-ﬁ DHBVV Stuttgart

@@ D= REYEE
FARIEGIE CIC Y

by Johannes Unterstein
unterstein@me.com

‘ feedback '1\ /-r‘ introduction '

further code reviews theoretical
aspects basics

review
process

AlaENLA:

INTRODUCTION

INTRODUCTION

* Wording and communication

e cliphiery

* Breaks

- s

* Source code needed for practical review :-)

» Server: http://it-review.dhbw-stuttgart.de/

MYSELF

* J]ohannes Unterstein, unterstein@me.com

* Finished DHBW in 2010
» Currently software developer at 1&I Internet AG
* huge and distributed eBusiness web application

* e.g. eShops, WebAnalytics, Search engine marketing

Vil OIS I ERE

* Which companies! Are you developers!
* Who worked in a team yet!

* How did you handle this situation?

* Did your mentors reviewed your code!
* Did you participate a code review!?

» What do you expect of this event?

Y THIS EVENEIK

* My first commit at | &

 Objective view of source code

» Separation of code remark and personal criticism
* Better software quality

» Desired presence In the academic world

What to
review

theoretical .
What kind of Classification

RIEOREIIE Ak BA S 1o

WHAT IS A REVIEW

* Review in general
* Look at things, re-view
» After factoring process
* Reflect things
* Check correctness

* View with mental distance

TARGIETS

@ oce

« Components

* Architectures, Designs
* Refactorings, Tests

* Projects

ERECONDIRICINS

* Team » Administrative
» Ablility of constructive » Objective and diplomatic
criticism moderation
« Common code base * Management
« Common quality » Surtable software
entitlement

ClASEIRIE AN

* Important part of the software development process
» Tool to improve software quality

* No compensation for tests

» Continuous vs. dedicated

* |t's not for free

WHY

» Continuous quality assurance

B Enit bugs

* Distribution of knowledge

» ,Acceptance ritual”, new co-workers

* Estimate coding skills of team members

* Improve coding skills of all participants

WHAT KIND OF

» Classic code reviews
« Continuous code reviews
* Extreme programming / agile processes

B e solrce

HOW TO USE

» Classic review process and tools
* Web based

» Commit mails (minimum)

» Early recognition

Bl emior model

» Outsourcing

WHAT TO REVIEW

* Defined amount of code

» Semantically closed piece of software
* Single commits

* Diff of two revision

B jZe midtters

* Developers are expensive ;-)

WHO

* Roles o PEople
* Author(s) » According team
* Organization * As much as possible
* Reviewers » Good mix

* Moderator

/r‘ Preparation ’

Rework

code reviews Distribution
Phase

The Review Individual
Phase

S [MON REVIEVW PROEESE

the classic way

PREPARATION

* Initialization

» Organized by assistance or author(s)
* Which code!

* Which participants?

Bhleeting

e |Infrastructure

DISTRIBUTION

R Ecde
* Defined revision or tag

* Jools, accounts, access ...

INIDIV DAL RIS

* Each participant reviews the code for himself
* Makes remarks

* Discipline

* First step of knowledge transfer

* Be thorough and handle with care

* Take your time

IS ERE =

* Plan enough time 0 Fliodess
* Don't bother about usual - All points sequentially
discussions

* Decide if valid

* Decide how to handle

 May not fit all organizations
* Decide who will handle

REVYORK AND CEIEES

» Solve issues
* Mark tickets as resolved

* Check the rework and close the ticket

Profit -
People

Outsourcing code reviews Profit - Code

Static code Psychological
analysis Aspects

RO RTAS =S

FROFT - PECREE

* Author(s)

* Recelves feedback

* Profits from the know how of other participants
* Reviewers

* Know how exchange

* Profits from the know how of other participants

FROEIF - COIBE

* Prevent, reduces bugs
* Improves code quality
* Improves code, product, project knowledge

* Spreads knowledge

FEHO | OG|IC ASREEE

* Acceptance

» Oh god, my code is reviewed!

* Inspection, disgrace, transparency ...
« Objective view vs. take to be personal
* The code isnt you!

» Positive experience for the author

S PO MANIC ANAISESS

* Goals - esis
* Improve software quality * Checkstyle

* IDE build in tools
» Classification * Findbug

« Other metric tools

@ISO URCIHNE

S os: > Comns:
 Objectivity _ ACEEEnicE
* Know how * Know how
* New ideas * Internals

* Best practices

» Standares

