
CODE REVIEWS
PART OF OOSWE

by Johannes Unterstein
unterstein@me.com

AGENDA



INTRODUCTION

INTRODUCTION

• Wording and communication

• Periphery

• Breaks

• Test

• Source code needed for practical review :-)

• Server : http://it-review.dhbw-stuttgart.de/



MYSELF

• Johannes Unterstein, unterstein@me.com

• Finished DHBW in 2010

• Currently software developer at 1&1 Internet AG

• huge and distributed eBusiness web application

• e.g. eShops, WebAnalytics, Search engine marketing

WHO IS HERE?

• Which companies? Are you developers?

• Who worked in a team yet?

• How did you handle this situation?

• Did your mentors reviewed your code?

• Did you participate a code review?

• What do you expect of this event?



WHY THIS EVENT?

• My first commit at 1&1

• Objective view of source code 

• Separation of code remark and personal criticism

• Better software quality

• Desired presence in the academic world

THEORETICAL BASICS



WHAT IS A REVIEW

• Review in general

• Look at things, re-view

• After factoring process

• Reflect things

• Check correctness

• View with mental distance

TARGETS

• Code

• Components

• Architectures, Designs

• Refactorings, Tests

• Projects



PRECONDITIONS

• Team

• Ability of constructive 
criticism

• Common code base

• Common quality 
entitlement

• Administrative

• Objective and diplomatic 
moderation

• Management

• Suitable software

CLASSIFICATION

• Important part of the software development process

• Tool to improve software quality

• No compensation for tests

• Continuous vs. dedicated

• It‘s not for free



WHY

• Continuous quality assurance

• Prevent bugs

• Distribution of knowledge

• „Acceptance ritual“, new co-workers

• Estimate coding skills of team members

• Improve coding skills of all participants

WHAT KIND OF

• Classic code reviews

• Continuous code reviews

• Extreme programming / agile processes

• Open source



HOW TO USE

• Classic review process and tools

• Web based

• Commit mails (minimum)

• Early recognition

• Mentor model

• Outsourcing

WHAT TO REVIEW

• Defined amount of code

• Semantically closed piece of software

• Single commits

• Diff of two revision

• Size matters

• Developers are expensive ;-)



WHO

• Roles

• Author(s)

• Organization

• Reviewers

• Moderator

• People

• According team

• As much as possible 

• Good mix

COMMON REVIEW PROCESS
the classic way



PREPARATION

• Initialization

• Organized by assistance or author(s)

• Which code?

• Which participants?

• Meeting

• Infrastructure

DISTRIBUTION

• Code

• Defined revision or tag

• Tools, accounts, access ...



INDIVIDUAL PHASE

• Each participant reviews the code for himself

• Makes remarks

• Discipline

• First step of knowledge transfer

• Be thorough and handle with care

• Take your time

THE REVIEW

• Plan enough time

• Don`t bother about usual 
discussions

• May not fit all organizations

• Process

• All points sequentially

• Decide if valid

• Decide how to handle

• Decide who will handle



REWORK AND CHECK

• Solve issues

• Mark tickets as resolved

• Check the rework and close the ticket

FURTHER ASPECTS



PROFIT - PEOPLE

• Author(s)

• Receives feedback

• Profits from the know how of other participants

• Reviewers

• Know how exchange

• Profits from the know how of other participants

PROFIT - CODE

• Prevent, reduces bugs

• Improves code quality

• Improves code, product, project knowledge

• Spreads knowledge



PSYCHOLOGIC ASPECTS

• Acceptance

• Oh god, my code is reviewed!

• Inspection, disgrace, transparency ...

• Objective view vs. take to be personal

• The code isn`t you!

• Positive experience for the author

AUTOMATIC ANALYSIS

• Goals

• Improve software quality

• Classification

• Tools

• Checkstyle

• IDE build in tools

• Findbug

• Other metric tools



OUTSOURCING

• Pros:

• Objectivity

• Know how

• New ideas

• Cons:

• Acceptance

• Know how

• Internals

• Best practices

• Standards, ...


