echo” command. For example, if the following commands are executed

XYZ=abc
echo The value of XYZ is now $XYZ.

then, as a result the shell would print
The value of XYZ is now abc.

It is important to note that no white space is allowed in the assignment “XYZ=abc”. For
example, writing “XYZ = abc” produces an error message stating that the command
“XYZ” could not be found.

The above describes the way to set a variable interactively. But in the same way
we can also set variables permanently by putting the variable assignment into a file
that is read automatically when the shell is started. The file “˜/.bashrc” in your home
directory is read by the bash upon startup by every interactive bash shell that is not
a login shell. For a login shell, the bash searches for the files “˜/.bash profile”,
“˜/.bash login”, and “˜/.profile” and loads the first one that it finds. Therefore,

5Actually, this is only part of the truth because between the user and the shell is a terminal program like
xterm. However, discussing xterm is out of the scope of this lecture.

83

we can set variables permanently in these files. The user can also load a file via the
command

source file

which reads file and executes the commands found in it.
Variables come in two flavours: local variables and global variables. The local

variables are only visible to the shell, while the global ones are also visible to programs
that are started by the shell. In order to convert a variable form local status to global
status, it needs to be exported. This is done by the command “export”. In the example
above, if we want the variable “XYZ” to become a global variable, we can achieve this via
the command

export XYZ

There is a shortcut available to define and export a variable at the same time. The
command

export XYZ=abc

sets the value of “XYZ” to “abc” and proceeds to export this variable.
Up to now, this is not very exciting. Why do we need variables at all? Well, a number

of properties of the shell are controlled via variables. We discuss some of the most
important now, for more information you should consult the bash manual page or the
info page describing the bash.

1. “PATH” specifies the search path for commands. It is a colon-separated list of di-
rectories in which the shell looks for commands when it is asked to execute a
command. The default path is system-dependent, and is set by the administrator.
A common value is

/usr/local/bin:/usr/bin:/usr/X11R6/bin:/bin:/opt/gnome/bin:.

You can extend this value to include some of your own directories. For example, I
have a line similar to the following in my “.bashrc”

export PATH=/home/karl/bin:$PATH

This adds the directory “/home/karl/bin” to the list of directories that are searched
for executable commands.

2. “MANPATH” contains the search path for manual pages. If you have manual pages
of your own, then you need to add a path leading to these pages to the variable
“MANPATH”.

3. “HOME” contains the path to your home directory.

4. “LOGNAME” contains your login name.

5. “HOSTNAME” contains the name of your computer.

6. “PS1” specifies the prompt string. This prompt string can contain certain backslash-
escaped special characters. The most important are listed below:

(a) “\w” yields the current working directory.

(b) “\u” yields the user name.

(c) “\H” yields the hostname.

(d) “\h” yields the hostname up to the first “.” character.

(e) “\n” yields a newline.

(f) “\r” yields a carriage return.

(g) “\t” yields the current time in 24–hour format.

(h) “\T” yields the current time in 12–hour format.

84

(i) “\d” yields the date.

In practice, you often see excessive prompts that clutter the screen. Personally, I
favor modest prompts. In my “bashrc”, the variable PS1 is therefore set as follows:

export PS1="\u@\h:\w>\nHonorable master, what is your command? "

The following variables are only needed when writing shell scripts.

7. “#” contains the number of arguments given to a shell script.

8. “*” contains a list of all arguments given to a shell script.

9. “0” contains the name of the script.

10. “1” contains the first argument given to a script. Similarly, “2” contains the second
argument. The numbers from 1 to 9 can be used to refer to the corresponding
arguments of a script.

11. “$” gives the process identifier of the process running the shell script.

12. “?” gives the exit status of the last command that has been executed.

Remember that to get the value of a variable you have to prefix the name with the “$”
character. To give an example, in order to print the process identifier of the current
shell you have to type

echo $$

7.2 Job Control
Sometimes, a program takes a long time to finish its task. Since Linux is a multitask-
ing operating system, there is no need to wait for its completion. Simply append the
character “&” at the end of the command name and the command is executed asyn-
chronously. This concept is also known as background execution. For example, assume
that numbercrunch is a program taking a long time. Then issuing this command as

numbercrunch &

executes this program in the background. The shell will respond with something like
[1] 23456

and print a prompt to indicate that it is ready for more input. Here, the number [1]
specifies the job number. Every process started asynchronously from a shell has a
unique number, the job number. This number can be used for various aspects of job
control that are discussed in the following. The number 23456 is the so called process
identifier. Every process running on a Linux system has a unique process identifier
associated with it. This number can be used to stop the process.

After starting numbercrunch, I start my audio player. Since I want to continue
working, I will execute this command in the background, too. So I issue the command

“xmms &”
Then I start netscape and “xemacs” asynchronously. In order to get an overview about
all the processes that have been started asynchronously, the command “jobs” is used.
It lists all those jobs that I have started asynchronously from the current shell. In our
case, it would display something like

[1] Running numbercrunch &
[2] Running xmms &
[3]- Running /usr/local/netscape/netscape &
[4]+ Running xemacs &

85

As can be seen, all processes are numbered. In order to bring back process number n

to the foreground, the command
fg %n

is used. In the same way, a running process can be killed. This is done via the
command

kill %n

where n specifies the process number.
If you start a program and forget to put it to the background, you can sent it into the

background by pressing the character Ctrl-Z 6. This would suspend the program. In
order to get it running again, you have two options. Issuing

bg %

puts the program into the background, while the command
fg %

resumes the command in the foreground. You can put any program running in the
background back into the foreground via the command

fg %n

where n is the job number of the process. These job numbers are the numbers listed by
the jobs command.

Sometimes, you want to know all processes that are running on your machine, re-
gardless of whether you started them from the current shell or not. This is achieved by
the command “ps”, which is short for process status. For example, typing

ps ux

at the prompt of my shell yields the output shown in Figure 40 on page 84.

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
stroetma 1931 0.0 0.2 5424 2852 ? S Dec01 0:03 /usr/X11R6/bin/fv
stroetma 1969 0.0 0.2 5164 2536 ? S Dec01 0:00 /usr/X11R6/bin/fv
stroetma 1980 0.0 0.1 2820 1652 ? S Dec01 0:00 /usr/bin/tclsh /h
stroetma 1983 0.0 0.1 3632 1932 ? S Dec01 0:14 fetchmail -d 60
stroetma 1985 0.0 0.1 2820 1652 ? S Dec01 0:00 /usr/bin/tclsh /h
stroetma 7600 0.0 0.1 4540 1664 ? S Dec03 0:00 /usr/bin/smbmount
stroetma 11335 0.0 0.1 4856 1848 pts/0 S Dec04 0:00 ssh tux
stroetma 11337 0.0 0.1 4856 1848 pts/1 S Dec04 0:00 ssh tux
stroetma 12193 0.1 3.8 46300 39692 ? S Dec04 5:39 xemacs -geometry
stroetma 17675 0.0 0.2 4116 2828 ? S Dec05 0:00 /usr/bin/ispell -
stroetma 19569 0.0 0.4 9432 5120 ttyp2 S 15:09 0:00 xdvi -name xdvi -
stroetma 19572 0.2 0.8 19972 8324 ttyp2 S 15:09 0:29 gs -sDEVICE=x11 -
stroetma 19685 0.0 0.1 2844 1128 ? S 15:56 0:00 /usr/bin/esd -ter
stroetma 19710 0.0 0.1 2832 1464 ttyp6 S 16:00 0:00 /bin/bash -i
stroetma 20028 0.0 0.2 6516 2832 ? S 18:44 0:00 xterm -e top
stroetma 20030 0.3 0.0 1872 936 pts/2 S 18:44 0:02 top
stroetma 20087 0.0 0.0 2668 716 ttyp6 R 18:56 0:00 ps ux

Figure 40: Output of the Command “ps ux”.

This ouput gives us an association between the name of a command that is running

6Note that when you use a shell in XEmacs you have to preceed this with a Ctrl-Q , for otherwise the

Ctrl-Z is swallowed by XEmacs and is never seen by the shell.

86

and its process identifier. This process identifier is useful if we need to terminate a
process. The command

kill n

terminates the process with the process identifier n. You can also kill a process by its
name. This is done with the command “killall”. For example, typing

killall xdvi.bin

would kill the xdvi process that is running. Observe the difference between killing
a process by specifying its job number or via its process identifier. In contrast to the
process identifier, the job number has to be preceeded by a “%” character if used in the
kill command.

The command “ps ux” lists only the processes that the user has started. In order to
list all processes, the command ps has to be invoked as

ps ax

You may have noted that the names of the commands that invoked the processes have
been trancated in the output of “ps ux”. In order to suppress this truncation, use the
command

ps axww

Here the two occurrences of the letter “w” specify that a wide listing shall be used.

7.3 Quoting and Command Expansion
Quoting is used to remove the special meaning of certain characters or words to the
shell. Quoting can be used to disable special treatment for these characters, to prevent
reserved words from being recognized as such, and to prevent variable expansions.

Each of the characters listed below has special meaning to the shell and must be
quoted if it is to represent itself.

| & ; () < > ’ ‘ !

There are three quoting mechanisms:

1. The backslash “\” escape character, which preserves the literal value of the next
character that follows.

2. Enclosing strings in single quotes preserves the literal value of each character
within the quotes. A single quote may not occur between single quotes, even when
this single quote is preceded by a backslash.

3. Enclosing strings in double quotes preserves the literal value of all enclosed char-
acters within the quotes, with the exception of the characters “$”, “`” (this is called
backquote), and the backslash character “\”. The characters “$” and backquote re-
tain their special meaning within double quotes. The backslash retains its special
meaning only when followed by one of the following characters:

$ ‘ " \ <newline>

Next, you might ask what the backquote character is needed for. It is used for
command substitution. Consider the following command

echo "The date is ‘date‘."

Here, the output of the command date is substituted for the backquoted command
date, so the output is something like

The date is Don Feb 6 21:48:25 CET 2003

Let us consider an example that is less contrived. Consider the command “fgrep” that

87

searches its standard input for a given string. It can also look for a whole set of strings
when called as

fgrep -F string-list

This would search its standard input for all strings appearing in the newline separated
list of strings specified as argument string-list. Assume now that this list of strings is
the output of a command. We cannot use a pipe here since the standard input of fgrep
is already used as the stream that is to be searched. But if string-list is the output of
cmd, then we can write

fgrep -F "‘cmd‘"

Note that the list of strings produced by cmd has to be enclosed in double quotes.
Otherwise only the first string would be interpreted as argument for the “-F” option.
The command given above could then be a part of some more complex pipe. Let us
make this example more concrete. Assume a file names.data of the form below to be
given:

Bill Gates, Microsoft Foundation
Louis Cypher, Heating Incorporated
George W. Bush, Society for Modern Colonialism
...

This file contains names of persons separated by a comma from the company these
persons work for. Additionally, assume a passwd file as shown when discussing the
cut command to be given. Suppose we would like to get the user names for all persons
listed in the file names.data that have an account in our passwd file. One way to to
this is to grep for every person mentioned in names.data in passwd. The following pipe
accomplishes this:

cat /etc/passwd | fgrep -F "‘cut -d "," -f1 names.data‘" \
| cut -d ":" -f1

Note the line continuation character “\” at the end of the first line. The pipe is really one
line, but since it does not fit in one line, I had to use the line continuation character.
Let us explain this pipe command by command:

1. “cat /etc/passwd” starts the pipe by feeding the file “/etc/passwd” into it.

2. “cut -d "," -f1 names.data” selects the first column, that is the column con-
taining the name, from the file names.data

3. “fgrep -F "‘cut -d "," -f1 names.data‘"” searches for these names in its
input. It produces those lines from /etc/passwd that contain these names.

4. “cut -d ":" -f1” selects the first column from those /etc/passwd lines that are
fed into it.

Besides the backquotes, the bash has another mechanism that can be used for
command substitution. The last example can also be written as

fgrep -F "$(cut -d "," -f1 names.data)"

The $(cmd) syntax has the advantage that it can be nested: cmd can itself contain
expressions of the form $(sub-cmd). These subcommands are then evaluated before
cmd is evaluated. This feature is most often used in obscure programming contests. The
goal in an obscure programming contest is to write a program that somehow works but
nobody knows why.

7.4 Shell Scripts
A group of commands that is used frequently can be collected in a shell script. For ex-
ample, I frequently view postscript files with “ghostview”. If these files are compressed,

88

I have to uncompress them first. This is done by the program “gunzip”. Since it would
be boring to type these two commands to the shell, I have written a small script that
does both. The script is shown in Figure 41.

#!/bin/bash
uncompress a file and display it using ghostview
gunzip --stdout $1 | ghostview -

Figure 41: An almost trivial script.

The first line of this script says that this script shall be interpreted by the bash. In a
shell script, the character “#” starts a comment. A comment extends until the end of the
line, but there is one exception to this rule: If this is the first line and if, furthermore,
the character immediately following the “#” is the character “!”, then the remainder of
the line has to specify an interpreter for the script. Therefore, in the example above, we
specify the executable “/bin/bash” as the interpreter for this script.

The second line of this script is just a comment describing the purpose of this script.
It is good practice to let every script start with a short comment describing its purpose.
This is necessary since even small scripts are hard to read and it is not uncommon that
after a month the author of a script himself can no longer figure out what the script
was supposed to do.

Let us move to the third line of the script. This line implements a simple pipe. The
one thing that is peculiar about this pipe is the string “$1”. In the last subsection we
have already seen that any string starting with the character “$” refers to a variable.
The name of the variable consists of all alphanumeric characters and underscores that
follow the “$” character. Therefore, “$1” refers to the variable with the name “1”. Now
this variable is special: Its value is the first argument given to the script. Similarly, “2”,
“3”, · · · refer to the second, third, and following arguments. Up to nine arguments can
be referenced this way. The number “0” refers to the name of the script itself. Therefore,
if the script in Figure 41 is saved in a file with the name “gvcps” and is called as

gvcps someFile.ps.gz

then the value of the variable “1” is “someFile.ps.gz”. As a result, when the second
line of the script in Figure 41 on page 86 is executed, this is equivalent to the command

gunzip --stdout someFile.ps.gz | ghostview -

The first program in this pipe is “gunzip”. This program can be used to uncompress files. In Linux, it
is a convention that if a file ends with “.gz” then it contains data that has been compressed with the
program “gzip”. In order to uncompress these files, the program “gunzip” can be used. The parameter
“--stdout” tells “gunzip” to write its output to the standard output. This way it can be used as the
source of a pipe.

Next, the program ghostview reads its input, which must be a postscript file and displays it on
the screen. The parameter “-” tells “ghostview” to read its input from the standard input instead of
reading it from a file. Therefore, the input of “ghostview” is the output produced by “gunzip”.

Quite a lot of commands provide the options “-” to read from standard input and “--stdout” to
write to standard output. These options facilitate using these commands as part of a pipe.

The shell script in Figure 41 on page 86 is almost trivial. Let us extend it so that
it takes any number of parameters. The revised script is shown in Figure 42. This
script uses a for loop to step through a list of files that are to be decompressed and then
displayed. The variable “$*”contains a list of all arguments given to the script. In each
iteration of the for loop, the variable “i” is instantiated to the next argument.
If this script is saved in a file “gvcpsmul” and the command

gvcpsmul file1.ps.gz file2.ps.gz file3.ps.gz

is issued, then the files file1.ps.gz, file2.ps.gz, and file3.ps.gz are decom-
pressed and displayed simultaneously. There is a variant of the for loop that goes

89

#!/bin/bash
uncompress and display lots of files
for i in $*
do
gunzip --stdout $i | ghostview - &

done

Figure 42: A simple script.

without the “in $*” part. It is execised in the shell script shown in Figure 43 on page
87. Sematically, these script are identically since the notation

for i; do

is short for
for i in $*; do.

#!/bin/bash
uncompress and display lots of files
for i
do
gunzip --stdout $i | ghostview - &

done

Figure 43: Another simple script with the same semantics.

Let us discuss a last variation of the script in Figure 43 on page 87. This variation
is shown in Figure 44 on page 87. The line containing the for statement has been
changed to

for i in *.ps.gz

Here, “*.ps.gz” is a wildcard expression that specifies all those files that end with the
string “.ps.gz”. Their mechanics are discussed later.

#!/bin/bash
uncompress and display all compressed postscript files
for i in *.ps.gz
do
gunzip --stdout $i | ghostview - &

done

Figure 44: A script to show all compressed postscript files.

The previous examples show that the shell is similar to a programming language. It
has its own structures for looping and transfering control. The structure for transfering
control is shown in Figure 45 on page 87.

if cond
then

commands1

else
commands2

fi

Figure 45: The if-then-else-fi control construct.

Here, cond is some sort of test, commands1 is a group of commands that is executed

90

in case that the test succeeds and commands2 is a group of commands that is executed
otherwise. Commands to write a test can be written using the command “test” that is
build into the bash. This command can be used to compare strings or integers. Strings
are compared using the binary infix operators “=” and “!=”, while integers are compared
via the binary infix operators “-eq”, “-ne”, “-ge”, “-gt”, “-le”, “-lt”. These operators
are short for equal, not equal, greater or equal, greater than, less or equal, and less than,
respectively. The command “test” can also be used to test a number of properties of
files, but this feature is beyond the scope of this manual. Reading the manual page for
“test” gives complete information.

Let us see how all this works together. Consider the example script in Figure 46 on
page 88. This is a simple script that checks whether it has been called with exactly 2
arguments. If the number of arguments is different from 2, it prints an error message
and exits. Otherwise, it thanks the user for having been called correctly.

#!/bin/bash
check whether the script is invoked with 2 arguments
if test $# -ne 2; then

echo "The script has been called with $# arguments, "
echo "but it requires to be called with exactly 2 arguments."
echo "Exiting now ..."
exit 42

else
echo "Thanks for calling this script with 2 arguments!"

fi

Figure 46: A script checking the number if its arguments.

The final control construct we discuss are while–loops. The syntax for while–loops is
as shown in Figure 47 on page 88. Here cond is a test and commands is a sequence of
commands that is executed as long as the test yields true.

while cond
do

commands
done

Figure 47: Syntax of the while-loop.

We illustrate the while construct via an example: Consider the script in Figure
48. Assume the script is called gauss. The script is invoked with one argument. An
invocation of the form

gauss n

computes the sum
n∑

i=0

i.

This script also introduces the concept of arithmetic expression evaluation. If the shell
is given a construct of the form

$((arith-expr))
then the shell interprets arith-expr as an arithmetic expression and substitutes the
result of evaluating this expression for the $((arith-expr)) construct. Note that it
is not necessary to prefix the value of a variable occuring in arith-expr with a “$”
character.

This feature is also useful interactively since it provides a simple calculator facility

91

on the command line. For example, typing
echo $((36 * 37 / 2))

yields the expected result.

#!/bin/bash
compute the sum 1 + 2 + 3 + ... + n, where n is the given argument
sum=0
i=0
while test $i -le $1

do
sum=$((sum+i))
i=$((i+1))

done
echo "The sum is $sum"

Figure 48: A script computing
n∑

i=0

i for given n.

We discuss one variation of the shell script for summing the values from 1 to n. The
script shown in Figure 49 on page 89 has the same semantics as the previous script
shown in 48 on page 89. The only difference is that it is written in a more compact style
by writing several commands on a single line. In order for this to work, the different
commands have to be separated by “;” characters.

#!/bin/bash
compute the sum 1 + 2 + 3 + ... + n, where n is the given argument
sum=0; i=0
while test $i -le $1; do

sum=$((sum+i)); i=$((i+1))
done
echo "The sum is $sum"

Figure 49: A more compact script computing
n∑

i=0

i.

Concerning the syntax of variable assignments, there is one fine point that often
troubles beginners: In a variable assignment of the form

var=value

no space is permitted between either var and the “=” character nor between the “=”
character and value. For example, writing

sum = 0

will produce the error message
sum: =0: No such file or directory

The reason is that the line above is interpreted as the invocation of a command sum
with the argument =0. Since there is no such command, an error is raised.

Unfortunately, describing the shell as a programming language requires a book of
its own. For lack of time we stop our treatment here. For further study I recommend
the info pages describing the bash and Chapters 20 and 21 of [5].

92

8 Regular Expressions
You recognize a Linux professional by his or her ability to use regular expressions. The
concept of regular expressions is so powerful that entire scripting languages have been
based on regular expressions. The most prominent examples are Tcl [12, 7], Perl [8],
and Python [6]. Of these, Tcl is the most powerful and will be discussed in one of the
following lectures. The reason we did not discuss shell programming in more detail is
due to the fact that it is usually much easier to write a script in any of these scripting
languages than to write a shell script. 7

Basically, regular expressions are a mathematical notation to specify sets of strings.
One program that makes use of regular expressions is grep. The command

grep regexp file1 . . . filen

searches the specified files for all occurrences of strings that match the regular expres-
sion regexp.

How do we specify a regular expression? In a regular expressions a character is
either a special character or a normal character. A normal character just denotes itself.
For example, the letters and digits are normal characters. Therefore the regular expres-
sion “abc” matches exactly the string “abc”. Not very exciting, but we haven’t discussed
the special characters yet. These are the following:

. * + ? [] ˆ $ \

We discuss their purpose next:

1. “.” is a special character that matches any single character except a newline.
Using concatenation, we can make regular expressions like “a.b”, which matches
any three-character string that begins with “a” and ends with “b”.

2. “*” is not a construct by itself; it is a quantifying suffix operator that means to
repeat the preceeding regular expression as many times as possible. In “fo*”, the
“*” applies to the “o”, so “fo*” matches one “f” character followed by any number
of “o” characters. The case of zero “o” characters is allowed: “fo*” does match a
singe “f” character.

3. “+” is a quantifying suffix operator similar to “*” except that the preceding expres-
sion must match at least once. So, “fo+” would not match a single “f” character,
but otherwise would match the same strings as “fo*”.

4. “?” is also a quantifying suffix operator similar to “*”, except that the preceding
expression can match either once or not at all. For example, “fo?” matches “f”
and “fo” but nothing else.

The quantifiers “*”, “+”, and “?” always apply to the smallest possible preceding
expression. Thus, “fo+” has a repeating “o”, not a repeating “fo”. If the latter is
needed, subexpressions can be put in escaped parentheses as in “\(fo\)+”. This
would match the strings “fo”, “fofo”, “fofofo”, and so on. Surrounding subex-
pressions by backslash escaped parenthesis is known as grouping subexpressions.

5. “\|” specifies an alternative. Two regular expressions A and B with “\|” in between
form an expression that matches anything that either A or B matches. Thus,
“foo\|bar” matches either “foo” or “bar” but no other string. “\|” applies to
the largest possible surrounding expressions. Only a surrounding “\(” · · · “\)”
grouping can limit the grouping power of “\|”.

7Still, some aquaintance with shell programming is indispensable because there are a lot of shell scripts
around which have to be maintained by somebody.

93

6. “ˆ” is a special character that matches the empty string, but only at the beginning
of a line in the text being matched. Otherwise it fails to match anything. Thus,
“ˆfoo” only matches a “foo” if it occurs at the beginning of a line.

7. “$” is a special character that matches the empty string, but only at the end of a
line in the text being matched. Otherwise it fails to match anything. Thus, “foo$”
only matches a “foo” if it occurs at the very end of a line.

The special characters “ˆ” and “$” are known as anchors.

8. “[” starts a character set, which is terminated by a “]”. In the simplest case,
the characters between the two brackets form the set. Thus, “[ad]” matches
either one “a” or one “d”, and “[ad]+” matches any nonempty string that is solely
composed of the characters “a” and “d”.

The usual regular expression special characters are not special inside a character
set. A completely different set of special characters exists inside character sets:
The three characters “]”, “-”, and “ˆ”.

(a) “-” is used to specify a range of characters. To write a range, write two char-
acters with a “-” between them. For example, “[a-z]” matches any lower
case letter. Ranges may be intermixed freely with individual characters, as
in “[a-z*.]”, which matches any lower case letter, the character “*”, or the
character “.”.

(b) “]” is used to terminate a character set. To include a literal “]”, make it the
first character.

(c) “ˆ” is used to negate a character set. This, “[ˆ0-9]” matches all characters
that are not digits.

Often, regular expressions are used to replace substrings with different substrings.
The command “sed” can be used in this fashion. If it is called as

sed s/regexp/replacement/g file

then it replaces all occurrences of the regular expression regexp in filewith replacement.
In replacement, the character “\” is special: If it is followed immediately by the digit
n, then it specifies the n-th parenthesized subexpression. To illustrate this, consider a
file written in LATEX that contains expressions of the form “\emph{string}”. We want to
convert these expressions into a Html format. In this format the string “\emph{string}”
has to be replaced by “string”. The following command performs this trans-
formation:

sed ’s/\\emph{\([ˆ}]*\)}/\1<\/em>/g’

Admittedly, this is hard to read. Even worse is the fact that the regular expression
written here does not confirm to the syntax that is described above. The difference
is that sed requires that the “+” character is escaped by a backslash. Above, I have
described the syntax of regular expressions as it is in XEmacs. The commands “grep”
and “sed” require the quantifiers “+”, “*”, and “?” to be backslash escaped if used as a
quantifier.

Nevertheless, let us try to make sense of the regular expression

\\emph{\([ˆ}]*\)}

that is used above. First, the double backslash is needed to match a single backslash.
Then, we have the string “emph{” which matches itself. This is followed by “\(· · ·\)”.
The backslash escaped opening and closing parentheses are needed to group what is
inside so that we can later reference it in the replacement string. Next, inside the
parentheses we have the quantified set expression

94

[ˆ}]*

Here, “[ˆ}]” is a set expression that matches any character that is different from the
character “}”. The quantifier “*” specifies that the string inside the curly braces can
have arbitrary many such characters, including none at all. In effect, this part of the
regular expression matches all symbols that appear between the opening brace and the
closing brace in an expression of the form “\emph{string}”.

Finally, let us look at the replacement string

\1<\/em>

The character sequence “\1” is replaced by the actual match of the part of the regu-
lar expression that had been enclosed in backslash escaped parentheses. The strings
“” is taken literally and in the string “<\/em>” the backslash is needed to escape
the slash character “/”. This character needs to be backslash escaped since it delimits
the end of the replacement string in the sed command.

The XEmacs command “query-replace-regexp” works in a way similar to the
above “sed” command. It prompts the user first for a regular expression and then
for a replacement string, where in the replacement string the character “\” is special: If
it is followed immediately by the digit n, then it specifies the n-th parenthesized subex-
pression.

9 The find command
This introduction to Linux would be incomplete without a short introduction to the
find command. It is called as follows

find [directory] [options]

The purpose of find is to search for files that are either in directory or in any of its
subdirectories. If directory is omitted, then the search starts in the current working
directory. The argument options specifies the files that are searched for. Furthermore,
we can specify certain actions that should be performed for these files. The most simple
action is just to print the file name. This action is specified via the option “-print”.
This is also the default action, i.e. the action that is performed when no other action is
specified. Therefore, the command

find

prints the names of all files in the current directory and all of its subdirectories. There
are a number of options to restrict the search. We list the most important ones.

1. “-name search-pattern” where search-pattern can contain wildcard symbols.
This would restrict the search to all those files whose name matches the given
search-pattern. However, if search-pattern contains wildcard symbols, then
we must protect these wildcard symbols from being expanded by the shell. This
is done by enclosing them in single quotes. The following example demonstrates
this:

find /home/karl/PDV -name ’*.tex’ -print

This command would search the directory “/home/karl/PDV” for all files that end
in “.tex”.

2. “-regexp regexp-pattern” where regexp-pattern is a regular expression. This
would restrict the search to all those files whose name matches the given regular
expression. Now, if regexp-pattern contains characters that can be interpreted
by the shell as wildcards, then we must protect these characters from being ex-
panded by the shell by putting regexp-pattern in single quotes.

95

3. “-user username” where username is the name of a user. This would search for
files belonging to the specified user. For example

find ˜ -user root

would search my home directory and all of its subdirectories for files belonging to
root.

4. “-size size-spec” searches for all files whose size matches the given size speci-
fication. For example,

find -size +42k

searches for all files that are larger than 42 kilobytes (that is what the “+” stands
for), while

find -size -42k

would search for all files that are less than 42 kilobytes and
find -size 42k

would search for files having a size of exactly 42 kilobytes.

Next, we list the actions that are most useful.

1. “-exec cmd opts {} \;” executes the command cmd with given options opts for
every files that is found. Here, the path leading to the file is substituted for the
string “{}”. The semicolon “;” is needed to terminate the command, while it needs
to be backslash escaped in order to prevent the shell from swallowing it. A typical
example would be the following invocation

find -name ’*.tex’ -exec grep regexp {} \;

This would look for all “.tex” files in the current directory and its subdirectories
and would run the grep command

grep regexp file

on all files that it finds.

2. “-ok cmd opts {} \;” is similar to the above: It executes the command cmd with
given options opts for every files that is found. However, before executing any
command, the user is questioned whether the command shall indeed be executed.
This is often used in conjunction with the rm command, a typical invocation is

find -name core -ok rm {} \;

This deletes all files with the name “core” but asks for confirmation before doing
a deletion.

One nuisance with the execution of commands by find is the fact that all commands
are executed in the directory where find is started and not in the directory where the file
is found. Consider the following situation: An instructor has asked his students to pack
the solution to their exercise into a tar file, to uuencode this and mail it to the instructor.
The instructor has already stored these files in one big directory “Exercises” where
there is a subdirectory for every student containing a file called “exercise”, which
is the uuencoded tar file the students have mailed. Next, he wants to uudecode the
“exercise” file into a file “exercise.tar”, which he then wants to unpack using “tar

96

xf”.

The command “tar” is a simple way to pack a directory and all its files and subdirectories into a single
file, which is also known as a tape archive. It is called as

tar -c -f archive directory

This creates a tape archive from directory and all files found in this directory or any of its subdirec-
tories. This tape archive is then saved in the file archive. In order to get back files that have been
archived, use the command

tar xf archive

It assumes archive to be a tape archive and extracts all the directories and files stored in it.

Email is sent using ASCII characters. Since these characters are only 7 bits wide but the char-
acters in normal files are 8 bits wide, files have to be preprocessed before they can be transferred by
email. This is done using the command

uuencode file name

Here file is the file that is to transformed into a seven bit representation and name is needed later
for the inverse operation. The encoded file is written to the standard output. The inverse operation is
uudecode, which reconstructs the original eight bit file. It is called as

uudecode file

This takes file as the file to be transformed and stores it under the name given as the parameter
name when uuencoding the file.

In a first attempt to solve his problem, the instructor could visit the directory Exercises
and try the command

find . -name exercise -exec uudecode -o exercise.tar {} \;

Unfortunately, this will create only one file “exercise.tar” and this file will be in the
directory Exercises. The reason is, that the command “uudecode -o exercise.tar”
is always executed in the directory Exercises and not in the subdirectories where the
files are found. However, the following command will work provided that uudetar is the
script that is shown in Figure 50 on page 94.

find . -name exercise -exec uudetar {} \;

Let us discuss this script line by line.

#!/bin/bash
switch to the appropriate directory and call uudecode there
cd ‘dirname $1‘
uudecode -o exercise.tar ‘basename $1‘
tar xf exercise.tar

Figure 50: A script to unpack uuencoded tape archive.

The music starts to play in the third line. The purpose of the third line is to change
the working directory to the local directory where the particular file “exercise” resides.
How do we get the directory? The answer is the command “dirname” that takes a full
name consisting of a path and a file and returns just the path. For example

dirname /home/karl/PDV/script.tex

returns the string “/home/karl/PDV”. In the script, this command is backquoted, so
that its result is substituted as argument to the cd command. The “$1” expands to the
argument that is given to the script when it is invoked by find.

The fourth line invokes the “uudecode” command. This needs the filename with-
out the path. Here the command “basename” comes in handy. It is the opposite of
“dirname”, for example

basename /home/karl/PDV/script.tex

returns the string “script.tex”. Therefore, the fourth line converts the file 7–bit file
“exercise” back into the 8–bit file “exercise.tar”. Finally, the last line extracts ev-

97

erything from this tape archive.

10 Conclusion
For today, we have come to the end of our adventures in Linux Country, where the
programmers still run free, do not have to pay Bills, and will never be fenced in by
Gates. We have touched about 5 % of the commands available under Linux. For
most commands we were only able to discuss about 5 % of their options. So there is
much left to discover. A good starting point for further studies are the books by Ball [1]
and by Kofler [5]. These are introductory books. The book by Siever et. al. [9] is more
complete but also much more condensed. Finally, the places to learn all the details are
the manual pages and the info pages.

References
[1] BILL BALL: Sams Teach Yourself SuSE Linux in 24 Hours, Sams Publishing, 1999.

[2] DEBRA CAMERON, BILL ROSENBLATT, ERIC S. RAYMOND: Learning Gnu Emacs,
O’Reilly & Associates, 2nd edition, 1996.

[3] DALE DOUGHERTY AND ARNOLD ROBBINS sed and awk, O’Reilly & Associates,
1997.

[4] BOB GLICKSTEIN Writing Gnu Emacs Extensions: Editor Customizations and Cre-
ations with Lisp, O’Reilly & Associates, 1997.

[5] MICHAEL KOFLER: Linux — Installation, Konfiguration, Anwendung, Addison-
Wesley, 2002.

[6] MARK LUTZ AND DAVID ASCHER: Learning Python, O’Reilly & Associates, 1999.

[7] JOHN K. OUSTERHOUT: Tcl and the Tk Toolkit, Addison-Wesley, 1994.

[8] RANDAL L. SCHWARTZ AND TOM PHOENIX: Learning Perl, O’Reilly & Associates,
2001.

[9] ELLEN SIEVER, STEPHEN SPAINHOUR, STEPHEN FIGGINS, JESSICA P. HEKMAN:
Linux in a Nutshell, O’Reilly & Associates

[10] RICHARD M. STALLMAN: Gnu Emacs Manual, Free Software Foundation, 2002.

[11] LARRY GREENFIELD: The Linux Users’ Guide, 1993–1996

An online version of this book is part of the SUSE Linux distribution.

[12] BRENT B. WELCH AND JEFFREY HOBBS: Practical Programming in Tcl and Tk, Pren-
tice Hall PTR, 2003.

98

Index
666. .85

asynchronous execution.79

background execution 79

character translation 73
command seperator77
compiling programs60
compressing data .. 83
Ctrl key. .8
cursor . 6

debugger. .62
directory .. 43

copying . 47
creation .. 46
deleting . 46, 48
home directory..44
listing . 46, 48
parent directory..43
recursive listing..49
removing .. 46, 48
root directory . 43
shorthands. .45
sorted listing .. 49
subdirectory . 43
working .. 44, 45

end-of-file character 69

file. .43
access control. .49
access mode . 49
changing ownership 52
changing permissions 50
changing the group.52
copying. .46, 47
creation .. 47
deleting . 46, 48
displaying . 47
execute permission 50
group . 49
hidden . 48, 53
link counter 49, 54, 55
links . 54
listing.. .47
mode .. 49
modification. .49
modification date 49
owner. .49
read permission 50

removing .. 46, 48
renaming.. .46
size . 49
type. .48
write permission50

filter .69

gdb .. .62
breakpoints

deleting . 66
setting.. .65

commands . 65
single stepping.66
up. .63

George W. Bush. .. .3
GNOME . 3

help . 67
hotplug .. 58

inode . 54

job control . 79
job number. .79

KDE .3

Linux commands
apropos .. .68
basename . 90
cat . 47, 71
cd. .47
chgrp.. .52
chmod.. .50
chown.. .52
cp . 46, 47
cut . 72
dirname .. .90
echo . 53
fgrep.. .75
find . 88
ghostview .. 83
grep . 86
gunzip .. 83
gzip . 83
kill . 80
killall .. .80
ln. .54
ls . 46, 48
man . 68
mkdir.. .46
mount.. .55

99

mv. .46
paste.. .72
ps. .80
pwd . 46
rm . 46, 48
rmdir.. .46
sed . 75, 87
sort . 69
susehelp . 68
tar . 89
tee . 75
touch.. .47
tr. .73
unmount .. .58
uudecode . 89
uuencode . 89

LORD . 9

magic .. .3
manual page. .67
moron . 6
mount. .55

path name .. 44
absolute . 44
relative .. 44

pipes . 71
political correct .. .17
process

bringing into foreground 80
killing.. .80
sending to background.80

process identifier .79

regular expressions 86
anchor. .87
character set . 87
grouping subexpressions.86
quantifier.. .86
range .. 87
replacement.. .87
special characters 86
$.87
* .86
+ .86
. .86
? .86
[.87
] .87
ˆ .87
| .86

suffix operator . 86

SATAN . 9

segmentation fault . 63
shell .6, 77

arithmetic expresions 85
command substitution 81
comparison . 83
exporting a variable 78
global variable 78
if then else . 84
if-then-else .. 83
local variable .78
prompt .. 79
quoting special characters 81
shell variable. .78
test . 83
variable assignment 78
variables .. 78
. 79, 84
$.79
* . 79, 83
? .79
HOME. .78
HOSTNAME .. 79
LOGNAME.. .78
MANPATH.. .78
PATH. .78
PS1 . 79

while loop . 84
shell scripts .. 82

arguments .. 82
comments . 82
for loop . 83
name ... 82

standard error.. .70
standard input . 69

redirection .. 70
standard output. .69

redirection .. 70
stream editor . 75
super key . 26

tape archive . 89
Teletubbies. .3

uncompressing data 83

wildcards .. 52, 83
Windows key .. 26
working directory

changing . 47
printing.. .46

XEmacs . 5
abbreviations .. 25
buffer .13

100

command .. 11
completion . 23
invocation on startup 27
name ... 11
quit. .12

command line .. 9
compiling programs 60
completion . 21
copying text . 13
creation.. .9
cursor movement 12
customizing.22, 26

key bindings . 26
directory mode.58
dired.. .58
echo area . 9
exit . 12
file

open . 7
saving . 9

formatting a paragraph 40
games . 42

doctor . 42
hanoi .42
tetris . 42

help. .32
invoking . 6
key binding .. 26

changing .. 26
key bindings

listing . 32
key combination 7
keyboard macro

editing.. .31
searching .. 19

keyboard macros 27
interactive . 28
traps and pitfalls 29

kill ring .. .13
mark. .13

reactivation .. 30
menu bar.. .11
mini buffer . 9
minibuffer completion.22
mode line .. 9

change info.. .9
editing mode .. 9
encoding. .9
position. .9

multiple files, editing 19
point. .13
query replace regular expressions88
recursive editing 19
region.. .13

replacement.. .17
searching

incremental .. 16
show line numbers 40
splitting the screen 19
starting a shell .62
transpose characters 40
undo. .19
universal-argument 12
variables .. 26

setting.. .26
yanking text. .13

101

