Introdution

Why this event?
- After my first commit at 1&1 [received 4 "out of office" notification e-mails and
was shocked
* My mentor told me that every commit leads to a diff mail to the whole
team in Germany and Romania
* From this point I reviewed my code twice before i committed

- What I've learned from this was the objective view of source code
* The main aspect is to separate constructive remarks of code and personal
criticism
* Software development is a team game and the team wins only when they
play together
=> Only possible when all members have the ability to look to source
code objectively

- Only few publications, mostly product advertisements
- Notvery present in academic world, less present then refactorings
- Practical driven
- Butin the real world common and practiced
* Sometimes ;-)

- Ido not claim for completeness, please give me feedback!
- Some IEEE standards, but in my opinion not very prominent used

Theoretical basics

What is a review
What is a review in general?
- One or more people looking (reading) at a reviewed component
- Try to comprehend and follow these thoughts
- Check if they agree or have remarks
- Takes place after the factoring process
[Short story: Change something after design?]
- Look at existing things
- Check if reviewed component is correct
- Better chance of correctness the more reviewers
- Inareview the chance to gather an objective and mental distanced view of a
reviewed component is much higher then to "write time"
* Developers have a natural identification with "their code"
* Leads to no objectivity "wish that own code is correct”

Well-known kinds of reviews:
- Film review
- Music review
- Buy review

- Hotel review

Difference to (abstract) software reviews?

- Immutable

- Not necessarily objective

- Looks at an object from a single point of view

- Software reviews have the aim to make the reviewed component better

- Software reviews have not the aim to rate the reviewed component

- Software is a moving target and therefore easy to change and improve
[Short story: Comparison to other engineering disciplines]

Targets
What kind of components can be reviewed in the software context?
- Source Code
* The most elementary unit, which can be reviewed
* But the most essential unit as well
* Quality of software depends heavily on the quality of source code

- Component
* More abstract and complex units, which can be reviewed
* Review component structure
* Review component behavior

Architecture
* Most abstract units in software development context
* Review component interaction
* Review system structure and behavior

Design
* Review the design principles of software components
* How are design patterns organized within this architecture?

- Refactoring

[Question: What is a refactoring?]
* Review if the software has same behavior like before
* Review if the expected goals was achieved

- Tests
* Review if you have good test coverage
* Review if tests are "hard" enough
* Review if tests are correct

- Project
* The whole project can be reviewed as well
* What went wrong, what was good?
* Targets: design, implementation, documentation, communication
¢ Other kind of review
=> No change for existing project
= What can we make better in the next project

[Question: What do you think are the most reviewed things?]

Preconditions
- All members must be able to receive or give constructive and objective
remarks/criticism
* Negative example:
=>» Print code, mark red and behave like in an English test
[Short story: True story ;-). Fresh ideas from freelancer]

- Objective remarks are good and should not taken personally

- This ability is supported by the thought of "common code base"
* The code is our (!) good and we (!) want to take it further
¢ "Welike our code", "we want that our code is good", ...
* Don't bother how your code get there, take care of improving it

[[llustration: Show obvious and fix it]

- All members want to produce sustainability and high quality code
* Ifthe quality is good, the management will love you
* Common code implies:
= Common coding styles
=> Common formatting rules
=>» Common naming convention
=>» Common best practices
[[llustration: Show conventions]
* Leads to the behavior that it's not necessary who fixes a bug or who will
work on components in the future, because all have one standard.
* No developer should bother to reformat the whole code before he can
start to work or need to understand other naming conventions or or or ...

- Itis absolutely necessary to have a diplomatic and good moderator
* Must be well accepted by all participants of the review
* Good understanding of problem domain required as well
* Needs diplomatic sense and objective view
* "Typical Senior"
[[llustration: Positive event for authors]

- Management must see benefits of reviews
* Time spend for reviews can be measured in higher quality
* Time spend for reviews leads to higher productivity afterwards
* .. and saved time while bug fixing

- You need tool support
* Source code management
¢ Issue tracking (bugzilla, jura, story board, ...)
* Code review software (jupiter, crucible, gerrit, ...)
* Further communication tools (chat, wiki, phone, ...)

[Question: What do you use?]

Classification
- Part of the software development process
* Build in some processes (extreme programming)
[Question: Do you know what extreme programming is?]

- Aims to develop better software
* Four or more eyes principle
* Knowledge exchange
e After factoring process
=> Not the academic way

- No compensation for tests
* Unit and integration tests must be done as well!
=>» Tests could be reviewed as well (completeness, quality, ...)

* Your manager will not accept "we reviewed it, no reason for testing"
[[llustration: Same assumption than “we thought about it and made an invariant, it is
correct, no reason for testing”]

* Natural hope that own code is correct

=>» Some kind of blindness for own suboptimal code
[Question: Who test in your company?]

- Continuous reviews integrated in process
* Mostly smaller pieces to review
* Change (diff) of two revisions is reviewed
* High frequency
* Regular
* Dedicated review meeting optionally, mostly skipped
* Comments visible for all participants while individual phase

- Dedicated at defined points in development process
* Mostly larger pieces to review
* Anew artifact/component is reviewed
* Rarely
* Sporadically, not regular
* Dedicated review meeting (as good as) mandatory
* The gag: comments visible first at review meeting
=>» Often leads to discussions about the remarks

- Code reviews are not for free
* Developers and managers must invest and pay time and energy
* Author must accept and reviewer must rethink author's thoughts
[Question: Are you ok with this?]

Why
- Ifimportant pieces of software are reviewed, quality raises
* Code profits from skills of more then one developer

* Other developers can think about more use cases, exceptions or
improvements while the initial developer is mainly focused on getting it
done

[[llustration: Connection to extreme programming?]

- Leads to a situation where the team can prevent "online bugs"
* Each bug found during development time is a good bug
- "only a dead bug is a good bug"
* Does not prevent the production of bugs, just their releases (hopefully)
* Higher chance to catch them
[lllustration: Show obvious mistakes]

- The knowledge of the systems must be spread in the team
* Developer redundancy (illness, fluctuation, promotions, vacation, ...)
e Parallelize tasks, maintenance
* Leads to sustainable systems and development
* See how other sub-teams work
=>» Separation of teams typically in front and backend. Have other
coding styles, best practices, ...
=> Nice to know how the other party works, leads to better
understanding, complete overview, ...
[Short story: Typical frontend vs backend separation]

- Usually the first introduction work of a new or junior developer is reviewed
* Kind of acceptance ritual, in German we would say "Aufnahmeritual”
"After we all read your code, you are a full-fledged member of our team"

- The work of freelancers should be reviewed as well
[Question: Why?]
* Sustainability, you have to maintenance it! :)
* Learn from fresh ideas - discussion and code
* Show internal best practices (only interesting for further work)

- You can estimate very clear how skilled your co-workers are
* Specialists, see where workshops are required
m «

- "I will ask him the next time according xyz", “Let’s initiate xyz workshop”
* Identify accumulated needs

- The coding skills of all participants will rapidly gain
* Quotation of a co-worker: "In my code review I learned almost as much as
[learned in a whole year at university."
* Requires the presence of al important persons of the team, from
professional guides to newbies
* Experts give their experiences, newbies give their fresh and unconsumed
ideas
- "Sometimes a new and simple view is required to break out of fixed habits"
* All participants take benefit of discussion about best practices of the team
and special experiences since the last review

What kind of
There are several kinds of code reviews.

- Classic version is a dedicated activity

* The most common version

Mostly (and unfortunately) very rarely
* Expensive

=>» large amount, because its so rarely
Best for "acceptance ritual”

Continuous code reviews
* Through commit mails
[Question: Do you use versioning tools?]
=> Best concept/tool I have ever seen
=>» Each time a commit occurs in your repository, a diff mail is send
=>» Each subscriber has the chance to read all changes in the system
=>» Requires mail filters, of course!
=>» Usually decision (if someone wants to read the diff) in according to
commit message. Requires good commit messages!
[[llustration: Good vs. bad commit message]
- Good: added “create with” to watermark
- Bad: further implementation

Author: pbusch
Date: 2011-11-21 20:29:45 +0100 (Mon, 21 Nov 2011)
New Revision: 375

Added:
fbfrontend/branches/kozuka-premium/src/main/resources/de/buschstein/fancycover/frontend/image/watermark-white-

transparent.png

Modified:
fbfrontend/branches/kozuka-premium/src/main/java/de/buschstein/fancycover/frontend/FancyCoverSession. java
fbfrontend/branches/kozuka-premium/src/main/java/de/buschstein/fancycover/frontend/page/PictureWorkingPage. java
fbfrontend/branches/kozuka-premium/src/main/resources/de/buschstein/fancycover/frontend/image/watermark-white.png

Log:

watermark with added 'created with'

fbfrontend/branches/kozuka-premium/src/main/java/de fbfrontend/branches/kozuka-premium/src/main/java/de
/buschstein/fancycover/frontend/FancyCoverSession. java /buschstein/fancycover/frontend/FancyCoverSession. java
2011-11-21 ©8:10:08 UTC (rev 374) 2011-11-21 19:29:45 UTC (rev 375)
@@ -74,7 +74,8 @@

-------- byte[]-result; +eeec o -byte[] - result;

........ if- (watermarked) - { +esseeaife (watermarked) - {

------------ ImageBuilder:builder-=-new-ImageBuilder(this.rey[«+++:-++....ImageBuilder-builder-=-new-ImageBuilder(this.re
------------ builder.overlayWithImage(FancyCoverSession.clasy| --:::---«---builder.overlayWithImage(FancyCoverSession.clas

-------------------- .getResourceAsStream("image/watermark-wi

............ result-=-builder.getFinalImageAsByteArray(); tessesaeaearesult-=-builder.getFinalImageAsByteArray();
-------- }-else-{ teseesac}eelse-{

------------ result-=-this.resultImage; sessesesveaeresult-=-this. resultImage;

=> Requires also clear and well defined commits
- Don't break repository, semantically units, not too huge, ...
[Question: What is your commit behavior?]
= Requires good know how about the system to estimate quality of
changes
=> Good for own reviews as well! "What did I change in this commit?"
[[llustration: Commit mail]

@f rontend/branches/kozuka-premium/src/main/java/de/buschstein/fancycover/frontend/page/FriendMosaicPage.java :
)

fbfrontend/bra /kozuka-premium/src/main/java/de/buschstein/fancycover fbfrontend c ST) n/fancycover
/frontend/pace losaicPage.java 2011-11-07 21:02:17 UTC (rev 360) fror F) UTC (rev 361)
@@ -125,6 +125,9 @@
protected-void-onClickEnabled(AjaxRequestTarget-target)-{ | sreeeeeeeee protected-void-onClickEnabled(AjaxRequestiarget- target) - {

-+ -« +if.(FancyCoverSession.get().isConnectedToFb())-{ || seeevvennuenans if- (FancyCoverSession.get().isConnectedToFb()) {
----- if - (!FriendMosaicPage. this.smallImages.isEmpty())-{
--------- FriendMosaicPage.this.smallImages.clear();

}

«+«.List<User>-userList-=-FriendMosaicPage.this.getUserList();

................... int-x=0;
@@ -138,6 +141,6 @@

"""""""""" ArrayList<User>-runningList:-=-new-ArrayList<User>(); treessseseeseeee o Arraylist<User>- runninglist-=-new-Arraylist<User>();

----- -+ -runningList.addAll(userList); ceee .- -runningList.addAll(userList);

----- e ewhile: (x-<-MAX_X-width-&&-y-<-MAX_Y-height)-{ oooC ++eeewhile: (x:<=-MAX_X-width-&&-y-<=MAX_Y-height) - {

............ final-String-key-=-imageRepeater.newChildId(); e +++--final-String-key-=-imageRepeater.newChildId();
rrrrrrrrrrrrrrrrrrrrrr LOG. info(key); R L EL L LOG = n o (ke vy

* Through tools like crucible or fisheye
=> Enables a web based reviews
=>» Smaller amounts, higher frequency
=>» More integrated in development process, not a dedicated activity.
Sometimes with coffee on the couch :)

- Extreme programming or agile processes
* Code reviews in extreme programming build in the process
* Through pair programming
[Question: Do you remember the concept?]

* Process:
=>» One develops, the other sits beside and communicates
=>» Has time to think about exceptions, further special cases,...
=>» Has mental distance to think about code objectively

* Productivity loss? Time spend while developing high quality software is

saved in time planned for bug fixing, fluctuation works, ...

* In agile processes (e.g. scrum) not build mandatory in that way
=>» But more accepted as in classic project management processes
=> Agile processes have the aim to develop software in small steps

(sprints). Each small step can be reviewed very well.

- Open source
* Big point for reviews
* Expose your software to the whole world
* Needs fancy project that someone invests effort to review your software
* Mostly review through usage of your components
* Maybe you get support from readers of your software

How to use
- Classic code review process and tools

* Dedicated activity

* Moderate to larger amount of code

* Tools mostly IDE integrated
=> Has benefits of real working environment
=> ctrl+left click is your friend
=> Negative: Mostly no chance to view differences

- Web based tools

* Continuous activity

* Smaller amount of code

* Tools web based (who'd think about that?!)
=>» Have benefits of mobility! "Coffee, couch and code review"

[Question: Do you have couches? Some kind of “chilling area”?]

=> Has mostly the benefit to review differences
=> Negative: No real working environment

- Commit mails
* In my opinion the absolute minimum what you should do to improve your
quality
* Inthe meantime I use commit mails in private projects as well
[[llustration: How to setup commit mails, it is so easy!]
http://blog.netzmeister-st-pauli.com/post/411802119/svn-commit-e-mails-einrichten
¢ Useful to keep track of the whole system and the according changes
e Useful to review own commits, work
=> Easier to open an email then browsing repository history
=> “What did I do this morning?”
¢ Useful to identify author of dedicated changes
=>» Search functionality of mail clients is very good ;-)
=> No fingerprinting! Helpful in the way that you can ask the author
why he did this change.

- Early recognition
* Some kind of special use of commit mails
* You can see when your code moves to a direction where you do not want
it (from the point of view of an architect, experienced developer)
* In combination with offshore development very useful

- Mentor model
* New colleague gets mentor, which reviews his work/commits
* Often for junior developers
* Makes objective remarks and dedicated reviews
¢ 1:1relation
* Best way to accept objective reviews and learn objective view
[Short story: How my mentor comes with short reviews on normal papers]

- Outsourcing
* Used in companies with no technical focus (public authorities, super
markets [...])
=> Where developers are just resources
* After the whole process when something crashes
* Our developers are not able to build the software we need, lets contact
some specialists or consultants
* Benefit for own developers gains to zero
[Remark: No own experience with this! Just read a lot of this and wondered about...What
do you think??]

What to review
- Defined amount of code
* Someone (usually the author) should think about wisely what components
should be reviewed
* Components should have semantically connection and in the best case
wraps a semantically closed piece of software
=> Introduction work
= New feature
=>» Result of a refactoring, ...
=> Subset of the things listed above is also possible
* Don’t bother about boilerplate code or boring sections :)
=> Keep track of interesting sections (fancy calculations, ...)
=> Keep track of critical and important sections
[[llustration: Distribution the burden of critical software pieces!]
* Single commits can be reviewed as well
=>» Via commit mails
=>» In dedicated reviews in the continuous development process
* The difference of two revisions be reviewed either
=>» Useful for comparison before/after of a refactoring, re-theme, ...
[Question: Difference single commit vs. compare two revisions?]

[[llustration: Webstat before/after]
Before:

Startseite | Besuche | Herkunft | Nutzung | Browser&Systeme | Einstellungen ~

Startseite konfigurieren N Grafikansicht: [Tage v|] ~ Domain: [Alle Domains und Subdomains v| ~ Zeitraum: | 07.012011 | - | 06.042011 | [

* Erweitern Sie lhre 5gli iten mit 181 ics Comfort.
, um Ihre
per

Proftieren

%070 2 o oo ‘auswerten zu konnen.
auf Wunsch auch

753 Besuche gesamt o o
regemafig, z.B. wochentich.
Detais anzeigen = Immer auf dem aktuellen Stand: Die Ktualsiert, 5o dass Sie Ihnen eger
= Reglonalstatistik fir Deutschland und Osterreich: Erfahren Sie, aus Deutschiands Ihve Besucher
kommen.

Hinweis: Features nach einer o Loginin 181

Zum 181 Kundenshop
Seite Anzahl %

unterstein.infolphvik/index.php 1.483 62.42%
unterstein.infol 876 3687%

unterstein infolpiwik/pwik.php 14 059%
unterstein infolpiwik/ 3 013%

B Windows 176 (83%) unied
8 Linux 26 (13%)
B MacOS 8 (4%)

Detais anzeigen

Detais anzeigen

After:

181 WebAnalytics

»—l? WebAnalyticsS Besuche Herkunt Nutzung Browser& Systeme Einstellungen v 2

Grafikansicht: [Tage =] ~ Domain: [Alle Domans

Besuche 181 WebAnalytics Comfort

50

5
A Erweitern Sie Ihre 6 mit 1&1 Comfort.
S

2
V\\W/\M\NM/\/\N /M~

0
21.08 01.09 01.10 o 201 Waiters Informationen
1091 Bosucho gosamt

Details anzeigen Verweisende Domains

Am hiiufigsten aufgerufene Seiten Sunde

Seite Anzahl %
unterstein.info/ o73 69.95%
unterstein.info/index htmi a7 27.47%

wicketcoaching defindex.himi a7 266%
wicketcoaching del 2 014%

unterstein.infoll 1 007%

Betriebssysteme Browser

e —— W Mozilla 580 (74%) |
8 Windows 273 (62%) @ internet Explorer 118 (15%)
8 MacOs 35 (10%) 8 Opera 45 (6%)
8 Linux 26 (8%) W Safari 30 (4%)
8 Netscape 10 (1%)

B Java 3(0%)
Waet 2 (0%)

=» Need dedicated tools
=» And dedicated attention

* [Itis necessary to define a subset of components for the last two points
listed above as well
* [tis possible for the reviewers to add new classes while reviewing
=>» Differs through tool support
= Very useful!

- Size matters!
* Developers are expensive, and you need a lot of them for a review :)
* Extraction of our logs:
=>» [spend about 3 to 4 hours of preparation for each review of a new
colleague
=> Average size: 8 classes with each < 500 loc
=>» Our review meetings took about 4 to 5 hours in average
[Question: What do you think about the return of investment? It is expensive? Do
managers spend the time?]
* With about 30€ per hour per developer and 8 developers per review you
raise the bill rapidly over 2000€ per review
=>» Price is very moderate in comparison to usual costs when your
software has an incident breakdown/critical bug!
[Short story: Maybe a short story about an incident...]

Who

- Roles

- Author or authors
* Most important persons for the review. Without them there would be

nothing to review

* Role during individual preparation passive (no reviewers)
* Important while review meeting
* Difficult to handle

=>» Should not defeat code (fixed on current implementation)
=>» Should discuss objectively

[Question: What do you think? It is easy? You thought about your implementation!]
- Organization (mostly done by the author or mentor)
* Kickoff: "Yes, we make a review"
* Find time slot where all needed participants are free
* Infrastructure: Meeting room with beamer and notebook
=>» Or working station in normal office if review is small enough
- Reviewers
* Responsible for good preparation
* Responsible for quality improvement of the review
¢ Should make good and constructive remarks
[[llustration: good vs. bad remark]

Situation:
/**
* Gets the name
* the name
*/

public String getName() {
return this.name;
I
Bad: “Not again! Remove this stupid boilerplate comments”
Good, like Adam Bien said: “Don’t waste time writing comments for getters”

=>» Can also make remarks with question marks, when he is not sure
* Share remarks before review
- Moderator
* One of the reviewers
* Controls the mouse ;)
* Leads discussions
* Responsible for an objective lead of the discussions while the review
meeting
* Good understanding of the technical problem domain and well accepted
by the rest of the team

People
- The according team
* Try to get as much as possible together
* Each member profits from participating a code review
* Each member influences others while participating a code review
e Paltry excuses are invalid
=>» Individuals should not try to avoid the effort to participate of
reviews!
=>» Bad mood in the team if important people are missing
- Good mixture of participants
* Experts give their experiences, newbies give their fresh and unconsumed
ideas
=> No separation between experts/newbies
=> All has same voice!
* Maybe not the best idea to invite the "head of"
=>» Influences the criticism

Common review process

Preparation
- Initialization "Hey, lets do a review"
* Why? Which reasons?

= New co-worker
=>» Fancy new feature
=>» "I made some critical chances and want to get assurance"
=> The other points from slide "why"

[Short story: My kickoff while team meeting]

- Motivation inside the team
* Not forced from the outside
* Must be accepted, pick up unmotivated members
* Usually kick off during team meeting
[Question: What would you say, when your head of comes and say “Ey, do a review!”]

Who organizes review?
* Mostly through the authors of the reviewed code
=>» Have greatest interest at the review
=> Have technical skills to set up review
* Could be organized through team assistance either
=> Notice technical required skills to set up review
=> Reduces effort in development team

- Decide which code should be reviewed
* See slide "What to review"
= Which components?
=>» What size?

- Decide who will join the review
* Seeslide "Who"
=>» As much as possible
=> For good reasons members could decline in the kick off phase

- Find areasonable time slot
* Friday afternoon is a very unthankful time slot
* Monday morning as well ;-)
* Noteasy to find ~5 hour time slot in 4-10 developer’s calendars
=> Requires tool to plan meeting and access to calendars
* Plan meeting one to two weeks in the future
=>» Good for preparation, bad for "real time" behavior

- Do not forget important infrastructural points
* Meeting room
* Beamer
* Notebook

* Plan breaks, fresh air, coffee and other drinks

Distribution
- Distribute the according code to all participants
* Extremely simple with up to date tools
=>» Take a versioning tool your choice (svn, git, cvs, mercurial, ...)
* Actually works with .zip distribution...
=> But... people without versioning tools typically do not bother about
quality improvements through code reviews ;-)

- Itis important that all participants review the same revision
¢ Usually development goes on after a review is triggered
=> Unprofitable if participants reviewing trunk
=> Unprofitable if all participants reviewing different versions
* Use tags for a clear defined version
* Mostly tags. Tags are easier to handle then dedicated revisions

- Itis also important that all participants gains access to all required tools
* Versioning tool
* Review tool
=> Installation, Web based needs accounts

Individual phase
- The phase where all reviewers review the defined code separately
* Make your own thoughts about the present code
* Try to understand and check documentation
* Check code style, formatting rules, common best practices
=> Only one return in a method, pattern usage, qualified access,
method naming, class naming, method organization, ...
* Check correctness

- Each reviewer makes personal remarks in the code
* Meta information, requires tool support
* Take care of the wording
* Be polite
=>» Comments will be visible for all
[Remark: See good vs. bad remark]

- Requires a lot of discipline of all reviewers
* Self-management
* Objective and constructive criticism
* Ability to read code where are less points to remark
=> Benefit for reviewer, reads good code
¢ Ability to read code where a lot of points to remark are present
=>» Do not bother about: "Oh no, he did this mistake ten times before",
maybe it was not clear for the author that it is a mistake
=>» Endurance to be objective the through the whole code

- First and important step of knowledge distribution
* Spread knowledge of reviewed component over the reviewers
* Knowledge about underlying code is present in more then one head
=> Redundancy, ...
* Often the bulk of improvements are in the individual phase

- The reviewers must be thorough while reviewing the code
* Useless to invest hours to receive a superficial result
* Authors recognize if reviewers did their work good
* Reviewers should take care of their wording

[Short story: About recognition of bad reviews]

- A good individual phase requires time, take it!
* Notalways easy to manage in the daily business
* The result excuses the effort! It is worthwhile

The review
- Plan enough time
* Like said before, discussions requires time
* Block about 3-5 hours, depends on amount of code
- Do not bother about the usual discussions
* Ifyou know, that there are points with different and tightened positions ...
just limit them to the minimum
¢ StringBuilder, getter documentation, @author, null in conditional, ...
[Question: What are your typical discussion points?]

- The team review phase fits not all organizations
* Open source projects manage quite well by skipping this phase
* World wide distributed teams are maybe not able to meet

- The actual process
* Go through all points sequentially
=> Maybe start with an easy component for warm up
=> But concentrate then to major components first
=>» Less chance to run out of time for major things
* The team decides if remarked issue is valid or not
=> Mostly leads to discussions, except obviously issues
=> Classifies the issues, e.g.:
¢ Valid needs fixing (a real issue that needs to be fixed)
* Valid fix later (a real issue that you won't fix right away)
* Valid duplicate (real issue that it’s already been mentioned)
* Valid won'’t fix (a real issue that you don’t want to fix)
* Invalid won't fix ("it ain’t broke, don’t fix it!")
* Unsure validity (needs further investigation)
=> Rate the issues according their severity, e.g.:

* major
* minor
e trivial

¢ enhancement

¢ Ifthe pointis valid, the team develops a strategy how the issue can be
resolved
=>» Again: if you have 5 developers, you get 7 strategies to solve the
issue
[Question: Do you have examples?]
* After making clear how to fix the issue, it must be cleared who will fix it
=> Alternatively all issues or a subset of them is thrown to a gathering
pool where different develops picks out them later
=>» No matter who made the defect, it matters who will fix it
=> Maybe it requires a specialist for solving the issue
=>» Do not waste your time searching the author of a mistake, mostly
leads to stupid fingerprinting instead of productivity
* In the context of a code review, the originator is more or
less obvious

[Question: Do you know the situation where you find a defect you did not made? Did you
fix it, or did you find out the author to fix it?]

Rework and check
- The developers solve the valid issues

* Different strategies
=> Major first
=>» Mass first
=> Sequentially
=> Randomly
=> Ordered by needs

- After solving an issue mark the ticket as resolved

- According reviewer will close the ticket
=>» Should check if the issue was resolved correctly
=>» If the issue was not solved correctly the reviewer reopens the
ticket

- Optionally: Review the rework in a dedicated review
* Mostly done through the check if the issue was solved correctly in a
distributed review over the according reviewers

Further aspects

Profit — People
- The authors profit
* Receives very valuable feedback
=>» Very good chance to gain own coding skills
* Profits from the essence of experience of the co-workers
=>» Be sure: the others were in your position before

=> Wants to prevent you from mistakes
=> Reduces the burden of single developers
* E.g. going online with payment system for thousands of
customers is not as easy as it sounds :-)

- The reviewers profit either
* Reads (hopefully good) code
=>» Reading code is always (mostly) an enrichment
[[llustration: Reading code]
Good code: You can learn from
Bad code: You can learn how to improve/refactor code
-> Don’t bother: You will do this a lot in your career
* Leads to know how exchange
=> Reviewers get introduction of what the authors did
=>» Profitable for already mentioned points (redundancy, fluctuation,
vacation, ..)
* Again: Profits from the essence of experience of the co-workers

[Question: What kind of review intention could you imagine?]
- Newbies or developers where you think "hmm, quality is not the best.."
* Profit: Quality improvements at reviewed developer
- Experienced developers where you think "quality if quite fine!"
* Profit: Quality improvement at the reviewing developers

Profit — Code
- Reviews lead to less bugs and prevent you from critical ones
* (ritical bugs often exist because of misunderstanding
* or bad communication (not always covered through reviews)
* (ritical ones could mostly be identified through a second opinion

- Therefore: Code quality improves through reviews extremely
* Common coding standards, ...
* Common acceptance
[Short story: Outsourcing and acceptance afterwards]

- Improves the knowledge about the produce, the code or the project of other team
members
* Sometimes: Project affects only a subset of the whole team
=» One Frontend, two Backend, ... whatever
= Other members need knowledge about this project as well

- Therefore: Spread the knowledge to be sustainable
[Short story: Critical bugs while vacations]

Psychological aspects
[Short story: Romania — way of work]
- Acceptance from authors

* Review member, who belongs very long to a team, might not lead to
acceptance
= ['m the hero
=> "We did it the past years in that way"
= "We do it always that way"
* The feeling "oh god, my code is reviewed" is almost new
=> Needs time to clear the feeling
=> Against the natural claim of computer scientists:
"i produce high quality and bug free code"
- "i make no mistake"
* You could feel inspected, disgraced, but transparency is always good
=>» If you did a good job, you can show it
=>» If your coding style needs improvements, you’ll get it there
=> Leads to transparency

- Ifyour code is reviewed, remark that your reviewers try to improve your code
and help you
* Do not take objective view of code as personal criticism
* Sometimes remarks not easy to handle from co-workers

- Ensure that it is a positive experience for the author
* He will not accept another review easily otherwise
* Resistance could grove

Automatic analysis
- Goals
* Tries to identify some kind of errors while development process
automatically
* Tries therefore to improve the quality
* While coding (implicitly), triggered manually (explicitly) or during the
build process (implicitly)

- Classification of static code analysis
* Inspects just the static code "plaintext”
* Formatting, naming convention, memory leaks, code redundancy, ...
* Simplest occurrence: compiler
=>» Static type conformity
¢ Static code analysis tools are meta programs
¢ Useful complementation to software tests and code reviews
=> Very helpful during coding
* Ensures quality on another level then manually code reviews
=>» Offers basics and ensures preconditions
- Formatting, code styles

- Tools
* Checkstyle
=> Automates checking java code according naming conventions,
documentation available, duplicate code, white spaces, ...
¢ IDE build in tools, e.g. eclipse java tools

=>» imports, unused vars, qualified access, serial uid, ...
[[llustration: Configure it!]
* Findbug, a little bit more intelligent checks
=>» null pointer checks, instantiation support, makes nice reports
* Other code metric tools like code analysis a la source monitor
= % comments, average complexity, methods per class, ...
[[llustration: example code metrics]

Kiviat Metrics Graph: Project 'membership’
Checkpoint 'Baseline’

% Comments [5-40]

% Docs [5-20]
Avg Complexity [4.0-8.0] s (-0

Avg Depth [1.5-2.0]

Max Depth [2-€] Max Complexity [2-8]

- Basic support, should just give static advises
* Fits nicely in build processing tools (hudson/jenksins, bamboo) and IDEs
¢ Should stay as static advisor
* Not enough for stand alone use

Outsourcing
- Code reviews could also (like everything) be outsourced
- Externals review the piece of software and give result and advise
- Outsourced reviews have only profit for code, no profit for the own developers

- Pros:
* Externals are mostly more objective then internal developers
=>» Have no emotional binding to the underlying software
* Externals may be specialized to a certain kind of software, which should
be reviewed
* Externals bring fresh ideas to the software
=> Maybe invite current a freelancer to a review

- Cons:
* External code reviews sounds like "yes...our developers are not able to
produce the quality we need. Let’s see what externals could do."

* Internal developers have know how either
=> Nobody knows a system as good as their developer
* Internal developers know best about internal process, standards, best
practices, communication partners, ...

